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ABSTRACT OF THE DISSERTATION

A Baysian Framework for Saliency and a Probabilistic Model for Visual Search

by

Lingyun Zhang

Doctor of Philosophy in Computer Science and Cognitive Science

University of California, San Diego, 2007

Professor Garrison W. Cottrell, Chair

Visual attention reflects the sampling strategy of the visual system. It is

of great research interest not only because of its mysterious nature as a biological

system, but also because of its potential benefit to computer vision and graphics.

Psychologists have investigated visual attention for many decades by psychophys-

ical experiments such as visual search tasks. Sophisticated mathematical models

have been built to account for the wide variety of human performance data. With

the development of eye movement tracking system, where people fixate when they

perform certain tasks can be explicitly recorded and provide straightforward evi-

dence of what people pay attention to. Computational models are emerging fast in

recent years that take complex images and videos as input and generate saliency

maps which predict what attracts people’s attention. In particular, there sees a

trend of building principled statistic models that have explicit optimization goals.

However, there seems to be a canyon between these two lines of research although

both seeks to better understand visual attention. Visual search models are often

designed to work with well controlled stimuli with distinct target and distractors,

and are not applicable to complex images and videos. On the other hand, saliency

algorithms are not supported by theories that can account for the variety of human

data in visual search.

In this dissertation, we make an effort of developing a visual attention

theory from first principles. Our goal is to have a framework that combines the

xiv



virtues of both visual attention models and saliency algorithms. We address the

following issues to achieve our goal:

(1) We develop a Bayesian framework of saliency by considering what the

visual system is trying to optimize when directing attention. Bottom-up saliency

emerges naturally as the self-information of visual features. Unlike existing saliency

measures, which depend on the statistics of the particular image being viewed, our

measure of saliency is derived from natural statistics. Our Bayesian framework also

facilitates the incorporation of top-down effects. The measure of overall saliency

in visual search, which combines the bottom-up saliency with top-down knowl-

edge of the target’s appearance, emerges from our model as the pointwise mutual

information between the observed visual features and the presence of a target.

(2) Based on the theory, we implemented bottom-up saliency algorithms

for both static images and dynamic scenes. In our model saliency is computed

locally, which is consistent with the neuroanatomy of the early visual system and

results in an efficient algorithm with few free parameters. They demonstrates

good performance at predicting human fixations during free-viewing of images

and videos. A real time version of dynamic saliency is implemented on a robotic

camera. When the camera is oriented toward salient regions, the chance of seeing

people is greatly improved.

(3) Our saliency framework account for feature search, conjunction search

and many search asymmetries straightforwardly. We further examine given a

saliency map, how attention is directed. We treat this as a multi-bandit deci-

sion making problem and propose that attention is directed probabilistically with

the strategy of probability matching. We also treat the visual search task as a

sequential decision making problem when investigating when subjects terminate a

trial. Taken together, we were able to account for many observations of mistakes

and response time in visual search tasks.

Together these contributions made efforts toward a unified statistical

model of visual attention that not only account for human behavior, but also
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allows practical implementation on complex images and videos.
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I Introduction

I.A Visual Attention

Visual attention reflects the sampling strategy of the visual system. The

surrounding world is of tremendous amount of visual information that the visual

system can not fully process. The problem the system thus facing is what to process

and what not to, and with how much processing resources. Despite the small

amount information the system can handle, sampled by discontinuous saccades,

we experience a seamless, continuous world. More importantly, we human, as well

as many other animals, survive with this heavily down sampled visual information.

To investigate how visual attention works, is not only of interest to under-

standing the biological system itself, but also of potential great use for computer

vision and graphics. As the biological vision system is currently the only system

that “solved” vision, insight of how it manages to heavily down sample the input

but successfully recognize objects and configure their spacial positions would be

of help to build efficient computational visual systems. Moreover, this down sam-

pling may even enhance performance by filtering out irrelevant information. The

understanding of the sampling strategy is thus of interest to computer vision sci-

entists even with unconstrained computational power, which is yet to come. Thus,

investigating what the visual system can do and how it achieves it with its resource

constraints is of interest to computer vision. On the other hand, understanding

the visual system’s limitations is of interest to computer graphics. The knowledge

about perceptual limitations in visual and audio systems have proven fruitful in

1
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image and music compression. Knowing what the visual system care and not care

to process can save great effort in computer graphics by rendering images “look”

realistic but not necessarily physically correct or even possible.

I.B Previous work

What attracts attention? This question has been of interest to vision

researchers for many decades and numerous experiments have been carried out to

investigate it. It is well known that a white bar can not hide in the a sea of black

bars. No matter how many black distractors you put in there, the white one will

“pop out” from the scene and grabs the attention in no time. The reverse works

equally fast that a black bar jumps out from a pool of white ones. A vertical bar

also pops out from a pool of horizontal bars and vice versa. However, a horizontal

white bar does not pop out from a pool of horizontal black bars and vertical

white bars. Figure I.1 shows examples of stimuli that illustrate feature search and

conjunction search for a horizontal white bar.

Figure I.1 Left: An example of feature search. The white bar pops out and

attracts attention automatically. Right: An example of conjunction search. The

white horizontal bar, although different from all other items, does not attract

attention instantly.

Another interesting phenomenon is that sometimes an item A pops out

from a pool of item B’s, but an item B does not pop out from a pool of item A’s.
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For example, a 10 degree tilted bar takes no time to search from a pool of vertical

ones but a vertical in a pool of 10 degree ones requires some effort to notice [75].

Another example with somewhat higher level stimuli is that it takes longer for

Caucasians to search for a Caucasian face in a pool of African American faces than

the reverse. To make things more complicated, Caucasian basketball fans who are

familiar with many African American players do not show this difference [41, 42].

This phenomenon that the searching difficulty changes when the target and the

distractors switch the roles has been referred to as search asymmetry [75,76,89].

Many computational models have been built to account for various phe-

nomena in the classical paradigm of visual search. We will introduce a few here

just to give a flavor of the variety of models in the literature. Treisman’s feature

integration theory (FIT) [74] and Wolfe’s guided search (GS) [86,91,92] are among

the most prominent ones and can find their reminiscence in many computational

saliency algorithms that will be discussed later.

FIT proposed that processing in one feature space is pre-attentive and

parallel while combining features needs attention and is serial. This directly ad-

dresses the phenomenon that a feature target pops out but a conjunction target

does not. Treisman has also done numerous work in search asymmetry and con-

cluded several categories of search asymmetry including “prototypes do not pop

out” and “lack of feature does not pop out” [75,76].

Guided search model are composed of several components. The input im-

age is first processed in basic feature dimensions in parallel, which resembles FIT.

Its output goes through the selective bottleneck of visual attention, which can

be mediated by a “guiding representation”. Then the selected features/objects

proceed to the process of object recognition. GS4 also acknowledges high-level

properties such as image statistics and scene analysis, but they are not explicitly

modeled. With proper parameters, GS4 accounts for the continuity between paral-

lel search and serial search, and gives the task difficulty a continuous measurement

“efficiency”. It also accounts for a large body of other observations in visual search.
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Bundesen developed a visual attention theory that has a selection com-

ponent and a classification component [4,5]. The selection follows Luce’s selection

rule [44] that the probability of an item being attended to is proportional to the

product of its sensory evidence and selection bias. The probability of classifying

an item as a certain category is proportional to the product of sensory evidence

and the category pertinence. This model accounts for many visual attention phe-

nomena as well as the linear response time in visual search tasks.

Zhaoping and colleagues have proposed that pre-attentive computational

mechanisms in primary visual cortex create a saliency map [43,96]. In their work,

firing rates of output neurons in V1 provide a saliency map, the higher the firing

rate, the bigger the salience. Their biologically-based V1 model accounts for a

number of phenomena qualitatively, e.g. pop out, the effect of background homo-

geneity on search difficulty and some of the search asymmetries.

Another family of models are the limited capacity models [36, 54, 59, 85].

The essence of this idea is that all items in the visual field are processed at once by

the limited attentional resources. Evidence accumulates at each location for the

presence of a target or non-target item. Search terminates when one item crosses

the “yes” threshold or all items cross the “no” threshold. The rate of accumulation

depends on the amount of attentional resources available to each item. Thus when

the amount of resources is fixed, increased set size results in fewer resources per

item and slower average speed.

A family of models based on signal detection theory (SDT) can also ac-

count for some observations in visual search (see [79] for a review). The assumption

here is that the search process monitors the noisy output of a matched filter. The

subject’s responses and processing time depend on the filtered output of the tar-

get vs. the maximum output of the distractors. When the number of distractors

increases, there is a larger probability that the maximum of the distractors will

come close to that of the target, making the task more difficult. Also, when the

distractor is similar to the target, the distribution of outputs from the matched
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filter overlap and the task again becomes more difficult. Thus SDT models account

for both the effect of the number of distractors and the continuum of processing

time depending on the discriminability of the target. Indeed, GS4’s parallel front

end is similar to a SDT model [91].

With the advancement of sophisticated eye movement tracking systems,

where visual attention is directed can be explicitly examined by recording where

subjects fixate when watching an image or a video. This provides a very different

kind of data from classical visual search paradigm. The stimuli are often complex

images or videos. Subjects are instructed just to “view” the display or to perform a

task such as looking for a target. Their eye fixations are recorded in the meantime.

This new kind of data calls for computational models that can take complex stimuli

as input. Former visual attention models are mostly developed to account for

human behavior in well controlled stimuli such as those shown figure I.1. They

are often too specified or complicated to be computational applicable to complex

natural images. For example, many models explicitly index each item in the visual

search stimuli and examine their orientation, color, etc., which is not possible

to apply to complex images without clear boundaries from one item to another.

Thus, a relatively new direction of research seen in the recent decade are saliency

map algorithms that operates on images and videos. The evaluation, instead of

accounting for response time and mistakes in visual search tasks, is to predict

people’s eye fixations. A saliency model which assign high values to where people

look but low values to where people ignore is considered a good model.

Itti and Koch’s saliency model [29–31] is one the earliest and the most

used for comparison in later work. The model is an implementation of and expan-

sion on the basic ideas first proposed in [38]. The model is inspired by the visual

attention literature, such as feature integration theory [74], and ensuring that the

model is neurobiologically plausible. The model takes an image as input, which is

then decomposed into three channels: intensity, color, and orientation. A center-

surround operation, implemented by taking the difference of the filter responses
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from two scales, yields a set of feature maps. The feature maps for each channel

are then normalized and combined across scales and orientations, creating con-

spicuity maps for each channel. The conspicuous regions of these maps are further

enhanced by normalization, and the channels are linearly combined to form the

overall saliency map. This process allows locations to vie for conspicuity within

each feature dimension, but has separate feature channels contribute to saliency

independently. This model has been shown to be successful in predicting human

fixations and useful in object detection [30,31,55]. However, it has been criticized

as being ad hoc, partly because the overarching goal of the system (i.e., what it

is designed to optimize) is not specified, and it has many parameters that need to

be hand-selected.

Itti and Baldi [28,32] proposed a Bayesian surprise model for saliency of

dynamic scenes. The surprise detectors maintain data model of Poisson distribu-

tions at each location over multiple time scales which are updated every time step

upon new data. Surprise, which measures how much the current data changes the

model, is calculated as KL (Kullbach-Liebler) divergence between the distributions

before and after the update.

Several saliency algorithms are based on measuring the complexity of a

local region [10, 33, 60, 94]. Yamada and Cottrell [94] measure the variance of 2D

Gabor filter responses across different orientations. Kadir and Brady [33] measure

the entropy of the local intensity probability distribution. Renninger et al. [60]

measure the entropy of local line orientation histograms, and the most salient

point at any given time is the one that provides the greatest information gain

conditioned on the knowledge obtained during previous fixations. All of these

saliency-as-variance/entropy models are based on the idea that the entropy of a

feature distribution over a local region measures the richness and diversity of that

region (Chauvin et al., 2002), and intuitively a region should be salient if it contains

features with many different orientations and intensities. A common critique of

these models is that highly textured regions are always salient regardless of their



7

context. For example, human observers find an egg in a nest highly salient, but

local-entropy-based algorithms find the nest to be much more salient than the

egg [3, 18].

Gao and Vasconcelos [18,20] propose an intriguing goal for saliency: clas-

sification. That is, a goal of the visual system is to classify each stimulus as

belonging to a class of interest or not. This was first used for object detection [18],

where a set of features are selected to best discriminate the class of interest (e.g.,

faces or cars) from all other stimuli, and saliency was defined as the weighted sum

of feature responses for the set of features that are salient for that class. This

forms a definition that is inherently top-down and goal directed, as saliency is

defined for a particular class. In [20], bottom-up saliency is defined using the idea

that locations are salient if they differ greatly from their surroundings. They use

difference-of-Gaussian (DoG) and Gabor filters, measuring the saliency of a point

as the Kullbach-Liebler (KL) divergence between the histogram of filter responses

at the point and the histogram of filter responses in the surrounding region. This

addresses a problem commonly faced by other models that use linear filter re-

sponses as features: highly textured areas always receives high saliency scores.

Later, we will discuss a way that our model could address this problem, by using

nonlinear features that model complex cells or neurons in higher levels of the visual

system.

Oliva and colleagues proposed a probabilistic model for visual search tasks

[51,71]. When searching for a target in an image, the probability of interest is the

joint probability that the target is present in the current image, together with the

target’s location (if the target is present), given the observed features. This can

be calculated using Bayes rule:

p(O = 1, L|F,G) =
1

p(F |G)︸ ︷︷ ︸
bottom-up saliency

(as defined by Oliva et al.)

p(F |O = 1, L,G)p(L|O = 1, G)p(O = 1|G) (I.1)
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where O = 1 denotes the event that the target is present in the image, L denotes

the location of the target when O = 1, F denotes the local features at location

L, and G denotes the global features of the image. The global features of G

represent the scene gist. Experiments show that the gist of a scene can be quickly

determined, and the focus of their work largely concerns how this gist affects

eye-movements. The first term is independent of the target and is defined as

bottom-up saliency; they approximate this conditioned probability distribution

using the current image’s statistics. The remaining terms respectively address the

distribution of features for the target, the likely locations for the target, and the

probability of the target’s presence, all conditioned on the scene gist. As we will see

in Section II.A, our use of Bayes’ rule to derive saliency is similar to this approach.

However, the probability of interest in the work of Oliva and colleagues is whether

a target is present anywhere in the test image, whereas the probability we are

concerned with is the probability at each point in the visual field that a target is

present. In addition, Oliva and colleagues condition all their probabilities on the

values of global features. Conditioning on global features/gist affects the meaning

of all terms in equation (I.1), and justifies their use of current image statistics for

bottom-up saliency.

Bruce and Tsotsos defined bottom-up saliency based on maximum in-

formation sampling [3]. Information, in this model, is computed as Shannon’s

self-information, − log p(F ), where F is a vector of the visual features observed

at a point in the image. The distribution of the features is estimated from a

neighborhood of the point, which can be as large as the entire image. When the

neighborhood of each point is indeed defined as the entire image of interest, as

implemented in [3], the definition of saliency becomes identical to the bottom-up

saliency term in the work of Oliva and colleagues in equation (I.1) [51, 71]. It

is worth noting, however, that the feature spaces being used are different. Oliva

and colleagues used biologically-inspired linear filters of different orientations and

scales. These filter responses are known to correlate with each other; for example,
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a vertical bar in the image will activate a filter tuned to vertical bars but also

one tuned to 45 degree tilted bars. The joint probability of the entire feature

vector is estimated using multivariate Gaussian distributions [51] and later multi-

variate generalized Gaussian distributions [71]. Bruce and Tsotsos [3], on the other

hand, employed features that were learned from natural images using independent

component analysis. These have been shown to resemble the receptive fields of

neurons in primary visual cortex (V1), and their responses have the desired prop-

erty of sparsity. Furthermore, the features learned are approximately independent,

so the joint probability of the features is simply the product of the marginal proba-

bility of each feature, simplifying the probability estimation without unreasonable

independence assumptions.

These saliency models are quite successful in accounting human eye fix-

ation data when viewing images and videos. However, the underlying theories

are often not able to account for the rich data in visual search. Although the

algorithms are capable to predict where people are likely to look at when viewing

complex images and videos, they do not predict the comprehensive behavior when

viewing simple stimuli used in classical visual search paradigms. Some theoretic

principles seem to be missing compare to visual attention models.

Although searching on well controlled simple stimuli and viewing complex

scenes are very different tasks, they both reflect how visual attention works. Some

saliency algorithms have made some effort to work also with visual search stimuli.

However, as some of the tasks demands higher level processing on such as faces,

generic algorithms that use linear filters as front end preprocessing are almost im-

possible to account for the richness of these data. In this dissertation, we make

an effort of develop a visual attention theory by considering the goal of the visual

system, which is able to account for many visual search behaviors. We then im-

plement efficient algorithms based on the theory to work with complex images and

videos. That is, we try to develop saliency algorithms based on a visual attention

theory which can account for the visual search data. Although the implementation
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can not realize all the predictions of the theory itself due to the limitations of com-

putational power and lack of knowledge in how higher level visual processing works

with highly nonlinear stimuli, it works as well as state of art saliency algorithms

in predicting human eye fixation data while being more efficient and biologically

plausible. This is our preliminary effort to combine the virtues of previous work in

both visual search models and bottom-up saliency algorithms. We hope to provide

some insight into how visual attention works by developing a principled theoretic

framework that takes both literature into account.

I.C Dissertation Outline

The remaining chapters are organized as follows.

Chapter II We develop our theoretic framework of saliency. In particular, our

framework takes natural statistics into account. Predictions of saliency models

using natural image statistics vs. current scene statistics are compared. Our model

accounts straightforwardly for feature search, conjunction search, and many search

asymmetries.

Chapter III Bottom-up saliency is implemented here for complex static color

images. Features and their probability distributions are learned from natural im-

ages with linear efficient coding theory. The result is evaluated on human fixation

data while free viewing images and is compared to previous bottom-up saliency

algorithms. Our implementation performs as well as the state of art algorithm

while being more biologically plausible and computationally efficient.

Chapter IV Bottom-up saliency is implemented here on color videos. For com-

putational efficiency, we used linearly separable spatiotemporal filter responses as

features, and we designed special temporal filter to allow very fast calculation of

filter responses. Our algorithm again performs as well as the start of art algorithm
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while being much more efficient. We also implemented real time version with some

simplification assumptions. Without compromising much in the performance of

predicting human fixations, it allows us to implement a saliency oriented robotic

camera. The results show great improvement in chances of seeing people.

Chapter V Saliency is not the whole story. Given a pre-attentive saliency map,

where to look is a decision to make, as well as when to stop and report target absent

the target is not found. In this chapter, we will explore the decision making aspects

in visual search tasks. We propose that attention is directed probabilistically

according to the saliency map, sharing the characteristic of probably matching that

observed in decision making behavior in bandit problems. Furthermore, when to

stop searching is treated as a sequential decision making problem. Together we are

able to account for many interesting phenomena in visual search tasks qualitatively

without fitting any parameters.

Chapter VI We conclude the whole dissertation with a brief summary of con-

tribution and discusses possible directions for future work.



II A Baysian Framework for

Saliency: Information Attracts

Attention

II.A Saliency is Probability

We propose that one goal of the visual system is to find potential targets

that are important for survival, such as food and predators. To achieve this, the

visual system must actively estimate the probability of a target at every location

given the visual features observed. We propose that this probability is visual

saliency.

To formalize this, let z denote a point in the visual field. A point here is

loosely defined; in the implementation described in Chapter III a point corresponds

to a single image pixel. (In other contexts, a point could refer other things, such as

an object [95].) We let the binary variable Cz denote whether or not point z belongs

to a target class, let Lz denote the location of point z (i.e., the pixel coordinates

of the point z), and let Fz denote the visual features of point z. Saliency is then

defined as p(Cz = 1|Fz = fl, Lz = l), where the value of fl represents the visual

features observed at image location l. This probability can be calculated using

12
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Bayes’ rule:

sz = p(Cz = 1|Fz = fl, Lz = l)

=
p(Fz = fl, Lz = l|Cz = 1)p(Cz = 1)

p(Fz = fl, Lz = l)
. (II.1)

Assume for simplicity that features and location are independent and conditionally

independent given Cz = 1:

p(Fz = fl, Lz = l) = p(Fz = fl)p(Lz = l), (II.2)

p(Fz = fl, Lz = l|Cz = 1) = p(Fz = fl|Cz = 1)p(Lz = l|Cz = 1). (II.3)

This entails the assumption that the distribution of a feature does not change with

location. For example, (II.2) implies that a random point in the left visual field

is just as likely to be green as a random point in the right visual field. Further-

more, (II.3) implies (for instance) that a point on a target in the left visual field

is just as likely to be green as a point on a target in the right visual field1. With

these independence assumptions, (II.1) can be rewritten as:

sz =
p(Fz = fl|Cz = 1)p(Lz = l|Cz = 1)p(Cz = 1)

p(Fz = fl)p(Lz = l)
(II.4)

=
p(Fz = f |Cz = 1)

p(Fz = f)
· p(Lz = l|Cz = 1) · p(Cz = 1)

p(Lz = l)
(II.5)

=
1

p(Fz = f)︸ ︷︷ ︸
Independent

of target

(bottom-up saliency)

· p(Fz = f |Cz = 1)︸ ︷︷ ︸
Likelihood

· p(Cz = 1|Lz = l)︸ ︷︷ ︸
Location prior︸ ︷︷ ︸

Dependent on target

(top-down knowledge)

(II.6)

To compare this probability across locations in an image, it suffices to

estimate the log probability (since log is a monotonically increasing function). For

this reason, we take the liberty of using the term saliency to refer both to sz and

1The extent to which these two assumptions are true depends on the feature space. For example,
illumination may not be invariant to locations: as sunshine normally comes from above, the upper part
of the visual field is likely to be brighter. But illumination contrast features, such as the response to a
DoG (Difference of Gaussians) filter, would be more invariant to location changes.
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to log sz, which is given by:

log sz = − log p(Fz = f)︸ ︷︷ ︸
Self-information

+ log p(Fz = f |Cz = 1)︸ ︷︷ ︸
Log likelihood

+ log p(Cz = 1|Lz = l)︸ ︷︷ ︸
Location prior

. (II.7)

The first term on the right side of this equation, − log p(Fz = fl), de-

pends only on the visual features observed at the point, and is independent of any

knowledge we have about the target class. In information theory, − log p(Fz = fl)

is known as the self-information of the random variable Fz when it takes the value

fl. Self-information increases when the probability of a feature decreases—in other

words, rarer features are more informative. We have discussed self-information

earlier in the context of previous work, but as we will see later, our use of self-

information differs from previous approaches.

The second term on the right side of (II.7), log p(Fz=fl|Cz=1), is a log-

likelihood term that favors feature values that are consistent with our knowledge of

the target. For example, if we know that the target is green, then the log-likelihood

term will be much larger for a green point than for a blue point. This definition

of the top-down effect when searching for a known target is consistent with the

finding that human eye movement patterns during iconic visual search could be

accounted for by a maximum likelihood procedure for computing the most likely

location of a target [58].

The third term, log p(Cz = 1|Lz = l), is independent of visual features

and reflects any prior knowledge of where the target is likely to appear. It has been

shown that if the observer is given a cue of where the target is likely to appear,

the observer attends to that location [57].

After omitting the location prior from (9), the equation for saliency has
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just two terms, the self-information and the log-likelihood, which can be combined:

log sz = −log p(Fz=fl)︸ ︷︷ ︸
Self-information

(bottom-up saliency)

+ log p(Fz=fl|Cz=1)︸ ︷︷ ︸
Log likelihood

(top-down knowledge)

(II.8)

= log
p(Fz=fl|Cz=1)

p(Fz=fl)
(II.9)

= log
p(Fz=fl, Cz=1)

p(Fz=fl)p(Cz=1)︸ ︷︷ ︸
Pointwise mutual information

(overall saliency)

. (II.10)

The resulting expression, which is called the pointwise mutual information between

the visual feature and the presence of a target, is a single term that expresses overall

saliency. Intuitively, it favors feature values that are more likely in the presence of

a target than in a target’s absence.

When the organism is not actively searching for a particular target (the

free viewing condition), the organism’s attention should be directed to any potential

targets in the visual field, despite the fact that the features associated with the

target class are unknown. In this case, the log-likelihood term in (II.7) is unknown,

so we omit this term from our calculation of saliency. (This can also be thought of

as assuming that for an unspecified target, the likelihood distribution is uniform

over feature values.) In this case, the overall saliency reduces to just the self-

information term: log s = −log p(Fz =fl). We take this to be our definition of

bottom-up saliency. It implies that the rarer a feature is, the more it will attract

our attention. This definition of saliency explains many observations in the visual

search paradigm, such as the search asymmetry between feature presence versus

absence, between prototypes versus non-prototype exemplars, and between other-

race versus same-race faces [95]. (See Section II.B for more details.)

Note that all of the probability distributions described here should be

learned by the visual system through experience. They should reflect the natural
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statistics of the environment and the learning history of the organism, rather than

just the statistics of the current image.

In summary, calculating the probability of a target at each point in the

visual field leads naturally to the estimation of information content. In the free-

viewing condition, when there is no specific target, saliency reduces to the self-

information of a feature. This implies that when the attention is directed only by

bottom-up saliency, moving one’s eyes to the most salient points in an image can

be regarded as maximizing information sampling. This is consistent with the basic

assumption of Bruce and Tsotsos [3]. When a particular target is being searched

for, on the other hand, our model implies that the best features to attend to are

those that have the most mutual information with the target. This has been shown

to be very useful in object detection with objects such as faces and cars [77].

We have been discussing saliency only in the context of two categories:

target and non-target. It can be generalized to multiple categories associated with

different importance. Assume that there are many categories indexed by i, each

associated with reward ri when correctly identified. Saliency is then defined as the

expected reward, or utility, of attending to a point z:

uz = Σi p(Cz = i|Fz = f, Lz = l) ri (II.11)

= Σi
p(Fz = f |Cz = i)p(Cz = i|Lz = l)

p(Fz = f)
ri (II.12)

=
1

p(Fz = f)
Σi p(Fz = f |Cz = i)p(Cz = i|Lz = l) ri (II.13)

This can again be decomposed to bottom-up saliency 1
p(Fz=f)

which is indepen-

dent of categories and top-down component that combines the knowledge of the

appearance of each category, their likely locations and associated reward.

II.B Test Image Statistics vs. Natural Scene Statistics

In our framework, the probability terms are not constrained to the current

visual scene. The probability distributions are learned by the visual system through
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experience. They should reflect the natural statistics of the environment and the

learning history of the organism.

II.B.1 Comparison with previous work

All of the existing bottom-up saliency models described in Section I.B

compute saliency by comparing the feature statistics at a point in a test image

with either the statistics of a neighborhood of the point or the statistics of the

entire test image. When calculating the saliency map of an image (the saliency

value at every point in the image), these models only consider the statistics of the

current test image. In contrast, our definition of saliency compares the features

observed at each point in a test image to the statistics of natural scenes. An

organism would learn these natural statistics through a lifetime of experience with

the world; in our implementation, we obtained them from a collection of images

of natural scenes (see Chapter III). As explained in Section II.A, our definition of

saliency was itself derived from a simple intuitive assumption about a goal of the

visual system.

Our formula for bottom-up saliency is similar to the one in the work of

Oliva and colleagues work [51, 71] and the one in [3] in that they are all based on

the notion of self-information. However, the differences between image statistics

and natural statistics lead to radically different kinds of self-information. Briefly,

the motivation for using self-information with current image statistics is that a

foreground object is likely to have features that are distinct from the features of

the background. The idea that the saliency of an item is dependent on its deviation

from the average statistics of the image can find its roots in the visual search model

proposed in [61], which accounted for a number of motion pop out phenomena, and

can be seen as a generalization of the center-surround-based saliency found in [38].

Our use of natural statistics for self-information, on the other hand, corresponds to

the intuition that since targets are observed less frequently than background during

an organism’s lifetime, rare features are more likely to indicate targets. The idea
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that infrequent features attract attention has its origin in findings that novelty

attracts the attention of infants [9, 13, 14, 16] and that novel objects are faster to

find in visual search tasks (see [89] for a review). This fundamental difference in

motivation between our model and existing saliency models leads to very different

predictions about what attracts attention.

In the next two sections, we show that by using natural image statis-

tics, our model provides a simple explanation for a number of psychophysical

phenomena that are difficult to account for using the statistics of either a local

neighborhood in the test image or the entire test image. In addition, since natural

image statistics are computed well in advance of the test image presentation, in

our model the estimation of saliency is strictly local and efficient.

II.B.2 Feature target is salient but conjunction target is not (with

exceptions)

Now we can examine the salience of the target in a traditional feature

search and a traditional conjunction search. In a feature search, such as a red dot

in a field of green dots will have very strong local contrast in the color dimension,

while the green dots do not. High contrast has low probability in natural scenes2.

Thus the red dot has a high salience while the green dots have low salience, causing

the red dot to attract attention instantly; it pops out.

The conjunction search is slightly more tricky. Taking the example of

searching for a red horizontal bar is red vertical bars and green horizontal bars. Re-

call that the salience of the target is 1
P (F )

= 1
P (F1=f1,F2=f2)

, where F1 and F2 are the

two feature dimensions involved in the search (color and orientation in our exam-

ple). If F1 and F2 are independent, P (F1 = f1, F2 = f2) = P (F1 = f1) ·P (F2 = f2).

The conjunction target (the red horizontal bar) is not rare in either color or ori-

entation contrast. Thus it is just as salient as all the distractors and will not pop

out. Color and orientation are likely to be independent in natural statistics because

2The histograms of the filter response of local (color) contrast features such as difference of gaussians
bears a shape of sparse distribution similar to Laplacian distributions.
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they seem to be generated by not so related physical processes. Color is related

to surface properties of objects while orientation is more related to gravity. Other

feature dimensions, however, can be very related and statistically dependent that

the decomposition of the joint probability to the product of individual probabili-

ties can no longer a good approximation. For example, McLeod reported that the

search for the conjunction target of form and motion can be very efficient [46]. The

form and motion can be somewhat related in the nature. For example, almost all

animals which move are bilateral symmetric or radius symmetric. The shape of the

body is very crucial to how fast the animal can move. For objects that do not move

voluntarily, when they move because of gravity or wind etc. they are often aligned

in a certain way to the direction of the motion because of the aerodynamics. Thus

there are reasons to believe that the statistics from these two feature dimensions

are quite correlated. The conjunction target could then potentially have a high

salience and pop out from the rest.

It is hard to speculate or measure the statistical dependence on many

other feature dimensions. Also there must be other factors affecting when the

search is fast or slow in both feature and conjunction searches, not to mention sub-

jects can develop various speed strategies over trials. Our formulation of saliency

seems to have the potential of providing part of the underlying driving force. But

we are conservative about to what extent it can account for various phenomena in

the feature and conjunction search.

However, there is a difference between the predictions on conjunction

search when using natural statistics and using current scene statistics. When

two features are independent in natural statistics, our model predicts that the

conjunction target will not pop out. Saliency models with current scene statistics,

on the other hand, predict that the conjunction target will pop out because its joint

features are unique in the scene. Take for example the conjunction search stimuli in

figure I.1, the target has the features white & horizontal while the distractors have

the feature white & vertical or black & horizontal. Thus, the target bears special
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joint features that is of low probability in the scene, and should stand out from

the distractors. Thus, saliency based on current scene statistics can not account

for inefficient conjunction search without extra assumptions.

II.B.3 Visual search asymmetry - lower probability item is easier to

search

When the probability of a feature is based on the distribution of features

in the current test image, as in other models, a straightforward consequence is that

if all items in an image are identical except for one, this odd item will have the

highest saliency and thus attract attention. For example, if an image consists of a

number of vertical bars with one bar that is slightly tilted from the vertical, the

tilted bar “pops out” and attracts attention almost instantly [75]; see Figure II.1,

left, for an illustration. If, on the other hand, an image consists of a number

of slightly-tilted-from-vertical bars with one vertical, the statistics of the current

image predicts the same pop out effect for the vertical bar. However, this simply

is not the case as humans do not show the same pop-out effect: it requires more

time and effort for humans to find a vertical bar within a sea of tilted bars [75]; see

Figure II.1, right, for an illustration. This is known in the visual search literature

as search asymmetry, and this particular type of example corresponds to findings

that “prototypes do not pop out” because the vertical is regarded as a prototypical

orientation [75,76,89].

Unlike saliency measures based on the statistics of the current image or

an image neighborhood, saliency based on natural statistics readily predicts this

search asymmetry. The vertical orientation is prototypical because it occurs more

frequently in natural images than the tilted orientation [78]. Thus, the vertical bar

will have smaller salience than the surrounding tilted bars, so it will not attract

attention as strongly.

Another visual search asymmetry exhibited by human subjects involves

long and short line segments. Saliency measures based on test image statistics
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Figure II.1 Illustration of the “prototypes do not pop out” visual search asymmetry

[75]. Left: A tilted bar in a sea of vertical bars pops out. Right: A vertical bar in

sea of tilted bars does not pop out.

or local statistics predict that a long bar in a group of short bars (illustrated on

the left in Figure II.2) should be as salient as a short bar in a group of long bars

(illustrated on the right in Figure II.2). However, it has been shown that humans

find a long bar among short bar distractors much more quickly than they find

a short bar among long bars [75]. Saliency based on natural statistics readily

predicts this search asymmetry, as well. Due to scale invariance, the probability

distribution over the lengths of line segments in natural images follows the power

law [62]. That is, the probability of occurrence of a line segment of length v is given

by p(V = v) ∝ 1
v
. Since longer line segments have lower probability in images of

natural scenes, our saliency model implies that longer line segments will be more

salient.

Visual search asymmetry is also observed for higher level stimuli such

as roman letters, Chinese characters, animal silhouettes, and faces. For example,

people are faster to find a mirrored letter in normal letters than the reverse [17].

People are also faster at searching for an inverted animal silhouette in a sea of

upright silhouettes than the reverse [89], and faster at searching for an inverted

face in a group of upright faces than the reverse [50]. These phenomena have
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Figure II.2 Illustration of a visual search asymmetry with line segments of two

different lengths [75]. Left: A long bar is easy to locate in a sea of short bars.

Right: A short bar in a sea of long bars is harder to find.

been referred to as “the novel target is easier to find.” Here, “novel” means that

subjects have less experience with the stimulus, indicating a lower probability

of encounter during development. This corresponds well with our definition of

bottom-up saliency, as novel items are more salient by definition.

If the saliency of an item depends upon how often it has been encountered

by an organism, then search asymmetry should vary among people with different

experience with the items involved. This seems to indeed be the case. Modi-

fied/inverted Chinese characters in a sea of real Chinese characters are faster to

find than the reverse situation for Chinese readers, but not for non-Chinese read-

ers [66, 84]. Levin found an “other-race advantage” as American Caucasians are

faster to search for an African-American face among Caucasian faces than to search

for a Caucasian face among African-American faces [41]. This is consistent with

what our model would predict for American Caucasian subjects that have more ex-

perience with Caucasian faces than with African-American faces. However, Levin

also found that Caucasian basketball fans who are familiar with many African-

American basketball players do not show this other-race search advantage [42].

These seem to provide direct evidence that experience plays an important role in
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saliency, and that the statistics of the current image alone cannot possibly be the

whole story.

II.C Discussion

In this chapter, we hypothesized that a goal of the visual system is to find

potential targets such as prey as predators. We inferred what should be calculated

to achieve this goal and proposed that, without knowledge of target’s location,

bottom-up saliency is self-information of visual features and overall saliency is

pointwise mutual information between the visual features and the target when a

target is being searched. The bottom-up saliency is the in this session. It shares the

same formula 1
p(F=f)

as that in [3,51,71]. However, the probability distribution of

the features is drawn from natural statistics in our model, but is constrained to the

image of question in previous works. We showed our framework straightforwardly

account for feature and conjunction search, as well as many search asymmetries,

while saliency based on current scene saliency can not predict the same phenom-

ena without extra assumptions. This provides some evidence that current image

statistics alone is not sufficient and natural statistics and developmental experience

also plays an important role.
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III Static Image Saliency

In this chapter, we will implement a bottom-up saliency algorithm which

takes color static images as input and calculates their saliency maps (the saliency

at every pixel in an image). Given a probabilistic formula for saliency, such as

the one we derived in Section II.A, there are two key factors that affect the final

results of a saliency model when operating on an image. One is the feature space,

and the other is the probability distribution over the features.

In most existing saliency algorithms, the features are calculated as re-

sponses of biologically plausible linear filters, such as DoG (difference of Gaussians)

filters and Gabor filters [18, 20, 30, 31, 51, 71]. In [3], the features are calculated as

responses filters learned from natural images using ICA (independent component

analysis). In this paper, we conduct experiments with both kinds of features.

We describe our algorithm for estimating the bottom-up saliency that we

derived in Section II.A, − log p(Fz = fl). Here, a point z corresponds to a pixel

in the image (and l represents the location of that pixel in the image). For the

remainder of the paper, we will drop the subscripts z and l for notational simplicity.

In this algorithm, F is a random vector of filter responses, F = [F1, F2, . . .], where

the random variable Fi represents the response of the ith filter at a pixel, and

f = [f1, f2, . . .] are the values of these filter responses at this location.

24
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III.A Experiment 1: DoG filters

Many existing models use a collection of DoG (difference of Gaussians)

and/or Gabor filter responses as the first step of processing the input images

[18,20,30,31,51,71]. These filter responses are popular due to their resemblance to

the receptive fields of neurons in the early stages of the visual system, namely the

lateral geniculate nucleus of the thalamus (LGN) and primary visual cortex (V1).

Let r, g and b denote the red, green, and blue components of an input

image pixel. The intensity (I), red/green (RG), and blue/yellow (BY ) channels

are calculated as:

I = r + g + b, RG = r − g, BY = b− r + g

2
− min(r, g)

2
. (III.1)

We apply difference of Gaussians (DoG) filters to each of these channels

and use the filter responses as features. The DoG filters are generated by1

g =
1

σ2
exp

(
−x

2 + y2

σ2

)
− 1

(1.6σ)2
exp

(
−x

2 + y2

(1.6σ)2

)
. (III.2)

To each of the 3 channels (I, RG, and BY ), we apply 4 DoG filters

(shown in Figure III.1), using equation (III.2) with 4 scales (σ = 4, 8, 16 or 32

pixels), resulting in 12 filters in total. This led to a total of 12 feature response

maps, 4 from each channel. By computing these feature response maps on a set of

138 images of natural scenes (photographed by the first author), we obtained an

estimate of the probability distribution over the observed values of each of the 12

features. To this estimated distribution for each feature Fi, we used an algorithm

proposed by Song [67] to fit a zero-mean generalized Gaussian distribution, also

known as an exponential power distribution:

p(f ;σ, θ) =
θ

2σΓ(1
θ
)

exp

(
−
∣∣∣∣fσ
∣∣∣∣θ
)
. (III.3)

In this equation, Γ is the gamma function, θ is the shape parameter, σ is the scale

parameter, and f is the filter response. This resulted in one shape parameter, θi,

1Equation (III.2) is adopted from the function filter DOG 2D, from Image Video toolbox for Matlab
by Piotr Dollar. The toolbox can be found at http://vision.ucsd.edu/∼pdollar/toolbox/doc/.
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Figure III.1 The four scales of difference of Gaussians (DoG) filters that are applied

to each channel.

Figure III.2 The graphs show the distribution of filter responses for the 4 DoG

filters on the intensity channel collected from the set of natural images (blue line),

and the fitted generalized Gaussian distributions (red line).

and one scale parameter, σi, for each of the 12 filters: i = 1, 2, ..., 12. Figure IV.2

shows the distributions of the 4 DoG filter responses on the intensity (I) channel

across the training set of natural images, and the fitted generalized Gaussian dis-

tributions. As the figure shows, the generalized Gaussians provide an excellent fit

to the data.

Taking the logarithm of (III.3), we obtain the log probability over the

possible values of each feature:

log p(Fi = fi) = log θi−log 2−log σi−log Γ
( 1

θi

)
−
∣∣∣∣fiσi
∣∣∣∣θi

= −
∣∣∣∣fiσi
∣∣∣∣θi

+const. (III.4)

To simplify the computations, we assume that the 12 filter responses are indepen-
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dent. Hence the total bottom-up saliency of the point takes the form:

− log p(F = f) =
12∑
i=1

∣∣∣∣fiσi
∣∣∣∣θi

+ const. (III.5)

III.B Experiment 2: Linear ICA Filters

In our final formula for bottom-up saliency (IV.8), we assumed indepen-

dence between the filter responses. However, this assumption does not always hold.

For example, a bright spot in an image will generate a positive filter response for

multiple scales of DoG filters. In this case the filter responses, far from being

independent, are highly correlated. It is not clear how this correlation affects the

saliency results when a weighted sum of filter responses is used to compute saliency

(as in [30,31]) or when independence is assumed in estimating probability (as in our

case). Torralba et al. [71] used a multivariate generalized Gaussian distribution to

fit the joint probability of the filter responses. However, although the response of

a single filter has been shown to be well fitted by a univariate generalized Gaussian

distribution, it is less clear that the joint probability follows a multivariate gener-

alized Gaussian distribution. Also, much more data is necessary for a good fit of a

high-dimensional probability distribution than for one-dimensional distributions.

It has been shown that estimating the moments of a generalized Gaussian distri-

bution has its limitations even for the one-dimensional case [67], and it is much

less likely to work well for the high-dimensional case.

To obtain the linear features used in their saliency algorithm, Bruce and

Tsotsos [3] applied independent component analysis (ICA) to a training set of

natural images. This has been shown to yield features that qualitatively resemble

those found in the visual cortex [2,52]. Although the linear features learned in this

way are not entirely independent, they have been shown to be independent up to

third-order statistics [83]. Such a feature space will provide a much better match

for the independence assumptions we made in (IV.8). Thus, in this method we

follow [3] and derive complete ICA features to use in our measure of saliency. It
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Figure III.3 The 362 linear features learned by applying a complete independent

component analysis (ICA) algorithm to 11 × 11 patches of color natural images

from the Kyoto dataset.

is worth noting that although Bruce and Tsotsos [3] use a set of natural images

to train the feature set, they determine the distribution over these features solely

from a single test image when calculating saliency.

We applied the FastICA algorithm [26] to 11-pixel× 11-pixel color natural

image patches drawn from the Kyoto image dataset [82]. This resulted in 11 · 11 ·

3 − 1 = 362 features2. Figure III.3 shows the linear ICA features obtained from

the training image patches.

Like the DoG features from Section III.A, the ICA feature responses to

2The training image patches are considered as 11 · 11 · 3 = 363-dimensional vectors, z-scored to have
zero mean and unit standard deviation, then processed by principal component analysis (where one
dimension is lost).
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natural images can be fitted very well using generalized Gaussian distributions,

and we obtain the shape and scale parameters for each ICA filter by fitting its

response to the ICA training images. The formula for saliency is the same as

in Method 1 (equation IV.8), except that the sum is now over 362 ICA features

(rather than 12 DoG features).

Some examples of bottom-up saliency maps computed using the algo-

rithms from Methods 1 and 2 are shown in Figure III.4. Each row displays an

original test image, the same image with human fixations overlaid as red crosses,

and the saliency maps on the image computed in Method 1 and Method 2. This fig-

ure is included for the purpose of qualitative comparison; the next section provides

a detailed quantitative evaluation.

III.C Results

III.C.1 Evaluation method and the center bias

ROC area

Several recent publications [3,20,22,35] use the ROC area metric proposed

by Tatler et al. [69] to evaluate eye fixation prediction. Using this method, the

saliency map is treated as a binary classifier on every pixel in the image; pixels

with larger saliency values than threshold are classified as fixated while the rest are

classified as non-fixated. Human fixations are used as ground truth. By varying

the threshold, an ROC curve can be drawn and the area under the curve indicates

how well the saliency map predicts actual human eye fixations. This measurement

has the desired characteristic of transformation invariance, in that only the rank

matters.

Assessing performance in this manner runs into problems because most

human fixation data sets collected with head mounted eye tracking system have

a strong center bias. This bias is partly due to factors related to the set up of

the experiment, such as subjects being centered with respect to the center of the
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Figure III.4 Each row contains, from left to right: An original test image; the

same image with human fixations (from [3]) shown as red crosses; the saliency

map produced by our algorithm with DoG filters and with ICA features.
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Figure III.5 Plots of all human eye fixation locations in three data sets. Left:

Subjects viewing color images [3]; Middle: Subjects viewing grey images [81];

Right: Subjects viewing color videos [28].

screen and framing effects caused by the monitor, but also reflects the fact that

human photographers tend to center objects of interest [56,69]. Figure III.5 shows

the strong center bias of eye fixations from free-viewing color static images (data

from [3]), gray static images (data from [81]) and videos (data from [28]). In fact,

simply using a Gaussian blob centered in the middle of the image as the saliency

map produces excellent results. For example, on the data set collected in [3], a

Gaussian blob fitted to the human eye fixations for that set has an ROC area of

0.80, exceeding the reported results of 0.75 [3] and 0.77 [19] on this data set.

KL divergence

Itti and colleagues make use of the Kullback-Leibler (KL) divergence be-

tween the histogram of saliency sampled at eye fixations and that sampled at

random locations as the evaluation metric for their dynamic saliency [28, 32]. If

an algorithm is performing significantly better than chance, the saliency computed

at human-fixated locations should be higher than that computed at random lo-

cations, leading to a high KL divergence between the two histograms. The KL

divergence between two distributions, similar to the ROC measurement, has the

desired property of transformation invariance. In [28,32], the random locations are

drawn from a uniform spatial distribution over each image frame. Like the ROC

performance measurement, the KL divergence awards excellent performance to a
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Gaussian blob due to the center bias of the human fixations. The Gaussian blob

discussed earlier (trained on the [3] data) yields a KL divergence of 0.44 on the

data set of Itti and Baldi [28], exceeding their reported result of 0.24. Thus, both

the ROC and KL measurements are strongly sensitive to the effects of the center

bias.

Edge effects

These findings imply that models which make use of a location prior (dis-

cussed in Section II.A) would better model human behavior. Since all of these

models [3, 20, 29, 31] calculate saliency at each pixel without regard to the pixel’s

location, it would appear that both the ROC measurement and the KL diver-

gence provide a fair comparison between models—no model takes advantage of

this additional information.

However, both measures are corrupted by an edge effect due to variations

in the handling of invalid filter responses at the borders of images. When an image

filter lies partially off the edge of an image, the filter response is not well defined

and various methods are used to deal with this problem. Figure III.6 shows the

average of all the saliency maps using each of the algorithms of [3, 20, 30] on the

data set of Bruce and Tsotsos [3]. It is clear from Figure III.6 that all three

algorithms have borders with decreased saliency, but to varying degrees. These

border effects introduce an implicit center bias on the saliency maps; these “cool

borders” result in the bulk of salience being located at the center of the image.

Because different models are affected by these edge effects to varying degrees, it

is difficult to determine using the aforementioned measures whether the difference

in performance between models is due to the models themselves, or merely due to

edge effects3.

Figure III.7 illustrates the impact that varying amounts of edge effects can

3When comparing different feature sets within same model, edge effects can also make it difficult to
assess which features are best to use; larger filters result in a smaller valid image after convolution, which
can artificially boost performance.
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Figure III.6 The average saliency maps of three recent algorithms on the stimuli

(120 color images) used in collecting human fixation data by Bruce and Tsotsos [3].

Left: Itti et al. [31]; Middle: Bruce and Tsotsos [3]; Right: Gao and Vasconcelos

[20].

have on the ROC area evaluation score by examining the performance of dummy

saliency maps that are all 1’s except for a border of 0’s. The map with a four-pixel

border yields an ROC area of 0.62, while the map with an eight-pixel border has

an area of 0.73. All borders are small relative to the 120 by 160 pixel saliency map

and for these measurements, we assume that the border points are never fixated

by humans, which corresponds well with actual human fixation data. A dummy

saliency map of all 1’s with no border has a baseline ROC area of 0.5.

The KL measurement, too, is quite sensitive to how the filter responses

are dealt with at the edges of images. Since the human eye fixations are rarely near

the edges of the test images, the edge effects primarily change the distribution of

saliency of the random samples. For the dummy saliency maps used in Figure III.7,

the baseline map (of all 1’s) gives a KL divergence of 0, the four-pixel-border map

gives a KL divergence of 0.12, and the eight-pixel-border map gives a KL divergence

of 0.25.

While this dummy example presents a somewhat extreme case, we have

found that in comparing algorithms on real data sets (using the ROC area, the KL

divergence, and other measures), the differences between algorithms are dwarfed

by differences due to how borders are handled.
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Figure III.7 Illustration of edge effects on performance. Left: A saliency map

a four-pixel-wide border. Center: A saliency map of an eight-pixel-wide border.

Right: The ROC curves of these two dummy saliency maps, as well as for a baseline

saliency map.

Eliminating border effects

Parkhurst and Niebur [56] and Tatler et al. [69] have pointed out that

random locations should be drawn from the distribution of actual human eye fix-

ations. In this paper, we measure the KL divergence between two histograms: the

histogram of saliency at the fixated pixels of a test image, and the histogram of

saliency at the same pixel locations but of a randomly chosen image from the test

set (effectively shuffling the saliency maps). This method of comparing models

has several desired properties. First, it avoids the aforementioned problem that

a static saliency map (such as a centered Gaussian blob) can receive a high score

even though it is completely independent of the input image. By shuffling the

saliency maps, any static saliency map will give a KL divergence of zero—for a

static saliency map, shuffling has no effect, and the salience values at the human

fixated pixels are identical to those from the same pixel locations at a random

image. Secondly, shuffling saliency maps also diminishes the effect of variations in

how borders are handled since few eye fixations are located near the edges.

The potential problem with the shuffling method is that because photos

taken by humans are often centered on interesting objects, the center is often

genuinely more salient than the periphery. As a result, shuffling saliency maps

can bias the random samples to be at more salient locations, which leads to an
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underestimate of a model’s performance [8]. However, this does not affect the

validity of this evaluation measurement for comparing different models, and its

properties make for a fair comparison that is free from border effects.

III.C.2 Performance

We evaluate our free-viewing saliency algorithm on human fixation data

from [3]. Data were collected from 20 subjects free-viewing 120 color images for 4

seconds each. As described in Section III.A and Section III.B, saliency maps are

calculated for each image using DoG filters (Method 1) and linear ICA features

(Method 2). We also obtained saliency maps for the same set of images using the

algorithms of Itti et al. [31, obtained from Bruce and Tsotsos]4, Bruce and Tsot-

sos [3, implemented by the original authors5], and Gao and Vasconcelos [20, imple-

mented by the original authors]. The performance of these algorithms evaluated

using the KL measure described in Section III.C.1 is summarized in Table III.1.

For each algorithm, the shuffling of the saliency maps is repeated 100 times. Each

time KL divergence is calculated between the histograms of unshuffled saliency

and shuffled saliency on human fixations. The mean and the standard errors are

reported in the table.

The results show that our algorithm with DoG filters significantly outper-

forms Itti and Koch’s algorithms (p < 10−57), and Gao and Vasconcelos’ algorithm

(p < 10−14), where significance was measured with a two-tailed t-test over dif-

ferent random shuffles. Between Method 1 (DoG features) and Method 2 (ICA

features), the ICA features work significantly better (p < 10−32). There are fur-

ther advantages to using ICA features: efficient coding has been proposed as one

of the fundamental goals of the visual system [1] and linear ICA has shown to gen-

4The saliency maps that produce the score for Itti et al. in Table III.1 come
from Bruce and Tsotsos [3] and were calculated using the online Matlab saliency toolbox
(http://www.saliencytoolbox.net/index.html) using the parameters that correspond to [31]. Using the
default parameters of this online toolbox generates inferior binary-like saliency maps that give a KL
score of 0.1095 (0.00140).

5The results reported in the paper used ICA features of size 7 by 7. The results reported here,
obtained from Bruce and Tsotsos, used features of size 11 by 11, which the authors say achieve better
performance.
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Table III.1 Performance in predicting human eye fixations when viewing color

images. Comparison of our algorithm (Method 1 with DoG filters and Method 2

with linear ICA features) with previous algorithms. Higher values therefore denote

better performance.

Model KL (std. error)
Itti et al. [31] 0.1130 (0.00115)

Bruce and Tsotsos [3] 0.2029 (0.00173)
Gao and Vasconcelos [20] 0.1535 (0.00155)
Method 1 (DoG filters) 0.1723 (0.0122)

Method 2 (linear ICA filters) 0.2097 (0.00157)

erate receptive fields akin to those found in V1 [2,52]. In addition, generating the

feature set using natural image statistics means that both the feature set and the

distribution over features can be calculated simultaneously. However, it is worth

noting that the online computations for Method 1 take significantly less time since

only 12 DoG features are used, compared to 362 ICA features in Method 2. There

is thus a trade off between efficiency and performance in our two methods.

Our algorithm with linear ICA features performs significantly better than

Bruce and Tsotsos’ algorithm (p = 0.0035) on this data set, though the KL di-

vergence scores are numerically quite close. This similarity in performance is not

surprising, for two reasons. First, both algorithms construct their feature sets using

ICA, the feature sets are qualitatively similar. Secondly, although our saliency al-

gorithm uses the statistics learned from a training set of natural images and Bruce

and Tsotsos [3] calculates these statistics using only the current test image, the

response distribution for a low-level feature on a single image of a complex natural

scene will generally be close to overall natural scene statistics. In addition, our

algorithm is more efficient than that of Bruce and Tsotsos [3]. In our algorithm,

the probability distributions of features are pre-computed offline from the training

set, while in their algorithm the probability distributions have to be estimated for

every image.
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Table III.2 Some computational components of the algorithms. Notably, our algo-

rithm requires only offline probability distribution estimation and no global com-

putation over the image in calculating saliency.

Model
Statistics

calculated using
Global

operations
Statistics

calculated on image
Itti et al.

(1998)
N/A

Sub-map
normalization

N/A

Bruce and
Tsotsos
(2006)

Current
image

Probability
estimation

Once for
each image

Gao and
Vasconcelos

(2007)

Local
region

None
Twice for
each pixel

Ours
Training set

of natural images
None None

Table III.2 summarizes some computational components for several algo-

rithms. Computing the statistics offline using a data set of natural images allows

our algorithm to compute saliency quickly compared with algorithms that require

calculations of statistics on the current image. In addition, our algorithm requires

strictly local operation, which is easier for biological systems to compute.

III.D Discussion

We developed a simple bottom-up saliency algorithm which is a single

equation expressed in (IV.8). We applied this algorithm to two different set of

features and compared their performance to several previous bottom-up saliency

algorithms. The performance shows that we works as well as state of art algorithms

with some efficiency advantages. In our experiments, we found that linear ICA

features works better than hand picked DoG features. As efficient coding has been

proposed as one of the fundamental goals of the visual system [1] and linear ICA
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has shown to generate V1 cell like receptive fields. Using ICA features seems to

be a more principled component for our framework. Besides the independence of

the features, the probability distribution of these features also come free when the

features are learned from natural images.

The visual search asymmetry phenomena described in Section II.B.3 also

seem to suggest that the statistics of observed visual features are estimated by

the visual system at many different levels, including basic features such as color

and local orientation as well as higher-level features. The question of exactly

what feature set is employed by the visual system is beyond the scope of this

paper. In the current implementation of our algorithm, we only consider linear

filter responses as features for computational efficiency. This use of linear features

(DoG or linear ICA features) causes highly-textured areas to have high saliency, a

characteristic shared with complexity-based algorithms [10,33,60,94]. In humans,

however, it is often not the texture itself but the change of texture that attracts

attention. Saliency algorithms that use local region statistics, such as [20], address

this problem explicitly.

Our model could resolve this problem implicitly by using a nonlinear

feature space. Whereas linear ICA features learned from natural images respond

to discontinuities in illumination or color, higher-order nonlinear ICA features are

found to respond to discontinuity in textures [34, 53, 64]. Figure III.8 shows an

image, the response of a linear DoG filter to that image, and the response of a

nonlinear feature inspired by the higher-order features learned in [64]. Perceptually,

the white hole in the image attracts attention [3]. Whereas the linear feature has

zero response to this hole, the higher-order feature responds strongly in this region.

We will explore the use of such features in future work.

In conclusion we developed a simple algorithm that can be expressed as

a single equation (IV.8). We applied this algorithm using two different set of fea-

tures, difference of Gaussians (DoG) and ICA-derived features, and compared the

performance to several existing bottom-up saliency algorithms. Not only does our
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Figure III.8 Left: the input image (adapted from (Bruce2005); Middle: the re-

sponse of a DoG filter; Right: the response of a non-linear feature, constructed by

a DoG filter, whose output is nonlinearly transfered before another DoG is applied.

algorithm performs as well as or better than the state-of-the-art algorithms, but

it is also more computationally efficient. In its use of self-information to measure

bottom-up saliency, our algorithm is similar to those in [3,51,71], but stems from a

different set of intuitions and is calculated using different statistics. In our model,

the probability distribution over features is learned from natural statistics (which

corresponds to an organism’s visual experience over time), whereas these previ-

ous saliency models compute the distribution over features from each individual

test image. We showed that several search asymmetries which may pose difficul-

ties for models based on test image statistics can be accounted for when feature

probabilities are obtained from natural statistics.

In future work, we intend to incorporate the higher-level features. In

addition, our definition of overall saliency includes a top-down term that captures

the targets features. Although this goes beyond the present dissertation in scope,

we plan on examine top-down influences on saliency in future work; preliminary

work with faces shows promise.
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IV Dynamic Scene Saliency

IV.A Implementation of Bottom-up Saliency on Dynamic

Scenes

In this section, we implement an algorithm that estimates the bottom-

up saliency in videos. Although ICA features were shown to perform better than

DoG features in predicting human fixations when viewing static images. They are

computationally expensive to learn from training videos and to calculate on test

videos. For practical reasons, we use separable linear filters instead. We decompose

a video to three channels as in section III.A and apply a bank of spatiotemporal

filters. The probability distribution of the spatiotemporal features are learned

from natural videos. Then for any video, we calculate its features and estimate

the bottom-up saliency of each point using − log p(F = f), as given by the first

term of equation (II.7).

The spatial temporal filters we used are separable linear filters. The

feature response function has the form F = V ∗ g ∗ h, where V is a channel of

the video, g is the component that applies only along the spatial dimension and

h is the component that applies only along the temporal dimension. The filter

responses are used as features.

To keep the algorithm as efficient as possibile, Difference of Gaussians

(DoG) filters are again used as the spatial filters, generated by equation III.2. We

applied DoG filters to all three channels (I, RG, and BY ) with 5 scales (σ =

2, 4, 8, 16 or 32 pixels), resulting in 15 spatial filters in total. This is a small subset

40
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Figure IV.1 On the left is the temporal filter when τ = 0.1. Plotted are ĥ(t; τ)

(blue line), ĥ(t; 2τ) (black line) and h(t; τ) (red line). The right plot shows the

temporal filters for the five time scales used (values of τ of 0.025, 0.05, 0.1, 0.2,

and 0.4).

of the spatial features used in [28,31].

We design a special temporal filter efficient calculation. The temporal

filter h takes the form:

h(t; τ) = ĥ(t; 2τ)− ĥ(t; τ) (IV.1)

where ĥ(t; τ) = τ
1+τ
· (1 + τ)t where t ∈ (−∞, 0] is the frame number relative

to the current frame (0 is the current frame, −1 is last frame, etc.) and τ is a

temporal scale parameter that determines the shape of the temporal filter. We used

5 temporal scales in our implementation τ = 0.025, 0.05, 0.1, 0.2, 0.4. Figure IV.1

shows how h(t; τ) is formed and how it varies with τ .

We will refer to h(t; τ) as a DoE (Difference of Exponentials) filter due

to ĥ(t; τ)’s similarity with the exponential distribution. We choose DoE as the

temporal filter for the following reasons:

• limt→−∞ h(t; τ) = 0. Therefore frames in the distant past do not contribute

to the current saliency.

• Σ0
−∞h(t; τ)dt = 0. If a part of the scene does not change for a extended

period of time, it ceases to be salient.
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• h(t; τ) is largest near t = 0 and falls off rapidly. This says that DoE has a

strong response to onset and offset of objects.

• It bears some resemblance to the temporal profile of LGN cells [7].

• Using DoE as temporal filters enables the the efficient online estimation of the

current saliency map (shown below). Only the spatial filter responses at the

current frame and spatial temporal responses at the last frame is necessary

for calculation of the current saliency map, removing the need for memory

of earlier frames or filter responses.

With the exception of the last property, these properties are all shared

with the DoG.

Because all filters are linear:

F (τ) = V ∗ g ∗ h(τ) (IV.2)

= V ∗ g ∗ (ĥ(2τ)− ĥ(τ)) (IV.3)

= V ∗ g ∗ ĥ(2τ)− V ∗ g ∗ ĥ(τ) (IV.4)

= F̂ (2τ)− F̂ (τ) (IV.5)

where F̂ (τ) = V ∗ g ∗ ĥ(τ).

Let F̂k(τ) denote frame k of F̂ (τ). Let Rk = Vk ∗ g denote the reponse

of the video frame k to spatial filter g. Note the difference: F̂k(τ) is to apply a

spatial temporal filter to the video first and then take a frame from the response;

Rk is to take a frame of the original video and then apply a spatial only filter.

Then we have

F̂k+1(τ) =
F̂k(τ)

1 + τ
+

τ

1 + τ
·Rk+1 (IV.6)

Hence to estimate F̂k+1(τ), we shrink the F̂k(τ) by a factor of 1 + τ and

add Rk+1 scaled by a factor of τ
1+τ

. Then the final response can be easily calculated

by Fk+1(τ) = F̂k+1(2τ) − F̂k+1(τ). This leads to a fast online calculation of the

feature response and consequently efficient saliency estimation.
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Figure IV.2 The distribution of filter responses for the middle scale DoG filter with

all the temporal scales on the intensity channel collected from the set of natural

videos (blue line), and the fitted generalized Gaussian distributions (red line).

IV.A.1 Learning the distribution

As described above, there are 15 features on the spatial dimension: 5

from each channel. On the temporal dimension there are 5 scales and they are

combined with each spatial feature. Thus there are in total 75 feature responses.

By computing these feature responses on natural videos (about 2 hours

of animal/plant documentary videos), we obtained an estimate of the probability

distribution over the observed values of each of 75 features. These distributions

are again modeled by generalized Gaussian distributions given by equation III.3.

This resulted in one shape parameter, θi,j, and one scale parameter, σi,j,

for each of the 75 filters: i = 1, 2, ..., 15 is the index for spatial filters, and j =

1, 2, ..., 5 is the index for temporal scales. By visual inspection the generalized

Gaussians again provide an excellent fit to the data (figure IV.2). 1

Taking the logarithm of equation (III.3), we obtain the log probability

1We also computed these feature responses on videos mainly of indoor scenes and street scenes (40
minutes of soap TV show). The results are very similar to those from the natural videos (with slightly
increased variance in color channels, probably due to the colorfulness of soap TV shows). Thus we are
confident that the distribution of these low level features are not affected much by the high level theme
of the videos and that we have obtained good estimation of the probability distribution for the features
in the natural statistics.



44

over the possible values of each feature:

log p(F i,j
z = f i,j) = log θi,j − log 2− log Γ

( 1

θi,j

)
−
∣∣∣∣f i,jσi,j

∣∣∣∣θi,j

= −
∣∣∣∣f i,jσi,j

∣∣∣∣θi,j

+ const.

(IV.7)

These feature responses are not independent. But we proceed as if they

are for simplicity:

− log p(Fz = f) =
5∑
j=1

15∑
i=1

∣∣∣∣f i,jσi,j

∣∣∣∣θi,j

+ const. (IV.8)

IV.B Results

We evaluate our saliency algorithm on the human fixation data from [27].

Eye movements were recorded from 8 subjects viewing 50 videos from indoor and

outdoor scenes, television broadcasts, and artificial environments totaling over 25

minutes of video at 640 × 480 (at 60.27 Hz, a viewing distance of 80 cm, and

with a field of view of 28 deg×21 deg). Data was collected using a ISCAN RK-464

tracking the right eye. Two hundred eye movement traces were used (four subjects

for each video clip). See [27] for more details.

In [28], Itti and Baldi report results of their saliency measure (Bayesian

surprise) on this data set. As discussed in section III.C.1, their saliency map was

sampled at the target location of a saccade at the time the saccade was initiated.

By histogramming the number of fixations for each value of salience, a distribution

of saliency was formed for human fixations. This could be compared with the

distribution of fixations over saliency for random saccades chosen uniformly over

the image by looking at the KL divergence between the two distributions. Both KL

divergence and ROC area have the desired property of transformation invariance,

which is also shared by ratio above median: how much of the saliency score of

human fixations is above the median score of the entire saliency maps. Here we

provide the measurement in all these three evaluation metrics.

Again, human eye fixation data has a strong center bias (figure III.5) and

how borders are processed has a big effect on the results because modifying the



45

Figure IV.3 A demonstration of a Gaussian fit to [3] fits the overall trend of fixations

of [27]. This suggests a strong center bias, and indicates why removing borders

have such a large effect.

Table IV.1 Summary of initial results. Using a static Gaussian blob saliency map

outperforms other methods.

Method KL ROC area % above median
Baseline 0 0.5 50%

Bayesian Surprise [28] 0.1332 2 0.6472 70.91%
Dynamic Saliency 0.1001 0.6262 70.91%

Dynamic Saliency (w/border) 0.1815 0.6596 75.37%
Centered Gaussian 0.4415 0.7641 86.89%

border had large effects on the random-saccading distribution of salience, but little

effect on the distribution of salience for human saccades. The simple Gaussian blob

saliency map (figure IV.3) discussed in section III.C.1 drastically outperformed our

results and the the surprise model [28]. These results are summarized in Table IV.1.

We again altered the way in which the baseline random distribution for

the KL divergence is measured. The fundamental problem is that sampling uni-

formly is not at all indicative of how human saccades tend to be distributed.

Instead of sampling uniformly, we used the same pattern of fixations but shuffled

the frames of the saliency maps over the whole sequence of movies, destroying

all correlation between human fixations and the salience measure at the time of
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Table IV.2 KL scores, ROC curve area and percentage above median when the

frames of the saliency map are shuffled. This has the benefit of using a random

distribution based on the distributions of human saccades and not assuming a

uniform distribution.

Method KL ROC area % above median
Baseline 0 0.5 50%

Bayesian Surprise [28] 0.0344 0.5808 61.66%
Dynamic Saliency 0.0409 0.5818 62.39%

sampling. However, as pointed out in [8] this will serve as an underestimate of

performance since the center of the screen for pictures and video genuinely tends

to be the most salient part of the scene when a human is behind the camera.

Nevertheless, our method continues to do better than chance, and as well

as Itti and Baldi’s surprise model [28], as shown in Table IV.2. The histogram of

the saliency score on human fixations are shifted toward larger numbers than that

on the shuffled fixations. Figure IV.4 shows the saliency maps on some frames of

different videos.

IV.C Real Time Implementation

Saliency algorithms are of potential interest to social robotics. A robot

that orients its eyes in a manner similar to humans is likely to give an impression

of intelligent behavior and facilitate interaction with humans. Furthermore, such

models may be used as interest point operators to orient the robot towards regions

of the visual scene that are likely to be relevant.

As part of the RUBI project [47, 48] for the past three years, Movellan’s

laboratory has been conducting field studies with social robots immersed at the

Early Childhood Education Center at UCSD. The goal of these studies is to explore

the possibilities of social robots to assist teachers in early childhood education

(figure IV.5). One critical aspect of these robots is to be able to find and orient
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Figure IV.4 The saliency maps for several frames of video from [27]. The saliency

maps generated from purely temporal components and spatial components are

provided for comparison.
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Figure IV.5 Three robot members of the RUBI project. Left: QRIO. Center:

RUBI-1, the first prototype developed at UCSD. Right: RUBI-3 (Asobo) the

third prototype developed at UCSD. It teaches children autonomously for weeks

at a time

towards humans. While powerful algorithms for detecting the presence of humans

using video have already been developed [15], they tend to be computationally

expensive and thus best suited for scanning a small foveal region of a scene. As

such we were interested in investigating whether a lightweight saliency model could

be used on peripheral regions to help orient the fovea towards the most promising

regions of the visual scene.

In this section, we modify the algorithm for real time implementation, and

further evaluate whether the bottom up saliency algorithm is useful as a preprocess

to facilitate higher level more specific tasks, namely, looking for humans.

IV.C.1 Simplified Algorithm

In the earlier session, we used three channels but we will only use the gray

channel in the simplified algorithm. Furthermore, we assumed earlier that the fil-

ter responses follow generalized Gaussian distributions with different shape and

scale parameters and the saliency is calculated by equation IV.8. In this simplified

algorithm, we assume filter responses follow Laplacian distributions (generalized

Gaussian distribution with shape parameter set to 1), with the same scale param-

eters. Equation IV.8 thus simplifies to:
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Figure IV.6 An example of DoB (Difference of Boxes) filter and its comparison to

a DoG filter. From left to right: a camera frame input, a DoG filter, the DoG’s

filter response, a DoB filter, the DoB’s filter response.

− log p(Fz = f) = const. ·

(
5∑
j=1

5∑
i=1

∣∣f i,j∣∣)+ const. (IV.9)

This formulation is simply the sum of the absolute value of filter re-

sponses and no parameters need to be trained from natural videos. We further

modify the original spacial filters from DoG to DoB (Difference of Boxes) for

faster implementation. Figure IV.6 shows an example of the filter and compares

its response to that of DoG. In the results reported below, a bank of 5 DoB filters

are used with center widths {3, 5, 9, 17, 33}. The corresponding surround widths

were {5, 9, 17, 33, 65}. Five temporal scales are used with temporal parameters τ

taken values of {1, 2, 4, 8, 16} 3.

In order to ensure that the simplifications in our approach still maintain

the important properties of the original algorithm, we evaluated it with the same

method used in section IV.B. The results are shown in table IV.3. Compare this

to earlier results reported in table IV.2, the performance of this algorithm was very

close to that of the original algorithm and that of Itti & Baldi [28].

IV.C.2 Robot Camera

A two degree of freedom (pan and tilt) robot camera was constructed

using an iSight IEEE1394 640x480 camera with a fisheye lens (160◦ FOV), 2 Hitech

3The temporal scales were set to be faster here than in section IV.A so that the camera motion does
not affect the saliency results.
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Table IV.3 Performance of the simplified algorithm evaluated by predicting peo-

ple’s eye fixations when watching videos. This result is very close to the original

algorithm and the surprise model (table IV.2).

Method KL ROC area % above median
RUBI Saliency 0.0366 0.5797 61.25%

HS-322HD servo motors, and a Phidgets servo control card operated by a Mac Mini

(1.87 GHz Intel Core Duo). The robot camera was placed in Room 1 of the UCSD’s

Early Childhood Education Center (ECEC), where the RUBI project is taking

place. The camera was located on a bookshelf above the reach of the children

(≈ 18 months). The system collected data continuously for 9 hours during one

day’s operation of ECEC, from 7:30am–4:30pm.

Images were processed in real-time. They were received from the camera

at 640 × 480 resolution at approximately 15 FPS (i.e. every 66 msec). For the

purpose of computing saliency, they were downsampled to a 160 × 120 pixel res-

olution. A saliency map was then computed in six-times-faster-than-real-time for

all the pixels at the speed of 11 msec per frame. It is potentially important for a

saliency algorithm to be faster than real time to be useful for robotic applications,

so that there is time left for post-processes such as face detection.

The camera was controlled in two ways. One is saliency contingent and

another is to repeat the motion that has been used in the other condition.

Experimental Camera – Saliency Track At the start of each experiment,

the camera was moved to a central location. Starting 30 frames after any cam-

era movement, on each successive frame, if the maximum saliency pixel exceeded

threshold and the desired motion was more than 10 degrees in either the pan or tilt

direction, the servos would reposition the camera so that the maximum saliency

pixel in the saliency map was now at approximately the center of the image plane.

15 frames after a movement was initiated (to allow for the movement’s
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Figure IV.7 A simple robotic camera (left) collected 160◦ images at 640 × 480

resolution (center) and compute saliency maps (top right). The camera then orient

towards the most salient pixel. After movement, a snapshot is taken (bottom

right).

completion), an image of the camera’s view was saved. Additionally, a fovea view

containing the center 160 × 120 pixels of the high resolution 640 × 480 image

was saved, simulating the foveal region over which high level but computationally

expensive perceptual primitives could operate (e.g., person detection, expression

recognition). Figure IV.7 shows a couple pictures of the camera, an example of

the input, its saliency map and its fovea.

Control Camera – Playback An additional camera control condition was im-

plemented. In this condition the camera played back in open-loop the exact the

same movements as in the previous salience-directed movement condition. This

served as a control with the same motion statistics as the salience condition, but

the movements were not caused directly by current events in the world.

Each condition ran sequentially for 3 minutes at a time. A pair of salience

and playback conditions would take about 6 minutes. There was an additional 3

minute break between cycles. In all, 64 cycles were completed and 4964 images

were collected.
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Salience Tracking Condition

Playback Condition

Figure IV.8 Center of snapshots in saliency tracking and playback conditions. In

each case, 18 images were chosen randomly, and so the sample is representative.

Many more people are attended in the saliency condition than the playback con-

dition.

IV.C.3 Analysis of results

After the experiment a subset of the foveal center-images was chosen

randomly and uniformly from the entire set. Some examples of the images from

both conditions is shown in Figure IV.8. These images were coded by 4 coders.

Two of the coders were authors of this paper and two were naive third parties.

The coders were instructed to label the number of people they could see in each

160×120 foveal image. The coding was done in a double-blind fashion: the images

were ordered randomly across labels and time collected. All coders, including the

authors, were given no extra information to indicate which images came from which

condition. All coders labeled 1050 images (510 saliency condition, 540 playback

condition) in the same order.

The average Pearson correlation between the four coders across the 1050

labels was 0.8723. We marked a foveal snapshot as “containing a person” if two

or more coders agreed that there was a person in the snapshot.

It should be noted that the control condition in our experiment was de-
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signed to be much smarter random merely random motion. In the control con-

dition, the camera oriented toward regions of space that had been salient in the

experimental condition. These regions are places that are tended to have people,

such as the play area and the door way. In spite of this, the experimental camera

(Saliency Tracking) performed much better than the control camera (Playback).

In the Salience Tracking condition, 68.04% of images contained people. In the

Playback condition, only 34.81% of images contained people. Thus by orienting

toward salient events in the image plane, the camera attended to people twice

as often as just looking in the places where people are likely to appear. This is

remarkable given that the algorithm is not designed for people detection and the

saliency map is calculated on bottom-up features with no knowledge of people’s

appearance. Note that with a detection rate of 68% per saccade, after 3 saccades,

we are 96.8% likely to have seen at least one person. A post processing algorithm

operating over these saccades would review (3 ∗ 160 × 120) pixels, or 3/16 of the

full image size. Thus, by using this algorithm to orient a robot camera, we can

increase the chance of finding people while reducing the time needed for detection

algorithms.

IV.D Discussion

We designed a feature space that can be calculated very efficiently, which

leads to a simple, fast algorithm. A real time version of this algorithm has been

applied to social interactive robot.

Our findings also agree with [56,69] in pointing out some disadvantages of

using some of the previously proposed evaluation metrics. As the evaluation data

sets are often collected by recording people’s eye movement when viewing images

and videos in a lab setting, stimuli are presented on a monitor and the head is

often not allowed to move, introducing a strong central bias that confounds proper

evaluation of the results. By shuffling the frames but maintaining the patterns
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of fixations, we effectively remove the effects of this bias. However, as [8] points

out, there is also a central bias introduced by having humans center the camera

on interesting parts of the scene - the center is inherently more likely to be salient.

Overall, our results show comparable performance with Itti and Baldi’s

surprise model [28, 32] in predicting human fixations. The simplified, real time

implementation also works almost as well. And we show that a robot camera

controlled to orient toward most salient region achieves higher probability of finding

humans.
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V Probabilistic Search

V.A Where to attend given a saliency map

The calculation of saliency, as described in the last several chapters, can

be regarded as pre-attentive processing. The information of visual features is esti-

mated over the entire visual field in parallel without the involvement of attention.

In this section, we concentrate on the attentive processing; given a saliency map,

how is attention allocated?

We propose that attention is allocated stochastically in proportion to

the saliency map or as the probability modified by any monotonically increasing

function. Since saliency is proportional to the probability of a target given the

features, we will use the terms saliency map and probability map interchangeably.

The term probability map, depending on the context, refers to the probability of

a target at each location, or the probability of directing attention to that location,

which are essentially the same after normalization over the visual field.

We will discuss our hypothesis in the context of single target paradigm

where subjects perform speeded searches and respond whether a target is present

in a display of distractors. In the visual search literature, there has been contro-

versy that whether processing is parallel or serial, e.g. [70, 90]. As Townsend has

pointed out decades ago, the average response time in the single target experi-

ment paradigm is not sufficient to discriminate these two processes [72, 73]. For

any serial model that accounts for the data, there exists a parallel model, likely

limited capacity model, that will predict the exactly same data. In this paper,

55
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we stay neutral on whether the underlying information is processed in a parallel

manner or a serial manner. Although our hypothesis about attention can not work

independently from the underlying information process, it can work with both

models.

In a serial model, attention is directed to one item at a time. We assume

that the probability of an item being attended to is proportional to its saliency. A

salient item is more likely to be attended to and be processed next. In a limited

parallel model, many objects are processed at a time. We assume that attention

is allocated proportional to the probability map. The processing resources is not

equally distributed to the items that salient items enjoy more computational power.

In this chapter, we will mainly develop our theory with a serial model. But the

qualitative conclusions we make can be generalized to a parallel model.

In the context of a serial model for single target visual search tasks, our

hypothesis is that the probability of an item being attended to is proportional

to its saliency. This hypothesis, at first look, is not rational. If the goal is to

maximize the probability of finding the target, the Bayesian optimal choice is to

allocate attention to the item with the highest probability of the target, i.e. the

most salient item. Why not concentrate attention on the most promising place

and be optimal?

If we regard where to direct attention given the saliency map a decision

that the visual system has to make. We can look into how people make decisions

and hope that the underlying principles share some similarities. Strikingly, people

seem to be irrational in the simplest binary choice tasks, often known as bandit

problems by analogy with slot machines. Now try for yourself. If a city rains

60% of the days, will it rain tomorrow? Will you always say it will rain, as the

rational choice theory would predict? Or will you hesitate, and possibly mix up

your answers if being asked several times? Numerous experiments have shown

that human and non-human tend to do the latter in these tasks (e.g. [40,45]). An

interesting feature of this phenomenon is that people’s choices tend to match the
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underlying probability of the outcomes, i.e. they probability match. Depending on

the scenario, there also sees over-match where the portion of people’s choice for the

more likely outcome is bigger than its probability, and other times under-match.

Overall, the decision is stochastic and the outcome with higher probability is more

likely to be chosen. This also generalizes to multiple choice tasks. Probability

match in decision making has been taking as evidence that people are not rational.

Some later experimental works (e.g. [65]) and theories developed from the view of

adaptive learning (see [80] for a review) have suggested otherwise. Whether people

are rational or not in these decision making situations is still under controversy.

If they are rational, as more researchers tend to believe nowadays, what is being

optimized by the strategy of probability match is still unclear.

Here we will only briefly mention two situations where mixing the de-

cisions stochastically could be preferable than simply choosing the most likely

outcome when feedback is available only to the choice that is being made. The

first one is that the organism does not have the perfect model of the environment

yet. Thus, the estimated probability of the outcomes might deviate from the true

probabilities. In this case, the observer wants to keep learning about the envi-

ronment while trying to get as much reward as possible. It is then preferable to

mix the choices up depending how confident the observer is on his model of the

environment. The other situation is that the environment is dynamic. Thus, the

knowledge of the environment collected in the past could become outdated in the

future. It is to the observer’s benefit to mix up the choices depending on how fast

the environment is changing to keep his model of the environment updated. In

both these scenarios, the uncertainty of the environment could drive an organism

to make their decisions stochastically, trading off the current reward and learning

of the environment for more future reward. In the reinforcement learning litera-

ture, it has been shown that probability match provides a good balance for the

tradeoff of exploitation (pick the option with the highest expected reward) and the

exploration (try something random) [21,63].
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Coming back to our own problem of where to direct attention, it mimics

a multi-choice decision making scenario where the estimated probability of the

outcomes is given by the saliency map. It is reasonable to assume that the organism

do not have a perfect model of its environment and the environment itself could

be changing. Furthermore, only attended items will be processed in further detail,

i.e. feedback is only available for the choice being made. Thus, the same driving

force that cause people to probability match, even though we do not understand

fully, could result in probability match when directing attention.

V.A.1 Average Time to Find the Target

In this session, we infer that in a single target search task, if the target

is present in the display, how long it takes in average for the subject to find the

target. We assume for simplicity that the objects outside the stimuli display do

not compete for attention, and that salience of each item do not change overtime

due to eye movements etc.

Let starg denote saliency of the target, sdist denote that of a distractor

and there is n distractors in the display 1. We define the term distractor strength

as:

x = sdist/starg. (V.1)

This can be thought of as the relative salience of the distractors versus the target.

For a classical feature search, the target is highly salient compared to the distrac-

tors, so the distractor strength x is very small. For classical inefficient conjunction

target search, the distractors are as salient as the target, so the distractor strength

x is approximately 1. As we will show later, distractor strength x is one of the key

variables that decides how difficult a search task is.

When n distractors are present, the probability of the target being the

1For notation simplicity, we use sdist for the salience of all distractors. The qualitative conclusions
still hold if the salience of the distractors vary but the average salience is sdist
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first item to be attended to is:

starg
starg + n · sdist

=
1

1 + nx
(V.2)

The intuition is straightforward: the probability of attending to the target is small

if the distractor is very distracting or the number of distractors is large.

Now the question is where to look next. An important question here is

that whether previous attended items will be attended again. It is of controversy

that whether subjects remember what items have been processed. Posner and Co-

hen [57] noticed an inhibitory effect which reduces the likelihood of attending to

the previous attended locations. They named it inhibition of return. Klein [37]

found this effect in visual search and suggested that it may function to improve

efficiency. To avoid attention residing on one salient item, many earlier attention

models have employed this mechanism that just attended items are not to be at-

tended again, e.g. [31,74,92]. It could be implemented strictly that attended items

will never be attended again or not so strictly that the probability of attending an

item is zero right after it is attended but slowly raises over time. Some eye move-

ment models went further to infer inhibition of return by maximizing information

over time, e.g. [39]. Some recent findings confirmed that inhibition of return is

indeed involved in visual search paradigms [49, 68]. However, it stays somewhat

controversial that to what extent the attended distractors are inhibited [23–25]

(see [90] for a review).

We will not investigate how much an attended item is inhibited, but allow

the flexibility in our framework. We assume that after an item is attended to, it

will be marked and not be attended to again with probability γ, where 0 < γ < 1

and will referred to as inhibition rate. This says γ portion of the attended items

will not be attended again, which can also be understand as that after an item is

attended to, the probability of attending to it again is 1− γ.2 When γ approaches

1, it is the scenario of strict inhibition of return where attended items will never be

attended to again. When γ approaches 0, it reduces to no inhibition of return at all.
2Strictly, these two assumptions are different. But they will lead to same inference in our case.
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Note that the mechanism of inhibition of return is much more complicated than to

be summarized by a single parameter. For example, what items are inhibited and

to what extent are dependent on the sequence of the attended items. However, our

purpose here is to show that our framework could work with different assumptions

about inhibition of return as our qualitative conclusions are independent of the

exact value of inhibition rate.

Let E(n, x) denote the expected number of distractors being attended

before the target is attended to. It is zero if there are no distractors:

E(0, x) = 0 (V.3)

When n > 0, by equation V.2, a distractor will be attended to with probability

1− 1
1+nx

= nx
1+nx

. If a distractor is attended to, with probability γ, it is marked and

will not be attended to again and the search procedure from then on is searching

for the target in n−1 distractors. With probability 1−γ, it is not marked and can

be attended to again as any other distractors and the search procedure from then

on is again searching for the target in n distractors. This gives us the recursive

formula:

E(n, x) =
nx

1 + nx
(γ(En−1,x + 1) + (1− γ)(En,x + 1)) (V.4)

Taking together the initial condition given by equation V.3 and the recursive prop-

erty given by equation V.4, we have:

E(n, x) =
x

1 + γx
n (V.5)

Assume that the subject does not misclassify any distractor as the target (false

alarm) nor misclassify the target as a distractor, and he correctly responded the

presence of the target upon attending to it. Let tdist denote the average time to

process a distractor and tprst denote the average additional cost in the response

time when the target is present, including the time to process the target, the time

needed to press the response button, etc. The expected response time is given by:

RTprst(n, x) = E(n, x) · tdist + tprst =
x

1 + γx
tdist · n+ tprst (V.6)
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This formula says that the expected response time when the target is present

increases linearly with the number of items, with a slope of x
1+γx

tdist.

V.A.2 Similarity to Former Models

When the distractor strength x is very small (x ≈ 0), i.e. the target is

highly salient relative to the distractor, x
1+γx

tdist is very small and generates a flat

slope for the response time as the number of distractors increases. This generates

a scenario of “parallel search” proposed in FIT (feature integration theory) [74].

The average number of distractors to be attended to before the target x
1+γx

n is

very small that the target is quite likely to be the first item attended; the target

pops out.

When x = 1 and γ = 1, i.e. the target is equally likely to attract attention

as any distractor and the inhibition of return is strict, the target is equally likely

to be attended to as the 1st, (n+1)th, or any one in between. The average number

of distractors being processed is n
2

and the slope of the response time is likely to

be steep. This is equivalent to “serial search” in FIT.

When x moves away from 0, the slope x
1+γx

tdist increases smoothly with

x. The search continuously changes from very efficient to less efficient to inef-

ficient, which potentially account for Wolfe’s classification of efficiency in search

tasks [91]. For example, increased target/distractor similarity and distractor het-

erogeneity raise the RT slope. As the target contrasts less with the distractors,

its salience decreases, leading to an increased distractor strength x. The slope of

the expected time to find the target thus also increases. Similarly, as each distrac-

tor contrasts more from others distractors, their saliency increases, leading to an

increased distractor strength x and a larger slope.
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Moreover, recall that:

x =
sdist
starg

(V.7)

=

1
p(F=fdist)

· p(F = fdist|C = 1) · p(C = 1|L = ldist)
1

p(F=ftarg)
· p(F = ftarg|C = 1) · p(C = 1|L = ltarg)

(V.8)

=
p(F = ftarg)

p(F = fdist)
· p(F = fdist|C = 1)

p(F = ftarg|C = 1)
· p(C = 1|L = ldist)

p(C = 1|L = ldist)
(V.9)

The first term p(F=ftarg)

p(F=fdist)
is the relative rareness of the target and the distractors, and

we showed earlier that it provides consistent account for many search asymmetries.

The term on the right p(C=1|L=ldist)
p(C=1|L=ldist)

calculates whether the distractors or the target

are on some preferred locations. The term in the middle p(F=fdist|C=1)
p(F=ftarg |C=1)

is closely

related to Wolfe’s guidance in Guided Search model [92]. This term reflects the

subject’s knowledge of the target. If the subject knows what the target is and can

estimate the likelihood terms, there will be strong guidance toward items that are

consistent with subject’s knowledge about the target.

Our distractor strength x can also find its correspondence in the selection

ratio in Bundesen’s partial report model, denoted as α [6]. It is the ratio of the

selection strength v of a distractor and that of a target. If we re-interpretate the

selection strength as the probability of the item being the target, then our distrac-

tor strength x is equivalent to selection ratio α. Then how can we interpretate the

selection strength v in our probability terms? In his more recent visual attention

models [4,5], v is elaborated as the hazard function of classifying an item k into a

category i, corresponding to our framework, this is the condition probability that

given z has not been classified so far, what the probability it is classified as c at

this moment. It is assumed that v has the formula:

v(k, i) = η(k, i)βi
wk

Σkwk
(V.10)

v(k, i) has two components: The first is the categorization component η(k, i)βi,

where η(k, i) notions the strength sensory evidence that item k belongs to category

i, and βi notions the perceptual decision bias associated with category i; The
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second is the selection component wk

Σkwk
where wk = Σiη(k, i)πi, and πi notions the

pertinence value of category i. The selection component is closely related to our

saliency term in equation II.13 when considering multiple targets associated with

different reward. Note that when there is no inhibition of return, the probability

of an item being attended to anytime is proportional to its salience. Rearrange the

terms, the utility or salience in equation II.13 associated with each element can be

rewritten as:

Σi p(Fk = f |Ck = i)

(
1

p(Fk = f)
p(Ck = i|Lk = l) ri

)
(V.11)

In particular, if we assume that the features of all elements are of equal probability

in natural statistics (constant bottom-up saliency), and that there is no prior

knowledge about the location of the targets. It simplifies to:

Σi p(Fk = f |Ck = i) ri (V.12)

If we draw an equal sign between η(k, i) and p(Fk = f |Ck = i), i.e. assume sensory

evidence that item k belongs to category i is the likelihood term, and another equal

sign between πi (the pertinence value of category i), and rk (the reward/utility of

correctly identifying an element in category k). Given our hypothesis of probability

match in allocating attention, Bundesen’s selection component corresponds exactly

to our probability of attending an element.3

The other component of categorization corresponds to the process in our

model that once an item is attended to, it has to be classified as one of the cat-

egories, e.g. whether the item is a target or a distractor. This again involves

calculating the probability of classifying the element belongs to each category4.

p(Ck = i|Fk = f, Lk = l) =
p(Fk = f |Ck = i)p(Ck = i|Lk = l)

p(Fk = f)
(V.13)

3The simplification of formula V.11 is not necessary. The correspondence still holds if we let πi

absorbs p(Fk = f |Ck = i)p(Ck = i|Lk = l) besides ri. However, the conceptual interpretation of πi being
the pertinence of category i will be compromised.

4The inference follows that in section II.A, adapting the independence assumption of the feature and
location.
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Although the probability to be estimated almost the same as for saliency, the

decision to be made is very different. When this probability is calculated for the

saliency purpose, it is to compare features across locations to direct attention, i.e.

compare across k. Now it is to compare categories to classify the element given its

features and location, i.e. compare across i. Thus p(Fk = f) is a constant across

categories and can be dropped from the formula:

p(Ck = i|Fk = f, Ck = i) ∝ p(Fk = f |Ck = i)p(Ck = i|Lk = l) (V.14)

Again, if each category is associated with reward ri, the expected reward/gain to

classify item k as category i is:5

g(k, i) ∝ p(Fk = f |Ck = i)p(Ck = i|Lk = l) ri (V.15)

If we assume that the classification decision is made probabilistically proportional

to the expected reward of each category (a reasonable assumption given our dis-

cussion about probability match in earlier sessions), the probability of categorizing

item k as category i is:

p(Fk = f |Ck = i)p(Ck = i|Lk = l) ri
Σip(Fk = f |Ck = i)p(Ck = i|Lk = l) ri

. (V.16)

We now draw an equal sign between βi and p(Ck = i|Lk = l) ·ri, i.e. assuming that

the perceptual decision bias associated with category i is equivalent to the product

of the prior probability of seeing an item of category k at the element’s location

and the reward of correctly classifying the element as category i. Recall that a

equal sign was drawn earlier between sensory evidence, η(k, i), that item k belongs

to category i and the likelihood term p(Fk = f |Ck = i). Bundesen’s categorization

component matches directly to equation V.15. When there is only one item on in

the display, the probability of classifying item k as category i inferred in Bundesen’s

work is:
η(k, i)βi

Σiη(k, i)βi
, (V.17)

which is equivalent to equation V.16 in our framework.
5The formula can potential become much more complicated if considering different punishment for

different kind of misclassification, a common scenario in the literature of cost-sensitive classification,
e.g. [12].
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V.B When to Stop - a sequential decision making proce-

dure

In the last two sessions, we discussed what attracts attention and how

attention is directed given a saliency map. In visual search tasks, there is at least

one more important aspect: when to stop and make a response.

Examine the process of a search trial, it fits very well into the sequential

decision making scenario. Whenever an item is being processed, some information

is gathered about the display, and the observer has to decide whether to stop and

make a response or to keep gathering more information.

Assume that when the target is identified, the subject stops the trial and

response that the target is present. Then the crucial question facing the subject

is that if I have not see the target so far, shall I stop? And if I stop, what do I

report?

Let WR−(k) and WR+(k) denote the cost/waste functions of stopping to

report absence or presence after k distractors have been processed. For simplicity,

assume that the target and the distractors in the display are distinguished enough

that there is no misclassification, i.e. the misses and false alarms only occur when

the subject stops and makes an incorrect response before a target is identified.

The cost function involves the cost of errors including misses or false alarms and

the cost of time.

Let D1:k denotes the event that the first k items processed are all distrac-

tors. Let T and ¬T denote that the target is present and absent respectively. Let

Wm and Wf denote the cost/waste function for misses and false alarms respectively,

and Wt denotes the cost/waste of time. The expected total cost of stopping and

reporting absence or presence when no target has been identified after processing



66

k distractors is:

WR+(k) = Wm(P (T |D1:k)) +Wt(k · tdist) (V.18)

WR+(k) = Wf (P (¬T |D1:k)) +Wt(k · tdist) (V.19)

= Wf (1− P (T |D1:k)) +Wt(k · tdist) (V.20)

P (T |D1:k) is the probability that the target is present after k distractors have been

encountered and is the probability of miss if absence is reported at this moment.

Note the difference between the probability of miss and miss rate. The former is

the number of miss trials normalized by the total number of trials, including both

target present trials and target absent trials. The latter is the number of misses

normalized by the number of only the target present trials. Miss rate equals

probability of miss divided by the portion of target present trials P (T |D1:k)
P (T )

.

The probability of miss P (T |D1:k) can be estimated with Bayes’ rule and

written as a function of P (D1:k|T ), the probability of encountering k distractors

consecutively from the beginning when the target is present:6

P (T |D1:k) =
P (D1:k|T ) · P (T )

P (D1:k)
(V.21)

=
P (D1:k|T ) · P (T )

P (D1:k|T ) · P (T ) + P (D1:k|¬T ) · P (¬T )
(V.22)

=
P (D1:k|T ) · P (T )

P (D1:k|T ) · P (T ) + [1− P (T )]
(V.23)

The probability of not attending to the target after processing k items when the

target is present equals to the product of the probability of not attending to the

target every step till k, i.e. P (D1:k|T ) = Πk
i=1P (Di|T ). When there are n distrac-

tors with distractor strength x, with inhibition rate γ, it is given by:

P (D1:k|T ) = Πk
i=1

nx− (i− 1)γx

1 + nx− (i− 1)γx
(V.24)

We do not specify the formula of cost functions Wm, Wf and Wt because we

are trying to keep the framework as general as possible. We will discuss their

6Note that P (T ) + P (¬T ) = 1 and that P (D1:k|¬T ) = 1 because when the target is absent, only
distractors will be attended to.
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qualitative properties which leads to the common phenomenon known as the trade

off between mistakes and time. Then we will develop further on a tractable special

case to illustrate that the framework account for some other interesting phenomena.

From equation V.24 and V.23, when k increases, P (T |D1:k) decreases.

The intuition is straightforward: the more distractors you have encountered, the

less likely the target is there. Assuming all cost functions of misses, false alarms

and time are monotonically nondecreasing, then the total cost of reporting presence

WR+(k), given by equation V.20, is also monotonically nondecreasing. That says,

if you are going to report presence of the target before actually seeing it, you might

as well do so before the trial even started. This sounds pretty ridiculous. But

imagine the scenario that false alarms do not cost anything (Wf ≡ 0) but a miss

is lethal (Wm →∞), the optimal strategy is probably just to always say presence

regardless of the display.

A normal visual search task, however, is not so drastic. Thus the optimal

strategy is always to report absence if the target is not encountered. The total cost

of reporting absence, given by equation V.18, has two components. The first term

decreases with k but the second increases with k. In a reasonable setting, k = 0

does not provide least cost that the observers will not report absence regardless

of the display, although this could happen in some drastic scenario. For example,

if time is super precious (Wt → ∞), and misses cost much less than false alarms

(Wm � Wf ). On the other hand, WR−(k) will not always decrease with an in-

creasing k because when k →∞, the cost of possible misses Wm(P (T |D1:k)) floors

at Wm(0), but the cost of time Wt(k · tdist) keeps growing, often super linearly7.

Thus, the total cost of WR−(k) is minimized by an intermediate k, which

provides a good trade off between time and error. The subject stops the trial and

report absence, if k items are processed without seeing the target. k is dependent

on many factors, including number of distractors n, inhibition rate γ, average

time to process a distractor and of course the cost function of misses and time.

7Most people would rather do 1 hour of search task in a lab every day for 24 days rather than doing
it consecutively for 24 hours.
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In particular, in a reasonable setting, when n increases, if k stays the same, the

cost of misses increases but that of time stays the same. On the other hand, if k

increases to the point where the probability of miss holds still, the cost of misses

stays the same, but that of time increases. Neither of these is likely to minimized

WR−(k), the sum of the two component. The optimal k often lies in between,

where both components increases by some amount, showing the trade off of time

and error. The probability of miss goes up as well as the time spent when the

number of distractors increase.

What we just discussed is that if n is given, what is the best k to minimize

the cost. There could be another complication. If many search trials with various

number of distractors are mixed, the global optimal strategy might trade off misses

among trials and yield less cost than locally optimizing the cost function for each

n. We are not going to discuss this in detail but will illustrate this effect with

a special case. Consider the situation that the probability of miss must be kept

below a certain threshold h8; as long as it is less than h, it does not matter what

value it takes. In this case, the cost function of miss is: Wm(y) = 0 if y ≤ h;

Wm(y)→∞ if y > h. The best strategy is then to keep the probability of miss at

h – spending least time while not violating the miss criteria. Note that this special

case is equivalent to the stop criteria proposed in [4] where the subject rejects a

trial when the probability of missing a target arrives a certain constant threshold.

We will refer to this special case as “miss thresholding”.

If the observer is keeping the probability of every single trial at h, the

optimal number of items to process before reporting absence k can be found by

setting P (T |D1:k) = h. From equation V.23, P (D1:k|T ) can be solved as a function

of P (T |D1:k):

P (D1:k|T ) =
1− P (T )

P (T )
· P (T |D1:k)

1− P (T |D1:k)
(V.25)

=
1− P (T )

P (T )
· h

1− h
(V.26)

8False alarms are punished so that simply reporting present regardless of the display is not acceptable.



69

For inference simplicity, assume distractor strength x = 1 that the target is as

saliency as distractors, γ = 1 that the inhibition is strict. Equation V.24 simplifies

to:

P (D1:k|T ) = Πk
i=1

n− (i− 1)

1 + n− (i− 1)
(V.27)

=
n− k + 1

n+ 1
(V.28)

Taking equation V.26 and V.28 together, we can solve k:

k =

(
1− 1− P (T )

P (T )
· h

1− h

)
(n+ 1) (V.29)

Consider this experiment setup: the target is present in half of the trials,

i.e. P (T ) = 0.5; the probability of miss must be kept below 20%; and the number

of distractors are either n = 12, n = 24 or n = 36, and each takes one third of

the trials. If the trials are optimized individually, the best k for different n’s are

9, 18 and 27 respectively, and the average processed items for rejected trials are

18 items. However, if the subject uses the strategy of keeping the probability of

miss of n = 12 to 0, that of n = 18 to 20%, and that of n = 24 to 40%, the k

is now 12, 18 and 12 respectively, resulting in the average number of processed

items being 14. The strict inference could be much more complicated than what

we just did in this special case. But the point is clear that optimizing for each

n does not necessarily maximize the total cost over the entire trials. That being

said, if a change of one probability term affect all local optimal strategy the same

qualitative way despite of the value of n, the effect will likely applies to the global

optimal strategy as well. This is the case for our following discussion and we will

carry out our inference based on local strategies.

Now we will look at the effect of P (T ) on the decision making of when

to stop. In our special case of miss thresholding where the probability of miss

P (D1:k|T ) is held still, the miss rate which is given by P (D1:k|T )
P (T )

increases when

P (T ) decreases. However, you may wonder, why to hold probability of misses still,

but not to hold the miss rate still? This of course is dependent on the experimental



70

setup. But often, the subjects are told to make as few mistakes as possible besides

other things. The error rate is normalized by the total trial numbers. Thus, the

miss rate is not as relevant because if the present trial takes up only 1% of all

trials, the error from misses can not exceed 1% no matter how high the miss rate

is.

This example provides some intuition about when the portion of target

present trials goes down, the miss rate can go up without increasing the error rate.

In general cases when P (D1:k|T ) is not necessarily held constant, this intuition still

applies. The effect of P (T ) can be seen qualitatively from equation V.25. When

P (T ) decreases, to keep the left side and the right side of the equation the same,

either P (T |D1:k) has to decrease or k has to decrease (increase P (D1:k|T ) on the

left). These two changes, reflected in the cost function of equation V.18, increase

the cost of miss or increasing the cost of time respectively. Generally, the optimum

lies in between that both changes will be made. The decrease of k, however, will

lead to an increase of miss rate, because when the target is present in the display,

the subject is more likely to decide the target is absent before it is found and

produces a miss.

That decreasing P (T ) will lead to earlier stop and higher miss rate has

been reported by Wolfe et al. [93]. In that work, they increased the reward for hit

and punishment for miss when P (T ) is lowered. This should bias subjects to avoid

miss more in low P (T ) conditions. But since we do not know the cost functions of

subjects9, it is not very clear to what extend this manipulation biases the subjects’

decisions. Nevertheless, if a miss is catastrophic and a false alarm is also costly,

time becomes relatively cheap. The observer will take his time to make sure the

target is present or absent regardless of P (T ). Thus we could take some relieve

that in situations such as searching for a tumor in a film, a radiologist probably

will not behave like subjects performing search tasks in labs who want to get out

as fast as possible.

9It is often found to be sub-linear, e.g. losing $1, 000 is not feel 2 times as bad as losing $500.
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V.B.1 Dynamic estimation of probability terms accounts for gambler’s

fallacy

Another interesting phenomenon is that subjects seem to dynamically

adjusting their stopping criteria over trials. Chun and Wolfe showed that when

the observer produces a miss, the next trial will take much longer time, as if the

subject becomes more careful after the mistake [11]. This phenomenon is replicated

by Wolfe et al. [93]. Furthermore, they observed “gambler’s fallacy” that the search

time decreases after a hit trial, as if the subject slack off after the correct response.

What do subjects adjust over trials that leads to the change of stopping

criteria after a hit and a miss trial? Looking back at the cost function at equa-

tion V.18, the key players are the time spent and the probability of miss P (T |D1:k),

which is in turn decided by P (T ) and P (D1:k|T ). The subject has the control of

how much time to spend so there is not much uncertainty in regard to the cost

of time. Furthermore, the probability of a target trial is often disclosed to the

subject beforehand and held constant over the entire trial set. So there is not

much uncertainty over P (T ) either. The term P (D1:k|T ), however, is not so easy

to calculate. The formula of P (D1:k|T ) in our framework, given in equation V.24,

is already complicated enough, not to mention this is under some simplification

assumptions. An alternative way of calculating this probability for the subjects

is to estimate it empirically. That is, of the target present trials, how often the

target is not processed in the first k items.

Hit trials provide evidence toward P (D1:k|T ) = 0 as the target is attended

to with k items, while miss trials provide evidence toward the opposite direction of

P (D1:k|T ) = 1. A reasonable subject will take a history of trials into consideration

and adjust his estimation of P (D1:k|T ) with a small amount upon new evidence.

Upon a hit trial, the estimation of P (D1:k|T ) decreases. It is important to note that

the underlying probability does not change but the empirical estimation of the sub-

ject decreases. Going back to our example of miss thresholding where the subject

wants to hold P (T |D1:k) still, the decrease of the estimation of P (D1:k|T ) will lead
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to the decrease of the estimation of P (T |D1:k) (equation V.23). To compensate for

this decrease, k will be reduced, leading to less time spent before rejecting a trial.

An intuitive way of reasoning from the subject’s view is: since I successfully found

the target with my current strategy, maybe my stopping criteria overkill and I can

shorten the time a bit. The decrease of time in turn raises the miss rate right

after a hit, because it was the estimation of P (D1:k|T ) being adjusted, not the true

underlying P (D1:k|T ). The underestimation of P (D1:k|T ) makes the subjects look

less careful after a hit trial. A miss trial works the opposite way. The estimation

of P (D1:k|T ) increases after a miss trial, leading to the increase of time spent to

reject a display. In general cases where the probability of miss does not need to

be held still but trade off with time softly, the qualitative direction of the change

of k still applies.

To further illustrate this effect, figure V.1 shows how the number of items

to be processed k, varies near a miss trial and a hit trial, based on the example

where the probability of miss is held still by simulation. In the simulation that

generates this particular figure, the number of items in display is set to n = 20;

the probability of target trials is 0.1; the probability of miss is set to h = 0.01

(resulting in a miss rate of 10%); and the learning rate of P (D1:k|T ) is 0.5, i.e.

P (D1:k|T ) = 0.5 + 0.5P (D1:k|T ) after a miss trial and P (D1:k|T ) = 0.5P (D1:k|T )

after a hit trial; 10,000 consecutive trials were simulated. We can compare this

stimulation result to that reported in supplementary figure 1 of [93]. Although

the exact shape of the curves differ from the human data (particularly that the

processing time after a miss trial keeps high for many trials), our simulation of this

special case of miss thresholding showed all three key observations made in [93].

First, the rejecting time is lower before a miss trial than that of a hit trial. Second,

the rejecting time is raised by a significant amount after a miss trial. Third, the

rejecting time is lowered after a hit trial. These three characteristic is present in

our simulation for a wide range of parameter settings, i.e. the qualitative effect is

intrinsic to our framework rather than a set of parameters.
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Figure V.1 The rejecting strategy changes as subjects dynamically adjusting the

estimation of P (D1:k|T ). The red curve shows the number of items to process

before rejecting around a miss trial and the green curve shows that around a hit

trial.

The above discussion is partly based on the assumption of the experi-

mental setup that P (T ) is known to the subject and there is no need to estimate

P (T ) on the fly. It is then interesting to speculate what if P (T ) is unknown and

can change over time. In this case, subjects have to estimate P (T ) and adjust

their strategy accordingly. Assuming P (T ) changes smoothly that the subject can

estimate P (T ) over recent trials10. A target present trial provide evidence toward

P (T ) = 1 and a target absence trial provide evidence toward P (T ) = 0. As dis-

cussed earlier, a larger P (T ) will lead to a larger k and a smaller P (T ) will lead

to a smaller k. Target present trials will thus lead to longer rejecting time11 while

target absent trials will lead to shorter rejecting time.

10If P (T ) is random and not correlated in consecutive trials, there is not much the subject can do to
predict P (T ).

11Less time does not necessarily lead to less miss in this case because P (T ) changes.
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Imagine this scenario: you are going through a 1000-page-long book of

essays to mark all the phrase “visual search”. You went through the first 100 pages

without seeing any such phrase. You figure you are probably at essays that do not

deal with visual search very much. So you fastened your search and went through

the next 400 pages with only rare occasions of seeing the phrase. Then you find

your target phrase 10 times over the next 20 pages. You slow down your search

and read the pages there after more carefully until the phrase stops showing up

frequently around page 600. You then go through the rest 400 pages less carefully.

While this task is not that realistic and is far from well controlled experimental

setups, it conveys the idea that when the probability of the target frequency is

unknown and changes dynamically, observers estimate it from recent experience

and adjust their search strategy accordingly. When the target occurred frequently,

it is likely to occur again in the immediate future and as the observer, you should

keep your eyes open.

V.C Accounting for mean average response time

In earlier sections, we discussed what attracts attention, how attention

is allocated and the stopping strategies in a search task. The previous qualitative

accounts of visual search phenomena required no free parameters. As an exercise

in showing that our model can account quantitatively for data as well, we present

an example of fitting PS to response time data of target present and target absent

trials in some visual search tasks. The human data presented here are recovered

from figures in [74,86,91].

Our model is developed in a somewhat nontraditional way. We did not

reason the structure from the human data, but inferred what should be calculated

from several basic assumptions. One consequence of this is that our model is

more complicated than necessary when coming to fit the response time data. For

example, the average response time in target present trials often changes linearly
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with the number of distractors, thus only one parameter is necessary to fit the slope,

e.g. the unit processing time of each item in feature integration theory. Our model,

on the other hand, has three parameters that affect the slope: distractor strength

x, inhibition ratio γ and average processing time for a distractor (equation V.6).

In this session, we will hold the inhibition ratio γ still and change the

others to fit the data. We show that our framework can quantitatively fit to the

data and we will discuss the qualitative aspects of the values of the parameters. But

since there are infinite combinations of possible fits, we do not claim significance

in the particular values assigned to the parameters.

When γ = 0, there is no inhibition of return. In session V.A.1, we

showed that in this case our model is equivalent to that of [4] in selection and

classification. Thus the prediction of expected target present response time is also

equivalent. In target absent trials, [4] assumed that subjects reject the trial when

a constant probability of missing a target is arrived. This assumption is equivalent

to our example of “miss thresholding”. We will continue to use this example in

this session for inference simplicity, while keeping in mind that it is a special case

where there is a hard cut off of misses but no trade-off with time. When we assume

no inhibition of return and the scenario of miss thresholding for stopping strategy,

we have exactly the same account for the data as in [4] 12.

Bundesen’s model has been shown to account well for the mean response

time in both target present and target absent trials in some tasks [4]. However,

as you can probably tell that the assumption of no inhibition of return is not that

realistic in our framework, there seems to exist some difficulty for this model. The

mean response time of target absent trials and target present trials are both linear

with the number of distractors in the model (equation 13 and 18 in [4]), providing

a good fit to the human data. The slope ratio SR can be easily inferred from the

12The exact formula inferred from our framework will look slightly different to those in [4] because
our inference is based on a serial structure while his on a parallel structure. Our inference is the discrete
equivalence to his continuous inference.
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two equations and is given by:

SR =
− log h

1 + h log h
1−h

, (V.30)

where h is the threshold of the probability of misses defined in section V.B (denoted

as r in [4]). As h is a probability term, it can only vary in the range from 0 to

1. Figure V.2 shows how the slope ratio varies as the threshold of probability of

miss changes. The slope ratio SR approaches infinity when h approaches 0 and SR

approaches 2 when h approaches 1. Note that the probability of misses h equals the

miss rate times the portion of target present trials P (T ). In a typical experimental

setup, target present trials take up half of the total trials, i.e. P (T ) = 0.5. If

the miss rate is to be kept below, for example, 20%, the probability of miss h has

to be kept below 10%, i.e. h < 10%. Consequently SR > 3, i.e. the slope ratio

will always be bigger than 3. However, classical conjunction search produces slope

ratio of 2 [74]. Furthermore, Wolfe showed that the the majority of the search

tasks have slope ratios around 2 with deviations on both sides, and that very large

and very small slope ratios are also observed for some tasks [88]. Thus, Bundesen’s

model, as well as our example of setting the probability of misses to a constant and

assuming no inhibition of return, can not account for the range of smaller slope

ratios.

Now we will discuss the situation in the other extreme where the inhi-

bition of return is strict, i.e. γ = 1. This assumption is, if not more, equally

unrealistic as assuming no inhibition of return. However, as the reality may lie

anywhere in between, it is informative to discuss the extremes besides the benefit

of simplified inference. When γ = 1, the mean response time in target present

trials given by equation V.6 simplifies to:

RTprst =
x

1 + x
tdist · n+ tprst. (V.31)

When the target is absent, if the stopping strategy is to reject after k items are

processed, the expected response time is given by:

RTabst = k · tdist + tabst. (V.32)
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Figure V.2 The slope ratio is a function of probability of miss in Bundesen’s model,

equivalently in our special case with γ = 0. The slope ratio approaches infinity

when the probability of miss approaches 0, and approaches 2 when that approaches

1.

where tabst is the average extra time needed in an target absent trial.

We will again discuss target absent trials in the scenario of miss thresh-

olding for simplicity, while the qualitative conclusions can be generalized as long

as the cost functions do not go to extremes. With γ = 1, the probability of not at-

tending to the target given the target is present, given by equation V.24, simplifies

to:

P (D1:k|T ) = Πk
i=1

(n− i+ 1)x

1 + (n− i+ 1)x
(V.33)

The optimal k can be inferred by considering the right side of equation V.33 and
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V.26: k is the smallest of all k’s that satisfy the following inequality:

Πk
i=1

(n− i+ 1)x

1 + (n− i+ 1)x
≤ 1− P (T )

P (T )
· h

1− h
(V.34)

This does not have a closed form solution in general but simulation suggests that

k is linear with n given x, h and P (T ). Three are three special cases where closed

form solutions are available. We will discuss them each briefly to illustrate that

our framework is capable to account for the human data in different scenarios.

The first situation is when the target and distractors are as salient as each

other, i.e. x = 1. For example, the classical conjunction search for a red horizontal

bar in a pool of green horizontal and red vertical bars fits into this scenario. We

have discussed this case briefly in section V.B and k is given by equation V.29. In

this case, k is linear in n, but the slope is dependent on P (T ) and h. The rejecting

time grows when P (T ) increases, showing the effects of less presented target is

likely to miss [93]; and it also grows when h decreases, showing the error-time

trade off. In a standard experimental setup where P (T ) = 0.5, the slope of target

present trials is x
1+x

tdist = 0.5tdist and that of target absent trials is (1− h
1−h)tdist.

The slope ratio is then given by 2(1− h
1−h). When subjects are reasonably careful,

h is small and the slope ratio is approximately 2. When P (T ) changes, the slope

ratio will also change accordingly. Particularly, if P (T ) becomes very small, the

slope of target absent trials may becomes smaller than the slope of target present

trials 0.5tdist. That is, subjects spent less time before rejecting a trial than they

need averagely to find a target when present. This is also observed in [93]. The

intuition is straightforward in an extreme case, if P (T )→ 0 that the target almost

never appears, the subjects can reject a trial without looking knowing the chance

of miss is tiny although it will take them some effort (if they try) to find it when

it is present.

The second case is when the target is very salient relatively to the dis-

tractors, i.e. x → 0. The classical feature search where the target pops out fits

into this scenario. In this case, as long as h > 0, inequality in V.34 can be arrived

with k = 1. That is, when the cost of a miss is not infinity so that some trade off
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of misses and time is desirable, the trial can be rejected if the first items processed

is not the target. Intuitively, the target is so salient that when it is present, the

probability of it not being attended to the first is very small. Thus if the first

item attended is not the target, the target is probably not present in the display

and the subject can reject it confidently without processing a second item. This

explains that the mean response time in very efficient search is flat not only for

target present trials, but also for target absent trials [88, 91].

The third case is when h = 0. This assumption is not very realistic

because it means that the subjects want to make perfect judgement no matter

how long it takes, while trade off between mistake and time is commonly observed.

However, if x is not too small and P (T ) ≈ 0.5, h = 0 is a good approximation to

that when h takes a small value, which is often the case. Under this assumption,

the subjects need to exhaustively scan every item before they reject a trial, i.e.

k = n. Taken equation V.31 and V.32 which give the mean response time in target

present and absent trials. We can fit parameters x, tdist, tprst and tabst to human

data in search tasks where the target does not pop out (when the target pops out,

x → 0, h = 0 is not a good approximation). Figure V.3 shows some example of

fitting the model with this special case assumptions to some human data, and the

corresponding parameters are shown in Table V.1.

Figure V.3 PS is fit to four sets of human data. It provides the best linear fit to

the data.

Before continue to the next section, it is of some interest to discuss the

role of the parameters in search efficiency, in particular, the distractor strength x
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Table V.1 The parameters used in Figure V.3
x tdist (ms) tprst (ms) tabst (ms)

Conjunction 0.72 66.91 402.24 393.39
T vs. L 1.04 41.40 556.40 623.54
2 vs. 5 0.75 99.50 640.54 640.57

and the distractor processing time tdist. Before deciding their roles, however, we

should first examine what affects these two parameteres.

The distractor strength x, defined in equation V.1, is the relative rareness

of the visual features of a distractor and a target. A smaller x means that the

target, when present, is more likely to be attended to. This leads to a faster

search by reducing the expected number of items to be processed before the target

is attended to when present. The rareness of visual features is dependent on

two major factors. One is the item’s own features such as color, orientation,

etc. Another is the item’s contrast to its neighbor items, such as color contrast,

orientation difference, etc. When the target and the distractor are similar, the

second factor is small and the first dominates, and we observe search asymmetries

when the target and the distractor switch roles, as discussed in section II.B.3.

When the target and the distractor are very different, the second factor can override

the first one and becomes dominant. The bigger the neighborhood difference, the

smaller the probability as homogeneous surface and texture are frequent in natural

statistics13. When the difference between the target and the distractors, or the

difference among the distractors are manipulated, x changes accordingly, resulting

in changes of search efficiency, as discussed in V.A.1.

tdist, on the other hand, is time needed to classify a distractor as a dis-

tractor but not a target. It also depends on two factors. One is the complexity of

the distractor. For example, it should be easier to classify color bars than classify

faces. The other, again, is the similarity between the target and the distractor.

For example, if the target is red, it is probably easier to classify a green distractor

13ICA algorithms have shown to learn features from natural images with sparse marginal distributions
that respond to edges and texture borders [34,53,64].
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as a non-target than classify an orange distractor as a non-target.

The efficiency of a search task often refers to the how fast a target can

be found when present in a pool of distractors, e.g. the search is efficient if the

slope is less than 5ms/item but very inefficient if it is more than 20ms/item [87].

The slope of mean response time when the target is present, given by x
1+γx

tdist

(equation V.6) is relevant to both x and tdist. Thus, efficiency of a search task is

a one dimension projection of underlying multi-dimensional factors, including the

difference between the target and the distractors, their own feature probability,

and their complexity. Two search tasks often differ in more than one of these

factors and the difference observed in efficiency is from the changed underlying

factors combined.
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VI Summary

In this dissertation, we fist developed a saliency framework in a principled

way by investigating the goal of the visual system. Bottom-up saliency falls out

from out framework as self-information and overall saliency as pointwise mutual in-

formation. Our definition of saliency, different from previous methods, is based on

natural statistics. It accounts for feature and conjunction search, as well as many

search asymmetries straightforwardly. We then implemented efficient bottom-up

saliency algorithms on static images and dynamic scenes. They perform as well

as state of art saliency algorithms in predicting human eye fixations. We further

implemented a simplified, but real time bottom-up saliency algorithm on a robotic

camera. The camera is orientated towards salient location in the space and it

greatly improved the chance of seeing people.

We then investigated how attention is directed given a saliency map. We

treat it as a decision making problem and hypothesized that it shares higher level

decision making characteristics: probability matching. That is, attention is di-

rected probabilistically according to the saliency map. Based on this hypothesis,

we inferred that the response time in a visual search task when the target is present

is linear with the number of distractors. Furthermore, the slope is positively cor-

related to the distractor strength, defined as the ratio of the distractor salience to

the target salience. The two special cases of distractor strength near 0 and dis-

tractor strength being 1, corresponds to the feature search and conjunction search

in feature integration theory. When the distractor strength varies, the difficulty of

the visual search task varies, corresponding to different level of efficiency in guided
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search model.

We further treat visual search as a sequential decision making process

and discussed when the subject will stop if the target is not found. Without

specifying the cost functions nor fit any parameters, we were able to account for

four phenomena observed: (1) miss rate increases with number of distractors; (2)

miss rate increases when the portion of target present trials decreases; (3) search

time decreases and miss rate increases after a hit trial, known as the “gambler’s

fallacy”; (4) search time increases and miss rate decreases after a miss trial.

Throughout this dissertation, we are trying to build a theoretic framework

that account for human behavior as well as allow efficient implementation on com-

plex images and videos so that it is also of value to computer vision and graphics.

Most of work contained here, however, only deals with bottom-up saliency which is

dependent on the stimuli but not take tasks into consideration. Also, our current

work does not take visual acuity and temporal changes of saliency into account.

How top down tasks affect visual attention, how saliency is updated over time,

and how eye movements are planned sequentially are of great interest for future

works.
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