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ABSTRACT OF THE DISSERTATION

Modeling the Physical World for Data-Centric Robotics

by

Tongzhou Mu

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Hao Su, Chair

The development of a general-purpose robot capable of performing diverse tasks in

home and office environments remains a central challenge in robotics. While breakthroughs

in foundation models for language and vision have demonstrated the potential of scaling data

and computation, robotics faces unique hurdles due to its reliance on physical-world data,

such as 3D geometry, dynamics, and spatiotemporal information. These challenges create a

significant data bottleneck, limiting progress toward general-purpose robots. This dissertation

advocates for a data-centric approach to robotics, focusing on three core components: 1) building

environments for scalable data collection, 2) developing efficient methods for collecting diverse

robotic demonstrations, and 3) leveraging this data to learn robust and generalizable robotic

xv



policies.

To address these challenges, this dissertation introduces ManiSkill, a large-scale sim-

ulation benchmark designed for learning and evaluating diverse robotic manipulation skills.

ManiSkill features extensive 3D assets, diverse tasks, and large-scale demonstration datasets,

providing a robust environment for data-centric research. For scalable demonstration collection,

this work proposes DrS, a method for learning reusable dense rewards from sparse rewards and

demonstrations, enabling efficient reinforcement learning for short-horizon tasks. Additionally,

it presents TR2, a framework that generates demonstrations for long-horizon tasks by translating

abstract trajectories into executable robot actions. Finally, this dissertation introduces Policy Dec-

orator, a model-agnostic method for refining imitation learning-based policies through controlled

online interactions, significantly improving performance while preserving smooth motion.

By integrating these contributions, this dissertation establishes a comprehensive frame-

work for advancing data-centric robotics, addressing critical bottlenecks in data collection and

policy learning, and paving the way toward general-purpose robotic systems.
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Introduction

The vision of a general-purpose robot capable of reliably performing a wide range

of tasks in home or office environments, akin to human capabilities, has long been regarded

as the holy grail of robotics. However, the reality of robotics research presents significant

challenges. Inspiration can be drawn from advancements in foundation models. Today, powerful

language models such as GPT [143], Gemini [196], and Claude serve as chatbots, coding

assistants, and more. Similarly, in computer vision, foundation models like SAM [91] for

segmentation, Midjourney for text-to-image generation, and Sora for text-to-video generation

have demonstrated remarkable capabilities. These models are notably more powerful and

generalizable than prior neural networks. Their success largely stems from training on extensive

large-scale internet datasets, underscoring the importance of dataset scale as a critical factor in

addressing complex tasks.

Therefore, it is natural to consider applying this approach to robotics—scaling up datasets

and computational resources with the hope of developing a general-purpose robot. However,

this transition is far from straightforward. In 1988, Moravec wrote: “it is comparatively easy

to make computers exhibit adult level performance on intelligence tests or playing checkers,

and difficult or impossible to give them the skills of a one-year-old when it comes to perception

and mobility” [130]. This observation, known as Moravec’s Paradox, highlights the challenges

in directly transferring methodologies from perception and language research to robotics. A

closer examination reveals fundamental differences: while NLP and CV operate as “Digital AI”

within the digital domain, leveraging abundant text and image data, robotics represents “Physical

AI,” requiring interaction with and understanding of the physical world’s complexities. This
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necessitates data including 3D geometry, dynamics, and spatiotemporal information, posing a

significant data bottleneck that hinders progress toward general-purpose robots.

These challenges are evident in recent robotics research. Efforts to develop robotic

foundation models through imitation learning, leveraging large demonstration datasets, have

gained significant attention [16, 19, 18, 5]. However, these models lag far behind their vision

and language counterparts in terms of generalization and robustness. Their performance is

critically dependent on the quantity, quality, and diversity of the demonstration data. Further-

more, initiatives to collect large-scale robot demonstration datasets, such as RT-1 [19] and Open

X-Embodiment [33], demand substantial time and resources, requiring years of data collection

through extensive human teleoperation, making the process costly. These considerations empha-

size that data is central to the development of general-purpose robots. A data-centric approach is

essential to address this challenge effectively.

This dissertation advocates for a data-centric approach to robotics, mirroring the success-

ful paradigm in other AI domains. Data-centric robotics focuses on three core components: 1)

building environments for robotics data collection; 2) developing efficient methods for collecting

diverse robotic data, particularly demonstrations; and 3) utilizing this data to learn robust and

generalizable robotic policies.

To generate sources of robotic data, Chapter 1 introduces ManiSkill, an interactive

simulation environment designed to facilitate the learning and evaluation of diverse robotic skills.

Significant advancements have been made in scaling up real-world robotic data collection [87, 29,

233, 163], while numerous simulation environments have also been developed for this purpose

[110, 156, 127]. Given the challenges of learning diverse robotic skills, simulation environments

enable collaborative research across global groups and provide standardized benchmarks for

evaluating progress. ManiSkill addresses these needs by offering a comprehensive simulation

benchmark for robotic learning. It includes extensive 3D assets with significant intra-class

topological and geometric diversity, tasks featuring distinct manipulation challenges, native 3D

point cloud support, and large-scale demonstration datasets. These features establish a solid
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foundation for advancing data-centric approaches in robotics.

Given the simulation environment, the subsequent challenge is collecting large-scale

demonstrations for various tasks. This process involves numerous considerations, including

object geometry and physical properties, task complexity and duration, and robot morphologies.

A straightforward approach is to have humans teleoperate robots to gather demonstrations.

However, this method is prohibitively expensive. For instance, in ManiSkill, with thousands

of objects and hundreds of scenes, collecting just 10 demonstrations per setup would incur an

enormous cost. A more scalable alternative is to employ reinforcement learning (RL) or model

predictive control (MPC) to solve tasks and generate demonstrations. However, both approaches

rely on high-quality dense rewards, which typically require meticulous design by human experts.

To address this limitation, Chapter 2 introduces DrS (Dense Reward learning from Stages), a

novel method for learning reusable dense rewards for multi-stage tasks in a data-driven manner.

By leveraging the stage structures of tasks, DrS derives high-quality dense rewards from sparse

rewards and demonstrations, when available. These learned rewards can be generalized to unseen

tasks, significantly reducing the need for human-intensive reward engineering.

By combining reinforcement learning algorithms with the high-quality dense rewards

provided by DrS, it becomes feasible to collect demonstrations for many short-horizon tasks.

However, a key limitation of RL lies in its difficulty in addressing long-horizon tasks. Chapter 3

presents TR2, a novel approach designed to collect demonstrations for complex long-horizon

tasks. TR2 operates in three stages: 1) constructing a paired abstract environment by simplifying

geometry and physics; 2) generating abstract trajectories within this simplified environment; and

3) solving the original task by translating abstract trajectories into executable ones through an

abstract-to-executable trajectory translator. In the abstract environment, intricate dynamics, such

as physical manipulation, are removed, making the generation of abstract trajectories significantly

easier. However, this simplification introduces a substantial domain gap between the abstract

trajectories and the corresponding executable trajectories, as the former lack low-level details

and are not frame-to-frame aligned with the executed trajectories. To address this challenge,
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TR2 employs a sequence-to-sequence (seq-to-seq) model, akin to methods used in language

translation, to bridge the domain gap. This enables the low-level policy to accurately follow

the abstract trajectory, facilitating the execution of complex long-horizon tasks. In this way, a

transformer model was developed to translate abstract trajectories into sequences of robot actions.

The most significant advantage of this model is its versatility—it can now generate diverse

trajectories by simply providing different abstract trajectories as prompts. This capability enables

the collection of demonstrations for various long-horizon tasks, greatly enhancing scalability

and efficiency.

After collecting demonstrations, the next critical question is how to effectively utilize

them. The most straightforward approach is imitation learning. Recent advancements in imitation

learning, such as ACT [233] and Diffusion Policy [28], have shown promise. However, the

performance of these offline-trained policies remains constrained by the quantity and quality of

the demonstrations. Chapter 4 addresses this limitation by exploring ways to enhance offline-

trained imitation learning models through online interactions with the environment. It introduces

Policy Decorator, a model-agnostic residual policy designed to refine large imitation learning

models during online interactions. By employing controlled exploration strategies, Policy

Decorator ensures stable and sample-efficient online learning. The evaluation spans eight tasks

across two benchmarks—ManiSkill and Adroit—and involves two state-of-the-art imitation

learning models: Behavior Transformer and Diffusion Policy. Results demonstrate that Policy

Decorator significantly improves the performance of offline-trained policies while preserving

the smooth motion characteristics of imitation learning models, thereby avoiding the erratic

behaviors typically observed in pure reinforcement learning policies.

In summary, this dissertation discusses the three key components of data-centric robotics:

environment, demonstration collection, and policy learning. For the environment, the ManiSkill

benchmark is introduced, which is a simulation platform that serves as a foundational source of

data. For demonstration collection, two distinct approaches are proposed: one tailored for short-

horizon tasks and another designed for long-horizon tasks. Finally, this dissertation presents a

4



method that integrates off-the-shelf imitation learning techniques with online learning to enhance

policy performance.
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Chapter 1

ManiSkill: Generalizable Manipulation
Skill Benchmark with Large-Scale Demon-
strations

Figure 1.1. A subset of environments in ManiSkill. We currently support 4 different manipulation
tasks: OpenCabinetDoor, OpenCabinetDrawer, PushChair, and MoveBucket; each features a
large variety of 3D articulated objects to encourage generalizable physical manipulation skill
learning.

1.1 Introduction and Related Works

To automate repetitive work and daily chores, robots need to possess human-like manipu-

lation skills. A remarkable feature of human manipulation skill is that, once we have learned
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to manipulate a category of objects, we will be able to manipulate even unseen objects of the

same category, despite the large topological and geometric variations. Taking swivel chairs as

an example, regardless of the existence of an armrest or headrest, the number of wheels, or the

shape of the backrest, we are confident of using them immediately. We refer to such ability to

interact with unseen objects within a certain category as generalizable manipulation skills.

Generalizable manipulation skill learning is at the nexus of vision, learning, and robotics,

and poses many interesting research problems. Recently, this field has started to attract much

attention across disciplines. For example, reinforcement learning and imitation learning are

applied to object grasping and manipulation [86, 180, 105, 169, 100, 8, 111, 144, 229]. On the

other hand, [120, 161, 131, 44, 114, 197, 164, 45] can propose novel grasp poses on novel

objects based on visual inputs. To further foster synergistic efforts, it is crucial to build a

benchmark that backs reproducible research and allows researchers to compare and thoroughly

examine different algorithms.

However, building such a benchmark is extremely challenging. To motivate our bench-

mark proposal, we first analyze key factors that complicate the design of generalizable manipu-

lation skill benchmarks and explain why existing benchmarks are still insufficient. With these

motivations in mind, we then introduce the design features of our SAPIEN Manipulation Skills

Benchmark (abbreviated as ManiSkill).

Key factors that affect our benchmark design.

To guide users and create concentration on algorithm design, four key factors must

be considered: 1) manipulation policy structure, 2) diversity of objects and tasks, 3) targeted

perception algorithms, and 4) targeted policy algorithms.

1) Manipulation policy structure: Manipulation policies have complex structures that

require different levels of simulation support, and we focus on full-physics simulation. Since

simulating low-level physics is difficult, many robot simulators only support abstract action space

(i.e., manipulation skills already assumed) [93, 212, 155, 215, 214, 176, 56, 43, 212, 56]. It is
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convenient to study high-level planning in these benchmarks; however, it becomes impossible to

study more challenging scenarios with high-dimensional and complex low-level physics. Some

recent benchmarks [17, 195, 235, 204, 226, 81] start to leverage the latest full-physics simulators

[200, 36, 172] to support physical manipulation. Despite the quantity of existing environments,

most of them lack the ability to benchmark object-level generalizability within categories, and

lack inclusion for different methodologies in the community, while we excel in these dimensions,

which is explained next.

2) Diversity of objects and tasks: To test object-level generalizability, the benchmark

must possess enough intra-class variation of object topology, geometry, and appearance, and

we provide such variation. Several benchmarks or environments, including robosuite [235],

RLBench [81], and Meta-World [226], feature a wide range of tasks; however, they possess

a common problem: lacking object-level variations. Among past works, DoorGym [204] is

equipped with the best object-level variations: it is a door opening benchmark with doors

procedurally generated from different knob shapes, board sizes, and physical parameters, but it

still does not capture some simple real-world variations, such as multiple doors with multiple

sizes on cabinets with different shapes. This is in part due to the limitations of procedural

modeling. Even though procedural modeling has been used in 3D deep learning [38, 222], it

often fails to cover objects with real-world complexity, where crowd-sourced data from Internet

users and real-world scans are often preferred (which is our case). Finally, a single type of

task like opening doors cannot cover various motion types. For example, pushing swivel chairs

requires very different skills from opening doors since it involves controlling under-actuated

systems through dual-arm collaboration. Therefore, it is essential to build benchmarks with both

great asset variations and wide skill coverage.

3) Targeted perception algorithms: Benchmarks need to decide the type and format of

sensor data, and we focus on 3D sensor data mounted on robots. Many existing benchmarks,

such as DoorGym, rely on fixed cameras to capture 2D images; however, this setting greatly

limits the tasks a robot can solve. Instead, robot-mounted cameras are common in the real
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world to allow much higher flexibility, such as Kinova MOVO, and autonomous driving in

general; those cameras are usually designed to capture 3D inputs, especially point clouds.

Moreover, tremendous progress has been achieved in building neural networks with 3D input

[159, 160, 199, 62, 31, 232, 158], and these 3D networks have demonstrated strong performance

(e.g., they give better performance than 2D image networks on autonomous driving datasets

[211]). [30, 23, 139, 112, 126, 230] have also adopted 3D deep learning models for perceiving

and identifying kinematic structures and object poses for articulated object manipulation. Our

benchmark provides users with an ego-centric panoramic camera to capture point cloud / RGB-D

inputs. Additionally, we present and evaluate 3D neural network-based policy learning baselines.

4) Targeted policy algorithms: Different policy learning algorithms require different train-

ing data and settings, and we provide multiple tracks to advocate for fair comparison. For

example, imitation learning [72, 174, 169] and offline RL [55, 98, 106] can learn a policy purely

from demonstrations datasets [37, 24], but online RL algorithms [66, 179] require interactions

with environments. Therefore, a clear and meaningful split of tracks can encourage researchers

with different backgrounds to explore generalizable manipulation skills and let them focus on

different aspects of the challenge, e.g., network design, perception, interaction, planning, and

control. While oftentimes other benchmarks are limited to a single domain of research and a

single modality, our benchmark supports three different tracks for researchers from computer

vision, reinforcement learning, and robotics fields.

Our benchmark.

Above we discussed factors of manipulation benchmark design and mentioned the

principles behind ManiSkill. Here we introduce the key features of the benchmark. ManiSkill

is a large-scale open-source benchmark for physical manipulation skill learning over a diverse

set of articulated objects from 3D visual inputs. ManiSkill has four main features: First, to

support generalizable policy learning, ManiSkill provides objects of high topology and geometry

variations, as shown in Fig 1.2. It currently includes a total of 162 objects from 3 object

9



Figure 1.2. ManiSkill features diverse articulated objects with complex topological and geo-
metric variations, such as different numbers and shapes of doors and/or drawers on different
shapes of cabinets. We invested significant effort to process objects from the PartNet-Mobility
Dataset and integrate them into our tasks, such as adjusting the size and physical parameters (e.g.
friction) so that environments are solvable, along with manual convex decomposition.

Figure 1.3. Rendered point clouds from our tasks. ManiSkill supports 3D visual inputs which are
widely accessible in real environments, allowing various computer vision models to be applied.
(For a better view, we show point clouds obtained from cameras mounted in the world frame. In
actual tasks, cameras are mounted on the robot head, offering an egocentric view.)

categories (more objects are being added) selected and manually processed from a widely

used 3D vision dataset. Second, ManiSkill focuses on 4 object-centric manipulation tasks that

exemplify household manipulation skills with different types of object motions, thereby posing

challenges to distinct aspects of policy design/learning (illustrated in Fig 1.1 and Fig 1.3). As an

ongoing effort, we are designing more. Third, to facilitate learning-from-demonstration methods,

we have collected a large number of successful trajectories (~36,000 trajectories, ~1.5M 3D

point cloud / RGB-D frames in total). Fourth, the environments feature high-quality data for

physical manipulation. We make significant efforts to select, fix, and re-model the original

PartNet-Mobility data [216, 129, 25], as well as design the reward generation rules so that the

manipulation task of each object can be solved by an RL algorithm.

A major challenge to build our benchmark is to collect demonstrations. Some tasks
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are tricky (e.g., swivel chair pushing requires dual-arm coordination), and it is difficult and

unscalable to manually control the robots to collect large-scale demos. It is also unclear whether

traditional motion planning pipelines can solve all tasks. Thankfully, reinforcement learning does

work for individual objects, allowing for a divide-and-conquer approach to create high-quality

demonstrations. With a meticulous effort on designing a shared reward template to automatically

generate reward functions for all object instances of each task and executing an RL agent for

each object instance, we are able to collect a large number of successful trajectories. This RL

plus divide-and-conquer approach is very scalable with respect to the number of object instances

within a task, and we leave cross-task RL reward design for future work. It is worth noting

that, we do NOT target at providing a GENERIC learning-from-demonstrations benchmark that

compares methods from all dimensions. Instead, we compare the ability of different algorithms

to utilize our demonstrations to solve manipulation tasks.

Another important feature of ManiSkill is that it is completely free and built on an

entirely open-source stack. Other common physical manipulation environments, including

robosuite[235], DoorGym[204], MetaWorld[226], and RLBench[81], depend on commercial

software.

To summarize, here are the key contributions of ManiSkill Benchmark.

• The topology and geometry variation of our data allows our benchmark to compare

object-level generalizability of different physical manipulation algorithms. Our data is

high-quality, and every object is verified to support RL.

• The manipulation tasks we design target distinct challenges of manipulation skills (by

motion types, e.g. revolute and prismatic joint constraints, or by skill properties, e.g.

requirement of dual-arm collaboration).

• ManiSkill provides a large-scale demonstrations dataset with ~36,000 trajectories and

~1.5M point cloud/RGB-D frames to facilitate learning-from-demonstrations approaches.
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The demonstrations are collected by a scalable RL approach with dense rewards generated

by a shared reward template within each task.

• We provide several 3D deep learning-based policy baselines.

1.2 ManiSkill Benchmark

The goal of building the ManiSkill benchmark can be best described as facilitating learn-

ing generalizable manipulation skills from 3D visual inputs with demonstrations. “Manipulation”

involves low-level physical interactions and dynamics simulation between robot agents and

objects; “skills” refer to short-horizon physics-rich manipulation tasks, which can be viewed

as basic building blocks of more complicated policies; “3D visual inputs” are egocentric point

cloud and/or RGB-D observations captured by a panoramic camera mounted on a robot; “demon-

strations” are trajectories that solve tasks successfully to facilitate learning-from-demonstrations

approaches.

In this section, we will describe the components of the ManiSkill benchmark in detail,

including basic terminologies and setup, task design, demonstration trajectory collection, training-

evaluation protocol, and asset postprocessing with verification.

Table 1.1. Dataset statistics for ManiSkill. For OpenCabinetDoor and OpenCabinetDrawer,
numbers outside of the parenthesis indicate the number of unique cabinets, where each cabinet
may have more than one door/drawer. Numbers in the parenthesis indicate the total number of
doors/drawers. * The DoF in the table indicates the DoF involved in solving a task. For Open-
CabinetDoor and OpenCabinetDrawer, an agent only needs to open one designated door/drawer.
For PushChair and MoveBucket, 6 extra DoF are included since chairs and buckets can move
freely in 3D space.

Task
# objects Dual-arm

Collaboration?
Solvable by

Motion Planning?
DoF∗

All Train Test

OpenCabinetDoor 52(82) 42(66) 10(16) No Easy 1
OpenCabinetDrawer 35(70) 25(49) 10(21) No Easy 1

PushChair 36 26 10 Yes Hard ∼15-25
MoveBucket 39 29 10 Yes Medium 7
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1.2.1 Basic Terminologies and Setup

In ManiSkill, a task or a skill T = {To,l : o ∈ O, l ∈ Lo} consists of finite-horizon

POMDPs (Partially Observable Markov Decision Processes) defined over a set of objects O

of the same category (e.g., chairs) and a set of environment parameters Lo associated with an

object o ∈O (e.g. friction coefficients of joints on a chair). An environment is a set of POMDPs

Eo = {To,l : l ∈ Lo} defined over a single object o and its corresponding parameters. Each To,l is

a specific instance of an environment, represented by a tuple of sets (S,A,P,R,O). Here, s ∈ S is

an environment state that consists of robot states (e.g. joint angles of the robot) and object states

(e.g. object pose and the joint angles); a ∈ A is an action that can be applied to a robot (e.g. target

joint velocity of a velocity controller); P(s′|s,a) is the physical dynamics; R is a binary variable

that indicates if the task is successfully solved; O(o|s) is a function which generates observations

from an environment state, and it supports three modes in ManiSkill: state, pointcloud, and

rgbd. In state mode, the observation is identical to s. In pointcloud and rgbd modes, the

object states in s are replaced by the corresponding point cloud / RGB-D visual observations

captured from a panoramic camera mounted on a robot. state mode is not suitable for studying

generalizability, as object states are not available in realistic setups, where information such

as object pose has to be estimated based on some forms of visual inputs that are universally

obtainable (e.g. point clouds and RGB-D images).

For each task, objects are partitioned into training objects Otrain and test objects Otest ,

and environments are divided into training environments {To,l|o ∈ Otrain} and test environ-

ments {To,l|o ∈ Otest}. For each training environment, successful demonstration trajectories are

provided to facilitate learning-from-demonstrations approaches.

We define object-level generalizable manipulation skill as a manipulation skill that

can generalize to unseen test objects after learning on training objects where the training and

test objects are from the same category. Some notable challenges of our tasks come from partial

observations (i.e. point clouds / RGB-D images only covering a portion of an object), robot
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arms occluding parts of an object, and complex shape understanding over objects with diverse

topological and geometric properties.

1.2.2 Tasks with Diverse Motions and Skills

Object manipulation skills are usually associated with certain types of desired motions of

target objects, e.g., rotation around an axis. Thus, the tasks in ManiSkill are designed to cover

different types of object motions. We choose four common types of motion constraints: revolute

joint constraint, prismatic joint constraint, planar motion constraint, and no constraints, and

build four tasks to exemplify each of these motion types. In addition, different tasks also feature

different properties of manipulation, such as dual-arm collaboration and solvability by motion

planning. Statistics for our tasks are summarized in Table 1.1. Descriptions for our tasks are

stated below.

OpenCabinetDoor exemplifies motions constrained by a revolute joint. In this task,

a single-arm robot is required to open a designated door on a cabinet. The door motion is

constrained by a revolute joint attached to the cabinet body. This task is relatively easy to solve

by traditional motion planning and control pipelines, so it is suitable for comparison between

learning-based methods and motion planning-based methods.

OpenCabinetDrawer exemplifies motions constrained by a prismatic joint. This task

is similar to OpenCabinetDoor, but the robot needs to open a target drawer on a cabinet. The

drawer motion is constrained by a prismatic joint attached to the cabinet body.

PushChair exemplifies motions constrained on a plane through wheel-ground contact. A

dual-arm robot needs to push a swivel chair to a target location on the ground and prevent it from

falling over. PushChair exemplifies the ability to manipulate complex underactuated systems, as

swivel chairs generally have many joints, resulting in complex dynamics. Therefore, it is difficult

to solve PushChair by motion planning and favors learning-based methods.

MoveBucket exemplifies motions without constraints. In this task, a dual-arm robot

needs to move a bucket with a ball inside and lift it onto a platform. There are no constraints
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on the motions of the bucket. However, this task is still very challenging because: 1) it heavily

relies on two-arm coordination as the robot needs to lift the bucket; 2) the center of mass of the

bucket-ball system is consistently changing, making balancing difficult.

Note that all environments in ManiSkill are verified to be solvable, i.e., for each object,

we guarantee that there is a way to manipulate it to solve the corresponding task. This is done

by generating successful trajectories in each environment (details in Sec 1.2.4). Instead of

creating lots of tasks but leaving the solvability problems to users, our tasks are constructed with

appropriate difficulty and verified solvability.

Figure 1.4. RGB-D (RGB/Depth) and point cloud observations in ManiSkill. Left two images:
RGB-D image from one of the three cameras mounted on the robot. The three cameras together
provide an ego-centric panoramic view. Right image: visualization of the fused point cloud
from all three cameras. The center of the robot body cannot be seen since the captured point
cloud comes from an ego-centric view. Parts of the chair are occluded by itself (as cameras are
mounted on the robot).

1.2.3 Robots, Actions, Visual Observations, and Rewards

All the tasks in ManiSkill use similar robots, which are composed of three parts: a

moving platform, Sciurus robot body, and one or two Franka Panda arm(s). The moving platform

can move and rotate on the ground plane, and its height is adjustable. The robot body is fixed

on top of the platform, providing support for the arms. Depending on the task, one or two

robot arm(s) are connected to the robot body. There are 22 joints in a dual-arm robot and 13

in a single-arm robot. To match realistic robotics setups, we use PID controllers to control the

joints of robots. The action space corresponds to the normalized target values of all controllers.

In addition to joint space control, ManiSkill supports operational space control, i.e., directly

controlling the end-effectors in the Cartesian space.
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As mentioned in Sec 1.2.1, ManiSkill supports three observation modes: state, pointcloud,

and rgbd, where the latter two modes are suitable for studying object-level generalizability. The

RGB-D and point cloud observations are captured from three cameras mounted on the robot to

provide an ego-centric panoramic view, resembling common real-world robotics setups. The

three cameras are 120° apart from each other, and the resolution of each camera is 400×160. The

observations from all cameras are combined to form a final panoramic observation. Visualizations

of RGB-D / point cloud observations are shown in Fig 1.4. In addition, we provide some task-

relevant segmentation masks for both RGB-D and point cloud observations.

ManiSkill supports two kinds of rewards: sparse and dense. A sparse reward is a

binary signal that is equivalent to a task-specific success condition. Learning with sparse rewards

is very difficult. To alleviate such difficulty, we carefully designed well-shaped dense reward

functions for each task. The dense rewards are also used in demonstration collection, which will

be elaborated in Sec 1.2.4.

1.2.4 RL-Based Demo Collection and MPC-Assisted Reward Template
Design

Our interactive environment naturally supports methods such as reinforcement learning

or classical robotics pipelines. However, to build an algorithm with object-level generalizability

either by RL or by designing rules, it is probably prohibitively complex and resource-demanding

for many researchers interested in manipulation learning research (e.g., vision researchers

might be primarily interested in the perception module). We observe that many learning-from-

demonstrations algorithms (e.g., behavior cloning) are much easier to start with and require less

resources.

To serve more researchers, ManiSkill provides a public demonstration dataset with a total

of ~36,000 successful trajectories and ~1.5M frames (300 trajectories for each training object in

each task). The demonstrations are provided in the format of internal environment states to save

storage space, and users can render the corresponding point cloud / RGB-D frames using the
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provided scripts.

In order to construct this large-scale demonstration dataset, we need a scalable pipeline

that can produce plentiful demonstrations automatically. Compared to other existing approaches

(e.g. human annotation by teleoperation, motion planning), we adopted a reinforcement learning

(RL)-based pipeline, which requires significantly less human effort and can generate an arbitrary

number of demonstrations at scale. Though it is common to collect demonstrations by RL

[49, 116, 107, 72, 15, 89, 83, 237], directly training a single RL agent to collect demonstrations

for all environments in ManiSkill is challenging because of the large number of different objects

and the difficulty of our manipulation tasks. To collect demonstrations at scale, we design an

effective pipeline as follows.

Our pipeline contains two stages. In the first stage, we need to design and verify dense

rewards for RL agents. For each task, we design a shared reward template based on the skill

definitions of this task with humans prior. Note that this reward template is shared across all

the environments (objects) in a task instead of manually designed for each object. In order

to quickly verify the reward template (as our tasks are complicated and solving by RL takes

hours), we use Model-Predictive Control (MPC) via Cross-Entropy Method (CEM), which

can be efficiently parallelized to find a trajectory within 15 minutes (if successful) from one

single initial state using 20 CPUs. While MPC is an efficient tool to verify our reward template,

it is not suitable for generating our demonstration dataset, which should contain diverse and

randomized initial states. This is because MPC has to be retrained independently each time

to find a trajectory from each of the 300 initial states for each training object of each task,

rendering it unscalable. Therefore, in the second stage, we train model-free RL agents to collect

demonstrations. We also found that training one single RL agent on many environments (objects)

of a task is very challenging, but training an agent to solve a single specific environment is

feasible and well-studied. Therefore, we collect demonstrations in a divide-and-conquer way:

for each environment, we train a SAC [66] agent and generate successful demonstrations.
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1.2.5 Multi-Track Training-Evaluation Protocol

As described in Sec 1.2.1, agents are trained on the training environments with their

corresponding demonstrations and evaluated on the test environments for object-level gener-

alizability, under pointcloud or rgbd mode. Moreover, the ManiSkill benchmark aims to

encourage interdisciplinary insights from computer vision, reinforcement learning, and robotics

to advance generalizable physical object manipulation. To this end, we have developed our

benchmark with 3 different tracks:

No Interactions: this track requires solutions to only use our provided demonstration

trajectories during training. No interactions (i.e. additional trajectory collection, online training,

etc.) are allowed. For this track, solutions may choose to adopt a simple but effective supervised

learning algorithm — matching the predicted action with the demonstration action given visual

observation (i.e. behavior cloning). Therefore, this track encourages researchers to explore

3D computer vision network architectures for generalizable shape understanding over complex

topologies and geometries.

No External Annotations: this track allows online model fine-tuning over training

environments on top of No Interactions track. However, the solution must not contain new

annotations (e.g. new articulated objects from other datasets). This track encourages researchers

to explore online training algorithms, such as reinforcement learning with online data collection.

No Restrictions: this track allows solutions to adopt any approach during training,

such as labeling new data and creating new environments. Researchers are also allowed to

use manually designed control and motion planning rules, along with other approaches from

traditional robotics.

The benchmark evaluation metric is the mean success rate on a predetermined set

of test environment instances. For each task, we have defined the success condition, which is

automatically reported in the evaluation script provided by us. Each track should be benchmarked

separately.
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1.2.6 Asset Selection, Re-Modeling, Postprocessing, and Verification

While the PartNet-Mobility dataset (from SAPIEN [216]) provides a repository of

articulated object models, the original dataset can only provide full support for vision tasks such

as joint pose estimation. Therefore, we make significant efforts to select, fix, and verify the

models.

First, the PartNet-Mobility dataset is not free of annotation errors. For example, some

door shafts are annotated on the same side as the door handles. While it does not affect the

simulation, such models are unnatural and not good candidates to test policy generalizability.

Thus, we first render all assets and manually exclude the ones with annotation errors.

Moreover, fast simulation requires a convex decomposition of 3D assets. However,

the automatic algorithm used in the original SAPIEN paper, VHACD [121], cannot handle all

cases well. For example, VHACD can introduce unexpected artifacts, such as dents on smooth

surfaces, which agents can take advantage of. To fix the errors, we identify problematic models

by inspection and use Blender ’s [34] shape editing function to manually decompose the objects.

Even with all the efforts above, some models can still present unexpected behaviors. For

example, certain cabinet drawers may be stuck due to inaccurate overlapping between collision

shapes. Therefore, we also verify each object by putting them in the simulator and learning a

policy following Sec 1.2.4. We fix issues if we cannot learn a policy to achieve the task. We

repeat until all models can yield a successful policy by MPC.

1.3 Baseline Architectures, Algorithms, and Experiments

Learning object-level generalizable manipulation skills through 3D visual inputs and

learning-from-demonstrations algorithms has been underexplored. Therefore, we designed

several baselines and open-sourced their implementations here to encourage future explorations

in the field.

We adopted pointcloud observation mode and designed point cloud-based vision archi-
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tectures as our feature extractor since previous work [211] has achieved significant performance

improvements by using point clouds instead of RGB-D images. Point cloud features include

position, RGB, and segmentation masks, and we concatenate the robot state to the features of

each point. Intuitively, this allows the extracted feature to not only contain geometric information

about objects but also contain the relation between the robot and each individual object, such

as the closest point to the robot, which is very difficult to learn without such concatenation. In

addition, we downsample the point cloud data to increase training speed and reduce the memory

footprint.

The first point cloud-based architecture uses one single PointNet [159], a very popular

3D deep learning backbone, to extract a global feature for the entire point cloud, which is fed

into the final MLP. The second architecture uses different PointNets to process points belonging

to different segmentation masks. The global features from the PointNets are then fed into a

Transformer [206], after which a final attention pooling layer extracts the final representations

and feeds into the final MLP. We designed and benchmarked this architecture since it allows the

model to capture the relation between different objects and possibly provides better performance.

While there is great room to improve, we believe that these architectures could provide good

starting points for many researchers.

For learning-from-demonstrations algorithms on top-of-point cloud architectures, we

benchmark two approaches - Imitation Learning (IL) and Offline/Batch Reinforcement Learning

(Offline/Batch RL). For imitation learning, we choose a simple and widely adopted algorithm:

behavior cloning (BC) - directly matching predicted and ground truth actions through minimizing

L2 distance. For offline RL, we benchmark Batch-Constrained Q-Learning (BCQ) [55] and

Twin-Delayed DDPG[53] with Behavior Cloning (TD3+BC) [52]. We follow their original

implementations and tune the hyperparameters.
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Table 1.2. The average success rates of different agents on one single environment (fixed object
instance) of OpenCabinetDrawer with different numbers of demonstration trajectories. The
average success rates are calculated over 100 evaluation trajectories. While network architec-
tures and algorithms play an important role in the performance, learning manipulation skills
from demonstrations is challenging without a large number of trajectories, even in one single
environment.

#Demo Trajectories 10 30 100 300 1000

#Gradient Steps 2000 4000 10000 20000 40000

PointNet, BC 0.13 0.23 0.37 0.68 0.76
PointNet + Transformer, BC 0.16 0.35 0.51 0.85 0.90

PointNet + Transformer, BCQ 0.02 0.05 0.23 0.45 0.55
PointNet + Transformer, TD3+BC 0.03 0.13 0.22 0.31 0.57

1.3.1 Single Environment Results

As a glimpse into the difficulty of learning manipulation skills from demonstrations in

our benchmark, we first present results with an increasing number of demonstration trajectories

on one single environment of OpenCabinetDrawer in Table 1.2. We observe that the success

rate gradually increases as the number of demonstration trajectories increases, which shows

the agents can indeed benefit from more demonstrations. We also observe that inductive bias

in network architecture plays an important role in the performance, as PointNet + Transformer

is more sample efficient than PointNet. Interestingly, we did not find offline RL algorithms to

outperform BC. We conjecture that this is because the provided demonstrations are all successful

ones, so an agent is able to learn a good policy through BC. In addition, our robot’s high degree

of freedom and the difficulty of the task itself pose a challenge to offline RL algorithms. It is

worth noting that our experiment results should not discourage benchmark users from including

failure trajectories and find better usage of offline RL methods, especially those interested in the

No External Annotations track described in Sec 1.2.5.
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Table 1.3. Mean and standard deviation of average success rates on training and test environ-
ments of each task over 5 different runs, under the point cloud observation. Models are trained
with our demonstration dataset, with 300 demonstration trajectories per training environment.
For each task, the average test success rates are calculated over the 10 test environments and
50 evaluation trajectories per environment. Obtaining one single agent capable of learning
manipulation skills across multiple objects and generalizing the learned skills to novel objects is
challenging.

Algorithm BC BCQ TD3+BC

Architecture PointNet
PointNet

+ Transformer
PointNet

+ Transformer
PointNet

+ Transformer

Split Training Test Training Test Training Test Training Test

OpenCabinetDoor 0.18±0.02 0.04±0.03 0.30±0.06 0.11±0.02 0.16±0.02 0.04±0.02 0.13±0.03 0.04±0.02
OpenCabinetDrawer 0.24±0.03 0.11±0.03 0.37±0.06 0.12±0.02 0.22±0.04 0.11±0.03 0.18±0.02 0.10±0.02

PushChair 0.11±0.02 0.09±0.02 0.18±0.02 0.08±0.01 0.11±0.01 0.08±0.01 0.12±0.02 0.08±0.01
MoveBucket 0.03±0.01 0.02±0.01 0.15±0.01 0.08±0.01 0.08±0.01 0.06±0.01 0.05±0.01 0.03±0.01

1.3.2 Object-Level Generalization Results

We now present results on object-level generalization. We train each model for 150k

gradient steps. This takes about 5 hours for BC, 35 hours for BCQ, and 9 hours for TD3+BC

using the PointNet + Transformer architecture on one NVIDIA RTX 2080Ti GPU. As shown

in Table 1.3, even with our best agent (BC PointNet + Transformer), the overall success rates

in both training and test environments are low. We also observe that the training accuracy over

object variations is significantly lower than the training accuracy on one single environment

(in Table 1.2). The results suggest that existing works on 3D deep learning and learning-from-

demonstrations algorithms might have been insufficient yet to achieve good performance when

trained for physical manipulation skills over diverse object geometries and tested for object-level

generalization. Therefore, we believe there is a large space to improve, and our benchmark poses

interesting and challenging problems for the community.

1.4 Conclusion and Limitations

In this work, we propose ManiSkill, an articulated benchmark for generalizable physical

object manipulation from 3D visual inputs with diverse object geometries and large-scale
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demonstrations. We expect ManiSkill would encourage the community to look into object-level

generalizability of manipulation skills, specifically by combining cutting-edge research of 3D

computer vision, reinforcement learning, and robotics.

Our benchmark is limited in the following aspects: 1) Currently, we provide 162 articu-

lated objects in total. We plan to process more objects from the PartNet-Mobility dataset [216]

and add them to our ManiSkill assets; 2) While the four tasks currently provided in ManiSkill

exemplify distinct manipulation challenges, they do not comprehensively cover manipulation

skills in household environments. We plan to add more tasks among the same skill properties

(e.g, pouring water from one bucket to another bucket through two-arm coordination); 3) We

have not conducted sim-to-real experiments yet, and this will be a future direction of ManiSkill.

1.5 Acknowledgment

We thank Qualcomm for sponsoring the associated challenge, Sergey Levine and Ashvin

Nair for insightful discussions during the whole development process, Yuzhe Qin for the sugges-

tions on building robots, Jiayuan Gu for providing technical support on SAPIEN, and Rui Chen,

Songfang Han, Wei Jiang for testing our system.

This chapter, in full, is taken from “ManiSkill: Generalizable Manipulation Skill Bench-

mark with Large-Scale Demonstrations” in Neural Information Processing Systems (NeurIPS)

Datasets and Benchmarks Track 2021 by Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang,

Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, Hao Su. The dissertation author was a primary

investigator and author of this paper.

23



Chapter 2

DrS: Learning Reusable Dense Rewards
for Multi-Stage Tasks

2.1 Introduction

The success of many reinforcement learning (RL) techniques heavily relies on dense

reward functions [76, 150], which are often tricky to design by humans due to heavy domain

expertise requirements and tedious trials and errors. In contrast, sparse rewards, such as a binary

task completion signal, are significantly easier to obtain (often directly from the environment).

For instance, in pick-and-place tasks, the sparse reward could simply be defined as the object

being placed at the goal location. Nonetheless, sparse rewards also introduce challenges (e.g.,

exploration) for RL algorithms [148, 22, 41]. Therefore, a crucial question arises: can we learn

dense reward functions in a data-driven manner?

Ideally, the learned reward will be reused to efficiently solve new tasks that share similar

success conditions with the task used to learn the reward. For example, in pick-and-place tasks,

different objects may need to be manipulated with varying dynamics, action spaces, and even

robot morphologies. For clarity, we refer to each variant as a task and the set of all possible pick-

and-place tasks as a task family. Importantly, the reward function, which captures approaching,

grasping, and moving the object toward the goal position, can potentially be transferred within

this task family. This observation motivates us to explore the concept of reusable rewards, which

can be learned as a function from some tasks and reused in unseen tasks. While existing literature
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in RL primarily focuses on the reusability (generalizability) of policies, we argue that rewards

can pose greater flexibility for reuse across tasks. For example, it is nearly impossible to directly

transfer a policy operating a two-finger gripper for pick-and-place to a three-finger gripper due

to action space misalignment, but a reward inducing the approach-grasp-move workflow may

apply for both types of grippers.

However, many existing works on reward learning do not emphasize reward reuse for

new tasks. The field of learning a reward function from demonstrations is known as inverse RL in

the literature [141, 1, 238]. More recently, adversarial imitation learning (AIL) approaches have

been proposed [73, 95, 50, 59] and gained popularity. Following the paradigm of GANs [61],

AIL approaches employ a policy network to generate trajectories and train a discriminator to

distinguish between agent trajectories from demonstration ones. By using the discriminator score

as rewards, [73] shows that a policy can be trained to imitate the demonstrations. Unfortunately,

such rewards are not reusable across tasks – at convergence, the discriminator outputs 1
2 for both

the agent trajectories and the demonstrations, as discussed in [61, 50], making it unable to learn

useful information for solving new tasks.

In contrast to AIL, we propose a novel approach for learning reusable rewards. Our ap-

proach involves incorporating sparse rewards as a supervision signal in lieu of the original signal

used for classifying demonstration and agent trajectories. Specifically, we train a discriminator

to classify success trajectories and failure trajectories based on the binary sparse reward. Please

refer to Fig. 2.2 (a)(b) for an illustrative depiction. Our formulation assigns higher rewards to

transitions in success trajectories and lower rewards to transitions within failure trajectories,

which is consistent throughout the entire training process. As a result, the reward will be reusable

once the training is completed. Expert demonstrations can be included as success trajectories in

our approach, though they are not mandatory. We only require the availability of a sparse reward,

which is a relatively weak requirement as it is often an inherent component of the task definition.

Our approach can be extended to leverage the inherent structure of multi-stage tasks and

derive stronger dense rewards. Many tasks naturally exhibit multi-stage structures, and it is
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relatively easy to assign a binary indicator on whether the agent has entered a stage. For example,

in the “Open Cabinet Door” task depicted in Fig. 2.1, there are three stages: 1) approach the door

handle, 2) grasp the handle and pull the door, and 3) release the handle and keeping it steady. If

the agent is grasping the handle of the door but the door has not been opened enough, then we

can simply use a corresponding binary indicator asserting that the agent is in the 2nd stage. By

utilizing these stage indicators, we can learn a dense reward for each stage and combine them

into a more structured reward. Since the horizon for each stage is shorter than that of the entire

task, learning a high-quality dense reward becomes more feasible. Furthermore, this approach

provides flexibility in incorporating extra information beyond the final success signal. We dub

our approach as DrS (Dense reward learning from Stages).

Our approach exhibits strong performance on challenging tasks. To assess the reusability

of the rewards learned by our approach, we employ the ManiSkill benchmark [132, 64], which

offers a large number of task variants within each task family.We evaluate our approach on

three task families: Pick-and-Place, Open Cabinet Door, and Turn Faucet, including 1000+ task

variants. Each task variant involves manipulating a different object and requires precise low-level

physical control, thereby highlighting the need for a good dense reward. Our results demonstrate

that the learned rewards can be reused across tasks, leading to improved performance and sample

efficiency of RL algorithms compared to using sparse rewards. In certain tasks, the learned

rewards even achieve performance comparable to those attained by human-engineered reward

functions.

Moreover, our approach drastically reduces the human effort needed for reward

engineering. For instance, while the human-engineered reward for “Open Cabinet Door” involves

over 100 lines of code, 10 candidate terms, and tons of “magic” parameters, our approach only

requires two boolean functions as stage indicators: if the robot has grasped the handle and if the

door is open enough.

Our contributions can be summarized as follows:
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Learning Reusable Dense Rewards for Multi-Stage Tasks

Multi-Stage Sparse Reward as Supervision

Stage 1:
Approach the Handle

Stage 2:
Pull the Handle

Stage 3:
Leave the Door Still Success

⭐ Stage Indicator:
Grasp the Handle

⭐ Stage Indicator:
Door is Open Enough

⭐ Stage Indicator:
Door is Static

Figure 2.1. An illustration of stage indicators in an OpenCabinetDoor task, which can be
naturally divided into three stages plus a success state. A stage indicator is a binary function
representing whether the current state is in a certain stage, and it can be simply defined by some
boolean functions.

• We propose DrS (Dense reward learning from Stages), a novel approach for learning

reusable dense rewards for multi-stage tasks, effectively reducing human efforts in reward

engineering.

• Extensive experiments on 1,000+ task variants from three task families showcase the

effectiveness of our approach in generating high-quality and reusable dense rewards.

2.2 Related Works

Learning Reward from Demo (Offline) Designing rewards is challenging due to domain

knowledge requirements, so approaches to learning rewards from data have gained attention.

Some methods adopt classification-based rewards, i.e., training a reward by classifying goals

[187, 88, 39] or demonstration trajectories [239]. Other methods [227, 11] use the distance to

goal as a reward function, where the distance is usually computed in a learned embedding space,

but these methods usually require that the goal never changes in a task. These rewards are only

trained on offline datasets, hence they can easily be exploited by an RL agent, i.e., an RL can

enter a state that is not in the dataset and get a wrong reward signal, as studied in [209, 219].

Learning Reward from Demo (Online) The above issue can be addressed by allowing
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agents to verify the reward in the environment, and inverse reinforcement learning (IRL) is

the prominent paradigm. IRL aims to recover a reward function given expert demonstrations.

Traditional IRL methods [141, 1, 238, 171] often require multiple iterations of Markov Decision

Process solvers [157], resulting in poor sample efficiency. In recent years, adversarial imitation

learning (AIL) approaches are proposed [73, 95, 50, 59, 116]. They operate similarly to genera-

tive adversarial networks (GANs) [61], in which a generator (the policy) is trained to maximize

the confusion of a discriminator, and the discriminator (serves the role of rewards) is trained to

classify the agent trajectories and demonstrations. However, such rewards are not reusable as we

discussed in the introduction - classifying agent trajectories and demonstrations is impossible at

convergence. In contrast, our approach gets rid of this issue by classifying the success/failure

trajectories instead of expert/agent trajectories.

Learning Reward from Human Feedback Recent studies [32, 77, 79] infer the reward

through human preference queries on trajectories or explicitly asking for trajectory rankings

[20]. Another line of works [51, 186] involves humans specifying desired outcomes or goals

to learn rewards. However, in these methods, the rewards only distinguish goal from non-goal

states, offering relatively weak incentives to agents at the beginning of an episode, especially in

long-horizon tasks. In contrast, our approach classifies all the states in the trajectories, providing

strong guidance throughout the entire episode.

Reward Shaping Reward shaping methods aim to densify sparse rewards. Earlier works

[140] study the forms of shaped rewards that induce the same optimal policy as the ground-truth

reward. Recently, some works [202, 213] have shaped the rewards as the distance to the goal,

similar to some offline reward learning methods mentioned above. Another idea [125] involves

shaping delayed reward by ranking trajectories based on a fine-grained preference oracle. In

contrast to these reward shaping approaches, our method leverages demonstrations, which are

available in many real-world problems [192, 37]. This not only boosts the reward learning

process but also reduces the additional domain knowledge required by these methods.

Task Decomposition The decomposition of tasks into stages/sub-tasks has been explored
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Figure 2.2. a) GAIL’s discriminator aims to distinguish agent trajectories from demonstrations.
b) In single-stage tasks, the discriminator in our approach aims to distinguish success trajectories
from failure ones. c) In multi-stage tasks, our approach train a separate discriminator for each
stage. The discriminator for stage k aims to distinguish trajectories that reach beyond stage k
from those that only reach up to stage k. d) Overall, our approach has 2 phases: reward learning
and reward reuse.

in various domains. Hierarchical RL approaches [48, 134, 109] break down policies into sub-

policies to solve specific sub-tasks. Skill chaining methods [103, 63, 104] focus on solving

long-horizon tasks by combining multiple short-horizon policies or skills. Recently, language

models have also been utilized to break the whole task into sub-tasks [6]. In contrast to these

approaches that utilize stage structures in policy space, our work explores an orthogonal direction

by designing rewards with stage structures.

2.3 Problem Setup

In this work, we adopt the Markov Decision Process (MDP) M := ⟨S,A,T,R,γ⟩ as the

theoretical framework, where R is a reward function that defines the goal or purpose of a task.

Specifically, we focus on tasks with sparse rewards. In this context, “sparse reward” denotes a

binary reward function that gives a value of 1 upon successful task completion and 0 otherwise:

Rsparse(s) =


1 task is completed by reaching one of the success states s

0 otherwise
(2.1)

Our objective is to learn a dense reward function from a set of training tasks, with the
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intention of reusing it for unseen test tasks. Specifically, we aim to successfully train RL agents

from scratch on the test tasks using the learned rewards. The desired outcome is to enhance the

efficiency of RL training, surpassing the performance achieved by sparse rewards.

We assume that both the training and test tasks are in the same task family. A task family

refers to a set of task variants that share the same success criteria, but may differ in terms of

assets, initial states, transition functions, and other factors. For instance, the task family of object

grasping includes tasks such as “Alice robot grasps an apple” and “Bob robot grasps a pen.” The

key point is that tasks within the same task family share a common underlying sparse reward.

Additionally, we posit that the task can be segmented into multiple stages, and the agent

has access to several stage indicators obtained from the environment. A stage indicator is a

binary function that indicates whether the current state corresponds to a specific stage of the

task. An example of stage indicators is in Fig. 2.1. This assumption is quite general as many

long-term tasks have multi-stage structures, and determining the current stage of the task is not

hard in many cases. By utilizing these stage indicators, it becomes possible to construct a reward

that is slightly denser than the binary sparse reward, which we refer to as a semi-sparse reward,

and it serves as a strong baseline:

Rsemi−sparse(s) = k, when state s is at stage k (2.2)

We aim to design an approach that learns a dense reward based on the stage indicators.

When expert demonstration trajectories are available, they can also be incorporated to boost the

learning process.

Note that the stage indicators are only required during RL training, but not required

when deploying the policy to the real world. Training RL agents directly in the real world is

often impractical due to cost and safety issues. Instead, a more common practice is to train

the agent in simulators and then transfer/deploy it to the real world. While obtaining the stage

indicators in simulators is fairly easy, it is also possible to obtain them in the real world by
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various techniques (robot proprioception, tactile sensors [115, 124], visual detection/tracking

[87, 88], large vision-language models [39], etc.).

2.4 DrS: Dense reward learning from Stages

Dense rewards are often tricky to design by humans, so we aim to learn a reusable dense

reward function from stage indicators in multi-stage tasks and demonstrations when available.

Overall, our approach has two phases, as shown in Fig. 2.2 (d):

• Reward Learning Phase: learn the dense reward function using training tasks.

• Reward Reuse Phase: reuse the learned dense reward to train new RL agents in test tasks.

Since the reward reuse phase is just a regular RL training process, we only discuss the

reward learning phase in this section. We first explain how our approach learns a dense reward in

one-stage tasks (Sec. 2.4.1). Then, we extend this approach to multi-stage tasks (Sec. 2.4.2).

2.4.1 Reward Learning on One-Stage Tasks

In line with previous work [209, 51], we employ a classification-based dense reward.

We train a classifier to distinguish between good and bad trajectories, utilizing the learned

classifier as dense reward. Essentially, states resembling those in good trajectories receive

higher rewards, while states resembling bad trajectories receive lower rewards. While previous

Adversarial Imitation Learning (AIL) methods [73, 95] used discriminators as classifiers/rewards

to distinguish between agent and demonstration trajectories, these discriminators cannot be

directly reused as rewards to train new RL agents. As the policy improves, the agent trajectories

(negative data) and the demonstrations (positive data) can become nearly identical. Therefore, at

convergence, the discriminator output for both agent trajectories and demonstrations tends to

approach 1
2 , as observed in GANs [61] (also noted by [50, 219]). This makes it unable to learn

useful info for solving new tasks.
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Our approach introduces a simple modification to existing AIL methods to ensure that

the discriminator continues to learn meaningful information even at convergence. The key

issue previously mentioned arises from the diminishing gap between agent and demonstration

trajectories over time, making it challenging to differentiate between positive and negative data.

To address this, we propose training the discriminator to distinguish between success and failure

trajectories instead of agent and demonstration trajectories. By defining success and failure

trajectories based on the sparse reward signal from the environment, the gap between them

remains intact and does not shrink. Consequently, the discriminator effectively emulates the

sparse reward signal, providing dense reward signals to the RL agent. Intuitively, a state that is

closer to the success states in terms of task progress (rather than Euclidean distance) receives a

higher reward, as it is more likely to occur in success trajectories. Fig. 2.2(a) and (b) illustrate

the distinction between our approach and traditional AIL methods.

0 1 2 3
Task Progress (for a 3-stage task)

0

1

2

3

Re
wa

rd

Illustration of the Learned Reward

DrS (ours)
Semi-sparse

Figure 2.3. An illustration of our learned reward, which fills the gaps in semi-sparse rewards,
resulting in a smooth reward curve.

To ensure that the training data consistently includes both success and failure trajectories,

we use replay buffers to store historical experiences, and train the discriminator in an off-policy

manner. While the original GAIL is on-policy, recent AIL methods [95, 145] have adopted off-

policy training for better sample efficiency. Note that although our approach shares similarities

with AIL methods, it is not adversarial in nature. In particular, our policy does not aim to deceive
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the discriminator, and the discriminator does not seek to penalize the agent’s trajectories.

2.4.2 Reward Learning on Multi-Stage Tasks

In multi-stage tasks, it is desirable for the reward of a state in stage k+1 to be strictly

higher than that of stage k to incentivize the agent to progress towards later stages. The semi-

sparse reward (Eq. 2.2) aligns with this intuition, but it is still a bit too sparse. If each stage of

the task is viewed as an individual task, the semi-sparse reward acts as a sparse reward for each

stage. In the case of a one-stage task, a discriminator can be employed to provide a dense reward.

Similarly, for multi-stage tasks, a separate discriminator can be trained for each stage to serve

as a dense reward for that particular stage. By training stage-specific discriminators, we can

effectively address the sparse reward issue and guide the agent’s progress through the different

stages of the task. Fig. 2.3 gives an intuitive illustration of our learned reward, which fills the

gaps in semi-sparse rewards, resulting in a smooth reward curve.

To train the discriminators for different stages, we need to establish the positive and

negative data for each discriminator. In one-stage tasks, positive data comprises success trajecto-

ries and negative data encompasses failure trajectories. In multi-stage tasks, we adopt a similar

approach with a slight modification. Specifically, we assign a stage index to each trajectory,

which is determined as the highest stage index among all states within the trajectory:

StageIndex(τ : (s0,s1, ...)) = max
i

StageIndex(si), (2.3)

where τ is a trajectory and si are the states in τ . For the discriminator associated with stage k,

positive data consists of trajectories that progress beyond stage k (StageIndex > k), and negative

data consists of trajectories that reach up to stage k (StageIndex ≤ k).

Once the positive and negative data for each discriminator have been established, the

next step is to combine these discriminators to create a reward function. While the semi-sparse

reward (Eq. 2.2) lacks incentives for the agent at stage k until it reaches stage k+1, we can fill in

the gaps in the semi-sparse reward by the stage-specific discriminators. We define our learned
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reward function for a multi-stage task as follows:

R(s′) = k+α · tanh(Discriminatork(s′)) (2.4)

where k is the stage index of s′ and α is a hyperparameter. Basically, the formula incorporates a

dense reward term into the semi-sparse reward. The tanh function is used to bound the output of

the discriminators. As the range of the tanh function is (-1, 1), any α < 1
2 ensures that the reward

of a state in stage k+1 is always higher than that of stage k. In practice, we use α = 1
3 and it

works well.

2.4.3 Implementation

From the implementation perspective, our approach is similar to GAIL, but with a

different training process for discriminators. While the original GAIL is combined with TRPO

[178], [145] found that using state-of-the-art off-policy RL algorithms (like SAC [65] or TD3

[54]) can greatly improve the sample efficiency of GAIL. Therefore, we also combine our

approach with SAC.

In addition to the regular replay buffer used in SAC, our approach maintains N different

stage buffers to store trajectories corresponding to different stages(defined by Eq. 2.3). Each

trajectory is assigned to only one stage buffer based on its stage index. During the training of the

discriminators, we sample data from the union of multiple buffers. In practice, we early stop

the discriminator training of k once its success rate is sufficiently high, as we find it reduces the

computational cost and makes the learned reward more robust. Note that our approach uses the

next state s′ as the input to the reward, which aligns with common practices in human reward

engineering [64, 236]. However, our approach is also compatible with alternative forms of input,

such as (s,a) or (s,a,s′).
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Figure 2.4. We evaluated our approach DrS on more than 1,000 task variants from three task
families in ManiSkill [132, 64]. Each task variant is associated with a different object. All tasks
require low-level physical control. The objects in training and test tasks are non-overlapped.

2.5 Experiments

2.5.1 Setup and Task Descriptions

We evaluated our approach on three challenging physical manipulation task families

from the ManiSkill [132, 64]: Pick-and-Place, Turn Faucet, and Open Cabinet Door. Each task

family includes a set of different objects to be manipulated. To assess the reusability of the

learned rewards, we divided the objects within each task family into non-overlapping training

and test sets, as depicted in Fig. 2.4. During the reward learning phase, we learned the rewards

by training an agent for each task family to manipulate all training objects. In the subsequent

reward reuse phase, the learned reward rewards are reused to train an agent to manipulate all test

objects for each task family. And we compare with other baseline rewards in this reward reuse

phase. It is important to note that our learned rewards are agnostic to the specific RL algorithm

employed. However, we utilized the Soft Actor-Critic (SAC) algorithm to evaluate the quality of

the different rewards.

To assess the reusability of the learned rewards, it is crucial to have a diverse set of tasks

that exhibit similar structures and goals but possess variations in other aspects. However, most
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existing benchmarks lack an adequate number of task variations within the same task family.

As a result, we primarily conducted our evaluation on the ManiSkill benchmark, which offers a

range of object variations within each task family. This allowed us to thoroughly evaluate our

learned rewards in a realistic and comprehensive manner.

Pick-and-Place: A robot arm is tasked with picking up an object and relocating it to

a random goal position in mid-air. The task is completed if the object is in close proximity to

the goal position, and both the robot arm and the object remain stationary. The stage indicators

include: (a) the gripper grasps the object, (b) the object is close the goal position, and (c) both

the robot and the object are stationary. We learn rewards on 74 YCB objects and reuse rewards

on 1,600 EGAD objects.

Turn Faucet: A robot arm is tasked to turn on a faucet by rotating its handle. The task is

completed if the handle reaches a target angle. The stage indicators include: (a) the target handle

starts moving, (b) the handle reaches a target angle. We learn rewards on 10 faucets and reuse

rewards on 50 faucets.

Open Cabinet Door: A single-arm mobile robot is required to open a designated target

door on a cabinet. The task is completed if the target door is opened to a sufficient degree and

remains stationary. The stage indicators include: (a) the robot grasps the door handle, (b) the

door is open enough, and (c) the door is stationary. We learn rewards on 4 cabinet doors and

reuse rewards on 6 cabinet doors. Note that we remove all single-door cabinets in this task

family, as they can be solved by kicking the side of the door and this behavior can be readily

learned by sparse rewards.

We employed low-level physical control for all task families.

2.5.2 Baselines

Human-Engineered The original human-written dense rewards in the benchmark, which

require a significant amount of domain knowledge, thus can be considered as an upper bound of

performance.
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Semi-Sparse The rewards are constructed based on the stage indicators, as discussed in

Eq. 2.2. The agent receives a reward of k when it is in stage k. This baseline extends the binary

sparse reward.

VICE-RAQ [186] An improved version of VICE [51]. It learns a classifier, where the

positive samples are successful states annotated by querying humans, and the negative samples

are all other states collected by the agent. Since our experiments do not involve human feedback,

we let VICE-RAQ query the oracle success condition infinitely for a fair comparison.

ORIL [239] A representative offline reward learning method, where the agent does not

interact with the environments but purely learns from the demonstrations. It learns a classifier

(reward) to distinguish between the states from success trajectories and random trajectories.

2.5.3 Comparison with Baseline Rewards

We trained RL agents using various rewards and assessed the reward quality based on

both the sample efficiency and final performance of the agents. The experimental results, depicted

in Fig. 2.5, demonstrate that our learned reward surpasses semi-sparse rewards and all other

reward learning methods across all three task families. This outcome suggests that our approach

successfully acquires high-quality rewards that significantly enhance RL training. Remarkably,

our learned rewards even achieve performance comparable to human-engineered rewards in

Pick-and-Place and Turn Faucet.

Semi-sparse rewards yielded limited success within the allocated training budget, sug-

gesting that RL agents face exploration challenges when confronted with sparse reward signals.

VICE-RAQ failed in all tasks. Notably, it actually failed during the reward learning phase on

the training tasks, rendering the learned rewards inadequate for supporting RL training on the

test tasks. This failure aligns with observations made by [213]. We hypothesize that by only

classifying the success states from other states, it cannot provide sufficient guidance during the

early stages of training, where most states are distant from the success states and receive low

rewards. Unsurprisingly, ORIL does not get any success on all tasks either. Without interacting
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Figure 2.5. Evaluation results of reusing learned rewards. All curves use SAC to train but with
different rewards. VICE-RAQ and ORIL had no success. 5 random seeds, the shaded region
represents the standard deviation.

with the environments to gather more data, the learned reward functions easily tend to overfit the

provided dataset. When using such rewards in RL, the flaws in the learned rewards are easily

exploited by the RL agents.

2.5.4 Ablation Study

We examined various design choices within our approach on the Pick-and-Place task

family.

Robustness to Stage Configurations

Though many tasks present a natural structure of stages, there are still different ways

to divide a task into stages. To assess the robustness of our approach in handling different task

structures, we experiment with different numbers of stages and different ways to define stage

indicators.

Number of Stages

The Pick-and-Place task family originally consisted of three stages: (a) approach the

object, (b) move the object to the goal, and (c) make everything stationary. We explored two

ways of reducing the number of stages to two, namely merging stages (a) and (b) or merging

stages (b) and (c), as well as the 1-stage case. Our results, presented in Fig. 2.6, indicate that
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the learned rewards with 2 stages can still effectively train RL agents in test tasks, albeit with

lower sample efficiency than those with 3 stages. Specifically, the reward that preserves stage

(c) “make everything stationary” performs slightly better than the reward that preserves stage

(a) “approach the object”. This suggests that it may be more challenging for a robot to learn to

stop abruptly without a dedicated stage. However, when reducing the number of stages to 1, the

learned reward failed to train RL agents in test tasks, demonstrating the benefit of using more

stages in our approach.

Definition of Stages

The stage indicator “object is placed” is initially defined as if the distance between the

object and the goal is less than 2.5 cm. We create two variants of it, where the distance thresholds

are 5cm and 10cm, respectively. The results, as depicted in Fig. 2.7, demonstrate that changing

the distance threshold within a reasonable range does not significantly affect the efficiency of

RL training. Note that the task success condition is unchanged, and our rewards consistently

encourage the agents to reach the success state as it yields the highest reward according to Eq.

2.4. The stage definitions solely affect the efficiency of RL training during the reward reuse

phase.

Overall, the above results highlight the robustness of our approach to different stage

configurations, indicating that it is not heavily reliant on intricate stage designs. This robustness

contributes to a significant reduction in the burden of human reward engineering.

Fine-tuning Policy

In our previous experiments, we assessed the quality of the learned reward by reusing it

in training RL agents from scratch since it is the most common and natural way to use a reward.

However, our approach also produces a policy as a byproduct in the reward learning phase. This

policy can also be fine-tuned using various rewards in new tasks, providing an alternative to

training RL agents from scratch. We compare the fine-tuning of the byproduct policy using

human-engineered rewards, semi-sparse rewards, and our learned rewards.
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As shown in Fig. 2.8, all policies improve rapidly at the beginning due to the good

initialization of the policies. However, fine-tuning with our learned reward yields the best

performance (even slightly better than the human-engineered reward), indicating the advantages

of utilizing our learned dense reward even with a good initialization. Furthermore, the significant

variance observed when fine-tuning the policy with semi-sparse rewards highlights the limitations

of sparse reward signals in effectively training RL agents, even with a very good initialization.

2.6 Conclusion and Limitations

To make RL a more widely applicable tool, we have developed a data-driven approach

for learning dense reward functions that can be reused in new tasks from sparse rewards. We

have evaluated the effectiveness of our approach on robotic manipulation tasks, which have high-

dimensional action spaces and require dense rewards. Our results indicate that the learned dense

rewards are effective in transferring across tasks with significant variation in object geometry. By

simplifying the reward design process, our approach paves the way for scaling up RL in diverse

scenarios.

We would like to discuss two main limitations when using the multi-stage version of our

approach.

Firstly, though our experiments show the substantial benefits of knowing the multi-

stage structure of tasks (at training time, not needed at policy deployment time), we did not

specifically investigate how this knowledge can be acquired. Much future work on be done

here, by leveraging large language models such as ChatGPT [143] (by our testing, they suggest
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stages highly aligned to the ones we adopt by intuition for all tasks in this work) or employing

information-theoretic approaches.

Secondly, the reliance on stage indicators adds a level of inconvenience when directly

training RL agents in the real world. While it is infrequent to directly train RL agents in the real

world due to cost and safety issues, when necessary, stage information can still be obtained using

existing techniques, similar to [87, 88]. For example, the “object is grasped” indicator can be

acquired by tactile sensors [115, 124], and the “object is placed” indicator can be obtained by

forward kinematics, visual detection/tracking techniques [87, 88], or even large vision-language

models [39].
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Chapter 3

Abstract-to-Executable Trajectory Trans-
lation for One-Shot Task Generalization

3.1 Introduction

Training long-horizon robotic policies in complex physical environments is important

for robot learning. However, directly learning a policy that can generalize to unseen tasks is

challenging for Reinforcement Learning (RL) based approaches [226, 176, 183, 133]. The

state/action spaces are usually high-dimensional, requiring many samples to learn policies

for various tasks. One promising idea is to decouple plan generation and plan execution. In

classical robotics, a high-level planner generates an abstract trajectory using symbolic planning

with simpler state/action space than the original problem while a low-level agent executes the

plan in an entirely physical environment [85, 58]. In our work, we promote the philosophy of

abstract-to-executable via a learning-based approach through RL. By providing robots with an

abstract trajectory, robots can aim for one-shot task generalization. Instead of memorizing all

the high-dimensional policies for different tasks, the robot can leverage the power of planning in

the low-dimensional abstract space and focus on learning low-level executors.

The two-level framework works well for classical robotics tasks like motion control for

robot arms, where a motion planner generate a kinematics motion plan at a high level and a PID

controller execute the plan step by step. However, such a decomposition and abstraction is not

always trivial for more complex tasks. In general domains, it either requires expert knowledge
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(e.g., PDDL [58, 57]) to design this abstraction manually or enormous samples to distill suitable

abstractions automatically (e.g., HRL [12, 210]). We refer [2] for an in-depth investigation into

this topic.

On the other side, designing imperfect high-level agents whose state space does not

precisely align with the low-level executor could be much easier and more flexible. High-

level agents can be planners with abstract models and simplified dynamics in the simulator (by

discarding some physical features, e.g., enabling a “magic” gripper [176, 201]) or utilizing an

existing “expert” agent such as humans or pre-trained agents on different manipulators. Though

imperfect, their trajectories still contain meaningful information to guide the low-level execution

of novel tasks. For example, different robots may share a similar procedure of reaching, grasping,

and moving when manipulating a rigid box with different grasping poses. As a trade-off,

executing their trajectories by the low-level executors becomes non-trivial. As will be shown

by an example soon, there may not be a frame-to-frame correspondence between the abstract

and the executable trajectories due to the mismatch. Sometimes the low-level agent needs to

discover novel solutions by slightly deviating from the plan in order to follow the rest of the plan.

Furthermore, the dynamics mismatch may require low-level agents to pay attention to the entire

abstract trajectory and not just a part of it.

To benefit from abstract trajectories without perfect alignment between high and low-level

states, we propose TRajectory TRanslation (abbreviated as TR2), a learning-based framework

that can translate abstract trajectories into executable trajectories on unseen tasks at test time.

The key feature of TR2 is that we do not require frame-to-frame alignment between the abstract

and the executable trajectories. Instead, we utilize a powerful sequence-to-sequence translation

model inspired by machine translation [193, 13] to translate the abstract trajectories to executable

actions even when there is a significant domain gap. This process is naturally reminiscent of

language translation, which is well solved by seq-to-seq models.

We illustrate the idea in a simple Box Pusher task as shown in Fig. 3.1. The black agent

needs to push the green target box to the blue goal position. We design the high-level agent as a
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Figure 3.1. Task in Box Pusher: move the green target box to the blue goal position. The
arrows in map show how the agents move.

point mass which can magically attract the green box to move along with it. For the high-level

agent, it is easy to generate an abstract trajectory by either motion planning or heuristic methods.

As TR2 does not have strict constraints over the high-level agent, we can train TR2 to translate

the abstract trajectory, which includes the waypoints to the target, into a physically feasible

trajectory. Our TR2 framework learns to translate the magical abstract trajectory to a strategy to

move around the box and push the box to the correct direction, which closes the domain gap

between the high- and low-level agents.

Our contributions are: (1) We provide a practical solution to learn policies for long-

horizon complex robotic tasks in three steps: build a paired abstract environment by using point

mass representations with magical grasping as the high-level agent, generate abstract trajectories,

and solve the original task with abstract-to-executable trajectory translation.

(2) The seq-to-seq models, specifically the transformer-based auto-regressive model [205,

27, 147], free us from the restriction of strict alignment between abstract and executable trajecto-

ries making abstract trajectory generation easier and helps bridge the domain gap.

(3) The combination of the abstract trajectory and transformer enables TR2 to solve

unseen long-horizon tasks. By evaluating our method on a navigation-based task and three
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manipulation tasks, we find that our agent achieves strong one-shot generalization to new tasks,

while being robust to intentional interventions or mistakes via re-planning.

Our method is evaluated on various tasks and environments with different embodiments

in state-based settings. In all experiments, the method shows great improvements over baselines.

We also perform real-world experiments on the Block Stacking task to verify the capability to

handle noise on a real robot system.

3.2 Related Works

One-Shot Imitation Learning. Recent studies [40, 46, 149, 225, 234, 225, 118, 190]

have shown that it is feasible to teach a robot new skills using only a single demonstration,

akin to how humans acquire a wide variety of abilities with a single demonstration. To achieve

one-shot generalization, these works usually assume a dataset of expert demonstrations, which

is used to train a behavior cloning model [40, 168, 201, 80] that accelerates learning in future

novel tasks. In terms of architecture, [220] is similar to us but still requires a dataset of low-level

demos and is experimented in the offline setting whereas we utilize a dataset of simpler abstract

trajectories and train online in complex environments.

Cross-Morphology Imitation Learning. When there is a morphology difference

between expert and imitator, a manually-designed retargeting mapping is usually used to convert

the state and action for both locomotion [151, 4] and manipulation [191, 162, 10]. However, the

mapping function is task-specific, which limits the application of these approaches to a small set

of tasks. To overcome this limitation, action-free imitation is explored by learning a dynamics

model [201, 167, 116, 42] to infer the missing action or a reward function [11, 228, 181] to

convert IL to a standard RL paradigm. However, these methods need extensive interaction data to

learn the dynamics model or update policy with learned rewards. Instead of learning the reward

function from cross-morphology teacher trajectories, we propose a generic trajectory following

reward based on the given abstract trajectory that can provide dense supervision for the agent.
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DeepMimic [150] is similar to ours, but it differs in that we do not allow training at inference

time with new trajectories . SILO [102] is another similar approach that trains an agent to follow

the demonstrator but is limited by fixed window sizes/horizon parameters that inhibit the test

generalizability of its approach.

Demo Augmented Reinforcement Learning. Motion primitives, especially dynamic

motion primitives, have long been used by robotics researchers to combine the human demon-

stration with RL [92, 198, 113, 185]. Recently, [153, 152] extended this framework to learn

task-agnostic skills from demonstrations. Another line of work [72, 169] directly use demonstra-

tions as interaction data. For example, Demo Augmented Policy Gradient [169, 167] performs

behavior cloning and policy gradient interchangeably with a decayed weight for imitation in

on-policy training while other works [207, 71] append the demonstrations into the replay buffer

for off-policy RL. However, their works typically utilize low-level demonstrations while we

utilize abstract trajectories that are much easier to generate especially for novel tasks.

Hierarchical Reinforcement Learning. HRL presents an intuitive approach to tackling

complex multi-layered problems by using an hierarchical structure in task solving. One common

approach to HRL is to simultaneously learn a high-level policy that generates sub-goals and

learn a low-level policy to follow these sub-goals [210, 108, 135]. However these end-to-end

learning methods in HRL are difficult to train for more complex, long-horizon tasks without

strong reward signals. As a result some approaches seek to integrate explicit high-level planning

mechanisms to guide the low-level policy trained via RL [60, 78]. Our approach has similarities

to HRL’s hierarchical task decomposition but does not learn a high-level policy, making it easier

to train. Furthermore, the use of transformers for translation further enable deeper long-horizon

reasoning necessary for some complex tasks as investigated in our experiments.
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3.3 Method

3.3.1 Overview and Preliminaries

Similar to one-shot imitation learning [40], we are tackling the problem of one-shot

task generalization. In one-shot imitation learning, an agent must solve an unseen task given

a demonstration (e.g., human demo, low-level demo) without additional training. However,

even a single demonstration can be challenging to produce, especially for complex long-horizon

robotics tasks. Different from one-shot imitation learning, we replace the demonstration with an

abstract trajectory. The abstract trajectory is a sequence of high-level states corresponding to a

high-level agent that instructs the low-level agent on how to complete the task at a high level. In

the high-level space, we strip low-level dynamics and equip the high-level agent with magical

grasping, allowing it to manipulate objects easily. Moreover, the high-level space converts all

relevant objects to point masses. The simplification makes abstract trajectories easier and more

feasible to generate for long-horizon unseen tasks compared to human demos or low-level demos.

Given a novel task, our method seeks to solve it with the following three steps: (i)

construct a paired abstract environment with point mass representation that can be solved with

simple heuristics or planning algorithms and generate abstract trajectories (Sec. 3.3.2); (ii)

translate the high-level abstract trajectory to a low-level executable trajectory with a trained

trajectory translator in a closed loop manner (Sec. 3.3.3, 3.3.4); (iii) solve the given task and

potentially other unseen tasks with the trajectory translator (Sec. 3.3.5). The three steps above

enable our approach to tackle unseen long-horizon tasks that are out-of-distribution as well.

Moreover, we can utilize the re-planning feature (regenerating the abstract trajectory during an

episode) to increase the success rate at test time to handle unforeseen mistakes or interventions.

Next, we introduce definitions and symbols. We consider an environment as a Markov

Decision Process (MDP) (S L,A ,P,R), where A is the action space, P is the transition

function of the environment, and R is the reward function. Different from the regular MDP, we

consider two state spaces, the low-level state space S L and a high-level state space S H . We
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assume there exists a map f : S L → S H and a dissimilarity function d : S L ×S H → R such

that d(sL,sH) = 0 for sH = f (sL), where sH ∈ S H and sL ∈ S L. The high-level agent generates

an abstract trajectory τH = (sH
1 ,s

H
2 ...,s

H
T ) from an initial state sH

1 = f (sL
1). Note that actions are

not included in τH . Lastly, the low-level agent receives observations sL
t in the low-level state

space S L, and takes actions at in the action space A , and the dynamics P returns the next

observation sL
t+1 = P(sL

t ,at).

3.3.2 Abstracting Environments and Generating Abstract Trajectories

The first step to solving a challenging task is to build a paired task that abstracts the

low-level physical details away. The paired task should be much simpler than the original task

so that it can be solved easily. We leverage two general ways to build the abstract environment:

(i) simplify geometry [123], e.g., representing the agent and objects with point masses; (ii)

abstract contact dynamics [189, 94], e.g., the original environment requires detailed physical

manipulation to grasp objects while the agent in the abstract environment can magically grasp

the objects. Thus, leveraging the two methods above, a concrete solution to construct abstract

environments for many difficult tasks can be done.

Concretely for all our abstract environments we remove all contact dynamics, enable

magical grasp, and represent all relevant objects as point masses. The point mass representation

further makes the mapping function f simple to define. As a result, making the abstract

environment is scalable as we use the same simple process for all environments. This then

enables simple generation of abstract trajectories with heuristics with a point mass high-level

agent. To generate abstract trajectories, for manipulation tasks, we make the high-level agent

approach the object, then magically grasp the object, and then finally move the object to the

target position. If there are no objects to be manipulated in the task, then it is a simple navigation

sequence.
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Executable Trajectory EncoderAbstract Trajectory Encoder

GPT-2 Transformer

Figure 3.2. Illustration of the abstract-to-executable trajectory translation architecture. High-
level states sH,i are fed through one encoder and the low-level states sL,i are fed through a separate
encoder to create tokens. The tokens form a sequence that is given to the transformer model, and
the final output embedding zn+k−1 is passed through an MLP to produce actions.

3.3.3 Abstract-to-Executable Trajectory Translator

To translate abstract trajectories into executable low-level actions, we aim to learn a

low-level policy πL
θ
(aL

t |sL
t ,s

L
t−1...,s

L
t−k+1,τ

H) that utilizes the current and past k low-level states

and an abstract trajectory τH generated by a high-level agent. An overview of our translation

model and the flow of inputs and outputs is shown in Fig. 3.2.

The environment at time step t returns to the low-level agent the current and past low-

level states sL
t ,s

L
t−1...,s

L
t−k+1 for context size k. The high-level agent further provides an abstract

trajectory τH = (sH
1 ,s

H
2 , ...,s

H
n ) composed of high-level states sH

i which can also be viewed as a

prompt. However, due to the high-level nature of the abstract trajectory and lack of a frame-to-

frame correspondence, learning to follow the abstract trajectory requires a deeper understanding

about the abstract trajectory.

Thus, we adopt the transformer architecture, specifically GPT-2 [166, 21, 165], and

we format the input sequence by directly appending the current low-level state and past low-

level states to the abstract trajectory. With the transformer’s attention mechanism [205], when

processing the current low-level state sL
t , the model can attend to past low-level states as well as

the entire abstract trajectory to make a decision. By allowing attention over the entire abstract
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trajectory, our model is capable of modelling long-horizon dependencies better and suffers less

from information bottlenecks. For example, in Box Pusher (Fig. 3.1) the low-level agent must

look far ahead into the future in the abstract trajectory to determine which direction the high-level

agent (black dot) moves the green target box. By understanding where the target box moves, the

low-level agent can execute the appropriate actions to position itself in a way to move the target

box the same way and follow the abstract trajectory.

Note that, while the backbone of the model discussed here is the GPT-2 transformer, it

can easily be replaced by any other seq-to-seq model like an LSTM [74].

3.3.4 Training with Trajectory Following Reward

RTra j =


0 if jt < n and j′t ≤ jt−1 (make no progress)
(1+β · j′t) · rdist(sL

t ,s
H
j′t
) if jt < n and j′t > jt−1 (make progress)

rdist(sL
t ,s

H
n ) if jt = n (has matched all high-level states)

(3.1)

Conventionally, seq-to-seq models are trained on large parallel corpora for translation

tasks like English to German [117] in an auto-regressive / open loop manner. However, we

desire to train a policy network that solves robotic environments well. To this end, we adapt the

seq-to-seq model to a closed-loop setting where the model receives environment feedback at

every step as opposed to an open-loop setting, reducing error accumulation that often plagues

pure offline methods. Thus, to train the translation model described in Sec. 3.3.3, we use online

RL to maximize a trajectory following reward (3.1), and specifically, we use the PPO algorithm

[179]. Note that our framework is not limited to any particular algorithm, and our framework

can also work in offline settings if an expert low-level dataset is available.

The core idea of the trajectory following reward is to encourage the low-level agent to

match as many high-level states in the abstract trajectory as possible. We say a low-level state sL

matches a high-level state sH when sH has the shortest distance to sL, and this distance is lower

than a threshold ε . During an episode, we track the farthest high-level state the low-level agent
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has matched and use jt to denote the index of the farthest high-level state that has been matched

at timestep t.

Concretely jt = max1≤k≤t j′k, where

j′k = argmin1≤i≤n{d(sL
k ,s

H
i )|d(sL

k ,s
H
i )< ε}

is the index of the high-level state which is matched by the low-level state sL
k , n is

the length of the abstract trajectory, and d(sL
t ,s

H
j′ ) = || f (sL

t )− sH
j′ ||. We define our trajectory

following reward in equation 3.1.

In equation 3.1, rdist(sL
t ,s

H
j′ ) = 1− tanh(w ·d(sL

t ,s
H
j′ )) is a common distance-based reward

function which maps a distance to a bounded reward, and the weight term (1+β · j′t) is used

to emphasize more on the later, more difficult to reach, high-level states. w and β are scaling

hyperparameters but are kept the same for all environments and experiments.

In practice, we combine the trajectory following reward with the original task reward in

order to improve the training efficiency of our method.

Note that the original task rewards are simplistic and not always advanced enough such

that a goal-conditioned policy can solve the task.

Furthermore, a limitation of the reward function is that it cannot handle abstract trajecto-

ries when a high-level state is repeated. This presents a problem in periodic tasks such as pick

and placing a block between two locations repeatedly.

3.3.5 Test with Trajectory Translation and Re-Planning

At test time starting with low-level state sL
1 , we generate an abstract trajectory τH from

the mapped initial high-level state sH = f (sL
1). At timestep t, we execute our low-level agent

πL
θ

in a closed-loop manner by taking action at = argmaxa∈A πL
θ
(a|sL

t ,s
L
t−1...,s

L
t−k+1,τ

H). In

addition, we are able to re-generate the abstract trajectory in the middle of completing the task to

further boost the test performance and handle unforeseen situations such as external interventions
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or mistakes. We refer to this strategy as re-planning and investigate it in Sec. 3.4.6. Note

that re-planning is not adopted in most one-shot imitation learning methods because low-level

or human demonstrations are challenging and time-consuming to generate for new tasks and

are impractical for long-horizon tasks. In contrast, with a high-level agent acting in a simple

high-level state space, we can alleviate these problems and quickly generate abstract trajectories

to follow at test time.

In practice, we run re-planning in one of the two scenarios: 1) If the agent matches the

final high-level state in τH , we will re-plan to begin solving the next part of a potentially long

horizon task as done for Block Stacking and Open Drawer test settings. 2) If after maximum

timesteps allowed, the agent has yet to match the final high-level state, then we will re-plan as

the agent likely had some errors. Re-planning enables the low-level policy to solve tasks even

when there is some intervention or mistake, in addition to allowing it to solve longer-horizon

tasks.

Te
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n 
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sk

s

Box Pusher Couch Moving Block Stacking Open Drawer

Figure 3.3. Training and Test Environments, with arrows indicating the direction of movement

3.4 Experiments

The effectiveness of TR2-GPT2 (our TR2 method with a GPT2 backbone) originates

from two key designs: abstract trajectory setup and the complementing transformer architecture.
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These two designs contribute to strong performances, especially for long-horizon and unseen

tasks.

To evaluate our approach, our experiments will answer the following questions:

• How does TR2-GPT2 performs compared to other baselines? (Sec. 3.4.2)

• How does TR2-GPT2 perform on long-horizon unseen tasks? (Sec. 3.4.3)

• How does the abstract trajectory setup impact learning? (Sec. 3.4.4)

• How does TR2-GPT2 translate trajectories to bridge the domain gap via attention? (Sec.

3.4.5)

• How can re-planning improve performance in long-horizon tasks? (Sec. 3.4.6)

To answer these questions, we build four robotic tasks in the SAPIEN [217] simulator

with realistic low-level dynamics shown in Fig. 3.3. These environment support flexible

configurations that can generate task variants with different horizon lengths. The Box Pusher

task is the simplest and can be used for fast concept verification. The Couch Moving task can

test long-horizon dependency and abstract trajectory length generalization. The last two tasks,

Block Stacking and Open Drawer, have full-physics robot embodiment with visual sensory

input, which can evaluate the performance and generalizability of our method on more difficult

high-dimensional robotics tasks. For each environment, we build a paired environment with point

mass based simplifications and magical grasping to generate abstract trajectories via heuristic

methods.

We compare our method, namely TR2-GPT2, with three baselines on our four environ-

ments.

• TR2-LSTM: Similar to our method, but replaces GPT-2 with an LSTM [74].

• Goal-conditioned Policy (GC): Instead of using an abstract trajectory as guidance, it

receives a task-specific goal and the original task reward, implemented as an MLP.
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• Subgoal-conditioned Policy (SGC): Similar to GC, but it receives a sub-goal, which is a

high-level state n steps ahead of the current furthest matched high-level state, and is trained

with the same reward as TR2-GPT2. The correspondence between low- and high-level

states are matched using the algorithm in Sec. 3.3.4.

Furthermore, we compare against a similar line of work, SILO [102], and evaluate our

method on two of their environments: Obstacle Push and Pick and Place (from SILO).

Table 3.1. Mean success rate and standard error of training and test tasks, evaluated over
5 training seeds and 128 evaluation episodes each. TR2-GPT2 outperforms other baselines,
especially on test scenarios. Due to a difficult success metric, both TR2-LSTM and GC could
only partially solve block stacking and GC could only partly solve Open Drawer.

Task TR2-GPT2 TR2-LSTM SGC GC

1 Box Pusher (Train) 77.5±1.6 39.2±1.9 45.7±2.0 82.0±1.5
2 Box Pusher w/ Obstacles 63.9±1.9 22.0±1.6 19.8±1.6 48.3±2.0

3 Couch Moving Short 3 (Train) 86.7±1.3 59.5±1.9 21.3±1.6 7.0±1.0
4 Couch Moving Long 3 81.3±1.5 58.8±1.9 39.2±1.9 0.6±0.3
5 Couch Moving Long 4 73.4±1.7 44.4±2.0 20.9±1.6 0.5±0.3
6 Couch Moving Long 5 58.3±1.9 31.6±1.8 12.5±1.3 0±0

7 Pick and Place (Train) 98.3±0.5 0±0 57.0±2.0 0±0
8 Stack 4 Blocks 92.5±1.0 0±0 0±0 0±0
9 Stack 5 Blocks 68.1±3.7 0±0 0±0 0±0

10 Stack 6 Blocks 33.8±3.7 0±0 0±0 0±0
11 Build 3-2-1 Pyramid 93.8±1.9 0±0 0±0 0±0
12 Build 4-3-2-1 Pyramid 80.0±3.2 0±0 0±0 0±0

13 Open 1 Drawer (Train) 90.0±2.4 37.3±3.8 61.3±3.9 0±0
14 Open 1 Unseen Drawer 87.0±2.7 40.9±3.9 57.7±3.9 0±0
15 Open 2 Drawers 18.1±3.0 15.6±6.9 7.5±2.1 0±0

Table 3.2. Mean success rate and standard error from evaluating over 3 training seeds and 128
evaluation episodes each, compared with [102].

Task TR2-GPT2 SILO

Obstacle Push 95.3±1.1 70.0
Pick and Place 100±0 95.0
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3.4.1 Environment Details

This section outlines all experimented environments, detailing the train and test tasks.

Box Pusher: The goal is to control a black box to push a green box towards a blue goal.

The low-level agent is restricted to only pushing the green box whereas the high-level agent can

magically grasp the green box and pull it along the way. In training there are no red obstacles

but these are added at test time which block the low-level agent. The low-level agent will fail if

it cannot follow the abstract trajectory precisely.

Couch Moving: The goal is to control a couch shaped agent to complete a maze

composed of chambers and corners. The couch shape forces the low-level agent to rotate in

chambers ahead of time in order to turn around corners, akin to the moving-couch problem. On

the other hand the high-level agent is a point mass that can easily traverse the entire maze. The

naming convention for these tasks is Couch Moving [Short/Long] n where Couch Moving Short

3 is the training task. Short/Long represents the lengths between chambers and corners (Long is

about 1.5x longer than Short), and n is the number of corners the agent must turn. The low-level

agent can only observe itself and a local patch around it, but does not have direct access to the

full maze configuration. As a result, the test settings test whether the low-level agent can process

abstract trajectories to determine when to rotate and generalize to longer abstract trajectory

lengths for test mazes.

Block Stacking: The goal is to control a 8-DoF Panda robot arm (w/ gripper) to pick up

a block, place it at a goal position, and then return to a resting position.

During training, the agent only needs to pick and place a single block up to a height

of 3 blocks. At test time, the agent needs to deal with multiple blocks as well stack various

configurations like a tower or pyramid of increasing heights. This setting tests whether the

low-level agent can follow out-of-distribution abstract trajectories not seen during training, e.g.

stacking higher, placing further away. It also evaluates the performance on much longer horizon

tasks.
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Figure 3.4. Evaluation of TR2-GPT2 on (left) stacking 4 blocks with varying amounts of
external interventions, only re-planning once per intervention; (middle) opening two drawers
with variable amounts of re-planning; (right) Couch moving with varying granularity of abstract
trajectories.

Open Drawer: The goal is to control a 13-DoF mobile robot (w/ gripper) to open a

drawer on various cabinets. During training the task is to pull open a drawer on cabinets from

a training set. At test time, the task is to pull open drawers on unseen cabinets and / or open

additional drawers in an episode. The test setting tests whether the low-level agent can learn to

follow the abstract trajectory and manipulate unseen drawer handles.

Obstacle Push and Pick and Place from SILO [102]: We recreate the two tasks from

SILO (they did not release code) and compare our method against SILO on these tasks. The

Obstacle Push environment consists of a high-level agent (or demo in SILO) magically pushing

an object through an obstacle in the environment, with the task of the low-level agent to push the

object around the obstacle to get to the same goal. The Pick and Place environment consists of a

high-level agent magically picking and placing the block while going through one of two walls

on the side. The low-level agent must do the same with physical manipulation and cannot go

through the two walls. These tasks demonstrate examples of the high-level agent performing

trajectories infeasible to the low-level agent and thus requiring the low-level agent to only follow

what is feasible.

3.4.2 Results and Analysis

As shown in Table 3.1, our TR2-GPT2 performs better than all other baselines, especially

on test tasks that are unseen and long-horizon. The performance can be attributed to the abstract
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trajectory setup of TR2 and the transformer architecture, which is further investigated in ablation

studies.

The GC baseline cannot solve most tasks as the designed task rewards do not provide

sufficient guidance. For the SGC baseline, even when conditioned with sub-goals it still has

low success rates on test tasks, indicating that simple heuristics are not sufficient to select good

subgoals.

The TR2-LSTM baseline also performs worse than TR2-GPT2. One interpretation is

that modelling long-horizon dependencies with LSTMs is challenging due to the information

bottleneck. This prompts us to investigate how the transformer’s attention module intuitively

leverages the long-term information in Sec. 3.4.5. Lastly, compared to SILO, which seeks to

imitate a demo as closely as possible like us, we achieve better results shown in Table 3.2.

3.4.3 Performance on Long-Horizon Unseen Tasks

Figure 3.5. In this figure, agent attends to
its current location as well as the second
next chamber.

Figure 3.6. Agent attends to the current
location, the next corner and chamber, but
none of the locations it has passed already.

In Couch Moving, we test the model’s ability to generalize to long-horizon unseen tasks

with out-of-distribution abstract trajectories. Rows 3-6 in Table 3.1 demonstrate how the model

can successfully solve much longer and varying mazes, showcasing the expressive power of

TR2-GPT2 compared to baselines. These experiments also show that our model can handle

variable sequence lengths and horizons at test time. In comparison, due to fixed/manually tuned
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horizon sizes, SILO and hierarchical RL methods such as Hierarchical Actor Critic [108] have

difficulty handling the variance in abstract trajectory lengths.

Lastly, in Open Drawer we test the ability of TR2-GPT2 to generalize to opening drawers

of different geometries and at different locations. Row 14 of Table 3.1 shows that TR2-GPT2

can generalize well beyond the other baselines.

3.4.4 How Does the Granularity of the Abstract Trajectory Impact
Learning

We perform an ablation study where we vary the granularity of the abstract trajectory,

with the most sparse settings resembling closer to that of single-goal conditioned policies and

denser settings resembling that of imitation learning by imitating each frame. Results in Fig. 3.4

(right) show as the abstract trajectory becomes less granular (more sparse), the more difficult it

is for agents to learn to follow the abstract trajectory and solve the task. In the Couch Moving

task for example, an insufficient number of high-level states makes the problem ambiguous and

more difficult to determine the correct orientation to rotate into, causing the agent to get stuck

at corners frequently. Thus, the results show that low-level policies trained with sufficiently

granular abstract trajectories can be successful.

3.4.5 Attention Analysis of TR2-GPT2 for Bridging the Domain Gap

In general, TR2-GPT2 will learn whatever is necessary to bridge the domain gap between

the high-level and low-level spaces and fill in gaps of information that are excluded from the high-

level space. For example, in Couch Moving, the abstract trajectory does not include information

about when and how to rotate the couch, only a coarse path to the goal location. Thus the

low-level policy must learn to rotate the couch appropriately to go through the corners and follow

the abstract trajectory. To visually understand how TR2-GPT2 learns to bridge the domain gap,

we investigate the attention of the transformer when solving the Couch Moving task.

We observe that after training, TR2-GPT2 exhibits an understanding of an optimal
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strategy to determine when to rotate or not. As shown in Fig. 3.5 and 3.6, whenever the agent is

in a chamber that permits rotation, the agent attends to around its current position as well as a

location in front of it. The attention on its current location tells the agent the orientation of the

chamber (if it’s up/down or left/right). The attention on a future corner/chamber, in combination

with the information about the orientation of the chamber the agent is currently in, is indicative

of the orientation of the upcoming corner. Attending to these locations enables the agent to

successfully bridge the high- to low domain gap in Couch Moving. Moreover, the agent learns to

pay attention mostly to locations up ahead and learns that the past parts are uninformative, despite

being given the full abstract trajectory to process at each timestep. A video of the attention of the

agent over the course of the episode can be found on our project page.

3.4.6 Effects of Re-Planning

One property of our approach is the feasibility of re-generating the abstract trajectory at

test time, and we refer to this as re-planning. It enables us to introduce explicit error-corrective

behavior via the high-level agent in long-horizon tasks. Our results in Fig. 3.4 (left and middle)

show that re-planning enables handling unforeseen interventions in Block Stacking and mistakes

in Open Drawer successfully.

In Block Stacking, we add external interventions where we randomly move blocks

off the tower and allow the agent to re-plan just once per intervention. As the number of

external interventions increases, the success rate does not lower as significantly compared to

not re-planning since the re-generated abstract trajectories guide the low-level agent to pick up

misplaced blocks.

In Open Drawer, the robot arm must open two drawers and often will close the one

it opened by accident. With re-planning, the high-level agent provides a corrective abstract

trajectory to guide the low-level agent to re-open the closed drawer and succeed.

59

https://trajectorytranslation.github.io/


3.5 Conclusion

We have introduced the Trajectory Translation (TR2) framework that seeks to train

low-level policies by translating an abstract trajectory into executable actions. As a result we can

easily decouple plan generation and plan execution, allowing the low-level agent to simply focus

on low-level control to follow an abstract trajectory. This allows our method to generalize to

unseen long-horizon unseen tasks. We further can utilize re-planning via the high-level agent to

easily improve success rate to handle situations when mistakes or external intervention occurs.

These results are exemplified by our simulation and real-world experiments. While the point

mass representation works well for all benchmarked environments, it may have limitations

when tackling environments such as soft-body environments and may need a different choice of

representation. We believe there is interesting future work in investigating the design of abstract

environments and how they may impact the training and results of TR2. Moreover, using offline

demonstration datasets may also be interesting to investigate in order to improve the online

sample efficiency and solve more complex tasks with state or visual observations.
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Chapter 4

Policy Decorator: Model-Agnostic Online
Refinement for Large Policy Model

4.1 Introduction

Encouraged by the recent success of large language and vision foundation models [21, 91],

the field of robot learning has seen significant advances through imitation learning (particularly

behavior cloning), where large models leverage extensive robotic demonstrations to develop

effective policies [16, 19, 18, 5]. Despite these advancements, the performance of learned

models is limited by the quantity, quality, and diversity of pre-collected demonstration data. This

limitation often prevents models from handling all potential corner cases, as demonstrations

cannot cover every possible scenario (e.g., test-time objects can be entirely different from training

ones). Unlike NLP and CV, scaling up demonstration collection in robotics, such as RT-1 [19]

and Open X-Embodiment [33], requires extensive time and resources, involving years of data

collection by numerous human teleoperators, making it costly and time-consuming. In contrast,

cognitive research indicates that infants acquire skills through active interaction with their

environment rather than merely observing others [177, 3, 35]. This raises a natural question:

Can we further improve an offline-trained large policy through online interactions with the

environment?

The most straightforward approach to improving an offline-trained imitation learning pol-

icy is to fine-tune it using reinforcement learning (RL) with a sparse reward [97, 223]. However,
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Figure 4.1. Policy Decorator improves base policy to near-perfect performance on two bench-
marks, outperforming fine-tuning and non-fine-tuning baselines.

several challenges hinder this strategy. Firstly, many state-of-the-art imitation learning models

have specific designs to accommodate the multimodal action distributions in the demonstra-

tions, which unfortunately make them non-trivial to fine-tune using RL. For example, Behavior

Transformer [182], MCNN [188], and VINN [146] all incorporate some non-differentiable

components (clustering, nearest neighbor search) which are incompatible with the gradient-based

optimization in RL. Similarly, Diffusion Policy [28] requires ground truth action labels to su-

pervise its denoising process, but these action labels are unavailable in RL setups. Secondly,

even if an imitation learning model were compatible with RL, the fine-tuning process would be

prohibitively costly for two reasons: 1) the increasing number of parameters in modern large

policy models, and 2) the extensive gradient updates required during sparse-reward RL training,

a process known for its poor sample efficiency.

To devise a method for online improvement, we must first understand why an offline-

trained imitation learning policy sometimes fails to solve tasks. As studied in [175, 173, 194,

26, 221], a major issue with policies learned from purely offline data is compounding error.

Small errors gradually accumulate, eventually leading the policy to states not covered in the
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Large Policy Model
(Diffusion Policy, BeT, etc.)

Base Policy
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residual actionbase action +
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def policy_decorator(base_pi):
    def policy(obs):
        return base_pi(obs) + 
residual_pi(obs)
    return policy

@policy_decorator
def base_policy(obs):

...

Residual Policy
(small, learnable)

observation

sparse
reward

actionControlled
Exploration

Evaluation

Figure 4.2. Our framework (Policy Decorator) improves large policy models through online
interactions. We learn a residual policy via RL using controlled exploration strategies (Sec.
4.4.2). Once learned, it functions similarly to Python decorators—wrapping the base policy with
an additional function to boost performance.

demonstration dataset. However, correcting these errors may only require minimal effort. Even

if the final trajectory deviates significantly from the correct path, slight adjustments can bring it

back on track, as shown in Fig. 4.3. In other words, the model only needs “refinement” for the

finer parts of the tasks. Modeling such small adjustments typically does not necessitate complex

architectures or large numbers of parameters. Therefore, we propose to online learn a residual

policy (parameterized by a small network) to correct the behavior of the offline-trained imitation

learning models, referred to as the “base policy” throughout this paper. This approach addresses

the incompatibility between models and RL and avoids the costly gradient updates on large

models.

States Covered by
Training Data=

Goal

One of the Demo

Trajectory From Trained Policy

Small Adjustment

Figure 4.3. Small adjustments can bring deviated trajectories back on track.

While learning a residual policy through online RL [84, 7, 184, 231] can, in principle,

refine a base policy, practical implementation is still challenging. As demonstrated in our
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experiments (Sec. 4.5), without constraints, random exploration during RL training often leads

to failure in tasks requiring precise control, resulting in no learning signals in sparse reward

settings. To overcome these challenges and enable stable, sample-efficient learning, we propose

a set of strategies to ensure the RL agent (with the residual policy) explores the environment

in a controlled manner. This approach ensures that the agent continuously receives sufficient

success signals while adequately exploring the environment. We call this framework the Policy

Decorator because it functions similarly to decorators in Python—enhancing the original policy

by wrapping it with an additional function to boost its performance, as illustrated in Fig. 4.2.

Like Python decorators, our framework does not require any prior knowledge of the original

policy and treats it as a black box, making it model-agnostic.

We evaluate our approach across a variety of benchmarks and imitation learning models.

Specifically, we examine 8 tasks from 2 benchmarks: ManiSkill [132, 64] and Adroit [170],

in conjunction with 2 state-of-the-art imitation learning models: Behavior Transformer [182]

(action clustering + regression) and Diffusion Policy [28] (diffusion models + receding horizon

control). Our results demonstrate that the Policy Decorator consistently improves various offline-

trained large policy models to near-optimal performance in most cases. Furthermore, the learned

policy maintains the desirable properties of the imitation learning policy, producing smooth

motions rather than the jerky motions generated by pure RL policies.

To summarize, our contributions are as follows:

• Conceptually, we raise the critical research question: “How can large policy models be

improved through online interactions?”, and identify limitations of fine-tuning and vanilla

residual RL.

• Technically, we propose Policy Decorator, a model-agnostic framework for refining large

policy models through online environmental interactions.

• Empirically, we conduct extensive experiments on 8 challenging robotic tasks and 2 state-

of-the-art imitation learning models, demonstrating Policy Decorator’s advantages in both
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task performance and learned policy properties.

4.2 Related Works

Learning from Demo Learning control policies through trial and error can be inefficient

and unstable, prompting research into leveraging demonstrations to enhance online learning.

Demonstrations can be utilized through pure offline imitation learning, including behavior

cloning [154] and inverse reinforcement learning [142]. Alternatively, demonstrations can be

incorporated during online learning, serving as off-policy experience [128, 70, 14, 137] or for

on-policy regularization [90, 170]. Furthermore, demonstrations can be used to estimate reward

functions for RL problems [218, 11, 209, 239, 186]. When the offline dataset includes both

demonstrations and negative trajectories, offline-to-online RL approaches first apply offline RL

to learn effective policy and value initializations from offline data, followed by online fine-tuning

[136, 96, 119, 138]. In this work, we adopt a more direct approach to utilize demonstrations:

distilling demonstrations into a large policy model and subsequently improving it through online

interactions.

Residual Learning The concept of learning residual components has been widely

applied across various domains, including addressing the vanishing gradient problem in deep

neural networks [69, 206] and parameter-efficient fine-tuning [75]. In robotic control, researchers

have employed online RL to learn corrective residual components for various base policies, such

as hand-crafted controllers [84], non-parametric models [68], and pre-trained neural networks

[7, 9]. Residual learning can also be achieved through supervised learning [82]. Our work

focuses on the online improvement of large policy models, identifying residual policy learning

as an ideal solution due to its model-agnostic nature. We highlight the uncontrolled exploration

issue in vanilla residual RL, propose a set of strategies to address it, and further enhance its

efficiency through careful examination of design choices.

Advanced Imitation Learning Imitation learning provides an effective approach to

teaching robots complex skills. However, naive imitation learning often struggles to model

65



multi-modal distributions within demonstration datasets [28]. Several advanced methods have

been proposed to address this limitation: [182, 101, 188, 146] represent actions as discrete

values with offsets, [47] employs energy-based models, and [28] leverages diffusion models.

While these techniques effectively learn from multi-modal data, they often create models that

are non-trivial to fine-tune using RL. Even if they were compatible with RL, the fine-tuning

process can be computationally prohibitive due to the large number of parameters in modern

policy models. These limitations motivate our approach of using online residual policy learning

to improve imitation learning models.

4.3 Problem Setup

In this paper, we focus on improving an offline-trained large policy (referred to as “base

policy”) through online interactions. We make the following assumptions:

1. An environment is available for online interactions with task success signals (sparse

rewards).

2. The base policy may have a large number of parameters or complex architectures, making

fine-tuning non-trivial or computationally expensive. This assumption holds for many

modern large policy models [19, 18, 28, 182].

3. The base policy exhibits reasonable initial performance, though not perfect (i.e., it can

make progress towards task completion, which is achievable by many state-of-the-art IL

methods with a reasonable amount of demonstrations). An excessively poor base policy is

not worth improving.

Note that our approach does not make any specific assumptions about model architectures

or training methods. Instead, we treat these models as black boxes that take observations as input

and produce actions as output. In our experiments, we choose to improve base policies trained by

imitation learning rather than offline RL policies. This is because: 1) collecting demonstrations
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alone is more cost-effective and thus more common; 2) as demonstrated in multiple studies

[122, 47], imitation learning outperforms offline RL in demonstration-only settings.

4.4 Policy Decorator: Model-Agnostic Online Refinement

In this work, our goal is to online improve a large policy model, which is usually offline-

trained by imitation learning and usually has some specific designs in model architecture. To this

end, we propose Policy Decorator, a model-agnostic framework for refining large policy models

via online interactions with environments. Fig. 4.2 provides an overview of our framework.

Policy Decorator is grounded on learning a residual policy via reinforcement learning

with sparse rewards, which is described in Sec. 4.4.1. On top of it, we devise a set of strategies

to ensure the RL agent (in combination with the base policy and the residual policy) explores the

environment in a controlled manner. Such a controlled exploration mechanism is detailed in

Sec. 4.4.2.

4.4.1 Learning Residual Policy via RL

Given the base policy πbase, we then train a residual policy πres on top of it using rein-

forcement learning. The base policy πbase can be either deterministic (e.g., Behavior Transformer

[182]) or stochastic (e.g., Diffusion Policy [28]), and it remains frozen during the RL process.

The residual policy πres is updated through RL gradients, so it should be a differentiable function

compatible with RL gradients. In this work, we model the residual policy πres as a Gaussian

policy parameterized by a small neural network (either an MLP or a CNN, depending on the

observation modality). To interact with the environment, the actions from both policies are

combined by summing their output actions, i.e., the action executed in the environment is

πbase(s)+πres(s). For stochastic policies, actions are sampled individually from both policies

and then summed.

The residual policy is trained to maximize the expected discounted return derived from

the sparse reward (i.e., the task’s success signal). We employ the Soft Actor-Critic (SAC)
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algorithm [65] due to its superior sample efficiency and stability.

4.4.2 Controlled Exploration

While learning a residual policy by RL can in principle refine a base policy, practical

implementation can be challenging. As demonstrated in our experiments (Sec. 4.5), without

constraints, random exploration during RL training often leads to failure in tasks requiring precise

control, resulting in no learning signals in sparse reward settings. To overcome these challenges

and enable stable, sample-efficient learning, we propose a set of strategies ensuring the RL agent

(in combination with the base policy and the residual policy) explores the environment in a

controlled manner. The goal is to make sure the agent continuously receives sufficient success

signals while adequately exploring the environment.

Bounded Residual Action When using the residual policy to correct the base policy, we

do not want the resulting trajectory to deviate too much from the original trajectory because it

usually leads to failure. Instead, we expect the residual policy to only make a bit “refinement”

at the finer parts of the tasks. To reflect this spirit, we bound the output of the residual policy

within a certain scale. Since we use SAC as our backbone RL algorithm, the output of the policy

is naturally bounded by a squashing function (tanh), whose range is (−1,1). We further scale

the action sampled from the Gaussian policy with a hyperparameter α , making the range of the

residual action (−α,α). We found that an appropriate scale of residual action bound can be

crucial for some precise tasks. We investigated the effects of hyperparameter α in Sec. 4.5.4.

Progressive Exploration Schedule Given that our residual policy is randomly initialized,

the agent (combined with the base policy and residual policy) may exhibit highly random behavior

and fail to succeed at the initial stage of learning. Therefore, the base policy alone, trained by

imitation learning, can be more reliable during the early stages. As training progresses, the

residual policy can be gradually improved, making it safer to incorporate its suggestions.

Inspired by the ε-greedy strategy used in DQN [128], we propose to progressively

introduce actions from the residual policy into the agent’s behavior policy. Specifically, the
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Figure 4.4. Progressive Exploration Schedule.

behavior policy will use actions from the residual policy to complement the base policy with

probability ε and rely solely on the base policy with probability 1− ε . Formally, during training,

πbehavior(s) =


πbase(s)+πres(s) Uniform(0,1)< ε

πbase(s) otherwise
(4.1)

The parameter ε increases linearly from 0 to 1 over a specified number of time steps, as

shown in Fig. 4.4, where H is a hyperparameter. Our experiments in Sec. 4.5.4 indicate that

while tuning H can enhance sample efficiency, using a large H is generally a safe choice.

4.5 Experiments

The goal of our experimental evaluation is to study the following questions:

1. Can Policy Decorator effectively refine offline-trained imitation policies using online

RL with sparse rewards under different setups (different tasks, base policy architectures,

demonstration sources, and observation modalities)? (Sec. 4.5.3)

2. What are the effects of the components introduced by the Policy Decorator? (Sec. 4.5.4)

3. Does Policy Decorator generate better task-solving behaviors compared to other types of

learning paradigms (e.g., pure IL and pure RL)? (Sec. 4.5.5)
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Figure 4.5. Tasks Visualizations. ManiSkill (left four figures) and Adroit (right four figures).

4.5.1 Experimental Setup

To validate Policy Decorator’s versatility, our experimental setup incorporates variations

across the following dimensions:

• Task Types: Stationary robot arm manipulation, mobile manipulation, dual-arm coordi-

nation, dexterous hand manipulation, articulated object manipulation, and high-precision

tasks. Fig. 4.5 illustrates sample tasks from each benchmark.

• Base Policies: Behavior Transformer and Diffusion Policy.

• Demo Sources: Teleoperation, Task and Motion Planning, RL, and Model Predictive

Control.

• Observation Modalities: State observation (low-dim) and visual observation (high-dim).

We summarize the key details of our setups as follows.

Task Description

Our experiments are conducted on 8 tasks across 2 benchmarks: ManiSkill (robotic ma-

nipulation; 4 tasks), and Adroit (dexterous manipulation; 4 tasks). See Fig. 4.5 for illustrations.

ManiSkill We consider four challenging tasks from ManiSkill. StackCube and PegIn-

sertionSide demand high-precision control, with PegInsertion featuring a mere 3mm clearance.

TurnFaucet and PushChair introduce object variations, where the base policy is trained on

source environment objects, but target environments for online interactions contain different

objects. These complexities make it challenging for pure offline imitation learning to achieve
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near-perfect success rates, necessitating online learning approaches. For all ManiSkill tasks,

we use 1000 demonstrations provided by the benchmark [132, 64] across all methods. These

demonstrations are generated through task and motion planning, model predictive control, and

reinforcement learning.

Adroit We consider all four dexterous manipulation tasks from Adroit: Door, Hammer,

Pen, and Relocate. The tasks should be solved using a complex, 24-DoF manipulator, simulating

a real hand. For all Adroit tasks, we use 25 demonstrations provided by the original paper [170]

for all methods. These demonstrations are collected by human teleoperation.

Base Policy Model

We selected two popular imitation learning models as our base policy models for im-

provement.

Behavior Transformer [182] is a GPT-based policy architecture for behavior cloning. It

handles multi-modal action distribution by representing an action as a combination of a cluster

center (predicted by a classification head) and an offset (predicted by a regression head). The

action cluster centers are determined by k means, which is non-differentiable, thus only the offset

can be fine-tuned using RL gradients.

Diffusion Policy [28] is a state-of-the-art imitation learning method that leverages recent

advancements in denoising diffusion probabilistic models. It generates robot action sequences

through a conditional denoising diffusion process and employs action sequences with receding

horizon control. The training of Diffusion Policy requires ground truth action labels to supervise

its denoising process; however, these action labels are unavailable in RL setups, making the

original training recipe incompatible with RL. Nevertheless, recent approaches have been

developed to fine-tune diffusion models using RL in certain scenarios.
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4.5.2 Baselines

We compare our approach against a set of strong baselines for online policy improvement,

including both fine-tuning-based methods and methods that do not involve fine-tuning. A

brief description of each baseline is provided below.

Fine-tuning Methods

As discussed in Sec. 4.1, making our base policies compatible with online RL is non-

trivial. We implemented several specific modifications to the base policies to enable fine-tuning.

Since we consider the problem of improving large policy models where full-parameter fine-tuning

can be costly, we employ LoRA [75] for parameter-efficient fine-tuning.

Our fine-tuning baseline selection follows this rationale: we first choose a basic RL

algorithm for each base policy based on their specific properties, which serves as a basic

baseline. Additionally, assuming access to the demonstrations used to train the base policies,

we consider various learning-from-demonstration methods as potential baselines. Table 4.1 lists

the most relevant learning-from-demo baselines. From these, we select the strongest and most

representative methods in each category and implement them on top of the basic RL algorithm

we initially selected.

Basic RL We use SAC [65] as our basic fine-tuning method for Behavior Transformer,

and use DIPO [224] for Diffusion Policy. For both methods, we initialize the actor with the

pre-trained base policy and use a randomly initialized MLP for the critic.

RLPD [14] is a state-of-the-art online learning-from-demonstration method that utilizes

demonstrations as off-policy experience. It enhances vanilla SACfd with critic layer normaliza-

tion, symmetric sampling, and sample-efficient RL techniques.

ROT [67] is a representative online learning-from-demonstration algorithm that utilizes

demonstrations to derive dense rewards and for policy regularization. It adaptively combines

offline behavior cloning with online trajectory-matching based rewards.

Cal-QL [138] is a state-of-the-art offline-to-online RL method that “calibrates” the Q
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Table 4.1. Potential Fine-tuning Baselines with Demos. We categorize potential learn-from-
demo baselines into four distinct categories, and choose the best and most representative methods
from each category as our main points of comparison. Selected baselines are in bold.

Category Method

Demo for Reward Learning ROT [67]
GAIL [73]
DAC [95]

Demo as Off-Policy Experience RLPD [14]
SACfd [208]

Demo as On-Policy Regularization ROT [67]
DAPG [170]
AWAC [136]

Offline RL Online Fine-tuning Cal-QL [138]
IQL [96]
CQL [99]

function in CQL [99] for efficient online fine-tuning. In our setting, we use the same demonstra-

tion set used in other baselines as the offline data for Cal-QL. Unlike other fine-tuning baselines

that initialize the critic randomly, Cal-QL can potentially benefit from the pre-trained critic.

Non-fine-tuning Methods

JSRL [203] is a curriculum learning method that employs a guiding policy to bring the

agent closer to the goal. In our setting, the pre-trained base policy serves as the guiding policy.

Residual RL [84] learns a residual control signal on top of a hand-crafted conventional

controller. Unlike our approach, it explores the environment in an entirely uncontrolled manner.

For a fair comparison, we replace its hand-crafted controller with our base policies.

FISH [68] builds upon Residual RL by incorporating a non-parametric VINN [146]

policy and learning an online offset actor with optimal transport rewards.

4.5.3 Main Results & Analysis

Our Approach We evaluate Policy Decorator with Behavior Transformer and Diffusion

Policy as base policies, and the results are summarized in Fig. 4.6 and 4.7, respectively (see Fig.
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Figure 4.6. Results (with Behavior Transformer): During training, we evaluate the agent
for 50 episodes every 50K environment steps. The curves depict the evaluation success rates
averaged over ten seeds for our approach and three seeds for baselines. Shaded areas represent
standard deviations. Our method consistently improves the base policy and outperforms all other
baselines.

4.1 for a barplot). Policy Decorator improves the performance of both offline-trained policies to

a near-perfect level on all tasks across ManiSkill and Adroit when given low-dimensional state

observations. For Diffusion Policy, we did not test on StackCube and Door since the base policy

already achieves near-optimal performance in these tasks.

Non-Finetuning Baselines Overall, JSRL performs the best among all baselines but

only exceeds the base policy’s performance on around half of the scenarios. Additionally, JSRL

does not actually “improve” the base policy but instead learns an entirely new policy. This

means that even if it achieves a high success rate, it does not preserve the desired properties of

the original base policy, such as smooth and natural motion. Residual RL improves the base

policy on 3 out of 6 tasks when combined with Diffusion Policy, but performs quite poorly when

combined with Behavior Transformer. We suspect that this is because residual RL agents have a

higher chance of obtaining task success signals through random exploration due to the stronger

performance and robustness of the Diffusion Policy models. FISH performs poorly on most

tasks, primarily due to the weak performance of the VINN.

Finetuning Baselines All fine-tuning-based baselines generally perform poorly in our
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Figure 4.7. Results (with Diffusion Policy): The setup is similar to Fig. 4.6, but with different
baselines due to the nature of Diffusion Policy. Since DIPO does not work at all on any tasks,
we did not include other fine-tuning-based baselines built on top of DIPO. In addition, we did
not test on StackCube and Adroit Door because the base policy is already near-optimal (99%+
success rates).

evaluation. Cal-QL and RLPD can improve Behavior Transformer on a few Adroit tasks but

completely fail on ManiSkill tasks. We suspect this is because the randomly initialized critic

network cannot provide meaningful gradients and quickly causes the agent to deviate significantly

from the original trajectories. In contrast, our controlled exploration strategies help the agent

remain exposed to success signals. While Cal-QL can theoretically learn a good critic from

offline data, we found that the learned critic does not aid online fine-tuning when it is trained

purely on demonstration data without negative trajectories. This degradation over the course

of Cal-QL online training has also been observed by [223]. Another reason for the failure of

fine-tuning-based methods is the long-horizon nature of our tasks. We observed that RL fine-

tuning becomes effective when the task horizon is reduced. For Diffusion Policy, we observed

that DIPO failed to obtain any success signals across all tasks, so we did not further test other

fine-tuning-based methods that rely on DIPO as the backbone RL algorithm. We hypothesize

that this failure is due to the receding horizon control in Diffusion Policy, which complicates

the fine-tuning process. For instance, when Diffusion Policy predicts 16 actions but only the
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Figure 4.8. Results on Image Observations (with Diffusion Policy): Similar to Fig. 4.7, but
using image observations instead of low-dimensional state observations. We selected two tasks
with complex visual appearances from each benchmark.

first 8 are executed in the environment, there is no clear method to supervise the latter 8 actions

during fine-tuning. Keeping the latter 8 actions unchanged is incorrect because once the first 8

actions are modified through fine-tuning, they may bring the agent to a new state where the latter

8 actions no longer apply.

Visual Observations Finally, we conducted experiments with visual observations. As

shown in Fig. 4.8, the results validated that Policy Decorator also performs well with high-dim

visual observations.

4.5.4 Ablation Study

We conducted various ablations on Stack Cube and Push Chair tasks to provide further

insights.
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Figure 4.9. The importance of each component:1) residual policy learning; 2) progressive
exploration schedule; and 3) bounded residual action.
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Relative Importance of Each Component

We examined the relative importance of Policy Decorator’s main components: 1) residual

policy learning; 2) progressive exploration schedule; and 3) bounded residual action. We

thoroughly evaluated all possible combinations of these components, with results shown in

Fig. 4.9. Each component greatly contributes to the overall performance, both individually and

collectively. While residual policy learning establishes the foundation of our framework, using

it alone does not sufficiently improve the base policy. Bounded residual action is essential for

effective residual policy learning, and the progressive exploration schedule further enhances

sample efficiency.

Influence of Key Hyperparameters

Bound α of Residual Actions The hyperparameter α determines the maximum adjust-

ment the residual policy can make. Fig. 4.10 illustrates how α affects the learning process. If

α is too small, the final performance may be adversely affected. Conversely, if α is too large,

it may lead to poor sample efficiency during training. Although certain values achieve optimal

sample efficiency, α values within a broad range (e.g., 0.1 to 0.5 for PushChair and 0.03 to 0.1 for

StackCube) eventually converge to similar success rates, albeit with varying sample efficiencies.

This indicates that while the choice of α is impactful, our method remains robust across a

wide range of α values. In practice, tuning α is relatively straightforward: we typically set it

close to the action scale observed in the demonstration dataset and make minor adjustments

as necessary.

H in Progressive Exploration Schedule The hyperparameter H (see Fig. 4.4 for an

illustration) controls the rate at which we switch from the base policy to the residual policy.

From Fig. 4.11, we observe that a too-small H can lead to complete failure due to aggressive

exploration, while a large H may result in relatively poor sample efficiency. Therefore, tuning

H can enhance sample efficiency and ensure stable training. However, using a large H is

generally a safe choice if sample efficiency is not the primary concern.
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for Residual Actions.
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sive Exploration Schedule.

4.5.5 Properties of the Refined Policy

An intriguing aspect of Policy Decorator is its ability to combine the strengths of

both Imitation Learning and Reinforcement Learning policies. Previous observations have

highlighted that robotic policies trained solely by RL often exhibit jerky actions, rendering them

unsuitable for real-world application [162]. Conversely, policies derived from demonstrations,

whether from human teleoperation or motion planning, tend to produce more natural and smooth

motions. However, the performance of such policies is constrained by the diversity and quantity

of the demonstrations.

Our refined policy, learned through Policy Decorator, achieves remarkably high success

rates while retaining the favorable attributes of the base policy. This is intuitive – by con-

straining residual actions, the resulting trajectory maintains proximity to the original trajectory,

minimizing deviation.

Comparison with RL policies reveals that our refined approach exhibits significantly

smoother behavior. Furthermore, when compared with offline-trained base policies, our refined

policy demonstrates superior performance, effortlessly navigating through the finest part of the

task.

4.6 Conclusions, Discussions, & Limitations

We propose the Policy Decorator framework, a flexible method for improving large

behavior models using online interactions. We introduce controlled exploration strategies that
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boost the base policy’s performance efficiently. Our method achieves near-perfect success rates

on most tasks while preserving the smooth motions typically seen in imitation learning models,

unlike the jerky movements often found in reinforcement learning policies.

Limitations Enhancing large models with online interactions requires significant training

time and resources. While learning a small residual policy reduces computational costs compared

to fully fine-tuning the large model, the process remains resource-intensive, especially for slow-

inference models like diffusion policies. We found that only a few critical states need adjustment.

Future research could focus on identifying and correcting these points more precisely to improve

efficiency.
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Chapter 5

Conclusions

This dissertation has presented a data-centric approach to robotics, motivated by the

significant progress witnessed in other AI domains through large models trained on massive

datasets. Recognizing the data bottleneck in Physical World AI, this work focused on three core

components: environment, data, and policy. We introduced ManiSkill, a large-scale simulation

benchmark for generalizable manipulation skill learning, to address the need for rich and diverse

environments for data collection. Furthermore, we developed DrS, a method for learning reusable

dense rewards, and Trajectory Translation, a framework for one-shot task generalization, to

facilitate efficient demonstration acquisition for both short-horizon and long-horizon tasks.

Finally, we introduced Policy Decorator, a model-agnostic online refinement method, enabling

effective utilization of both offline demonstrations and online interactions to learn robust and

generalizable policies.

These contributions collectively advance the field of robotics by providing tools and

techniques for creating, collecting, and utilizing data more effectively. ManiSkill offers a valuable

platform for benchmarking and developing generalizable manipulation skills. DrS simplifies

the often tedious process of reward engineering, enabling more efficient reinforcement learning.

Trajectory Translation facilitates one-shot learning for complex tasks, reducing the need for

extensive task-specific training data. Policy Decorator offers a practical and efficient way to

refine large policy models, bridging the gap between offline training and online adaptation.
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Looking ahead, the pursuit of general-purpose robots remains a central challenge in

robotics research. The paradigm of training large models on large datasets offers a promising

path towards this goal. While the architecture of these models is likely to be transformer-based,

the source of the necessary large-scale data remains an open question.

Several promising directions for scaling up robotic data collection warrant further ex-

ploration. One approach involves direct collection of large-scale robot data in the real world.

This approach, while straightforward in concept, requires substantial engineering effort to build

robust and scalable data collection pipelines, encompassing hardware, systems, and efficient

teleoperation methods. A second direction focuses on collecting large-scale simulated robot data.

This approach holds significant potential due to the scalability of simulation, but the sim-to-real

gap poses a persistent challenge, requiring sophisticated sim-to-real transfer techniques. A

third possibility involves leveraging large-scale non-robot data, such as YouTube videos, in

conjunction with smaller-scale real-world robot data. This approach envisions pre-training world

models on readily available non-robot data and subsequently using these models for planning

and inferring robot actions through inverse dynamics models trained on smaller, targeted robot

datasets.

While real-world robot data collection is currently receiving significant attention, the other

two approaches—simulated data and leveraging non-robot data—offer compelling alternatives

and deserve further investigation. A balanced approach, potentially combining these different data

sources, may ultimately prove most effective in overcoming the data bottleneck and unlocking

the full potential of large models for achieving general-purpose robots. The development of

robust sim-to-real transfer methods, efficient techniques for extracting meaningful information

from non-robot data, and innovative approaches for combining diverse data sources will be

crucial for future progress in this exciting area of research.
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