
UC Irvine
UC Irvine Previously Published Works

Title
A Code that Simulates Fast-Ion Dα and Neutral Particle Measurements

Permalink
https://escholarship.org/uc/item/12f712f4

Journal
Communications in Computational Physics, 10(3)

ISSN
1815-2406

Authors
Heidbrink, WW
Liu, D
Luo, Y
et al.

Publication Date
2011-09-01

DOI
10.4208/cicp.190810.080211a

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12f712f4
https://escholarship.org/uc/item/12f712f4#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Commun. Comput. Phys.
doi: 10.4208/cicp.190810.080211a

Vol. 10, No. 3, pp. 716-741
September 2011

A Code that Simulates Fast-Ion Dα and Neutral

Particle Measurements

W. W. Heidbrink1,∗, D. Liu1,3, Y. Luo1,4, E. Ruskov1 and
B. Geiger2

1 Department of Physics and Astronomy, University of California, Irvine,
California, CA 92697, USA.
2 Max-Planck Institute für Plasmaphysik, Garching, Germany.
3 Department of Physics, University of Wisconsin-Madison, Madison,
WI 53706, USA.
4 Tri Alpha Energy Corporation, 27211 Burbank, Foothill Ranch, CA 92610, USA.

Received 19 August 2010; Accepted (in revised version) 8 February 2011

Available online 1 June 2011

Abstract. A code that models signals produced by charge-exchange reactions between
fast ions and injected neutral beams in tokamak plasmas is described. With the fast-
ion distribution function as input, the code predicts the efflux to a neutral particle
analyzer (NPA) diagnostic and the photon radiance of Balmer-alpha light to a fast-
ion Dα (FIDA) diagnostic. Reactions with both the primary injected neutrals and with
the cloud of secondary ”halo” neutrals that surround the beam are treated. Accurate
calculation of the fraction of neutrals that occupy excited atomic states (the collisional-
radiative transition equations) is an important element of the code. Comparison with
TRANSP output and other tests verify the solutions. Judicious selection of grid size
and other parameters facilitate efficient solutions. The output of the code has been
validated by FIDA measurements on DIII-D but further tests are warranted.

PACS: 52.55.Pi, 52.65.Pp, 52.70.Kz

Key words: Fast ions.

1 Introduction

Supra-thermal populations of energetic ions play an important role in magnetic fusion
research. These ”fast ions” are created by neutral-beam injection, by RF heating, and in
fusion reactions. The distribution function that describes these populations generally is a
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complicated function of velocity and configuration-space variables. Measuring the fast-
ion distribution function in the harsh magnetic fusion environment is a major diagnostic
challenge.

One approach is to exploit charge exchange reactions between energetic deuterium
ions and an injected neutral beam. Collection of escaping neutrals is the basis of neutral
particle analysis (NPA) [1], a technique that has been applied to tokamak plasmas for
nearly five decades [2]. A more recent technique is to analyze the visible photons emitted
by hydrogenic fast ions that neutralize in the injected beam [3]. A review of these fast-ion
Dα (FIDA) measurements was recently published [4].

Both NPA and FIDA diagnostics provide valuable information about the fast-ion dis-
tribution function but also depend sensitively on other plasma parameters and on atomic
cross sections. One way to relate the measured signals to theory is to construct a phase-
space weight function for each measurement [5]; the signal is the convolution of the fast-
ion distribution function with the weight function. As illustrated by the examples in [4],
this approach is quite useful for rapid qualitative interpretation of the measurements. It
can also be the basis for an inversion algorithm. Although the processes are too com-
plicated for a unique inversion [6], a least-squares minimization scheme that utilizes a
weight function can determine which model distribution function agrees best with the
data. An example of inference of the distribution function from collective Thomson scat-
tering data was recently published [7].

Alternatively, one can use forward modeling. In this approach, the distribution func-
tion is a given quantity supplied by theory. The code described in this paper, dubbed
FIDASIM, takes this approach. FIDASIM accepts a theoretical distribution function as
input and predicts FIDA and NPA spectra for comparison with the data. The code is
designed to compute ”active” signals produced by an injected neutral beam. (In real-
ity, collisions with edge neutrals also produce FIDA and NPA signals but the code does
not treat these ”passive” reactions.) To date, the code has been used to model measure-
ments on the DIII-D and ASDEX-Upgrade conventional tokamaks and on the NSTX and
MAST spherical tokamaks. An early version of the code was described in the Appendix
of [3]. This paper describes version 3.0 and is organized as follows. Section 2 presents
the assumptions and organization of the code. Section 3 describes tests that verify that
the code correctly solves the desired equations. Section 4 explains the optimal selection
of numerical parameters in terms of physical processes. Section 5 summarizes validation
by experiment. Section 6 provides an outlook for further tests and improvements.

2 Model

The code has four main sections (Fig. 1). The first section prepares the data and the
second calculates the neutral populations. The third and fourth sections both rely on the
first two sections but are independent of each other. One section computes the NPA flux
and the other computes the FIDA radiance.



718 W. W. Heidbrink et al. / Commun. Comput. Phys., 10 (2011), pp. 716-741

-ONTE#ARLO

F"'ENERATOR

&OLLOW�

.

90ROBABILITY
)N� /UT� V

4RAJECTORY
)N� �

/UT�TIMEINCELLS

#OLLISIONAL2ADIATIVE
)N�3TATES�TIME

/UT�3TATES�)NTENSITY

3PECTRUM
)N�

/UT�D)�D

!CCUMULATE
3PECTRA
)N�D)�D

,OOPOVERCELLS

.EUTRALIZATION

.EUTRALIZATION !TTENUATION

Figure 1: Flow diagram for the FIDASIM code.

2.1 Input data and coordinate mapping

The code begins by collecting the input data. The geometry of the source of injected neu-
trals is specified first. In some devices (such as NSTX) the detector sightlines intersect
several beams, so the code can accommodate multiple beam lines. The code uses the
conventions of the NUBEAM module [8] of the TRANSP code [9] to describe the geome-
try of the viewed neutral beam source (or sources). Each tokamak has its own subroutine
called, e.g., BEAM GEOMETRY D3D. As in NUBEAM, the neutral beam is described by
rectangular source and aperture dimensions and by focal lengths and divergences in both
the horizontal and vertical directions. The beam energy, power, and species mix between
full-energy, half-energy, and third-energy components are also input parameters.
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Next, the code collects information about the detector locations and sightlines. For
FIDA, the ”detector” location is actually the position of the primary lens (or mirror) of the
collection optics, since it is this position that determines the Doppler shift of the emitted
radiation. For an NPA, both the sightlines and the solid angles are specified.

Information on the equilibrium is input using the so-called ”eqdsk” format produced
by the EFIT equilibrium code [10]. For installations that do not use EFIT, a post-processor
that is part of the TRANSP distribution can convert TRANSP output files into the desired
format.

The code requires profiles of electron density and temperature, ion temperature and
toroidal rotation, and impurity density as a function of flux surface. (These quantities are
all assumed to be flux functions.) A subroutine exists that converts TRANSP output into
the desired format.

The final major piece of input data is the theoretical fast-ion distribution function,
which can have a complicated dependence on energy E, pitch p=v‖/v, and space r. (As
in TRANSP, positive p is defined by the direction of the plasma current rather than by
the direction of the toroidal field.)

Three distinct coordinate systems are utilized in the initial stages of the code (Fig. 2).
The beam and detector geometries are specified in right-handed Cartesian (u,v,z) coor-
dinates with origin the center of the tokamak and z the vertical direction. Plasma pa-
rameters are one-dimensional functions of flux coordinates. Because neutrals travel in
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Figure 2: Plan view of NSTX. Geometrical neutral beam and detector input to the code is in (u,v,z) coordinates.
Neutral beam parameters (upper case labels) follow the TRANSP conventions. The code transforms quantities
into (x,y,z) coordinates along the selected beam.
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straight lines, a right-handed Cartesian grid (x,y,z) is employed in the main sections of
the code. The centerline of the primary beam forms the x axis, with the origin just out-
side the plasma. After collecting all of the needed input data, the code transforms (u,v)
coordinates into (x,y) coordinates and finds the flux coordinate that corresponds to each
position in the (x,y,z) mesh. The values of temperature, density, and plasma flow at each
cell position are stored in arrays; in addition, several other quantities used in the cal-
culations of collisional-radiative transitions (discussed below) are computed and stored.
From the equilibrium data, the magnetic and electric fields in (x,y,z) coordinates at each
cell position are computed and stored. Similarly, the (x,y,z) vectors from each cell to the
FIDA lens (or lenses) and NPA detectors are placed in arrays.

Depending on the source of the theoretical fast-ion distribution function, the mapping
into the (x,y,z) coordinates can be fairly complicated. To date, distributions produced by
the TRANSP NUBEAM [8], ORBIT-RF [11], and CQL3D [12] codes have been used. The
desired output is a three-dimensional array of the guiding-center distribution function in
the variables energy, pitch, and cell number, F(E,p,cell). The energy and pitch variables
have uniform spacing dE and dp. The normalization for F is chosen so that the sum over
velocity space is the guiding-center fast-ion density n f in each cell, i.e.,

∑
i

∑
j

F(Ei,pj)dEdp=n f . (2.1)

Conversion of the NUBEAM output into this form is straightforward, as the NUBEAM
distribution is already a function of energy, pitch, and an array of (R,z) positions (R is
the major radius); also, apart from a factor of two, the normalization is the same as in
Eq. (2.1). Interpolation of the (R,z) positions onto the (x,y,z) grid completes the opera-
tion.

Use of results from a Monte Carlo drift-orbit following code such as ORBIT-RF is also
straightforward. When running ORBIT-RF, the phase-space coordinates and weights of
the orbits are sampled frequently near the time of interest. After reading an output file
with this information, FIDASIM selects a phase-space coordinate, then searches for par-
ticles that are within the phase-space volume of this coordinate; the desired F is simply
the sum of the weights of particles that fall within each phase-space bin.

CQL3D is a Fokker-Planck code. Theoretically, the distribution function f in an ax-
isymmetric tokamak can be described by just three coordinates. CQL3D selects the major
radius Rmid and pitch angle χmid at the outer midplane crossing and the speed v as coordi-
nates for f . Although three coordinates suffice for theory, the FIDA and NPA diagnostics
require the distribution function throughout the (x,y,z) volume. A particular location is
connected to its midplane crossing through the flux surface geometry. In the first com-
parisons of CQL3D predictions with FIDA data [5, 13], zero banana-width orbits were
assumed but, in a recent version of CQL3D, the midplane crossing is shifted by a first
order correction for the finite banana width. With or without the finite banana width cor-
rection, because of conservation of the first adiabatic invariant µ, the pitch angle changes
as the fast ion orbits. The relationship between the pitch angle χ at an arbitrary position
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and the pitch angle at the outer midplane is

sin2χ=
( B

Bmid

)

sin2χmid, (2.2)

where B/Bmid is the ratio of the magnetic field at the new position to the field at the outer
midplane. Unlike FIDASIM, which includes the Jacobian of the velocity-space coordi-
nate transformation in the definition of F, f in CQL3D does not include the Jacobian,
so

∫∫

f (v,χmid)v2sin(χmid)dvdχmid gives the fast-ion density at the midplane. With the
further transformation from (v,χ) coordinates into (E,p) coordinates, the desired distri-
bution function F(E,p) that has Jacobian factors included is F ∝ v f . The values of F in
the desired variables are found by selecting a phase space coordinate, calculating the
corresponding values of v, Rmid and χmid, and then interpolating over the midplane dis-
tribution function.

2.2 Injected and halo neutral densities

The second major section of FIDASIM is devoted to calculation of the injected and halo
neutral distributions in real space, velocity space, and energy levels. Since the injected
neutrals penetrate the torus in microseconds and the halo forms on the rapid ion-ion col-
lision time (∼ 10µs), these neutral populations are time-independent in the code. Note
that, although the majority of neutrals occupy the ground state, it is essential to compute
the fractional occupation of higher energy levels, as this influences beam attenuation, the
probability that charge-exchange events populate higher energy levels and, ultimately,
the fraction of neutrals that undergo the detected Balmer alpha radiative transition. In
treating the atomic physics of the neutrals, three important simplifications are permis-
sible. First, in some portions of the code, the probability of a reaction 1−exp(−x/λ) is
approximated by x/λ if the relevant mean-free path λ is longer than the evaluated step
length x. Second, although there are many possible principle quantum numbers n and
angular momentum states l available to the neutrals, the strong fine-structure mixing
allows the assumption that the population of each quantum state may be grouped as a
single population based on the principle quantum number [14]. (Even if this assumption
is not strictly valid, the effect is primarily on the polarization and Stark shift of emitted
radiation, not the overall intensity. The effect on neutralization probabilities should also
be small.) With this assumption, the equations that govern the populations Nj of neutrals
in the different energy levels j are written in matrix form as

dNj

dt
=∑

k

Nk Mkj, (2.3)

where Mkj is a matrix of rates governing the transitions from levels k to j. Throughout the
code, the Nj represent fractional occupational densities, so ∑j Nj ≤ 1. (When tracking a
neutral, the sum may decrease below unity due to ionization and charge exchange losses.)
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Radiative and collisional processes are both included in M. The radiative transition rates
are independent of plasma parameters, so these Einstein coefficients [15] are loaded into
an array in the initialization stage of the code. In contrast, the collisional rates depend on
plasma parameters.

The third major simplification in the treatment of the collisional-radiative transitions
is to assume that the speeds of the various species follow the ordering

ve ≫v f ∼vn ∼vi ≫vI ,

where the subscripts represent electrons, fast ions, hydrogenic neutrals (both fast and
thermal), thermal hydrogenic ions, and impurity ions, respectively. Since the electron
distribution function is Maxwellian and the electron thermal speed is much greater than
the fastest neutrals, it is expedient to work directly with the reactivities 〈σv〉 for electron
collisions with neutrals. During initialization, the program computes and stores the elec-
tron reactivities in each cell. Hydrogenic rates are evaluated using the relative velocity
between the ion and the neutral, |vi−vn|, where vi and vn are the ion and neutral veloc-
ities, respectively. For the case of collisions of the fast-ion population with a neutral, vi

represents the fast-ion velocity. For collisions between the thermal-ion population and
the neutrals, it is necessary to average the reactivity over the ion distribution function,
which is assumed to be a drifted Maxwellian with temperature Ti and toroidal rotation
velocity vrot. With the assumption that the impurity speed is negligible compared to
the speed of a hydrogenic neutral, collisions with impurities only depend on the neu-
tral speed vn. The current version of the code treats fully-stripped carbon as the only
impurity species.

Combining the three species, a typical matrix element M12 (in this case, the matrix
element for excitation from the ground state to the n=2 state) is

M12 =ne〈σv〉coll,e
12 +nd〈σv〉coll,d

12 +nCσcoll,C
12 vn,

where ne, nd, and nC are the electron, deuteron, and carbon densities. The deuterium
density is not directly measured so it is inferred using quasineutrality: nd=ne−6nC. There
is a subtlety associated with the deuterium density, however. In the core of low density
plasmas with large fast-ion populations, the fast-ion density n f can be comparable to the
thermal deuterium density. In principle, because the two populations have quite different
velocity distributions, the interaction of neutrals with these two populations should be
calculated separately. Unfortunately, a correct treatment of neutral collisions with fast
ions is quite complicated, requiring calculations similar to those in the final and most
time-consuming portion of the code. As an alternative, in the deposition of the injected
neutrals, the code ignores the distinction between fast and thermal deuterons, effectively
approximating the fast-ion stopping cross section by the thermal-ion cross section.

For all species, deexcitation rates are derived from the principle of detailed balance,
i.e.,

〈σv〉u→l =
( n2

l

n2
u

)

〈σv〉l→u ,
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where u and l represent the upper and lower quantum numbers, respectively.
With the matrix elements Mkj defined, the code proceeds to the calculation of the

neutral populations associated with the injected beam or beams. This calculation utilizes
three subroutines that are employed throughout the remaining portions of the code. One
basic subroutine (called TRACK) calculates the trajectory of a neutral through the Carte-
sian grid, returning the length of the track in each ”cell”. A second subroutine (called
COLRAD) solves the time-dependent collisional-radiative equations (Eq. (2.3)) for the
neutral densities in each state Nj; the number of Balmer-alpha radiative transitions is
also computed. A third subroutine (called SPECTRUM) calculates the Stark and Doppler
shifts of emitted photons given the local electric and magnetic fields, the velocity of the
neutral, and the direction of the photon. (The detector is assumed to measure all emitted
polarizations.) Zeeman splitting is negligible. The Doppler-shifted wavelength λ is

λ=λ0

√

1−
(v

c

)2(

1+
v‖
c

)−1
, (2.4)

where λ0 is the rest wavelength, v is the speed of the neutral, c is the speed of light, and
v‖ is the component of the neutral velocity in the direction of the emitted photon. The
electric field in the neutral frame, E=Elab+v×B, splits the Doppler shifted line through
the Stark effect. For a statistical l population, the relative intensities and shifts of the nine
spectral lines are given in [16].

Using the known beam geometry, a Monte Carlo procedure launches rays from ran-
dom positions on the source with a Gaussian distribution of velocities derived from the
specified beam divergence. Rays that clear the beam aperture are followed into the
plasma. The full, half, and third energy components are assumed to follow the same
trajectories but these three populations are treated separately as they progress into the
plasma. All neutrals are emitted in the ground state. Through solution of the collisional-
radiative equations, the densities and velocities of the full, half, and third neutrals (each
as a function of energy level n) are added to the structure that describes each cell. COL-
RAD also computes the probability of Balmer-alpha emission for each neutral ray and
SPECTRUM calculates the spectra produced by each beam component in each cell; this
beam-emission light from each cell is accumulated and stored.

As the injected beam attenuates, the code keeps track of charge-exchange events with
the deuterium population. These events are the source of halo neutrals. The fast neutrals
that produce FIDA light and NPA signals are not counted as halo neutrals, so the charge-
exchange source rate is multiplied by nd/(n f +nd) to obtain the halo source rate. (Conse-
quently, the code neglects fast ion collisions with second-generation fast neutrals.) From
the known source, the code computes the cloud of halo neutrals that surround each in-
jected beam. The initial velocity is randomly selected based on the local ion temperature
and rotation. Because the injected neutrals have large velocities and the charge-exchange
cross section is a strong function of relative energy, the true distribution of initial veloc-
ities is skewed relative to the thermal-ion distribution, but this effect is neglected in the
current version of the code. (According to [14], the deviation associated with this approx-
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imation is small.) This neutral is then followed through the cells. If a charge exchange
event happens in a cell, the particle is restarted with a new random velocity based on
the local ion temperature and rotation. The neutral is followed until it ionizes. To ob-
tain exponential probability distributions [17] for the charge exchange and ionization
events, the code computes the ratio of the track length in the cell to the mean-free path,
r=ndσCX∆l. If r>ln(1/η), where η is a uniform randomly generated number on the inter-
val [0,1], a charge-exchange event occurs in the cell. A similar comparison is performed
for ionization. For simplicity, this spatial diffusion is computed assuming that all of the
neutrals are in the ground state. (For typical parameters, this is true for 99% of the halo
neutrals, so this is an excellent approximation.) The relatively slow timescale of halo for-
mation implies that the energy occupation levels can be approximated by the steady-state
collisional-radiative balance, so this is computed after completion of the spatial diffusion
calculation. The halo densities (as a function of n) for each cell are then stored.

The code also predicts the spectrum produced by the halo neutrals. Thermal ions
that charge exchange with an injected neutral are initially far from collisional-radiative
equilibrium but subsequent generations of halo neutrals relax toward equilibrium occu-
pancy levels, so ”first-generation” thermal neutrals are treated separately from daughter
halo neutrals. The ”first-generation” or ”direct” charge-exchange light is calculated in the
same manner as the FIDA light and is described below. For the daughter halo neutrals,
according to Mandl [18], Stark splitting and distortions of the spectrum associated with
the energy dependence of the cross section are minor effects, so these effects are ignored.
The distribution of light is simply a shifted Maxwellian,

g(v‖)dv‖ ∝ exp
[

−
(v‖−v‖,rot)

2

v2
ti

]

, (2.5)

where v‖ and v‖,rot are the components of the emitted light and plasma rotation in the di-
rection of the lens, respectively, and vti is the ion thermal velocity. The associated Doppler
shift relative to the rest wavelength is ∆λ/λ0 ≃ v‖/c. The rate of emission from a given
cell is nHalo∗N3 A32, where nHalo∗ is the halo density after subtraction of first-generation
halos, N3 is the fraction of the halo population in the n = 3 state, and A32 is the Einstein
coefficient for the Balmer-alpha transition.

2.3 NPA flux

The NPA flux is found in the third stage of the code. Owing to the large mass differ-
ence between electrons and ions and to the small energy exchange in charge-exchange
reactions, the angular deflection associated with charge-exchange reactions is < 1◦ and
is ignored throughout the code. Consequently, the pitch p of the escaping neutral is de-
termined entirely by the NPA sightline geometry. The flux of neutrals with energy Ei

incident upon a collimated NPA of area A and solid angle ∆Ω is

Φ(Ei)=
∫

F(Ei,p;r,)nn(r)σcx(Ei,n
rel)V i,n

rel

∆Ω

4π
e−λ Adl(s−1), (2.6)
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where F is the fast-ion distribution function, nn is the neutral density, σcx is the charge-

exchange cross section, V i,n
rel is the relative velocity between the fast-ion and the neutral,

e−λ represents reionization of the neutrals, and dl is the differential length along the sight-
line. Evaluation of Eq. (2.6) is straightforward but there are subtleties. The fast-ion veloc-
ity vector is determined by Ei and the detector geometry, so the relative velocity is readily
computed, and hence nnσcxVrel for each of the neutral species. Since the beam divergence
is small, the relative velocity for the full, half, and third components is approximated
using the nominal velocity vector for the injected neutrals. For the halo neutrals, the
reactivity is averaged over a drifted Maxwellian.

The distribution function that is stored in the first stage of the code is the distribution
of guiding centers. The detector geometry determines the diagnostic viewing cone but
the detected particles have guiding centers that are a gyroradius from the viewing cone.
With the velocity ~v known from the viewing geometry, the gyroradius~ρ is

~ρ=
(b̂×~v)

Ωci
, (2.7)

where b̂ is the unit vector in the direction of the magnetic field and Ωci is the cyclotron
frequency. The distribution function used in Eq. (2.6) is evaluated at the guiding center
position.

The attenuation of neutrals is computed in the last part of the NPA calculation. The
code finds the cell in the detector sightline that is farthest from the detector, then com-
putes the attenuation of neutrals from that point all along the neutral path for several
energies. (This calculation is essentially the same as the deposition calculation for the in-
jected neutrals.) With the terms on the right-hand side of Eq. (2.6) known, the predicted
spectrum for each detector sightline is found by summing over the viewed cells.

2.4 FIDA radiance

The fourth stage of the code uses a weighted Monte Carlo routine to calculate the FIDA
radiance. The fast-ion density n f and the sum of injected neutral and halo neutral den-
sities ∑nn have already been calculated as a function of position. The product n f ∑nn

provides a convenient estimate of the probability of a charge exchange reaction (that
neglects the computationally intensive dependence of the reaction rate on the relative ve-
locity), so this product is used to determine how many fast neutrals to launch from each
cell. The initial position of the fast neutral within the cell is selected randomly. The initial
velocity is found using a Monte Carlo rejection test in the two dimensions that describe
the velocity distribution (energy and pitch). The gyroangle is randomly generated, the
initial position of the fast ion is shifted by a gyroradius (Eq. (2.7)), and the velocity vector
is transformed into (x,y,z) Cartesian coordinates. With the velocity now specified, the
actual reaction rate of the fast ion with each of the neutral populations can be computed;
the sum of these rates is the weight of this particular fast neutral. (In fact, each individual
fast neutral represents a ”bundle” of the entire set of neutral n states along the selected



726 W. W. Heidbrink et al. / Commun. Comput. Phys., 10 (2011), pp. 716-741

path.) Next, the trajectory of the fast neutral through the cells is computed by TRACK. As
the fast neutral travels through each cell, the time-dependent collisional-radiative tran-
sitions between states (Eq. (2.3)) is computed by COLRAD, including the number of Dα

photons that are emitted. With the velocity of the neutral known, the spectrum of the
emitted photons in each cell is computed by SPECTRUM. Finally, the properly weighted
spectrum is added to the accumulated spectra in each cell.

The calculation of the direct charge-exchange light from first-generation thermal neu-
trals is patterned after the FIDA calculation with two differences. Since the halo-light
calculation already treats light associated with multiple charge-exchange events, only
the injected neutral density is used in the calculation of the charge-exchange probability.
The fast-ion distribution function is replaced by a drifted Maxwellian with density nd.

The output of the FIDA, beam-emission, direct charge-exchange, and halo light are
stored in two forms. At the most basic level, the output is the emissivity ǫi in the direction
of the lens from each cell in units of photons/cm3/s/nm. The code also performs a simple
integration over these emissivities ǫi along the specified sightlines. For this, TRACK
computes the length of the sightline in each cell dli and the code sums ∑i ǫi dli to obtain
the radiance for each view chord in units of photons/cm2/s/nm.

More sophisticated manipulation of the output of the code is straightforward. The
computed radiance treats each view chord as an infinitely-narrow pencil beam. In real-
ity, actual chords have finite transverse extent at the focal plane and even broader spatial
extent away from the focal plane. One can easily implement more accurate integration
over the stored emissivities to model the actual optics. To model data from an imaging
camera acquired with a narrowband filter [19], a post-processor uses TRACK to inte-
grate over the thousands of camera sightlines and sums the spectra over the passband of
the filter. Optionally, this post-processor performs similar calculations for the halo and
injected-neutral light.

Note that the computed spectra neglect instrumental broadening. For comparison
with experiment, the theoretical spectra are convolved with the instrument function.

3 Verification

3.1 Atomic physics

Atomic physics cross sections are important in two places in the code: in the calculation of
neutralization probability and in the solution of Eq. (2.3) in COLRAD. The required cross
sections and reactivities are available in the literature and in the Atomic Data and Anal-
ysis Structure (ADAS) compilation [20, 21]. For COLRAD, Eqs. 9 and 10 of [22] give the
cross section for proton excitation and impact ionization from the ground state, while [23]
contains cross sections for excitation from higher states. Expressions for electron impact
ionization as a function of electron temperature Te and energy level n appear in [24]. For-
mulas for electron excitation from one energy level to another are in [25]. Impurity cross
sections are listed in Eqs. 13-16 of [22]. An alternative compilation of many of the rates
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Figure 3: Solution of Eq. (2.3) immediately following neutralization of the fast ion for a typical case (density

of 4×1013cm−3, temperature of 4keV). The total time represented by the abscissa is 11.1ns; the fast neutral
travels 3cm during this time. The evolution of the n=3 state determines the intensity of FIDA light.

appears in [26] but the effect of these differences is small compared to other uncertainties
so the current version of the code uses the older compilation by Janev [24]. In COLRAD,
rates for energy levels up to n=7 are normally employed.

For the initial neutralization probability, cross sections for the charge-exchange reac-
tions between fast ions and neutrals in states n = 1−4 are given in ADAS [20]. Charge-
exchange reactions to states with n > 4 are neglected in our calculations because these
energy levels are sparsely populated and the cross sections seem uncertain.

The calculations in COLRAD are the most time consuming portion of the code. Fig. 3
shows a typical solution following neutralization of a fast ion. Although only a small
fraction of the injected neutrals occupy higher energy levels, the cross section for charge
exchange between excited states is several order of magnitudes larger than the cross sec-
tion for charge exchange from the ground state to an excited state. Consequently, the
initial conditions for the collisional-radiative equations (Eq. (2.3)) are far from equilib-
rium. For example, for the case illustrated in Fig. 3, the steady-state occupation levels for
the injected beam are all ≪ 1% for n > 1 but, when multiplied by the cross section, the
initial occupation fractions for the N2, N3, and N4 states are ∼10, 3, and 1%, respectively.
Rapid decay of the excited states occurs in the first few cells. As a result, it is necessary to
solve the full system of equations; a reduced set of equations, such as those proposed in
Eqs. 2-7 of [15], are inaccurate when the initial n=3 occupation fraction N3 is higher than
the final occupation fraction. A fourth-order Runge-Kutta routine is adopted in the code.
As suggested by Hutchinson [15], the code selects the time step based on the smaller of
the matrix element timescales,

tscale =min
[

(M11−M22)
−1,(M11−M33)

−1
]

. (3.1)

Usually, an accuracy of <∼1% in N3 is obtained with a time step of tscale/4 but, if the solu-
tion is unphysical (e.g., negative densities or ∑i Ni >1), the solution is recomputed with
half the time step. On the basis of extensive tests, the code ordinarily uses seven energy
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levels. Surprisingly, on average, the use of 7 energy levels only takes 7% longer than cal-
culations with 4 energy levels but the accuracy is improved appreciably. (Fewer energy
levels underestimates N3 by ∼10%.) As Hutchinson notes [15], accuracy is improved by
adjusting the coefficient of the highest retained diagonal matrix element so that electrons
in the uppermost modeled state are immediately lost. Alternatively, additional energy
levels can be retained so that the uppermost states are very sparsely populated; this is
the approach adopted in FIDASIM. The number of Dα transitions is proportional to the
integral of N3 over the time in the cell; this is quickly computed with adequate accuracy
using an extended trapezoidal rule summation.

COLRAD is called each time a neutral enters a new cell. The collisional-radiative
matrix is filled at the beginning of each call. Collision rates with hydrogenic and im-
purity species must be reevaluated based on the current neutral velocity. Rather than
recomputing these rates at each call (particulary the time-consuming integration over the
Maxwellian thermal distribution), the code utilizes pre-computed look-up tables of the
rates versus neutral energy and ion temperature. (In regions where σv changes rapidly,
the look-up table presently uses steps of 0.25 and 1.0keV in temperature and fast-ion
energy, respectively.)

The accuracy of COLRAD was verified in several steps. The matrix elements M agree
to within a few percent with the values in Table 1 of [15]. (As mentioned earlier, an
exception is the diagonal elements at high n.) The code correctly reproduces the steady-
state fractions in Fig. 1 of [15].

3.2 Beam deposition

The calculation of the injected neutral density was compared with TRANSP for an NSTX
case. The neutral profiles along the y axis (perpendicular to the neutral beam source)
and along the z axis (vertical to the source) axis agree well with the TRANSP simulation
results (Fig. 4) and with neutral beam calibration data [27]. The attenuation of the beam
is also in reasonable agreement with TRANSP simulations. A summary of one of these
comparisons is shown in Fig. 5. Fig. 5(a) shows the neutral density along an NPA sight-
line from TRANSP and FIDASIM simulations. When halo neutrals are not considered,
both codes give very similar neutral density. The figure also shows that the halo neutral
density can be comparable to the injected neutral density so that the total neutral den-
sity almost doubles when halo neutrals are included in FIDASIM. (The current version
of TRANSP redistributes halo neutrals over the entire plasma volume. This approach
suffices for power balance calculations but is inaccurate for NPA and FIDA simulations.)
Fig. 5(b) shows the attenuation factors for 60keV neutrals along an NPA sightline for
the TRANSP and FIDASIM simulations. The small discrepancy between the two curves
is probably caused by the use of different cross sections or possibly by the inclusion of
multi-step ionization in FIDASIM. Calculations of the attenuation of injected neutrals
computed by TRANSP, FIDASIM, and a pencil beam code [28] show similar discrepan-
cies; in general, FIDASIM predicts slightly faster attenuation than the other two codes,
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which may be associated with a more accurate treatment of multistep ionization.

Comparisons of the NPA calculation with TRANSP are shown in Fig. 5(c) and Fig. 6.
Fig. 5(c) shows the differential contribution to the 60keV charge-exchange efflux along
an NPA sightline for an NSTX case. With halo neutrals neglected, the agreement is sat-
isfactory. Fig. 6 compares spectra after integration over the sightline. At low density,



730 W. W. Heidbrink et al. / Commun. Comput. Phys., 10 (2011), pp. 716-741

�A	T����S

�B	T����S

�C	T����S

%NERGY�KE6	
�� �� �� �� ���

��

��

��

��

LN
�.

0!
FL

U
X�

%N
ER

G
Y

��
� 	

�C
M

�
E6

�
��

S
�

	

��

��

��

��

��

��

��

��

�

��

��
W�OHALOS�42!.30	
W�OHALOS�&)$!SIM	
W�HALOS�&)$!SIM	

Figure 6: NPA energy spectra for a sightline with Rtan = 70cm from the TRANSP and FIDASIM simulations
with and without halos at three different times in NSTX discharge #122631. The density increased from
approximately 2×1013cm−3 to 5×1013cm−3 between 0.1 and 0.5s.

the agreement is satisfactory when halo neutrals are neglected in FIDASIM. At higher
densities, the spectral shapes remain similar but FIDASIM predicts smaller signals than
TRANSP; this is a consequence of the larger attenuation predicted by FIDASIM.

3.3 Halo neutrals

The halo neutral simulation portion of the code was verified by comparing with a one-
dimensional diffusion model. If we assume: (1) a uniform plasma with a circular cross-
section neutral-beam injection pattern and (2) no beam attenuation along the neutral-
beam centerline, the halo neutrals will diffuse only in the radial direction and the density
can be determined from the following simple 1-D diffusion model [29],

D
∂

r∂r

(

r
∂nh

∂r

)

=nhne〈σv〉ei−
3

∑
k=1

ninb,k(r)〈σv〉cx,k, (3.2)

where ni, ne, nb,k, and nh are the ion, electron, kth component of injected neutrals, and halo
densities, respectively, 〈σv〉ei and 〈σv〉cx,k are the electron-impact and charge-exchange
reactivities, D = Ti/mdγcx is the diffusion coefficient and γcx is estimated by the most
probable ni〈σv〉cx based on the ion temperature. The leftmost term in Eq. (3.2) represents
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the halo neutral diffusion. The term nhne〈σv〉ei is the halo decay term due to collisions
with electrons and the rightmost term is the halo formation term due to charge exchange
reactions between the primary beam neutrals and thermal ions. The halo neutral losses
through impurity impact ionization and impurity charge exchange are not included in
this simple diffusion model, but they are included in FIDASIM and they have a minor
effect (less than 5%) on halo neutral density. Eq. (3.2) is an inhomogeneous modified
Bessel equation. It is not easily solved analytically for a spatially varying beam neutral
profile but a solution exists for a constant source. To test the halo calculation, the radial
direction is divided into many regions in the FIDASIM program and plasma parameters
such as the densities are constant in each region. Then the halo neutral density solutions
for these regions can be generally expressed as

nh(r)I =C1I0(λr)+
γI

β
, (3.3a)

nh(r)I I =C2 I0(λr)+E2K0(λr)+
γI I

β
,··· , (3.3b)

nh(r)n−1 =Cn−1I0(λr)+En−1K0(λr)+
γn−1

β
, (3.3c)

nh(r)n =EnK0(λr), (3.3d)

where I0 and K0 are modified Bessel functions, λ =
√

ne〈σv〉ei/D, γj is the source term
for each region, and β = ne〈σv〉ei is the loss term. The constant coefficients Cj and Ej are
algebraically determined by matching the densities from different regions using continu-
ity of nH and its first derivative dnH/dr. The halo neutral density in the whole region
can be obtained by combining all of these analytical solutions. Fig. 7 shows the halo neu-

Figure 7: Comparison of halo neutral densities calculated from the 1-D diffusion model (Eq. (3.3)) and the

FIDASIM halo diffusion subroutine for plasma profiles with ni=ne=1.1×1014cm−3, Te=2.5keV and Ti=1.25keV.
The three dashed steps represent the densities of the full, half, and third energy components of injected neutrals
used in both codes.
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tral densities calculated from the diffusion model and the Monte-Carlo halo simulation
subroutine for identical plasma profiles. The agreement is good.

3.4 FIDA spectra

The SPECTRUM subroutine used to compute the Dα spectra and the weighted Monte
Carlo scheme were verified as follows. As part of the initial investigation of the feasibility
of FIDA, a simplified model of the expected spectra was developed that ignores atomic
physics and assumes that the magnetic field is purely toroidal; Fig. 2 of [3] shows a result
calculated by this code. To test the main FIDA simulation loop, we replaced the magnetic
field with a toroidal field and modified the cross sections to be independent of velocity.
The resulting spectra were consistent with the output of the simple model.

4 Numerics

Numerical input parameters affect both the accuracy and computational expense of a
calculation. Uncertainties in plasma parameters (particularly electron density) introduce
uncertainties in the predicted radiance or efflux of 20% or more (Appendix A of [30]),
so extremely fine grids are wasteful and unnecessary. Moreover, uncertainties in atomic
cross sections also introduce considerable uncertainties in the predictions. This section
shows examples of the sensitivity of the predicted radiance to numerical input param-
eters and provides recommendations for these choices in terms of the relevant physi-
cal processes. As in [30], we again study the case of an MHD-quiescent DIII-D plasma
(shot 122060 at t = 2.05s) with good agreement between theory and experiment for the
FIDA spectrum. The neutral-beam injection energy is 80keV in this plasma. The previous
study explored the dependence of the predictions on uncertainties in plasma parameters.
Here, we explore the dependence on numerical input parameters. Not surprisingly, the
total number of grid cells and the number of beam Monte Carlo (MC) particles affect the
computational time the most.

The original version of the code was written in the Interactive Data Language (IDL).
Recently, the fourth portion of the code, the Monte Carlo calculation of the FIDA spectra,
was converted into Fortran 90. The Fortran version of the code is an order of magnitude
faster than the IDL version. For the IDL version, on a fairly modern Dual-Core AMD
Opteron Processor running at 2.8GHz, the wall clock time spent per neutral is ∼ 10ms.
For a typical FIDA simulation with 107 reneutrals this translates to about 28 hours. About
35% of that time is spent solving collisional-radiative equations in COLRAD; calculation
of the neutralization probability is also time-consuming. For a standard DIII-D FIDA grid
size choice of {nx,ny,nz}= {31,21,21}, the preparatory steps performed in the first two
stages of the code takes about 4 additional hours. The halo neutral density calculation
and the mapping of the beam distribution function to the (x,y,z) grid take ∼1 hour each.
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4.1 Number of Monte Carlo reneutrals launched

There is a linear dependence between the number of launched neutralized fast ions (or
”reneutrals”) and the computational time in the fourth section of the code. Fig. 8(a) com-
pares the spectra at the location of peak Dα emissivity (R = 187.5cm) for several simu-
lations with varying number of launched reneutrals. To eliminate the influence of the
random number seed choice, the same seed value was used in all five simulations. Other
simulations with random seed and 107 reneutrals have shown that the MC noise is <5%,
for spectra with Eλ < 30keV. (Each wavelength is associated with an equivalent energy
along the line-of-sight known as Eλ; since the Doppler shift only measures one compo-
nent of the velocity, Eλ is the minimum energy of the reneutrals that produce a particular
Doppler shift [30].)

Numerical MC noise is proportional to 1/
√

N, where N is the number of particles in
the simulation. The computationally most expensive simulation in our study used 9×107
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reneutrals. Considering the resulting spectra as the most accurate, it is instructive to
compare the ratios of the spectra from simulations with less particles to the spectra from
this particular simulation (Fig. 8(b)). As expected, the simulation with 4×107 reneutrals
is essentially indistinguishable from that with 9×107 reneutrals. The agreement gets
progressively worse as the number of MC particles in the simulation decreases, especially
for wavelengths with high red and blue shifts, because only a small fraction of the beam
distribution function has energies close to 80keV; moreover, the likelihood of an energetic
n=3 neutral moving directly along the FIDA line-of-sight is quite small.

FIDA spectra from several radial positions are often integrated over a specific wave-
length range to obtain spatial profiles. Fig. 9 shows the calculated profiles for different
numbers of MC particles. If the spectral integration is from Eλ =10keV and above, good
spatial profiles are obtained with just 106 reneutrals but more particles are needed if the
lower limit of spectral integration is Eλ = 30keV. Therefore, two factors determine the
choice of the number of reneutrals that the code needs to launch: the integrating spec-
tral band of the diagnostics, and the energy range where the beam interaction of interest
takes place. For a FIDA diagnostic that starts integrating close to the thermal ion ener-
gies, simulations with 106 particles are sufficient. However, if the integration starts at
half the beam injection energy, ∼3 times more particles are needed. Resolving fine spec-
tral details close to the injection energy requires an additional order of magnitude more
particles.

4.2 Simulation volume

The computational grid must enclose most of the interacting beam ions and neutral par-
ticles. Fig. 10 illustrates the geometry of the beam line that injects 2.5MW of 80keV deu-
terium neutrals into the DIII-D plasma under consideration. Ten vertical FIDA sightlines
collect radiation along the beam x-axis. The fast-ion density calculated by TRANSP and
the halo and beam neutral densities calculated by FIDASIM are shown. The halo and
beam neutral densities are comparable in magnitude, while the fast-ion density is three
orders of magnitude higher because in tokamaks the fast ions are very well confined.
The dashed rectangle with x-y dimensions of 120cm by 60cm represents the standard
horizontal grid size in our simulations. The neutrals contour plots shown in Fig. 10 are
from simulations using x-y grid size of 160×120cm. The cloud of halo neutrals is ”blown”
in the direction of plasma rotation. Clearly, the 120×60cm horizontal grid size truncates
some halo neutrals but the effect on the FIDA profiles is insignificant. Further reduction
of the grid in the x-direction to 90cm truncates a sizable fraction of the halo neutrals but
the effect on the calculated spectra is still small because Dα light due to charge exchange
with these neutrals rarely reaches the vertically positioned FIDA detectors.

For vertically-viewing FIDA chords, the spatial extent in the vertical direction is most
important. The neutral beams have low divergence and, apart from steady attenuation
along the x-axis, the injected neutral profile in the y-z plane does not change appreciably.
(For example, the injected neutral profile at x = 70cm is very similar to the profile at
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Figure 10: (a) Midplane (z = 0) cross section of a quadrant of the DIII-D tokamak, showing the intersection
of the vertical FIDA sightlines (triangles) and the (x,y) coordinate system associated with the active neutral
beam. (b) Midplane halo neutral density. The distribution is asymmetrical due to the plasma flow. (c) Beam-ion
density. (d) Injected neutral density.

x=2cm that is shown in Fig. 11(a), apart from a reduction by a factor of four.) However,
the situation with the halo neutrals is dramatically different. When the injected neutrals
enter the plasma, the beam halo is limited to the region of high injected neutral density
(Fig. 11(b)). Further down the x-axis, the plasma density increases and, as more injected
neutrals charge exchange with thermal deuterium ions, the beam halo profiles spread in
both transverse directions (Fig. 11(c)).
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Blue-shifted FIDA profiles from a set of four simulations with 107 MC particles, where
a single vertical dimension was varied, are shown in Fig. 12. Our baseline simulation
uses values of the grid half-width of 30 and 40cm in the y- and z-directions, respectively.
This standard vertical grid is illustrated in Fig. 11(c). Doubling the size of the grid in the
y-direction and thus including essentially all beam halo neutrals in that direction does
not change the FIDA profile. When the y-width is reduced to 20cm, the profile uniformly
decreases by ∼5% (not shown), which is within the MC noise level. In contrast, extending
the grid in the z-direction results in a ∼10% increase in the predicted profile. If the vertical
grid dimension is reduced to a z-width of 20cm, the predicted values decrease by ∼25%.

To understand the impact of these choices on the predicted profile, consider an ex-
treme case with no halo-neutral contribution. (The FIDASIM code has an option to turn
off the halo-neutral calculation.) As shown in Fig. 13, turning off the halo produces pro-
files and spectra that are ∼ 50% lower than the baseline values. Neglect of the halo not
only affects the magnitude of the predicted signal but also affects the shape of the spa-
tial profile and of the spectrum. The profile variations are principally due to variations
in the ratio of injected: halo neutral densities along different sightlines. The spectral
variations are ultimately associated with the strong energy dependence of the charge-
exchange cross sections. Halo neutrals have lower velocities than injected neutrals, so
the relative velocity of fast ions with different velocities (and, hence, Doppler shifts) is
different for collisions with halo neutrals than for injected neutrals. Although the ”no-
halo” case shown in Fig. 13 is unrealistic, it is useful as an upper-bound on the magni-
tude of effects associated with truncation of the box-size. The variations in signal shown
in Fig. 11 depend on the fraction of the halo population that is included in the simula-
tion. These results indicate that the viewing geometry of the FIDA diagnostic ultimately
determines the extent to which the halo neutral’s volume must be included in the sim-
ulation. For FIDA chords that view horizontally, expanding the grid along the y-axis is
more important than expanding it along the z-axis.

Ultimately, the required simulation volume depends on the spatial extent of the halo,
which scales as the geometric mean of the mean-free paths for ionization and charge-
exchange evaluated at the ion temperature [31]. These mean-free paths are both inversely
proportional to the density, with only weak dependencies on Te and Ti (for typical tem-
peratures), so the required simulation volume scales approximately as 1/ne.

4.3 Cell size

Once the simulation volume in the (x,y,z) space is defined, the size of each cell needs to
be determined. The calculated signals are line integrals over three-dimensional emissiv-
ity profiles. Fig. 14 shows a two-dimensional example. If the grid is too coarse, pixelation
is evident in the resulting profile. The severity of this effect depends primarily on the
gradient of the emissivity profile in directions perpendicular to the sightline; pixelation
is also more severe when a sightline is oriented along one of the (x,y,z) axes.

Physically, the emissivity profiles depend on numerous quantities including the beam
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Figure 12: Dependence of the calculated FIDA radiance on the volume of the simulation. The spectra are
integrated over wavelengths above Eλ =10keV.

Figure 13: (a) Ratio of the blue-shifted FIDA radiance for simulations without halo neutrals and with halo
neutrals vs. major radius. The spectra are integrated over wavelengths above Eλ = 10keV. (b) Ratio of the
FIDA spectral radiance for simulations without halo neutrals and with halo neutrals for the FIDA channel at
R=187.5cm. Two values of Eλ are indicated.

Figure 14: (a) FIDA emissivity in an (x,z) plane, with the standard (33×21) grid boundaries overlaid. The red
lines illustrate the range of sightline angles graphed in the lower figure. (b) Calculated radiance vs. sightline
angle for different choices of grid size in the (x,z) plane. The flat portions of the curves are caused by pixelation.

injection geometry and the plasma parameters; gradients in any of these quantities im-
pact transverse emissivity gradients. The FIDA and NPA emissivities are approximately
proportional to the product of fast-ion and neutral densities, n f ∑nn; these typically change
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over scale lengths of several centimeters. The injected neutral light depends on the beam
attenuation and can change appreciably in a few centimeters for densities >∼5×1013cm−3.
Generally speaking, owing to the line integration, the cell size in the approximate direc-
tion of the sightlines can be twice as large as in transverse directions.

Finer grids increase the computational expense. Our baseline simulations for the
nominally vertical sightlines shown in Fig. 10(a) employ x-y-z grid cells of 4×3×4cm.
To study the effect of coarser or finer grids, we use the standard 120×60×80cm com-
putational domain and 107 particles. Refining the grid size in the vertical direction to
4×3×0.8cm or, in the horizontal direction, to 2.5×1.2×4cm increases the number of grid
cells ng by a factor of 5 and 3.6, respectively. The corresponding computational times are
63% and 22% higher. The effect of these changes on the calculated spatial profiles inte-
grated above Eλ = 10keV is negligible. Coarsening of the x-y-z grid size to 6×4×5.5cm
leads to a computational time savings of ∼ 25%. For this case, the FIDA spatial profile
resembles the baseline but deviates slightly more than expected from the MC noise level.
While further coarsening of the grid to 12×10×14cm leads to a computational savings of
35%, the profile is deformed in shape and has decreased values between 10% and 40% at
different radial chord locations.

To avoid pixelation in simulations of two-dimensional imaging data with thousands
of sightlines, cell sizes need to be 1-2cm. On the other hand, because the bandpass filters
employed in imaging diagnostics average over wavelength, coarse velocity-space grids
are permissible.

5 Validation

The calculation of the injected neutrals was compared with experimental measurements
of the beam-emission light in a DIII-D experiment [32]. After passing through a bandpass
filter, two-dimensional images of the light were measured with a CCD camera. The code
predictions are in good agreement with measurements of the vertical extent of the beam
and of the beam penetration as a function of density.

In a recent DIII-D experiment [33], halo light was measured for sightlines that are
outside the footprint of the injected neutral beam. Good agreement with code predictions
is observed.

The first detailed quantitative comparison of the predicted FIDA spectrum with ex-
periment was reported in [34]. In MHD-quiescent DIII-D plasmas, code predictions
based on the fast-ion distribution function predicted by NUBEAM have the same spectral
shape as experiment and the intensity of the FIDA signal agrees to within 25%. A later
DIII-D experiment [35] also found agreement to within about 25% between the spectral
shape, radial profile, and absolute intensity for quiet plasmas with ion temperatures be-
low ∼3keV.

A two-dimensional measurement of the profile of FIDA light was made with a band-
pass filter and imaging CCD camera on DIII-D [19]. The profile shape and dependence
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of the signal on beam-injection angle agreed well with code predictions.

FIDASIM predicts the radiance from the injected beam, the halos, and the fast ions. In
addition, a post-processor that uses the output of the second stage of the code calculates
the expected visible bremsstrahlung radiance. Comparison of the relative intensity of
these four features is a useful check that is independent of any experimental errors in the
intensity calibration. To date, the most detailed comparison of this type was performed
on ASDEX-Upgrade [36] and shows good agreement for all four spectral contributions.

6 Outlook

With plasma profiles and a fast-ion distribution function as input, FIDASIM predicts the
flux measured by NPAs and the radiance measured by a Dα spectrometer. The code has
a rather complete physics model that treats the atomic physics of these processes with
scarcely any approximations. One possible area of improvement is a post-processor that
replaces the approximation of infinitesimal sightlines with an accurate treatment of the
collection optics. A more challenging upgrade is needed to treat plasmas where the fast-
ion density is comparable to the thermal-ion density.

The present code is computationally intensive. Parallelization of the MC routines or
further optimization of the most time consuming subroutines is desirable. A complemen-
tary reduced model that is sufficiently fast to make predictions between discharges (for
example) is needed.

Although many aspects of the code have been successfully validated by experiment,
additional comparisons are desirable. The FIDA predictions have been validated in con-
ventional tokamaks but have not yet been confirmed in a spherical tokamak. Validation
of the NPA model is also a future task.
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