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Abstract

Sulfonylureas, a commonly-used class of medication used to treat type 2 diabetes, have been 

associated with an increased risk of cardiovascular disease. Their effects on QT interval duration 

and related electrocardiographic phenotypes are potential mechanisms for this adverse effect. In 

eleven ethnically diverse cohorts that included 71 857 European, African American, and Hispanic/

Latino ancestry individuals with repeated measures of medication use and electrocardiogram 

(ECG) measurements, we conducted a pharmacogenomic genome-wide association study of 

sulfonylurea use and three ECG phenotypes: QT, JT, and QRS intervals. In ancestry-specific meta-

analyses, 8 novel pharmacogenomic loci met the threshold for genome-wide significance (P < 5 x 

10−8), and a pharmacokinetic variant in CYP2C9 (rs1057910) that has been associated with 

sulfonylurea-related treatment effects and other adverse drug reactions in previous studies was 

replicated. Additional research is needed to replicate the novel findings and to understand their 

biological basis.

INTRODUCTION

Sulfonylureas are the oldest class of oral glucose-lowering therapy used to treat type 2 

diabetes, and despite the emergence of several new classes of diabetes drugs in recent years,1 

sulfonylureas remain the most widely prescribed oral therapy after metformin.2 Since the 

University Group Diabetes Program trial found that the first-generation sulfonylurea 

chlorpropamide increased the risk of cardiovascular mortality over 40 years ago,3 there have 

been concerns about the cardiovascular safety of sulfonylureas. Several studies since then 

have found that treatment with sulfonylureas is associated with an increased risk of 

cardiovascular events and mortality compared with other glucose-lowering drugs.4, 5

As one potential mechanism of cardiovascular toxicity, sulfonylureas can prolong the QT 

interval,6, 7 a marker of cardiac repolarization that is associated with fatal arrhythmias and 
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sudden cardiac death.8–12 Indeed, QT prolongation has been one of the most common safety 

issues leading to drug withdrawals from the market.13, 14 Since 2005, the Food and Drug 

Administration has required clinical studies to evaluate whether a new drug prolongs the QT 

interval greater than 5 millisecond (ms) prior to regulatory approval.15

Variation in the QT interval is heritable,16, 17 and large scale genome-wide association 

(GWA) studies have identified at least 35 genetic loci associated with this trait, which 

collectively explain about 10% of inter-individual variation in the QT interval.18 

Pharmacogenomic studies of sulfonylurea use and the QT interval may help to unravel the 

biologic mechanisms underlying the cardiovascular toxicity of sulfonylureas. However, 

previous pharmacogenomic studies of the glucose-lowering or adverse effects of 

sulfonylureas have been small and focused on candidate genes,19–22 and most findings have 

not replicated.23, 24 In the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium Pharmacogenomics Working Group, a previous GWA study of 

sulfonylurea-QT interactions that included approximately 30 000 European ancestry 

individuals with cross-sectional measures of drug use and the QT interval did not identify 

any pharmacogenomic loci at genome-wide levels of significance.25

To increase our power to identify novel pharmacogenomic loci for sulfonylureas, we 

extended this effort to include several additional diverse-ancestry cohorts with a high 

prevalence of sulfonylurea use. Additionally, we incorporated repeated measures of drug 

exposure and phenotype with novel analytic methods.26 Because genetic variants can have 

different effects on the two components of the QT interval27 -- the JT interval, which 

measures primarily repolarization, and the QRS interval, which measures primarily 

conduction and depolarization -- we also extended our analyses to include them.

METHODS

Study Population and Overview

Eleven cohorts participated in this meta-analysis from the CHARGE28 Pharmacogenomics 

Working Group: Age, Gene/Environment Susceptibility – Reykjavik Study (AGES); 

Atherosclerosis Risk in Communities (ARIC) Study; Cardiovascular Health Study (CHS); 

Health, Aging, and Body Composition (Health ABC); Hispanic Community Health Study/

Study of Latinos (HCHS/SOL); Jackson Heart Study (JHS); Multi-Ethnic Study of 

Atherosclerosis (MESA); Netherlands Epidemiology of Obesity (NEO) Study; Prospective 

Study of Pravastatin in the Elderly at Risk (PROSPER); Rotterdam Study cohorts 1 and 2; 

and the Women’s Health Initiative (WHI) (Supplementary Text). Cohorts contributed results 

from European ancestry (EA), African American (AA), and/or Hispanic/Latino ancestry 

(HA) populations. All cohorts had at least one study visit with an assessment of medication 

use and a resting 12-lead electrocardiogram (ECG); AGES, ARIC, CHS, the Rotterdam 

Study, MESA, and WHI had multiple study visits with these assessments and contributed 

repeated measures. Each cohort followed a pre-specified analysis protocol, and findings 

from within-cohort analyses were combined in three sets of ancestry-specific meta-analyses 

(EA, AA, HA) for three ECG phenotypes (QT, JT, and QRS intervals), for a total of nine 

primary analyses. All available cohorts were included in this single discovery effort, rather 

than a two-stage design with discovery and replication, to improve our power to identify 
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significant pharmacogenomic interactions.29, 30 This study was approved by the institutional 

review board of each cohort.

Inclusion and Exclusion Criteria

Participants with genome-wide genotype data and with ECG measurements and medication 

assessments at the same study visits were eligible. The following exclusion criteria were 

applied: poor ECG quality; atrial fibrillation; second or third degree atrioventricular heart 

block; QRS interval > 120 ms; a paced rhythm; history of heart failure; pacemaker 

implantation; pregnancy; and ancestry other than European, African American, or Hispanic/

Latino. For studies with repeated measures, exclusion criteria were applied for each visit-

specific observation.

Drug Exposure Assessment

Sulfonylurea drugs are listed in Supplemental Table 1. Sulfonylurea use was assessed 

through medication inventories conducted at study visits, or using information from a 

pharmacy database for the Rotterdam Study (Supplemental Table 2). Some cohorts assessed 

medication use on the day of the study visit, while others assessed medication use within an 

interval of time prior to the study visit, typically 2 weeks. For cohorts with repeated 

measures, the number of participants exposed to sulfonylureas (Nexposed) was the sum of the 

estimated number of independent observations at which each participant was exposed, 

calculated from the following equation:

where the summand is the product of the estimated number of independent observations and 

the proportion of observations at which a participant was exposed,31 with ni being the 

number of observations for participant i, ρ̂ an estimate of the pairwise visit-to-visit 

correlation in outcome within participants from a generalized estimating equation (GEE)-

exchangeable model that does not contain genetic data, and #{Eit = 1} the number of 

observations for which participant i was exposed.26

Phenotype Measurement

QT and QRS intervals were recorded from resting, supine or semi-recumbent, standard 12-

lead ECGs (Supplemental Table 2). Across all cohorts, comparable procedures were used for 

preparing participants, placing electrodes, recording, transmitting, processing, and 

controlling the quality of ECGs. Cohorts used Marquette MAC 5000, MAC 1200, or MAC 

PC (GE Healthcare, Milwaukee, Wisconsin, USA), Burdick Eclips 850i (Cardiac Science, 

Manchester, UK), or ACTA (EASOTE, Florence, Italy) machines. Recordings were 

processed using Marquette 12SL, MEANS, or University of Glasgow software. The JT 

interval was calculated by the formula: JT = QT – QRS.
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Genotyping and Imputation

All cohorts performed genome-wide genotyping with either Affymetrix (Santa Clara, CA, 

USA) or Illumina (San Diego, CA, USA) arrays, and used similar quality control thresholds 

for excluding samples and single nucleotide polymorphisms (SNPs) (Supplemental Table 3). 

Sex mismatches, duplicate samples, and first-degree relatives (except in HCHS/SOL and 

JHS) were excluded. DNA samples and SNPs with call rates less than 90–98%, depending 

on the cohort, were excluded. Within each cohort, SNPs with minor allele frequencies 

(MAF) less than 1% or that failed Hardy-Weinberg equilibrium were excluded.

Genotypes were imputed using ancestry-specific HapMap2,32–34 HapMap3, 1000 Genomes 

Phase 1, or 1000 Genomes Phase 3 reference panels (Supplemental Table 3).35, 36 Genotypes 

imputed from build 37 of the human genome were lifted over to build 3637, 38 to enable 

comparisons between imputation platforms, and all results were restricted to SNPs present in 

HapMap2.

Statistical Analysis

GWA analyses were performed by each cohort separately, and ancestry-specific results for 

each ECG phenotype were combined with meta-analysis. Within each cohort, for 

approximately 2.5 million genotyped or imputed autosomal SNPs, sulfonylurea-SNP 

interactions were estimated with an additive genetic model using mixed effects models, 

GEE, or linear regression with robust standard errors. The analytic model varied based on 

the study design and the availability of longitudinal data (Supplemental Table 4). All 

analyses were adjusted for age, sex, study site or region, principal components of genetic 

ancestry, visit-specific RR interval (inversely related to heart rate), and visit-specific use of 

QT prolonging medications. The QT-prolonging effect of medications was categorized as 

definite, possible, or conditional, according to the University of Arizona Center for 

Education and Research on Therapeutics (UAZ CERT) system of classification, and adjusted 

for as binary variables for each category (presence of any versus none).39 HCHS/SOL 

incorporated estimates of relatedness into all analyses. Cohort-specific results were 

corrected for genomic inflation.

Previous simulations demonstrated that models using robust standard errors underestimate 

the variance of coefficient estimates for SNPs with low MAFs.26 To account for this, 

corrected standard errors were calculated using a t distribution as the reference distribution. 

Cohort and SNP-specific degrees of freedom (df) for the t distribution were estimated 

primarily using Satterthwaite’s method.40 For cohorts unable to implement Satterthwaite’s 

method, an approximate df was calculated as two times the cohort- and SNP-specific 

product of the SNP imputation quality (0–1), MAF (0.00–0.50), and Nexposed. Standard 

errors were then corrected by assuming a normal reference distribution that yielded the t 
distribution-based P values from the coefficient estimates. Furthermore, because simulations 

demonstrated that corrected standard errors were unstable when minor allele counts among 

the exposed were low, an approximate df filter of 10 was applied to cohort-specific results 

across all SNPs.
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Primary analyses—For each ECG phenotype and for each ancestral population, SNP-by-

treatment interaction coefficients and corrected standard errors were combined with inverse-

variance weighted meta-analysis using METAL.41 SNPs had to meet quality control criteria 

and pass the df filter in at least two studies to be included. The threshold for statistical 

significance was P < 5x10−8, which has been used in other GWA studies of correlated 

phenotypes.42, 43 For each locus with multiple SNPs meeting the threshold for statistical 

significance, a lead SNP with the lowest P value was identified. Significant loci and loci at 

suggestive levels of statistical significance (P < 10−6) were annotated using information from 

several genomics and bioinformatics databases. RefSeq genes within 500 kb of lead SNPs 

were identified from the UCSC Genome Browser.44 The NHGRI-EBI GWAS Catalog was 

queried for other traits associated with lead SNPs in GWA studies.45 HaploReg (Broad 

Institute) was queried to identify missense coding variants in linkage disequilibrium (LD) 

(R2 < 0.8) with lead SNPs.46 Cis-expression quantitative trait loci (cis-eQTLs) in LD with 

lead SNPs were identified from several gene expression databases, including ScanDB and 

the Broad Institute GTEx Portal, that include samples from multiple cell lines and tissue 

sites, including whole blood, leukocytes, subcutaneous adipose, skeletal muscle, lung, skin, 

fibroblasts, arterial wall, and left ventricular and atrial heart tissue.47

Secondary analyses—All ancestry-specific summary results were combined in a trans-

ethnic inverse-variance weighted meta-analysis using METAL. Because effects may be 

heterogeneous across different racial/ethnic populations,48, 49 we conducted additional trans-

ethnic analyses using the Bayesian MANTRA method, with a genome-wide significance 

threshold of log10(Bayes Factor [BF]) > 6.50

Previous candidate gene pharmacogenetic studies have identified several pharmacokinetic 

and pharmacodynamic loci for sulfonylurea-associated glucose-lowering effects and 

hypoglycemia.19–23, 51–54 Also, large-scale GWA studies have identified 35 replicated 

genetic loci for QT interval main effects.18 For these candidate SNPs, the P value threshold 

for statistical significance was 0.05 divided by the total number of tests conducted across all 

ECG phenotypes and populations: 0.05 / 158 = 3.2 x 10−4.

For the QT interval, we also assessed for enrichment of candidate SNP-by-treatment 

interactions with a high probability of being functional for cardiac conduction and 

repolarization phenotypes. SNPs that fell within 50 kb of transcripts that are preferentially 

expressed in the left ventricle were identified using the GTEx database (839 transcripts). 

SNPs in these gene regions were filtered to those falling within DNAse I hypersensitivity, 

H3K4me3 or CTCF chip-seq peaks assayed in human cardiomyocytes from the NIH 

Roadmap Epigenomics Consortium (http://www.roadmapepigenomics.org). Additionally, 

SNPs that were eQTLs in left ventricle tissue (P < 1 x 10−10) were selected.55, 56 All variants 

were pruned using ancestry-matched LD patterns from the 1000 Genomes project at a level 

of R2 > 0.5,57 resulting in 9 004, 8 424 and 5 437 candidate SNPs for EA, AA and HA 

analyses respectively. The P value threshold for statistical significance for these candidate 

SNP analyses was 0.05 divided by the total number of SNPs selected (P < 5.6 x 10−6 for EA, 

P < 5.9 x 10−6 for AA, and P < 5.6 x 10−6 for HA). The selection of candidate SNPs was 

validated by evaluating enrichment for low P value variants using main-effect SNP 

associations from the QT Interval-International GWAS Consortium.58
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RESULTS

Characteristics of the 11 cohorts and 21 ancestry-specific analysis populations are listed in 

Table 1. There were 45 002 EA participants (Nexposed 2 095 [4.7%]), 11 731 AA participants 

(Nexposed 1 167 [9.9%]), and 15 124 HA participants (Nexposed 794 [5.2%]), for a total of 71 

857 (Nexposed 4 056 [5.6%]). Mean durations of ECG intervals ranged from 397 to 414 ms 

for QT, 300 to 325 ms for JT, and 85 to 98 ms for QRS. The correlation between traits was 

evaluated among EA and AA participants of CHS: QRS and JT were highly correlated (R2 > 

0.5), while QRS was not correlated with either QRS or JT (R2 < 0.1).

Primary analysis results

Sulfonylurea-SNP interaction results from cohort-specific GWA analyses were well-

calibrated: genomic inflation factors for ancestry-specific meta-analyzed results ranged from 

to 0.97 to 1.04 (Supplemental Table 5). A total of 31 sulfonylurea-SNP interaction 

associations met the genome-wide threshold for significance, comprising 8 unique loci 

(Figure, Table 2). Each locus was significant for only one of the three ECG phenotypes (2 

QT, 5 JT, 1 QRS) and in only one racial/ethnic population (3 EA, 5 AA). Absolute values for 

effect sizes ranged from 4 to 16 ms. All loci were intergenic and none had substantial LD 

with coding variants. Supplemental Table 6 lists the SNP-phenotype associations for the 8 

significant loci in each ancestry-specific meta-analysis; none reached even nominal levels of 

significance in the other populations (P < 0.05).

The TM2D1-NFIA locus (rs1890262) on chromosome 1 was approximately 200 kb away 

from a locus associated with QRS interval main effects; NFIA encodes a transcription factor 

of unknown significance for cardiac tissue development.59 A locus on chromosome 2 

(rs12468579) was 2 kb away from GLS and was also identified as a cis-eQTL for GLS and 
MFSD6 transcripts in blood, lung, and prostate;60–63 GLS encodes glutaminase, which 

catalyzes the production of glutamine, the most abundant excitatory neurotransmitter in the 

central nervous system.64 The chromosome 3 locus (rs1478173) was approximately 115 kb 

away from a locus for coronary artery disease.65 The only locus associated with another trait 

(periodontitis) in a previous GWA study was rs9966832 near SS18 on chromosome 18.66

Among the 37 suggestive associations (P value < 10−6 but > 5 x 10−8) (Supplemental Table 

7), 15 (41%) were intronic, one was a missense variant, three were in LD (r2 > 0.8) with 

missense variants, and five were cis-eQTLs in multiple tissues. Several of the sub-threshold 

loci were located in or near genes that might be relevant to cardiac conduction, 

repolarization, or arrhythmogenesis. For example, rs6035275 is an intronic SNP in 

SLC24A3, a potassium-dependent sodium/calcium ion exchanger that plays a role in 

calcium homeostasis,67 and rs624896 is located 24 kb away from KCNN2, a voltage-

independent calcium-activated potassium channel that helps to regulate neuronal electrical 

conduction.68

Secondary analysis results

Trans-ethnic fixed effects meta-analyses and MANTRA analyses did not identify any 

additional loci (results not shown). Among the candidate SNPs, only one was significantly 
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associated with an ECG phenotype when multiple comparisons were accounted for (Table 

3). This SNP, rs1057910 (Ile359Leu), is a loss of function variant that defines the *3 

haplotype of CYP2C9, a highly polymorphic cytochrome P450 (CYP) enzyme that 

metabolizes 15–20% of all known drugs that undergo phase I oxidative metabolism.69 For 

the sulfonylurea-SNP interaction, the minor allele of rs1057910 was associated with a 7.6 

ms (standard error [SE] 2.1 ms) decrease in the QT interval (P = 2.3 x 10−4) in HA cohorts 

(MAF 0.05), but not in EA cohorts (MAF 0.07). This SNP did not meet filtering criteria for 

meta-analysis in the AA cohorts. The more common functional variant (rs1799853) that 

defines the *2 haplotype of CYP2C9 (MAF 0.13 in EA, 0.09 in HA) was also evaluated, but 

it was not significantly associated with any of the ECG phenotypes.

Selecting additional candidate SNPs based on bioinformatic analysis of annotation from 

cardiac gene expression and regulatory marks active in cardiomyocytes did not identify 

additional loci. While these variants were enriched for signals among main-effects QT 

analyses (Supplemental Figure 1), none met our statistical significance threshold for 

sulfonylurea-SNP interactions with the QT, JT or QRS intervals (Supplemental Figure 2).

DISCUSSION

In this study, we identified eight novel loci for sulfonylurea-genetic interactions with the QT, 

JT, and QRS intervals. For seven of these pharmacogenomic associations, the effect size was 

> 5ms, the threshold for regulatory concern established by the FDA. Compared to our 

previous effort, which included 869 sulfonylurea users among approximately 30 000 EA 

participants and failed to identify any genome-wide significant loci, this effort included over 

4 000 sulfonylurea users among over 70 000 participants from diverse ancestries. 

Broadening the racial/ethnic composition of the study population and extending our 

investigation to related ECG phenotypes improved our ability to identify pharmacogenomic 

loci; most were identified in AA populations and for the JT interval.

Some of the novel pharmacogenomic loci discovered in our study were near (but not in LD 

with) loci for related traits, such as the NFIA locus for QRS interval main effects59 and a 

locus on chromosome 3 for coronary artery disease.65 None of the eight loci were near genes 

that have a clear role in cardiac conduction or repolarization, and even with the use of 

several bioinformatics resources, the biologic mechanism that would explain these drug-

gene interactions are unknown. Among the loci that did not meet the genome-wide threshold 

for statistical significance but had a P value < 10−6, several were located in or near 

potassium ion channels or ion exchanger genes involved in electrical conduction. Without 

rigorous statistical evidence to support these sub-threshold associations, however, their 

validity is uncertain and replication is needed.

We also assessed candidate SNPs involved in the pharmacokinetics and pharmacodynamics 

of sulfonylureas and SNPs associated with the QT interval in main effects GWA analyses. 

Among these SNPs, only a well-known functional variant in CYP2C9 was identified as a 

pharmacogenomic locus in our study, and among HA participants only. Variant rs1057910 

(CYP2C9*3) reduces the catalytic activity of CYP2C9, the main CYP isoenzyme involved 

in the metabolism of sulfonylureas,69, 70 and this variant has been associated with severe 
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skin reactions from phenytoin use71 and warfarin-related hemorrhage.72, 73 Allele 

frequencies for rs1057910 were similar among HA and EA participants in our study, which 

has also been reported elsewhere.69, 74 To our knowledge, only one previous study has 

identified CYP2C9 as a pharmacogenomic locus in a HA population; 75 among 122 male 

Puerto Rican patients on warfarin therapy, functional variants in CYP2C9 and VKORC1 

were associated with lower warfarin dose requirements and a higher risk of warfarin adverse 

effects.76 Other studies, conducted primarily in EA populations, have evaluated the impact 

of CYP2C9 functional variants on sulfonylurea-related treatment response and adverse 

effects. In one study, the presence of either the CYP2C9*2 or the CYP2C9*3 haplotype was 

associated an increased reduction in hemoglobin A1c and an increased probability of 

achieving adequate glycemic control,19 and in another study these variants were associated 

with an increased risk of hypoglycemia among elderly persons.77

In our study, the variant rs1057910 was associated with a shorter QT interval among HA 

participants. This was a surprising finding, because reduced function variants in CYP2C9 
decrease the clearance of sulfonylureas,70 which would be expected to prolong the QT 

interval. A short QT interval, which can be hereditary or acquired, has been associated with 

cardiac arrhythmias and an increased risk of death.78–80 Various drugs can also shorten the 

QT interval, and whether drug-induced shortening of the QT interval causes cardiac 

arrhythmias is an area of debate.81 Although many pharmacogenomic findings for diabetes 

drugs23, 24 and for other types of drug therapies82, 83 have failed to replicate in the past, 

there is now a growing body of evidence that rs1057910 may be a genuine 

pharmacogenomic locus for sulfonylureas. Whether this variant contributes to the increased 

cardiovascular risk associated with sulfonylureas in a subset of the population is uncertain.

Strengths of our study include repeated high-quality phenotype measurements recorded from 

ECGs conducted at study visits, a large sample size, and the inclusion of diverse ancestry 

populations. There were also several limitations. With the exception of the two cohorts from 

the Rotterdam Study, medication use was assessed with the inventory method,84 and some 

participants classified as sulfonylurea users may have failed to take the medication on the 

day of the study visit. However, changes in diabetes medications typically occur over a 

period of months or years rather than weeks, and this type of misclassification would bias 

associations toward the null, decreasing power to identify pharmacogenomic associations. 

By the same rationale, this type of misclassification is expected to decrease rather than 

increase the chance of false positive findings.

Because all available analysis populations from the CHARGE consortium were included in a 

single-stage discovery analysis, which is a more powerful approach than a two-stage 

approach that includes separate discovery and validation samples,29, 30 there was no 

opportunity to assess the validity of our findings through replication in independent study 

populations. The increasing availability of electronic health data and the decreasing cost of 

genotyping has led to the emergence of a new model for genomic discovery research: 

biobanks that link genetic data on tens or even hundreds of thousands of individuals with 

prescription records and other electronic health data to create large data repositories. Some 

biobank studies, such as the UK Biobank85, have conducted ECGs as a part of study visits, 

while others86 may have access to ECGs obtained through clinical care. Although the large 

Floyd et al. Page 8

Pharmacogenomics J. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample sizes in these biobank studies may be attractive for pharmacogenomics research, 

results from ECGs and other clinical tests that are conducted during the course of clinical 

care may be related to the indication for conducting the test, which can result in confounding 

and false positive associations.

In conclusion, we have identified several novel loci for sulfonylurea-related changes in 

various ECG phenotypes in a large multi-site pharmacogenomics study conducted within the 

CHARGE consortium. Although these findings may explain some of the cardiovascular risk 

associated with sulfonylureas for some individuals, replication in independent study 

populations is necessary and further work is needed to determine the genetic and biologic 

mechanisms of these drug-gene interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 
Manhattan plots from each ancestry specific meta-analysis (row) for sulfonylurea-SNP 

interaction associations with each ECG phenotype (column). The dashed line is the genome-

wide threshold for significance (P < 5 x 10−8). The solid line is the threshold for suggestive 

associations (P < 10−6). SNPs with P values < 10−10, outside of the range of the Y axis, are 

denoted by triangles.
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