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S. Ross. Striated muscle-specific B;p-integrin and FAK are
involved in cardiac myocyte hypertrophic response pathway.
Am J Physiol Heart Circ Physiol 279: H2916-H2926,
2000.—Alterations in the extracellular matrix occur during
the cardiac hypertrophic process. Because integrins mediate
cell-matrix adhesion and B;p-integrin (B1D) is expressed
exclusively in cardiac and skeletal muscle, we hypothesized
that 1D and focal adhesion kinase (FAK), a proximal inte-
grin-signaling molecule, are involved in cardiac growth. With
the use of cultured ventricular myocytes and myocardial
tissue, we found the following: 7) 1D protein expression was
upregulated perinatally; 2) «,-adrenergic stimulation of car-
diac myocytes increased 31D protein levels 350% and altered
its cellular distribution; 3) adenovirally mediated overex-
pression of 31D stimulated cellular reorganization, increased
cell size by 250%, and induced molecular markers of the
hypertrophic response; and 4) overexpression of free 1D
cytoplasmic domains inhibited o;-adrenergic cellular organi-
zation and atrial natriuretic factor (ANF) expression. Addi-
tionally, FAK was linked to the hypertrophic response as
follows: 1) coimmunoprecipitation of B1D and FAK was de-
tected; 2) FAK overexpression induced ANF-luciferase; 3)
rapid and sustained phosphorylation of FAK was induced by
a;-adrenergic stimulation; and 4) blunting of the «;-adren-
ergically modulated hypertrophic response was caused by
FAK mutants, which alter Grb2 or Src binding, as well as by
FAK-related nonkinase, a dominant interfering FAK mu-
tant. We conclude that 31D and FAK are both components of
the hypertrophic response pathway of cardiac myocytes.

neonatal rat ventricular myocytes; heart; cell signaling; ex-
tracellular matrix; focal adhesion kinase

MECHANICAL LOADING OF THE POSTNATAL HEART leads to
changes in cardiac gene expression as well as hyper-
trophic growth of the terminally differentiated cardiac
myocyte (22, 52, 67). Whereas this process is initially
compensatory, its progression will eventually lead to
cardiac pump failure (43). The molecular pathways
that orchestrate both the compensatory growth re-
sponse as well as the transition to heart failure are not

fully understood. As cardiac hypertrophy develops,
changes in the cardiac extracellular matrix occur and
have been suggested to play an important role in this
process (15, 63).

The integrins compose a large family of het-
erodimeric cell surface receptors that are composed of
a- and B-subunits and link the extracellular matrix to
the cellular cytoskeleton. Intracellular signals modify
integrin affinity for ligand through a process termed
“inside-out signaling.” After interaction with the extra-
cellular matrix, signals are transmitted by integrins to
the cell cytoplasm through “outside-in signaling.” As
such, the integrins function as bidirectional cell signal-
ing molecules. Transmission of intracellular signals
after integrin ligation is dependent upon integrin cy-
toplasmic domains, although the molecular basis of
this mechanism as well as the full complement of
signaling cascades that are activated by integrins re-
main poorly defined. Focal adhesion kinase (FAK) has
been identified as the key cytoplasmic tyrosine kinase
that transmits integrin-mediated signals in several
cell types (37, 56). Several signaling events have been
linked to the integrins, including modulation of cell
growth and cytosolic Ca®*, activation of p21 Ras, mi-
togen-activated protein kinases (MAPKs), and induc-
tion of immediate-early genes (10). In noncardiac cells,
the integrins have also been found to act as mechano-
transduction molecules, converting mechanical signals
to biochemical ones (11, 31).

Alternative splicing of various integrin subunits has
been identified, including a-subunits 3, 6, and 7 as well
as B-subunits 3 and 4. Similarly, the B-integrin subunit
that is dominantly expressed in cardiac tissue, 3;, has
been identified to have at least four splice variants,
with the variations found in the cytoplasmic/signaling
domain of the molecule (17). The most highly expressed
isoform that is detected in most tissues is termed 4.
Bip is expressed in high amounts only in the skin and
liver, whereas the B;-isoform appears to be expressed
ubiquitously but at low levels. The most recently iden-
tified integrin splice variant, termed 3,5 (B1D), is ex-
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pressed exclusively in the skeletal muscle and heart
(66, 70).

Little is known about the function of integrins in the
heart. We and others (48, 51, 63) have recently begun
to characterize the role of integrins in cardiac hyper-
trophy. Our previous work linked B;-integrins to the
adrenergically induced hypertrophic response of cul-
tured neonatal ventricular myocytes. We showed that
overexpression of the ubiquitously expressed (3;4-inte-
grin markedly augmented the phenylephrine (PE)-in-
duced hypertrophic response and that disruption of
normal integrin signaling caused downregulation of
the stimulated atrial natriuretic factor (ANF) response
before alteration of cellular morphology. These find-
ings indicated that integrin adhesion and signaling
play a role in the cardiac hypertrophic response path-
way.

Because B1D has restricted expression to striated
muscle and little is known about its role in the cardi-
omyocyte, we studied its expression, function, and sig-
naling in the cardiac cell. For these experiments, we
utilized a well-characterized cell culture model of neo-
natal rat ventricular myocytes (NRVM) as well as
cultured embryonic cardiac cells. 31D became upregu-
lated in the late fetal period and was highly expressed
postnatally. Forced overexpression of B1D in the fetal
cardiomyocyte, which normally expressed little 1D,
did not alter DNA synthesis. Adrenergically mediated
hypertrophy of neonatal cardiac cells caused induction
and cellular redistribution of B1D. Overexpression of
B1D stimulated hypertrophic marker gene expression
and cellular reorganization and increased cell size.
Expression of free cytoplasmic domains of 31D, which
is known to inhibit integrin signaling, prevented ad-
renergically mediated cell organization and ANF ex-
pression. FAK was also examined and found to be a
component of the hypertrophic signaling pathway.
This was evidenced by coimmunoprecipitation of 31D
and FAK, hypertrophic marker gene induction by FAK
overexpression, rapid and sustained phosphorylation
of FAK by PE, and blunting of the adrenergically
modulated hypertrophic response by FAK mutants.
These results suggest that 31D and FAK play roles in
the hypertrophic growth of the cardiac muscle cell.

EXPERIMENTAL PROCEDURES

Cell cultures. NRVM from ventricles of 1- to 2-day-old
Sprague-Dawley rats were cultured as previously described
(51). Cell cultures with >95% myocytes, as assessed by im-
munofluorescence with myosin light chain-2 ventricular an-
tisera, were obtained by discontinuous Percoll gradient pu-
rification. Myocytes were plated on various substrates as
indicated at a density of 300 cells/mm?. Plates were coated at
least overnight with substrates at 4°C before plating. After
isolation of the NRVM, we plated the cells and either main-
tained cells in the native state, transfected with plasmids
(using previously described techniques; see Ref. 51), or in-
fected cells with various recombinant adenoviral constructs
as noted. Subsequent to the various procedures, cells were
cultured in serum-free medium containing antibiotics (34
pg/ml ampicillin and 3 pg/ml gentamicin) and L-glutamine (2
mM) or antibiotics and glutamine plus 100 puM PE. Fetal

H2917

myocytes were isolated via similar procedures from embryos
obtained from timed-pregnant female animals.

Transformed 293 human embryonic kidney cells CRL-1573
[American Type Culture Collection (ATCC), Manassas, VA]
were cultured as advised by the supplier.

c¢DNAs and antibodies. Full-length wild-type and mutant
FAK cDNAs were obtained from D. Schlaepfer (Scripps Re-
search Institute, La Jolla, CA) (57). A 3,003-bp rat ANF
promoter fused to a firefly luciferase cDNA reporter gene
construct has been previously described (32). A —394 to +24
bp skeletal a-actin luciferase transgene, as previously de-
scribed, was kindly supplied by Dr. R. MacLellan (46). The
anti-human B;-integrin monoclonal antibodies P5D2 and
102DF5 were obtained from the Developmental Studies Hy-
bridoma Bank (University of Iowa, Iowa City, IA) and 1.
Virtanen (University of Helsinki, Helsinki, Finland), respec-
tively. The anti-myosin monoclonal antibody MF-20 was also
from the Developmental Studies Bank. Rabbit polyclonal rat
antiatrial natriuretic peptide and sheep anti-5-bromo-2’-de-
oxyuridine (BrdU) were obtained from Research and Diag-
nostic Antibodies (Berkeley, CA). Monoclonal antibody 7G7/
B6, used to detect the interleukin-2 receptor extracellular
domain (TAC), was from the American Type Culture Collec-
tion. Rhodamine-conjugated phalloidin was obtained from
Molecular Probes (Eugene, OR). FITC and rhodamine-la-
beled secondary antibodies were from Jackson Immuno-
Research Labs (West Grove, PA). Anti-FAK rabbit polyclonal
antibody and anti-phosphotyrosine mouse monoclonal (clone
4G10) were obtained from Upstate Biotechnology (Lake
Placid, NY).

Preparation of anti-BI1D antibody. A 17-mer peptide se-
quence (CPINNFKNPNYGRKAGL), corresponding to the
terminal 16 amino acids of 8;p-integrin and an NH,-terminal
cysteine to facilitate coupling to keyhole limpet hemocyanin,
was synthesized. The 16 amino acids of B1D represent a
segment that is highly dissimilar to the COOH-terminus of
Bia-integrin. New Zealand White rabbits were immunized
via subcutaneous injection with the carrier-hapten conjugate
in Freund’s complete adjuvant. This was followed with addi-
tional carrier-hapten conjugate injections in Freund’s incom-
plete adjuvant at the recommended intervals. Test bleeds
were utilized for analysis compared with serum obtained
before the initial immunization.

Recombinant adenoviral expression constructs. Production
of the full-length B,,-integrin and B-galactosidase (lacZ) ad-
enoviruses were as previously published (51). For production
of the B1D recombinant virus, the full-length 1D cDNA
fragment was cloned into the BamHI site of the E1-deficient
shuttle vector pacCMVpLpA (23). The TAC-B1D adenovirus
was produced in a similar manner. On the basis of known
sequences (Genbank Accession U28252), the cytoplasmic do-
main of B1D was amplified utilizing PCR techniques. This
fragment was cloned in place of the (3, ,-integrin cytoplasmic
domain in the TAC-B, ,-integrin expression vector described
previously (51). The TAC-B1D chimeric construct was then
excised with SnaB I and Xba I and ligated into pacCMV-
pLpA. FAK-related nonkinase (FRNK) was PCR amplified
from ¢cDNA prepared from WI-38 human lung fibroblasts
(ATCC CCL-75), cloned into pcDNA3 as an EcoR I/Xba 1
fragment, and then subcloned into the adenoviral shuttle
vector pShuttle-CMV to prepare recombinant adenovirus uti-
lizing the Ad-Easy system (25). In all cases, construct integ-
rity was confirmed by restriction enzyme and sequencing
analyses. Constructs in pacCMVpLpA vectors were cotrans-
fected using the standard calcium-phosphate technique with
the adenoviral plasmid JM17 into the El-transformed cell
line 293 (24). All viruses were clonally isolated. Recombina-



H2918

tion was verified by PCR analysis utilizing oligonucleotide
primer sets present in the adenoviral sequences, the foreign
gene of interest, or both. Viral production of recombinant
protein was assayed by infection of Chinese hamster ovary
(CHO) or NRVM cells for 48 h followed by immunostaining or
flow cytometry. All viral stocks were titered using plaque
assays. Cells were infected at matched multiplicities of infec-
tion.

Immunofluorescent studies. Cellular immunostaining was
performed as described previously (51). Microscopic analysis
was performed using a Nikon Diaphot microscope equipped
with epifluorescent optics.

Measurement of protein content, luciferase activity, cell
size, and ANF production. Protein content was determined
using a modified Lowry assay (44) (Bio-Rad, Hercules, CA).
Luciferase activity was determined from cell lysates via pre-
viously published techniques (51). Cell size was determined
by microscopic digital acquisition of random fields of fixed
cells followed by planimetry using SigmaScan software. ANF
reactivity in culture medium was assayed using a competi-
tive enzyme immunoassay kit as directed by the supplier
(Peninsula Labs, San Carlos, CA).

Western blot and immunoprecipitation assays. Myocytes
were washed twice with ice-cold PBS and lysed with modified
radioimmunoprecipitation assay (RIPA) buffer [10 mM Tris
(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM
sodium meta-vanadate, 10 mM pyrophosphate, 1% sodium
deoxycholate with 10 pg/ml aprotonin, 10 pwg/ml leupeptin,
and 1 mM phenylmethylsulfonyl fluoride]. Rat cardiac tissue
was also homogenized with modified RIPA buffer. Both myo-
cyte lysate and tissue homogenate were centrifuged (at
100,000 g) to remove insoluble debris. Protein concentration
was determined, and equal amounts of total protein for
immunoprecipitation was precleared with protein A-agarose
(Roche Molecular Biochemicals, Indianapolis, IN) for 3 h at
4°C. The protein A-agarose was removed by centrifugation.
Supernatant was transferred and then allowed to incubate
with antibody overnight. The antigen-antibody immunocom-
plex was precipitated with protein A-agarose for at least 3 h
at 4°C, collected by centrifugation, and then washed three
times with RIPA buffer. The final immunoprecipitate was
resuspended with Laemmli sample buffer.

Protein was resolved by SDS-PAGE. Semidry immunoblot-
ting transfer was performed onto polyvinylidene fluoride
Immobilon-P membranes (Millipore, Bedford, MA). Blots
were subjected to a 1-h blocking step with blocking buffer (3%
nonfat milk in 0.1% Tween 20-PBS). Primary antibody incu-
bation was performed overnight. Blots were washed with
0.1% Tween 20-PBS for 30 min, and four additional washes of
5 min each were then perfomed. Blots were blocked with
blocking buffer for 30 min before a 1.5-h incubation with
horseradish peroxidase-conjugated secondary antibodies
(Jackson ImmunoResearch Labs). Washes of blots were per-
formed as above. Enhanced chemiluminescence (ECL), by
Amersham Pharmacia Biotech (Arlington Heights, IL), was
employed to detect bound secondary antibodies. When re-
quired, blots were stripped of primary and secondary anti-
bodies and reprobed to detect a second protein species. Den-
sitometric quantitation of protein bands was performed
digitally with Alphaease software (Alpha Innotech, San Le-
andro, CA).

Monitoring of DNA synthesis. Assessment of cellular DNA
synthesis was performed as described previously with minor
modification (41). BrdU at a final concentration of 10 pmol/l
was added to the control or infected cultures for the final 16 h
of the culture period. Immunofluorescent staining was per-
formed as above, using 4,6'-diamidino-2-phenylindole (DAPT)
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to locate all cell nuclei, anti-myosin antibody MF20 to localize
myocytes, and anti-BrdU to evaluate for BrdU incorporation
into the cells. BrdU-positive myocytes were scored by visu-
ally determining the number of BrdU-positive cells that also
stained positively with the anti-myosin antibody. Scoring of
control, control-infected, and integrin-infected groups was
then compared.

RESULTS

BI1D is expressed minimally during early fetal devel-
opment and becomes dominantly expressed postnatally
in cardiac cells. As a component of our study, we
developed an anti-B1D isoform-specific polyclonal an-
tibody. A synthetic peptide from the B1D cytoplasmic
domain that distinguishes it from the other known
B;-integrin isoforms was used for preparation of poly-
clonal antisera in two rabbits. ELISA analysis showed
high-titer reactions of both antisera against the 1D
17-mer peptide compared with preimmune sera (data
not shown). Replication-defective recombinant adeno-
viruses were constructed that expressed the full-length
Bia-integrin or B1D isoforms. CHO cells were main-
tained in their native state or infected with the B,-
integrin or B1D adenoviruses. These cells do not usu-
ally produce any B1D. Cell lysates from these
specimens as well as NRVM and mouse tissue samples
(from the lung and heart) were evaluated by Western
blot analyses. Specificity of the antisera for 1D was
confirmed as shown in Fig. 1A. The antibody detected
the precursor and mature forms of 31D, as has been
noted previously for other B;-isoforms (26). Specificity
of the antibody was confirmed because signals were
only detected in CHO cells that had been infected with
a B1D adenovirus as well as cardiac muscle cells or
tissue but not B;,-infected CHO cells or nonmuscle
tissue. No signal was detected by preimmune control
sera (data not shown).

With the use of this antibody, we evaluated the
developmental expression pattern of 1D protein. Lit-
tle 1D protein was expressed in the heart during fetal
growth, but protein levels were significantly increased
postnatally (Fig. 1B) Prenatal expression of B1D was
generally <20% of the protein expression level in the
adult ventricle. These results suggested that 31D could
play a role in cell cycle arrest of the terminally differ-
entiated myocyte. We cultured fetal myocytes at E 15.0
and infected them with recombinant adenoviruses ex-
pressing matched titers of either 31D or control (lacZ)
transgenes. Despite increased 1D protein levels, no
difference in the rate of DNA synthesis was found
between B1D and control-infected cells (data not
shown).

PE stimulation of NRVM causes induction and sub-
cellular redistribution of striated muscle-specific B1D.
Many proteins, including extracellular matrix compo-
nents and integrins, are upregulated during the hyper-
trophic growth process. The B1D isoform is exclusively
expressed in skeletal and cardiac muscle (66). There-
fore, we next sought to evaluate the function of this
integrin isoform in hypertrophic growth of the cardiac
cell. We used the B1D-specific antibody to evaluate the
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Fig. 1. Byp-Integrin (B1D) protein is dominantly expressed in the
late fetal and postnatal myocyte. A: polyclonal antibody specifically
detects the B1D isoform. Chinese hamster ovary (CHO) cells were
maintained uninfected or infected with recombinant adenoviruses
that express either the B,4-integrin or B1D isoform. Forty-eight
hours after infection, we harvested the cells, and protein lysates
were prepared. Lysates were also prepared from neonatal rat ven-
tricular myocytes (NRVM), mouse heart, or mouse lung. Cellular or
tissue lysates were utilized for SDS-PAGE and Western blotting
procedures. Mature and precursor forms of the B1D protein were
only detected in B1D-infected cells, cultured cardiac cells, or heart
tissue. B: developmental expression of 1D protein. Whole rat em-
bryos [embryonic (E) days 10 and 12], heart tissue, ventricular cells,
and ventricular tissue samples were obtained and used for Western
blot analysis with the polyclonal B1D antibody described above.
Expression levels of total [both mature (Mat) and precursor (Pre)
forms] of B1D protein of each specimen were determined and nor-
malized to the total amount present in the adult ventricular sample,
which was set to 100%. Because of the small standard error, error
bars are not visible in the last two data points of the graph. Inset:
representative Western blot. *P < 0.05 vs. protein levels in adult left
ventricle.

expression level of 1D in NRVM plated on collagen I
and stimulated with the hypertrophic agonist PE. As
shown in Fig. 2, B1D protein levels were increased by
100 uM PE treatment compared with cells maintained
in serum-free medium. Whereas modest increases of
the mature form of 31D were noted as soon as 15 min
after agonist exposure (data not shown), substantial
increases of both the precursor and mature forms were
found when PE stimulation continued for 24—48 h, in
accord with the hypertrophic response. Upregulation of
the B1D protein was confirmed by Western blot anal-
yses with loading of varied protein amounts from mul-
tiple independent experiments (data not shown).

PE stimulation of cultured NRVM orchestrates cell
spreading and increases organization of the myofibril-

H2919

lar apparatus. With the use of the B1D antibody, we
assessed the localization of 31D in cells maintained in
serum-free medium compared with cells stimulated
with PE (Fig. 3). In the PE-treated cells, 1D was seen
to shift its location over time, from punctate cytoplas-
mic staining to one colocalized with actin in the orga-
nizing myofibrils, most intensely at the Z line. No
similar colocalization was seen in the cells cultured in
serum-free medium.

Overexpression of B1D causes cellular organization,
increases in endogenous ANF, induction of hypertro-
phic reporter genes, and increases in cell size. Because
adrenergic stimulation alters 1D protein levels and
subcellular localization, we examined whether overex-
pression of B1D would independently alter myocyte
organization or expression of hypertrophic marker
gene expression. NRVM were infected with matched
titers of recombinant adenoviruses that express either
human B1D or control (lacZ) transgenes. Dual immu-
nostaining was used to evaluate F-actin and 81D local-
ization. As shown in Fig. 4A, forced expression of 1D
in myocytes cultured in the absence of serum caused
increased cellular organization similar to that caused
by adrenergic stimulation. These findings were distinct
from cells infected with control virus in matched titer
as well as uninfected cells.

To establish if B1D could augment hypertrophic
marker gene expression, ventricular myocytes were
transfected with either a-skeletal actin-luciferase or
ANF-luciferase and, 16 h after transfection, infected
with control or 81D recombinant adenoviruses (Fig.
4B). Increased B1D expression caused statistically sig-
nificant induction of both reporter genes. Infection of
myocytes with the control virus did not induce reporter
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Fig. 2. Phenylephrine (PE) stimulation causes an increase in 31D
protein. NRVM were cultured onto collagen I-coated plates and
maintained in serum-free medium (SFM) for 24 h. After this, we
harvested and lysed the cells (time zero) or stimulated cells with 100
wM PE for the defined time periods or maintained in cells serum-free
conditions and then harvested. SDS-PAGE and Western blot analy-
sis was performed with each of the samples using the B1D-specific
polyclonal antibody described above. Densitometric analyses of pro-
tein blots from several independent experiments with replicate sam-
ples determined B1D expression level. Data are displayed as fold
increase of B;-integrin expression compared with the time zero sam-
ples. Inset: representative Western blot analysis. *P < 0.001 vs. 0 h
SFM and #P < 0.001 vs. 24 h PE.
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Fig. 3. PE stimulation causes redistribution of
B1D in the cardiac myocyte. Neonatal rat ven-
tricular myocytes were cultured onto collagen
I-coated plates and maintained in SFM for 24 h.
Cells were then fixed immediately (time zero; A
and B) or stimulated with 100 pM PE for the
defined time periods (2 h, C and D; 6 h, E and F;
and 24 h, G and H) or maintained in serum-free
conditions (2 h, I and JJ; 4 h, K and L; and 24 h,
M and N) and then harvested. Dual immuno-
staining was performed with a rabbit polyclonal
B1D-specific antibody and phalloidin to detect
F-actin (A, C, E, G, J, L, and N) and 1D (B, D,
F, H, I, K, and M), respectively.

gene activity. Similarly, we evaluated the effect of 1D
on endogenous ANF expression and cell size of NRVM
infected with control or 1D recombinant adenovi-
ruses. As shown in Fig. 4C, infection with the integrin
virus resulted in induction of endogenous ANF, as
detected by the perinuclear-staining pattern. Quanti-
tative analysis of ANF-positive cells in each random
high-power microscopic field detected an average of 8 =
0.03-fold higher ANF-expressing cells in the B1D-in-
fected groups compared with the control lacZ-infected
cells infected at matched titers (P < 0.01). Similarly,
we found that B1D overexpression increased cell size.
B1D-infected cells were 1,573 = 116 versus 620 * 54
pm? (P < 0.0001) in the cells infected with matched
titers of the control lacZ virus.

Expression of free cytoplasmic domains of B1D
prevents adrenergically mediated NRVM organiza-
tion or expression of ANF. We and others (2, 9, 45, 51)
have utilized chimeric constructs, which express free
B;-integrin cytoplasmic domains to disrupt integrin
signaling in myocytes as well as other cell types. To
disrupt integrin signaling in NRVM, we constructed
a recombinant adenovirus encoding a chimeric pro-

B1p-INTEGRIN AND CARDIAC HYPERTROPHY
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tein, which consisted of the extracellular and trans-
membrane domain of the TAC subunit of the inter-
leukin-2 receptor fused to the B1D cytoplasmic
domain (TAC-B1D). As shown in Fig. 5, this mutant
reduced both PE-mediated NRVM cellular organiza-
tion and ANF production, confirming the role of 31D
in these events.

FAK is involved in hypertrophic response of neonatal
ventricular myocytes. Integrins do not possess intrinsic
tyrosine kinase activity. In noncardiac cells, integrin
ligation has been demonstrated to activate the cyto-
plasmic tyrosine kinase FAK as well as the MAPK
pathway (40). Previous studies (14, 62) have demon-
strated that MAPK pathway components independent
of FAK are involved in hypertrophic gene responses in
cardiac cells, but little data is available about the
function of FAK itself. We tested the hypothesis that
FAK is also a component of the adrenergically medi-
ated hypertrophic response pathway in neonatal ven-
tricular myocytes.

Overexpression of FAK in myocytes cultured in se-
rum-free medium caused upregulation of ANF lucif-
erase activity (Fig. 6A), suggesting that this tyrosine
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Fig. 4. B1D overexpression causes increased cellular organization, increased hypertrophic marker gene expres-
sion, and upregulation of endogenous atrial natriuretic factor (ANF) in cardiac myocytes. Cardiac myocytes were
cultured onto collagen I-coated coverslips or plates. A: cells cultured in SFM were either infected with recombinant
adenoviruses expressing B1D or B-galactosidase (lacZ) control protein or maintained in the uninfected state. After
36 h of infection, we fixed and stained the cells to localize F-actin (a, ¢, and ¢) and B1D (b, d, and f). B: cardiac
myocytes were transfected with either ANF- (3,003 bp) or a-skeletal actin (420 bp; SkActin)-luciferase. Sixteen
hours after transfection, we washed and maintained the cells in SFM or infected cells with matched amounts of
either control or B1D-expressing adenoviruses. Cells were lysed and used for luciferase and protein assays. Results
are displayed as fold induction compared with control infections of matched titers. *P = 0.005 vs. control. C: cardiac
myocytes were infected with matched titers of 81D or control lacZ adenoviruses for 48 h. They were then fixed, and
endogenous ANF was localized utilizing immunohistochemical techniques with a rabbit anti-rat polyclonal ANF

antibody.

kinase was a component of the hypertrophic response
pathway. We next evaluated the role of FAK in adren-
ergically mediated events in the cardiac cell. PE stim-
ulation resulted in a rapid and sustained increase in
FAK phosphorylation beginning by 15 min after PE
induction and continuing for the 48-h duration of the
stimulation (Fig. 6B). Direct interaction of 31D and FAK
was detected through their coimmunoprecipitation, but
viral-mediated 31D overexpression caused no significant
increase in FAK phosphorylation when assessed from 24
to 48 h after viral infection (data not shown).

We next used two types of mutant FAK molecules to
further elucidate its role in the adrenergically mediated
hypertrophic response. Tyr-397 is the major site of FAK
autophosphorylation and generates a binding site for Src
family kinases and the formation of Src¢/FAK signaling
complexes. Mutation of Tyr-925 (FAK-F925) disrupts
Grb2 binding to FAK, which can effect FAK-induced
activation of MAPK. Cells were transfected with ANF-
luciferase as well as wild-type FAK or FAK mutants and
then either maintained in serum-free medium or stimu-

lated with PE. Induction of ANF-luciferase in PE versus
the serum-free culture was determined for each transfec-
tion condition. The ratio of PE to serum-free activity of
ANF-luciferase when cotransfection was performed with
a control (empty) backbone vector was set equal to 100%.
As shown in Fig. 6C, overexpression of wild-type FAK did
not augment the PE-stimulated induction of ANF-lucif-
erase activity, suggesting that FAK was not a limiting
factor in the context of this inductive pathway. In con-
trast, both mutant FAK molecules caused downregula-
tion of the PE induction of ANF, suggesting that normal
FAK signaling is necessary for the adrenergically medi-
ated hypertrophic response. Furthermore, we utilized a
well-characterized FAK inhibitor, FRNK, to disrupt FAK
signaling (55, 59). As shown in Fig. 6D, expression of
FRNK via a recombinant adenovirus caused a dose-re-
sponsive decrease in PE-mediated ANF expression by
NRVM, in agreement with the inhibition orchestrated by
the plasmid mutants discussed above. No similar de-
crease was detected in cells infected with equal titers of
control viruses.



H2922

F-Actin

Virus

TAC
ob

TAC
B1D

300 +
[ Control
mIiL2-B1D

g

ANF (ng/ml)
g 3

-

=]

o
L

b

0

Serum Free PE

Fig. 5. Disruption of integrin signaling prevents adrenergically me-
diated NRVM organization and ANF production. A: NRVM were
cultured and stimulated with 10~* M PE. At the time of addition of
PE, they were infected with matched titers of either the TAC-aj5
(control) virus (a and b) or the TAC-B1D virus (¢ and d). Cells were
maintained for an additional 36 h, fixed, and stained for F-actin (a
and c) or for expression of the virus (b and d) with an interleukin-2
specific antibody, which shows no signal on uninfected cells. B: cells
were cultured and infected as described above, and ANF production
was assessed via competitive ELISA. *P = 0.001 vs. SFM and #P =
0.001 vs. control PE.

DISCUSSION

In this study, we demonstrated that 31D, a splice
variant that is specifically expressed in cardiac and
skeletal muscle, participates in the hypertrophic re-
sponse of NRVM. With the use of a 1D isoform-
specific antibody, we found little 31D protein expres-
sion during early embryonic development, with
significant upregulation near birth. Ectopic expression
of B1D in embryonic rat ventricular myocytes did not
alter the rate of fetal DNA synthesis compared with
control viral infection. Adrenergic stimulation of neo-
natal myocytes caused increased levels of 31D protein
and redirected its subcellular distribution. Overexpres-
sion of B1D via recombinant adenovirus 1) increased
ANF- and a-skeletal actin-luciferase activity, markers
of the cardiac hypertrophic response; and 2) promoted
increased myocyte organization. Overexpression of free
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B1D cytoplasmic domains altered PE-stimulated
NRVM organization and ANF production. Results
showed that FAK, which is an important mediator of
integrin signaling in numerous cell types, was also
involved in the hypertrophic response of NRVM be-
cause 1) overexpression of wild-type FAK increased
ANF-luciferase transgene activity, 2) «-adrenergic
stimulation induced rapid and sustained phosphoryla-
tion of FAK, 3) FAK coimmunoprecipitated with 1D,
and 4) FAK mutants disrupted normal a-adrenergic
induction of ANF.

Integrin-mediated cell adhesion to the extracellular
matrix and integrin signaling are critical for cell sur-
vival, proliferation, migration, and differentiation (1,
47). As shown most dramatically by gene deletion ex-
periments, normal integrin function has been found to
be essential for these processes in cardiac cells and the
intact heart (16, 20). Previous studies by our group and
others (27, 48, 51) have shown that cardiac myocyte
morphology and hypertrophic induction is influenced
by attachment to extracellular matrices such as colla-
gen, fibronectin, and laminin (27, 48, 51). Because cell
matrix adhesion occurs via integrins, the integrin re-
ceptors expressed on cardiac myocytes are likely to be
an important component of this response.

Our previous work (51) showed that the ubiquitously
expressed (;-integrin isoform, B;,, was involved in the
hypertrophic response of ventricular myocytes (51).
The present study extends this work to specifically
evaluate the role of the B;p-isoform (66, 70). With the
use of isoform-specific antibodies, we determined that
little B1D expression was found in the prenatal cardiac
muscle cells of the rat, in agreement with other reports
in the mouse (6, 65). B1D has been found to inhibit cell
cycle progression in cultured skeletal muscle cells (4).
Fetal cardiac myocytes expressed little 1D, but forced
expression of B1D did not alter BrdU incorporation
compared with control-infected cells. In support of
these results, Baudoin et al. (3) found no histologic
abnormalities in “knockout” mice that did not express
B1D. If 1D played a significant role in cardiac myocyte
terminal differentiation, alteration in cardiac muscle
mass would be anticipated in the mouse heart deficient
in B1D. Because this was not found, the function of
B1D in cardiac cells may be distinct from its role in
skeletal muscle.

Our findings that PE stimulation increased 1D pro-
tein expression and altered its cellular distribution are
consistent with the concept that this striated muscle-
specific integrin may function to strengthen cytoskel-
etal-matrix interaction in the beating muscle cell. This
would be of particular importance when the cardiac cell
is pharmacologically stimulated or mechanically
stressed during the process of hypertrophic induction
in vitro or in vivo (61). 1D has been shown to bind
more tightly to talin than the ubiquitously expressed
Bia-integrin (5, 50). Therefore, as the cardiac cell re-
sponds to stimuli that evoke hypertrophic responses in
vitro or hemodynamic loading in vivo, 31D might pro-
vide for a more stable cytoskeletal structure through
which contractile forces are transmitted. This concept
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is supported by studies that show that talin accumu-
lates at sites of mechanical loading in skeletal and
cardiac muscle (18, 29). In preliminary studies, we
have found that B1D protein levels are also upregu-
lated in the hemodynamically loaded mouse heart
(Ross et al., unpublished observations).

The integrins have been identified as mechanotrans-
duction molecules in noncardiac cells converting me-
chanical signals to biochemical ones (30, 42). The inte-
grins could thus transmit mechanical- or ligand-
initiated signals from the extracellular matrix and

cause hypertrophic signaling events, as we detected in
our study. Despite much investigation, no specific
“stretch receptor” has been identified in the cardiac cell
(33, 53, 62, 68). Integrins, and particularly 1D as the
principal integrin in the postnatal cardiac myocyte,
could be a component of the myocyte mechanotrans-
duction pathway. Our results that show increased
amounts of 1D protein after PE stimulation are in
agreement with this concept.

We found that forced expression of 1D in the neo-
natal ventricular myocyte caused upregulation of ANF-
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and a-skeletal actin-luciferase transgenes, endogenous
ANF, increased cellular organization, and increased
cell size. These results were of a less intense nature
than those seen for agents such as serum, PE, or
endothelin. Whereas this more modest result may be
due in part to the culture conditions we utilized in our
study, the role of B;-integrins in myocyte organization
and/or hypertrophy may be a cooperative one. We have
previously shown (51) that B;-integrin overexpression
augments the hypertrophic induction effected by PE in
NRVM, suggesting that there may be cross-talk be-
tween these pathways.

Studies (19, 21, 28, 34, 35, 54, 60, 64, 68, 69) have
previously identified many molecules that are essential
components of hypertrophic signaling in cardiac cells
in vitro and in vivo, including extracellular signal-
regulated kinase, p38, Ras, Rho, and Src. Thus alter-
ations in the extracellular matrix could transmit both
mechanical forces and through the integrin; these me-
chanical events could be converted to biochemical
changes. Alternatively, stimuli (such as the adrenergic
agents utilized in our study) could orchestrate intra-
cellular signaling cascades that simultaneously impact
upon hypertrophic signaling as well as integrin activa-
tion state and/or ligand-binding affinity, termed inside-
out signaling (13). Whereas affinity state-specific anti-
bodies that can recognize integrin heterodimers only in
their activated state (9) are not available for use with
rat 1D, we have consistently observed that PE-stim-
ulated neonatal ventricular cells adhere more rapidly
and spread to a greater extent on collagen-, laminin-,
and fibronectin-coated plates compared with unstimu-
lated control cells (Ross, unpublished results). This
suggests that PE may well influence inside-out signal-
ing through B1D. These results are in agreement with
previous data, which found enhanced ligand binding
and assembly of fibronectin in B1D-transfected non-
muscle cells (5) as well as recent data obtained with
cardiac cells (48).

Whereas we noted increased expression of the ANF-
luciferase transgene after overexpression of 31D, Bau-
doin et al. (3) found increased ANF and B-myosin
heavy chain (BMHC) expression in male (though not
female) mice deficient in B1D. Our results most likely
relate directly to increased signaling through B1D-
mediated pathways, whereas the upregulation of ANF
and BMHC in the 31D knockout mice could be due to a
secondary hypertrophic response in cells with “weak-
ened” integrin-cytoskeletal interactions.

Adrenergic stimulation caused increased FAK acti-
vation, whereas transient overexpression of wild-type
FAK increased hypertrophic marker gene response.
FAK and B1D were coimmunoprecipitated from car-
diac myocyte protein extract (data not shown), suggest-
ing a direct association of signaling from 1D through
FAK in the cardiac cells. FAK phosphorylation was
modestly changed with PE stimulation, but mutant
FAK expression blunted the PE-mediated hypertrophic
response. Thus PE appears to at least partly signal
through a FAK-mediated pathway. These results are
in agreement with recent data, which showed that both
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pulsatile stretch and vascular endothelial growth fac-
tor could alter FAK activation in the cardiac cell (58,
62). FAK has also been implicated in endothelin-medi-
ated hypertrophic signaling in the cardiac cell (14).
When we assayed at 48 h after B1D overexpression, we
did not detect increased FAK phosphorylation. The
cardiac myocytes require many hours to adhere to
substrate, unlike many cell types, which do so in min-
utes. It is also known that changes in integrin activa-
tion state or clustering are necessary for modulation of
FAK phosphorylation. It is likely that 1D causes
transient activation of FAK at earlier time points, but,
given our model system combined with the time neces-
sary to express protein from recombinant adenoviral
constructs, we were unable to assess these early events
to directly link B1D expression levels to FAK activa-
tion. It is known that integrins can also signal through
non-FAK pathways, which for the most part remain
unknown (39). Several molecules that directly bind
integrins, including ones specifically expressed in stri-
ated muscle, have been identified. These include me-
lusin and muscle-specific B;-integrin binding protein
as well as integrin-linked kinase, integrin cytoplasmic
domain activated protein 1, and receptor for activated
protein kinase C (Rack-1) (7, 8, 12, 36, 38). It is possible
that B1D could also signal through one of these newly
identified integrin-binding molecules (49). Finally, it is
also known that integrin signaling pathways may func-
tion uniquely in distinct cell types. Thus whereas our
data fully support a role for FAK in cardiac myocyte
hypertrophic signaling, additional studies are neces-
sary and are in progress in our lab to more specifically
define the pathways through which B1D signaling oc-
curs in cardiac cells.

In summary, we have determined that the striated
muscle-specific 31D and the cytoplasmic tyrosine Kki-
nase FAK are involved in postnatal hypertrophic
growth responses of the cardiac myocyte. Further in
vitro and in vivo experiments are necessary to deter-
mine the full biological function of these molecules in
the myocardium.
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