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Introduction

The following discussion responds to, and amplifies on, the 2013
Critical Review (Andersen et al., 2013). Complementary reviews on
the topic and relevant data resources are identified. Reactions from
the critical review co-authors are presented at the end.

The Andersen et al. critical review (2013) explains the his-
tory, technology, and policy status of manufactured halocarbons
(including chlorofluorocarbons [CFCs], hydrofluorocarbons
[HFCs], hydrochlorfluorocarbons, [HCFCs], carbon tetrachlor-
ide [CTC], methyl chloroform, methyl bromide, and other sub-
stances) that destroy stratospheric O3. Fluorinated greenhouse
gases (GHGs) are often termed F-gases. From an insider’s per-
spective, the critical review documents the motivations behind,
and the successes of, the Montreal Protocol (MP) (UNEP, 2007)
in addressing ozone-depleting substances (ODSs) and climate
change. HFCs are the substitutes for some ODSs and were
commercialized to protect the statospheric O3 that shields
humans and natural ecosystems from excessive ultraviolet
(UV) radiation exposure (Slaper et al., 1998). The crtical review
documents the realization that the HFCs used to replace ODSs
had “unintended consequences” as climate forcing agents
(CFAs). Policy evolution was supported by the merger of
science, regulatory action, and industrial cooperation to resolve
stratospheric O3 loss. Climate forcing, now being addressed as

an extension of regulatory policy (Chow et al., 2010; Chow and
Watson, 2011; Hidy et al., 2011; Hidy and Pennell, 2010; Unger,
2012), was an unanticipated addition to the statospheric O3

issue. Emerging opportunities for more benign refrigerants are
identified in the critical review, along with some of the draw-
backs of these new substances.

Stratospheric Chemistry and the
Importance of Nitrous Oxide (N2O)

The stratospheric chemistry of ODSs requires elaboration
(Dessler, 2000; Solomon, 1999) beyond that presented in critical
review, especially for the role of nitrous oxide (N2O) in O3

depletion (Fleming et al., 2011; Ravishankara et al., 2009;
Rosenfield and Douglass, 1998). Rosenfield and Douglass
(1998) and Fleming et al. (2011) have examined the role of
N2O in a climate future that is projected to have higher strato-
spheric O3 levels than during pre-CFC conditions, and where the
N2O–NOy–O3 connection is damped because of CO2 cooling of
the stratosphere. Fleming et al. (2011, p. 8515) point out that
CO2 affects stratospheric O3 by: “1) cooling the stratosphere
which increases O3 via reduction in the O3 chemical loss rates,
and 2) accelerating the Brewer–Dobson circulation (BDC)
(Brewer, 1949; Dobson, 1956) which redistributes O3 in the
lower stratosphere. The net result of CO2 loading is an increase
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in global O3 in the total column and upper stratosphere.”
Methane (CH4) also affects O3 by increasing water (H2O) and
odd hydrogen species. Increasing H2O cools the middle atmo-
sphere, influences the chlorine cycle, and increases O3 produc-
tion in the troposphere. Model projections (Fleming et al., 2011)
indicate that CO2 will have the larger effect.

Limited references (Kanter et al., 2013; Ravishankara et al.,
2009) were cited in the critical review concerning whether and
how the MP could manage N2O and reduce O3 depletion. To
identify the importance of N2O, and the links to stratospheric NO
and O3, the original references could have been evaluated
(e.g., Bates and Hays, 1967; Cicerone et al., 1978; Crutzen,
1970; Hampson, 1964; Johnston, 1971; Logan et al., 1978;
McElroy et al., 1977).

The justification for both N2O and n-propyl bromide regula-
tion in the critical review needs additional scientific support.
Controlling short-lived ODSs depends on how much O3 deple-
tion they might cause and the health and environmental benefits
achieved from eliminating that depletion, and this was not eval-
uated. The MP has experience with synthetic halocarbons, but
none with N2O. Atmospheric N2O is emitted naturally and
derives from anthropogenic activities in agriculture, forestry,
and other land-use (AFOLU) sectors (Olivier et al., 1998;
U.S. Environmental Protection Agency [EPA], 2013b; van
Aardenne et al., 2001; Werner et al., 2007; Zhuang et al.,
2012). The uncertainty in estimating AFOLU emissions is
large, even for the developed countries (Prather et al., 2009).
Based on Fleming et al. (2011), it is not clear that reducing future
N2O would result in an O3 benefit. In this respect, the critical
review is more judgmental of scientific information in contrast to
Andersen and Sarma (2002), which brought together all the
political and scientific events of the time.

Magnitude of HFCReduction Estimates on
Global Warming

The second example of the strong professional views of the
authors regards HFC mitigation, which is based primarily on
future HFC emissions as presented in Velders et al. (2007) and
Andersen et al. (2010). These references correctly note that the
climate threat posed by CFCs in the 1980s (Hansen et al., 1989)
may be replaced by the long-lived HFCs (i.e., HFC-134a with a
100-year global warming potential [GWP] of 1430; IPCC,
2007b), but not HFC-1234yf with GWP of 4. The critical review
advocates that HFCs will become a large part of anthropogenic
GHG forcing and that HFC phase-down (presumably excluding
HFC-1234yf) under the MP would minimize climate change.
This issue has been taken up by others (Xu et al., 2013), but with
no new scientific information being added to the debate.

A recent publication (Lu, 2013a) touted cosmic ray interac-
tions with CFCs as explaining most of the surface temperature
increases from the effects of other GHG emissions. This hypoth-
esis was previously considered (Grooss and Mueller, 2011) and
found inconclusive, based on the correlational rather than cause-
and-effect analysis of Lu (2013a). Online critiques of this pub-
lication elaborate on its limitations (ClimateNexus, 2013;
Lu, 2013b).

Today, all HFCs are responsible for about 0.6% of the total
radiative forcing from GHGs, which is increasing at >1%/year
(primarily due to CO2). Current global emissions of HFCs are a
greater fraction of total GWP-weighted GHG emissions, but still
account for only 1%. For highly technological nations like the
United States the fraction is ~2%. If HFCs were the only GHGs,
there would be neither a climate treaty nor the Intergovernmental
Panel on Climate Change (IPCC, 2007). Velders et al. (2007) and
Andersen et al. (2010) project a fairly large growth of HFCs and
make comparisons with the growth in CO2 and other GHGs. Xu
et al. (2013) hypothesized that mitigating HFC emissions could
play an important role in limiting warming to less than 2�C and
could help reduce it by [projected] 0.25 to 0.35�C by 2100.
Bianco et al. (2013) concluded that eliminating HFC (emissions)
“represents the biggest opportunity for GHG emission reduc-
tions behind [fossil fueled] power plants [emissions].”

IPCC (2007a) projections have considered options for no
emissions mitigation along with and cases for large GHG reduc-
tions, including removal of atmospheric CO2. For all of these
scenarios, the relative role of HFCs in global warming by 2100 is
projected to increase from <1% to values from 3% to 6%. These
numbers are much lower than the 2050 numbers (e.g., 9–19% by
emission) used by Velders et al. (2009). A larger effect of HFC
reductions (28–45%) is often reported; however, this fraction
assumes large CO2 reductions without HFC emission decreases.
Given that both are listed in the Kyoto Protocol, and given the
pain and cost of CO2 mitigation, this scenario seems unlikely.
HFC emission reductions need to be part of any climate package,
but HFC reductions independent of what happens to CO2 emis-
sions will be insufficient to address global warming.

Brominated compounds are unlikely to be as important as stated
in the critical review. The critical review overgeneralizes the impact
of climate change, including widespread intensification of storms,
and simplifies the phase-out of HCFCs as “protecting the climate.”
Velders et al. (2007) calculated ODSs based on a selection of cases
that exaggerate the influence of ODSs. These scenarios are highly
uncertain, requiring a caveat about the significance of the ODSs as
CFAs. The statement by Velders et al. (2007) that the MP impact of
CFC emission growth would have dominated CO2 climate forcing
was first proposed by Hansen et al. (1989).

The Future of Mobile Air Conditioner
(MAC) Refrigerants

The critical review raises the issue of unintended conse-
quences of various cooling methods and refrigerants. Use of
ice from contaminated waterways led to the development of
manufactured ice using toxic refrigerants. Toxic refrigerants
were then replaced by nontoxic CFC compounds. CFCs, speci-
fically CFC-12, used in mobile air conditioners (MACs) became
identified with O3 destruction and were replaced by HFCs,
particularly HFC-134a. HFC-152a was considered as a replace-
ment when HFC-134awas deemed a contributor to global warm-
ing. HFC-1234yf is now being considered as a replacement
because of its greater efficiency and lower GWP.

Other MAC refrigerants such as compressed CO2 and various
hydrocarbon blends (e.g., propane) have also been considered

Eklund et al. / Journal of the Air & Waste Management Association 63 (2013) 1235–12441236
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and dismissed because of low efficiency or potential flammabil-
ity. It seems plausible that new vehicles (e.g., electric, hybrid,
and plug-in hybrid) could be designed with an environmentally
safe refrigerant, such as propane. Tables 3 and 5 of the critical
review show the feasibility of CO2 as a refrigerant without
specifying its merits relative to HFC-1234yf. There are chal-
lenges for CO2, such as energy efficiency, safety, and reliability,
but the advantages of using a readily available compound, which
is abundant in the atmosphere, should not be underestimated.

Compliance and enforcement of the MP need attention
because of the growing global deployment of refrigeration, espe-
cially MACs. There is a need to define the best practices to be
deployed in the developing world. The key question is how this
should be designed for the maximum global effectiveness in
monitoring and controlling emissions of refrigerants (Molina
et al., 2009). The recent China–United States statement on
F-gases (U.S. White House, 2013) is important. Hille (2013)
identifies the critical role of HFC-23 releases (an unwanted by-
product of HCFC-22 production) by developing countries,
noting that a ban on climate credits means that there are no
incentives to destroy the gas by incineration.

The critical review points to the leakage of MAC refrigerants
and their impact on O3 depletion and global warming. Other
issues, such as methyl-tert-butyl ether (MTBE), lubricating oil
and its zinc-based additive (zinc dialkyldithiophosphate
[ZDDP]), and asbestos and copper from brake linings, also
have the potential to adversely affect public health and the
environment. Use of the MTBE additive in gasoline was man-
dated to reduce air emissions. However, leakage of gasoline
laced with MTBE into groundwater resulted in contamination
costing billions of dollars to remediate. Before the introduction
of MTBE, it was known that oxygenates and alcohol-based fuels
or additives could leak into waterways and underground aquifers
(Owen et al., 1995). The unintended consequences could have
been avoided if available scientific knowledge had been taken
into consideration.

Based on a review of material safety data sheets (MSDS) for
various refrigerants (e.g., CFCs, HFCs, HCs, and CO2), it
appears that compressed CO2 has the best health characteris-
tics, while the fluorinated HFCs and CFCs pose potential long-
term chronic health effects from hydrofluoric acid (a combus-
tion product when fluoridated compounds are exposed to
extreme heat). The critical review only touched on the uncer-
tainties of long-term fluorine emissions and their decay pro-
ducts. Toohey (2010) states that “for thorough understanding
of the environmental impacts of replacements for CFCs,
HCFCs, and long-lived HFCs, an evaluation of the ozone
depleting potential (ODP), global warming potential (GWP),
atmospheric fate, safety, and toxicity is required for each
replacement.”

Hodnebrog et al. (2013) have updated GWPs and radiative
efficiencies (REs) for more than 100 halocarbons by reinterpret-
ing their infrared spectra, showing a bias of more than 5% in
previous estimates. HFC-1234yf has a short lifetime (11 days) in
the atmosphere with trifluoroacetic acid (TFA) as a decay pro-
duct (Henne et al., 2012). TFA is water-soluble and can remain in
surface waters and the ocean for 40,000 years (Spatz and Minor,
2008). The rapid breakdown of HFC-1234yf in the atmosphere

suggests higher ambient TFA (and decay products) concentra-
tions than those of slower decaying HFCs and CFCs.

The critical review acknowledges the hazards of flammability
of different MAC refrigerants within vehicle cabs. Spatz and
Minor (2008) report that the flammability risk of injury or fatal-
ity by HFC-1234yf is less than 1� 10�11 to 2� 10�12. Based on
data presented in the critical review, Figures S1–S5 in the sup-
plemental material assess the potential impacts of ODP, GWP,
flammability, toxicity, and health impacts due to leaks or emis-
sions of MAC refrigerants.

Translating Experience from Halocarbon
Control to Action on Climate Change

The critical review does not address lessons learned from the
development of the MP process for halocarbon management or
the process of seeking reduction in CFAs. Considering the MP as
a successful arrangement to curtail (stratospheric) O3 change
with CFC/HCFC reductions or substitutions, why hasn’t the
long series of negotiations to reduce CFAs been more success-
ful? Both processes have involved the following key areas: (1)
complex and credible atmospheric and impact science; (2)
potentially viable technology alternatives; (3) geopolitical con-
siderations relating to conflicting economic versus environmen-
tal goals; (4) stakeholder support or lack thereof; and (5)
perceived timing for aggressive action versus increasing risk.
Similarities and differences between stratospheric O3 and cli-
mate forcing issues are summarized in Table 1.

First, the science of CFCs/HCFCs is relatively straightforward
and compelling through observations. In contrast, the science of
climate change and its environmental impact involves worldwide
CFA emissions, as well as long-term changes in the atmosphere
and the “earth system,” including major intercontinental or global
environmental impacts. Climate science continues to be endorsed
by “consensus” with expanding quantities of literature—but con-
sensus does not imply the resolution of uncertainties.

Second, regulated halocarbons other than methyl bromide are
manufactured without natural sources, and an evolution of tech-
nological solutions has emerged with expanding complexity, as
pointed out by the critical review. Technological fixes for reduc-
tion in carbon-based CFA emissions exist in principle, but these
are resource-intensive and expensive with debatable reliability
(Edgerton et al., 2008; Hidy et al., 2012; MacCracken, 2008;
Wilson, 2012). The drivers for energy production and use con-
tinue to be accessibility, low cost, and reliability. These require-
ments are difficult to fulfill without a major carbon-fueled
component.

Third, the approach varies by geopolitical environment. For
halocarbons, mediation and reduction took place rapidly follow-
ing the MP agreement, resulting in measureable improvements
to the stratospheric O3 layer (Yang et al., 2006). The MP signa-
tories continue to meet with an expanded agenda considering
CFAs. Despite a series of conferences from 1992 (Rio de
Janeiro) to 2010 (Copenhagen) to reduce CFA emissions, sig-
nificant reductions (mainly CO2) have yet to be achieved.
Barriers for decarbonization are tangential to the science, and
involve negotiations for major changes in energy production and

Eklund et al. / Journal of the Air & Waste Management Association 63 (2013) 1235–1244 1237
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use in all countries. This is seen in the 2009 estimates of per-
capita CO2 emissions (e.g., United States: 17.3 tonnes/person;
China: 5.8 tonnes/person; and India: 1.7 tonnes/person) (The
World Bank, 2013).

Fourth, public and private stakeholders supported CFC/HCFC
reduction policies, while no such global consensus has been
reached for other CFA emissions; trade-offs between the potential
for disruption of national economies and reducing earth system
and environmental risks reveal the short-term economic argument
as the clear winner. Fear of risk from a slowly creeping, induced
change in climate has not motivated the public for regulatory
action (Sunstein, 2013; Sunstein and Zeckhauser, 2011).

Lastly, the timing of the issues differs—CFC/HCFC effects
on O3 could be demonstrated by reducing lower stratosphere O3

concentrations. In contrast, climate warming by CFAs was based
largely on models of unknown reliability in the 1980s. This was
followed by long-term climate-scale observations that have pro-
vided temperature records along with sea-level and cryospheric
changes. This is contradicted by the fact that the global tempera-
ture of surface air has remained essentially the same since 2001
(NASA, 2013).

Steinhaeuser and Tsonis (2013) have compared the reliability
of model projections. Atmospheric climate models have
ranged from simple one-dimensional representations to three-
dimensional (3D), spatially and temporally resolved calculations
of the atmosphere’s general circulation. The 3D model now
includes detailed earth system components (e.g., the oceans and
the pedosphere). The calculations involve 105 or more projections
per single 100-year run with spatial resolution >100 km2, using
~10 atmospheric layers and 2 oceanic layers. Detailed evaluation
of such a data collection with observations is beyond human
assimilative capability. Interpretation of model projections for
policy development has been a challenge to both scientists and
policymakers, as discussed by Crutzen and Oppenheimer (2008).

Assessment of the risk from climate warming was rudimen-
tary in the 1980s (Hidy and Peck, 1991). Subsequent science
investment has developed and advanced risk assessment and
atmospheric models. However, these models have not been com-
prehensively tested for their reliability and comparability with
long-term observations. Table 1 also addresses the geopolitical
response time for substantive action between stratospheric O3

and climate. As the CFC/HCFC choices have changed and the
issue has expanded to add the CFAs, response time can be
constrained by ~20 years for CFC/HFC, but exceeds 30–40
years for major CFA actions. Despite the stated progress in
United States CFA reductions, the 3-year averages (1990–1992)
and (2009–2011) for TgCO2 equivalents (TgCO2 equivalent [e]

[1 teragram (Tg)¼ 1 � 106 tonnes]) are 6191 and 6700, respec-
tively. Unlike the MP, the United States has yet to commit to a
major treaty for CFA reductions.

The critical review could have expanded the discussion of
short-lived climate forcers (SLCFs) (U.S.EPA, 2012d) and the
CH4 emission increases due to growing development of natural
gas from fracking (Burnham et al., 2012). The success of con-
trolling black carbon (BC) emissions from transportation
sources depends on the ability to make ultra-low-sulfur fuels
(ULSF) available (Pawelec et al., 2011). ULSFs are necessary so
that diesel particulate filters (DPFs) can be applied to after-

engine exhaust to effectively eliminate BC emissions. Ideally,
the fuel content should be no more than 10 ppmw sulfur. Without
ULSF, the catalyst in the DPF will be poisoned by the sulfur in
the fuel (Hesterberg et al., 2011).

Figure 1 shows the effect of controlling BC emissions from
on-road vehicles by attaining Euro 6/VI emission limits, which
require the use of DPFs and NOx controls (Weiss et al., 2012).
The Euro6/VI modeling scenarios in Figure 1 show a baseline
that reflects current regulations and what can be done if state-of-
the-art technologies are applied. Fuel use in the developing
countries of China and India will have important effects on
global non-CO2 GHG emissions. The dramatic growth in the
baseline can be reduced as shown in a hypothetical accelerated
CFA reduction policy. Worldwide adoption of Euro 6/VI for on-
road vehicles could avoid the near-term climate impacts of 800
million tonnes of CO2 equivalent (MtCO2e) by 2030. The long-
term impacts avoided would be equivalent to the damage done by
220 MtCO2e. Facanha et al. (2012) estimate that, by 2030, the
tank-to-wheels (TTW) emission reductions from pipeline poli-
cies would produce benefits equivalent to the removal of 1,100
MtCO2e. Worldwide adoption of Euro 6/VI, therefore, would be
expected to produce near-term benefits equivalent to 72% of
energy and climate policies to be adopted in the transportation
sector. In contrast, the climate benefits over the long term are
20%, since the pollutants reduced have short lifetimes.

Progress Toward Emission Reductions

Just as policymakers took action in phasing out ODS, there
has been increasing recognition of the need to phase-down HFC
emissions. President Barack Obama indicated that curbing HFC
emissions was an important domestic and international priority
as part of the Climate Action Plan (Executive Office of the
President, 2013), and the United States and China have likewise
agreed to work together to phase-down the consumption and
production of HFCs.

The critical review sets forth the power of business innovation
in overcoming health and environmental challenges. It questions
whether this pace of innovation will continue and will help
produce alternatives to high-GWP HFCs. Businesses have been
at the cutting edge of developing low-GWP substitutes like
HFC-1234yf, which is replacing HFCs in some MAC systems.
Similarly, hydrocarbon refrigeration systems and innovations in
cryogenic refrigerated transport techniques are helping reduce
climate pollution from these sources. Some notable examples of
business initiatives are:
� In 2012, Unilever (2013) deployed 900,000 hydrocarbon ice-

cream freezers around the world (South Africa, China,
Europe, Brazil, United States trial) and indicated that by
2015 all new ice cream freezers would be HFC free.

� In 2009, Coca-Cola announced that 100% of its new vending
machines and coolers globally will be HFC free by 2015
(Refrigerants, 2013).

� The Consumer Goods Forum is comprised of over 400 com-
panies around the world, including supermarkets, retailers,
and food and beverage companies. This group has pledged
to begin phasing out HFCs in 2015 (Green, 2013).
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The critical review highlights actions (like bans on CFCs in
spray cans) that helped to build momentum toward the eventual
phase-out of these pollutants under the MP. Similarly, there are
transformative domestic policies and partnerships aimed at phas-
ing down HFCs that can help to catalyze global change. These
common sense national policies include:
� Title VI of the Clean Air Act (CAA). EPA’s authority to regulate

ODS is set out in Title VI of the CAA. Pursuant to its
Significant New Alternatives Program (SNAP), which calls
for ODS replacements, Title VI provides the authority to
substitute HFCs with low-GWP substances in many applica-
tions, implement new technologies that use fewer HFCs, and
pursue opportunities for responsible disposal of these sub-
stances (EPA, 2012a).

� Clean Cars and Clean Trucks Rules. EPA (2010a, 2012a) has
already made progress in reducing vehicle HFC emissions

through its Clean Cars Phase I and II Rulemakings and its
first-phase greenhouse gas standards for medium- and heavy-
duty trucks. These rules were the product of historic coopera-
tion among government, business, public health, and environ-
mental interests. They powerfully incentivize deployment of
low-GWP alternatives and reach the ~80% of transportation-
related HFCs that come from car and truck air conditioning
systems. The other ~20% of HFC emissions from the trans-
portation sector, however, come from refrigerated transport—
an additional opportunity that the EPA can address in its
upcoming second-phase standards for medium- and heavy-
duty trucks.

� EPA Greenhouse Gas Reporting Program. The EPA (2010b)
requires many sources of F-gas emissions to quantify and
report these emissions. The reporting program now has data
for sources from 2010 and 2011 (U.S.EPA, 2013a), and

Figure 1. Climate co-benefits of Euro 6/VI with two global warming potentials (i.e., GWP-20 and GWP-100 for 20 and 100 years, respectively) for: (a) global non-
CO2 tank-to-wheels (TTW) greenhouse gas (GHG) emissions from on-road vehicles; and (b) global non-CO2 TTWGHG reductions from accelerated policies relative
to baseline. (Best practices: United States, EuropeanUnion, South Korea, Japan, Australia, and Canada; OAR: Africa,Middle East, and all other Asia Pacific countries
[excluding China, India, and South Korea]; MtCO2e: million tonnes of carbon dioxide equivalent.).
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leveraging this information can provide transparency and
encourage best practices for smaller sources of F-gases like
the semiconductor industry.

There is momentum building for action under the MP, and
pursuing common sense domestic policies can help catalyze
change in the same way that domestic actions helped to build
momentum for the international phase-out of ODS under the
MP. While the phase-out of ODS has resulted in higher HFC
emissions, the public has the tools to deal with this new problem
and they are the same ones that have been successful in forging
public health and environmental progress in many different
areas. Science, business solutions, and common sense policies
are available to help effectuate a swift transition away from
HFCs, and it is critical to embrace these opportunities and ensure
the narrative is one of continuous environmental progress and
not unintended consequences.

Additional Reviews and Data Bases

No critical review on a complex topic is ever complete.
Additional reviews have been published related to: 1) strato-
spheric ozone and the MP (Aucamp, 2007; Gareau, 2010; Jadin
et al., 2005; Jia et al., 2006; Kaniaru, 2007; Kuijpers, 1990;
McCulloch, 1999; McCulloch, 2003; Plumb, 2002; Solomon,
1999; Zerefos et al., 2009); 2) refrigerants and climate (Calm,
2008; Kim et al., 2011;McCulloch, 2003;Minjares, 2011; Powell,
2002; Sherman et al., 1998); 3) climate and health; and 4) policies
for emission changes. IPCC (2013) provides the best overall
introduction to science and policies. Several data bases and com-
pilations are also web-accessible (GEIA, 2012; NASA, 2013;
NOAA, 2012; U.S.EPA, 2012b; 2012c; 2013a).

Critical Review Authors’ Response to
Discussion

The authors agree that the critical review could have been
more complete with respect to N2O and BC, but these topics
were considered too far afield from the core topics. Unless action
is taken under theMontreal, Kyoto, or other protocols, N2O from
unnatural sources will soon be the largest ODS to the atmo-
sphere—given that other sources are phased out from production
and slowly eliminated by atmospheric processes. Like methyl
bromide, N2O has natural sources that are likely uncontrollable,
but a phase-out of manufactured N2O is important.

The authors agree that scientists are in near-consensus that
halons, methyl bromide, and methyl chloroform make little
contribution to climate change. Nonetheless, the climate benefits
of the aerosol spray-can boycott inspired by Molina and
Rowland (1974) and the subsequent MP avoided a world where
climate change might already have been irreversible—surely the
best proof of the precautionary principle and the importance of
science to early warning of potential environmental harm.

The authors strongly disagreewith theview thatHFCs pose little
threat. It is true that HFCs are currently <1% of long-lived GHG
emissions, but it is also true that they are the most rapidly growing
GHG in many countries and will likely grow out of control as

incomes increase in markets with billions of customers where
refrigeration and air conditioning have not yet penetrated. The
recent agreement between the United States and China
(U.S. White House, 2013) to phase out HFCs using the institutions
of the MP makes an HFC phase-out all but certain. The devil is in
the diplomatic details and in the ability of businesses to commer-
cialize replacement productswith superior lifecycle climate change
performance (LCCP). The authors’ view is that success in phasing
down HFCs under the MP will add to the evidence that sector-by-
sector focus is superior to reliance on carbon trading alone.

The authors also agree that the search for environmentally
sustainable technology has made great strides, but is nowhere
near a “final” solution. It is daunting to imagine curtailment of
CO2 emissions caused by human activities or to identify the
carbon capture and sequestration (Chow et al., 2003; White
et al., 2003) required to counteract past emissions. Choices
could include:

� Tracking progress in MAC and room AC where environmen-
tally superior refrigerants are already available.

� Quantifying the claim that HFC-1234yf is too flammable to use
in MAC systems. What are the implications for the use of far
more flammable refrigerants in applicationswhere larger refrig-
erant charges are necessary, where there is less experience with
flammable chemicals, and where evacuation from fire is more
difficult? The damage done by this claim will continue to
unfold as the European Community grapples with how to
penalize violation of the F-gas directivewithout either crippling
German vehicle production and jobs or crippling respect for
and compliance with laws necessary to protect climate.

� Look for corporate leadership to follow the pledges of the
members of Refrigerants, Naturally!, the Consumer Goods
Council, and the core work of nongovernmental organizations
(NGOs) such as SAE international and other public and
private standards and industry associations.

� Considering that HFC-152a has higher potential for energy
efficiency than either HFC-1234yf or CO2 in MACs, and that
HFC-152a produces no TFA atmospheric by-products.
Furthermore, recent scientific studies of atmospheric lifetime
report a lower GWP for HFC-1234yf to<1, making it superior
with respect to the GWP of CO2. However, the analysis will
want to stay focused on LCCP because the energy embodied
in manufacture of a refrigerant easily exceeds the climate
impact of the chemical refrigerant itself by more than an
order of magnitude. Furthermore, the other embodied energy
and indirect fuel use to power refrigeration and AC exceeds
the refrigerant impact by up to many orders of magnitude,
depending on the climate where the product is used and the
carbon intensity of the energy source.

� Study the long-term environmental effects of atmospheric
decomposition products of HFC-1234yf, presumably mainly
TFA. One might also add a multiyear study of the effects on
the refrigerant and refrigeration systems using HFC-1234yf.
Current knowledge suggests there is no cause for alarm or
even concern, but it is unwise to rule out another unanticipated
consequence in the making.

� Reevaluate whether the success on ODS was because it was
easier than reducing non-ODS GHGs or because the Kyoto
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Protocol is the wrong mechanism and approach to global
market transformation. This topic is the subject of ongoing
debate. Scholars of the MP identify its strengths as Start and
Strengthen, Easy First, Government/Industry Partnerships,
Corporate Pledges and Consumer Boycotts, Incremental
Finance, and the Confidence and Spirit of Success itself.
Consider that MP meetings never attract many more than
500 participants, while climate meetings have achieved the
carnival status of tens of thousands. Add “Small is Beautiful”
to the MP advantage.
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