
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Automatic generation of global shell-element meshes for large-scale structural design
optimization

Permalink
https://escholarship.org/uc/item/12b7d600

Author
Li, Ning

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12b7d600
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Automatic generation of global shell-element meshes
for large-scale structural design optimization

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Engineering Sciences (Mechanical Engineering)

by

Ning Li

Committee in charge:

Professor John T. Hwang, Chair
Professor David Kamensky
Professor Michael T. Tolley

2020

Copyright

Ning Li, 2020

All rights reserved.

The thesis of Ning Li is approved, and it is acceptable in qual-

ity and form for publication on microfilm and electronically:

Chair

University of California San Diego

2020

iii

EPIGRAPH

There is only one success – to be able to spend your life in your own way.

—Christopher Morley

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

Acknowledgements . ix

Vita . x

Abstract of the Thesis . xi

Chapter 1 Introduction . 1

Chapter 2 Prior work . 5

Chapter 3 Methodology . 8
3.1 Algorithm overview . 9
3.2 Creation of surfaces of internal members 12

3.2.1 Creation of edges . 12
3.2.2 Creation of the four-sided domains 16

3.3 Generation of the initial triangulation 19
3.3.1 Transfinite interpolation 20
3.3.2 Delaunay triangulation . 21

3.4 Detection of intersections . 22
3.4.1 Detection of intersections between triangles 23
3.4.2 Algorithm for finding the intersection points 25
3.4.3 Retriangulation . 26

3.5 Mesh quality improvement . 26
3.5.1 Splitting optimization . 28
3.5.2 Merging optimization . 33
3.5.3 Smoothing optimization 36

3.6 Transformation to a fully quad mesh 38

v

Chapter 4 Results and discussions . 40
4.1 Results with the OWN-06c Transonic Airliner 41
4.2 Results with the eVTOL eCRM-002 47

Chapter 5 Conclusion . 48

vi

LIST OF FIGURES

Figure 3.1: An example of applying our algorithm to generate of shell-element meshes
for an aircraft structure, where a rib is added to the wing component of the
aircraft. 9

Figure 3.2: The generated octree structure for an aircraft contains the aircraft in it. . . . 13
Figure 3.3: Two line segments with four projection points are defined to determine the

location and shape of the rib member in the airfoil. The blue points are the
projection points, while the red points are the projected points. 14

Figure 3.4: The projected points and a four-sided domain (rib) is created. The intersection
points between the triangulation and projected edges are denoted as the red
points. The black edges are the triangulation. 18

Figure 3.5: The four-sided surface is separated from the triangulation. Starting from the
four-sided domain on the right hand side, we generate the triangulation on
this member. The four parametric functions of the surface boundaries are
denoted as c1, c2, c3, and c4. 19

Figure 3.6: The generated mesh nodes are denoted in grey. Since the right boundary
curve is shorter than the left boundary curve. There are less discretized points
on the right boundary curve. 21

Figure 3.7: Given a set of discrete points, Delaunay triangulation generates triangulation
that the circumcircle of each triangle is empty. 21

Figure 3.8: The initial triangulation of the rib shows good quality. However, the triangles
at the left top corner of the surface have acute angles, Delaunay triangulation
cannot deal with that. We will fix this problem in the following steps. . . . 22

Figure 3.9: In subfigure (a), both the endpoints of the intersection line are on the edges of
the same triangle, while in subfigure (b), the endpoints of the intersection line
locate on the edges of different triangles. The red points are the endpoints of
the intersection line. 24

Figure 3.10: There are three different cases of a line segment intersecting a triangle. In
cases (a) and (b), the triangle and the line has no intersection. If only both the
criteria are met, there is intersection between the line segment and the triangle. 25

Figure 3.11: There are three cases where the intersection points locate, on the interior of
the triangle, on one edge of the triangle and on the vertex of the triangle. The
red point is the intersection point and the red edge is created to divide the
triangle. 26

Figure 3.12: The black line represents the fixed edges. In (a), the red dashed lines are
removed edges from the blue mesh. In (b), the red lines are splitting lines for
the blue original mesh. In (c), the blue edges are the input edges, red edges
are the smoothed edges. In (d), it is transformed to a fully quad mesh. . . . 27

vii

Figure 3.13: Details of the quad splitting: There are eleven options to split a quad, the
last one being the original configuration, not splitting at all. The number
surrounding the top left quad (option 0) is the local indexing of the quad.
From the top left to the bottom right, the options are indexed from 0 to 10. . 29

Figure 3.14: Details of the triangle splitting: There are seven options to split a triangle,
the last one being the original configuration, not splitting at all. The number
surrounding the upper left triangle (option 0) is the local indexing of the
triangle. The options are indexed from 0 to 6. 30

Figure 3.15: An example showing the formulation of the equality constraint: The numbers
are the indices for each vertex in the mesh. The quad can be presented as
(0,1,3,4) and the triangle can be expressed as (1,2,3). They have one shared
edge. 31

Figure 3.16: The adjacent polygons must agree on whether to split the shared edge. In
subfigure (a), all the splittings are valid, while in subfigure (b), the splittings
are invalid since the triangle and the quad do not agree on splitting the shared
edge. 32

Figure 3.17: Starting with the triangle in the initial triangulation, subfigure (a) shows a
valid merging and subfigure (b) shows an invalid merging. 35

Figure 3.18: The black points are the face points while the red points are the edge points.
Connecting the face points to the edge points, a polygon is divided into quads. 38

Figure 4.1: Some unnecessary components are removed from the input CAD models of
OWN-06c Transonic Airliner (a) and eVTOL eCRM-002 (b). 40

Figure 4.2: Subfigures (a) and (b) are the overview of the skin mesh. Subfigures (c) and
(d) zoomed figures of a portion of the skin. 41

Figure 4.3: Subfigure (a) shows the intersection is properly detected. Subfigure (b) shows
the meshes of the internal members. 43

Figure 4.4: Subfigure (a) shows the location of the wingbox in the aircraft. Subfigure (b)
shows the created wingbox component. Subfigures (c) and (d) show views of
the mesh of the wingbox from different perspectives. 45

Figure 4.5: We create 2 ribs and 4 spars in the wing of the eVTOL to test the robustness
of ouralgorithm . 46

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my committee chair Professor John T.

Hwang, who is also my Master’s advisor. I wish to thank him for encouraging me to think

independently on this project and being patient whenever I was stuck at some point. Without his

guidance and persistent help this thesis would not have been possible.

I would like to thank the other members of my thesis committee—Professor David

Kamensky, and Professor Michael T. Tolley—for sparing time on my Master’s defense from their

busy schedule. Their invaluable advice improved my thesis and expanded it in different areas.

Next, I would also like to acknowledge Jiayao Yan, Han Zhao, Ru Xiang, Aobo Yang and

other members from Professor Hwang’s research group for their extensive advice and Juefan Xie

and Cheng Qian for their help on initialization of the ideas.

I would like to thank my loved ones, who have supported me throughout entire process,

both by keeping me harmonious and helping me putting pieces together. I will be grateful forever

for your love.

The thesis, in full, is an adaption of the material as it appears in Li, Ning, and John T.

Hwang. “Automatic generation of global shell-element meshes for large-scale structural design

optimization.” AIAA AVIATION 2020 FORUM. 2020. This thesis is currently being prepared

for submission for publication of the material. Li, Ning; Hwang, John T. The thesis author was

the primary investigator and author of this material.

ix

VITA

2013-2017 B. E. in Mechanical Engineering, Nanjing Forestry University

2018-2020 M. S. in Mechanical and Aerospace Engineering, University of California
San Diego

PUBLICATIONS

Li, Ning, and John T. Hwang.“Automatic generation of global shell-element meshes for large-scale
structural design optimization.” In AIAA AVIATION 2020 FORUM, p. 3135. 2020.

Yan, Jiayao, Ning Li, Tongji Luo, Michael T. Tolley, and John T. Hwang. “Optimal control
and design of an underactuated ball-pitching robotic arm using large-scale multidisciplinary
optimization.” In AIAA Aviation 2019 Forum, p. 3450. 2019.

x

ABSTRACT OF THE THESIS

Automatic generation of global shell-element meshes
for large-scale structural design optimization

by

Ning Li

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2020

Professor John T. Hwang, Chair

In aircraft design, unconventional configurations have gained significant recent interest

due to increasing demands for greater efficiency as well as emerging applications such as urban

air mobility. Since traditional empirical models are not applicable for unconventional aircraft,

high-fidelity computational design methods like large-scale design optimization can be employed.

However, building up models for such unconventional aircraft is time-consuming and requires a

large amount of manual work during the iterative design process. Generating a mesh of a structure

with complicated geometry is one of the difficult steps. We present a fully automatic approach for

xi

constructing quadrilateral meshes for shell-element analysis of aircraft structures. The method is

designed to produce highly isotropic meshes while guaranteeing the coincidence of the nodes of

the meshes of internal members and the structural skin. This paper also presents the applications

of the algorithm on the OWN-06c Transonic Airliner from OpenVSP and the eVTOL eCRM-002

from Uber. The results show that our algorithm is simple, efficient, and versatile, which basically

fulfills all the requirements of generating shell element meshes for aircraft.

xii

Chapter 1

Introduction

Large-scale design optimization (LSDO) is the solution of numerical optimization prob-

lems in the context of engineering design, where the optimization problem has a large number

of design variables, at least in the hundreds. Such an approach is useful because optimization

in high-dimensional design spaces yields results that are unintuitive and can provide insights

into complex design problems. The high dimensionality can come from a problem that involves

multiple coupled disciplines, as is frequently the case in aircraft design. It can also come from a

problem in which the quantity being optimized is spatially distributed, such as the sizing of the

different parts of a load-carrying structure.

In the field of aircraft design, there is currently a large amount of interest in unconventional

aircraft configurations for: commercial aircraft to achieve radical improvements in fuel efficiency

and environmental impact; supersonic aircraft to enable their re-introduction into the market;

and electric vertical takeoff and landing (eVTOL) in the emerging area of urban air mobility

(UAM). With unconventional configurations, traditional empirical and semi-empirical models

are inadequate; therefore, high-fidelity computational design methods such as LSDO can play

an important role. However, the challenge in applying high-fidelity tools to a conceptual design

setting is satisfying the conflicting criteria that: the tool is versatile in that it can consider a

1

wide range of designs with large design changes; there is a small turnaround time so that the

engineer can quickly set up, execute, and visualize the computational results; and mesh quality is

maintained so that the expected accuracy of the simulation is achieved.

The difficulty of satisfying all of these criteria simultaneously has thus far limited the use

of high-fidelity tools early in the design process such as in conceptual design where unconventional

configurations are considered. If these criteria can be satisfied, large-scale design optimization

has the potential to significantly accelerate the investigation of unconventional configurations for

which there is a lack of prior knowledge and empirical models.

The focus of this thesis is on the structural analysis in large-scale design optimization

(which can be multidisciplinary). Structures is an important discipline to consider even at the

earlier stages of aircraft design because of the importance of reasonably accurate weight prediction.

For conventional aircraft, there are many empirical weight models [1] broken down by part (e.g.,

wing, fuselage, horizontal tail, landing gear) which are functions of various parameters (e.g,

area, aspect ratio, sweep, fuselage length, gross weight). These empirical models are very useful

because they are simple and easy to use, but they provide enough accuracy to obtain reasonable

early estimates of empty weight and mass distribution. For unconventional configurations, we

desire structural analysis methods and tools that can provide a similar ability to estimate empty

weight and mass distribution while satisfying the aforementioned criteria: versatility with respect

to large design changes; small turnaround time; and reasonable mesh quality. High-fidelity

structural simulations of airframes are performed using shell-element finite-element analysis.

The generation of a shell-element mesh of an aircraft can be challenging since the internal

members of the aircraft affect the mesh of the aircraft’s outer skin because the nodes of the meshes

of internal members and structural skin must coincide. Jakob et al. [2] introduce a set of interactive

brush tools that can be used to control the alignment of the edges in the final mesh, their exact

position on the surface, e.g. the location of an imprinted member of an aircraft can not be easily

added with brush tools exactly. Hwang et al. [3] develop the GeoMACH tool suite to generate

2

geometry and meshes while allowing the users to determine the layout of the internal structures

and keeping the coincidence of intersection nodes between the members and skin. However,

GeoMACH has several limitations: it is very time-consuming; its algorithm requires the geometry

to be developed within GeoMACH and cannot work with externally created geometries such as

CAD files; and it requires a considerable amount of manual work since it subdivides the entire

geometry surface into components and generates meshes on these components respectively to

combine them into the mesh of the surface [4]. Thus, a simple approach is desired that can generate

a high-quality mesh of an airframe without losing automation and robustness. OpenVSP (Open

Vehicle Sketch Pad) is NASA’s parametrically driven, open-source aircraft geometry design

tool, which can be used to generate triangle meshes and quadrilateral wireframes [5]. However,

OpenVSP can only generate triangular meshes of thin-walled aircraft structures, and its capability

for generating quadrilateral meshes is limited to structured wireframes. Here, we desire a method

that can generate fully unstructured quadrilateral meshes of the entire airframe including the skin

and internal members of wings, fuselages, and other aircraft components.

In this thesis, we present a novel approach that satisfies all previous requirements using

an algorithm whose key steps are a series of simple and robust solutions of linear and quadratic

programming problems. Compared to nonlinear programming, linear and quadratic programming

are always more robust, simple, and efficient. Our fully automatic mesh algorithm starts with

the model of a commercial CAD software, e.g., SolidWorks. For each member, it first defines

four intersection curves that become boundaries of the internal member by projecting four line

segments out of the aircraft surface to the aircraft model. Then, we apply transfinite interpolation

(TFI) to create a continuous parametric surface based on the four boundary curves and generate

the initial mesh nodes in the parametric domain [6]. The mesh nodes are later used to generate an

initial mesh using Delaunay triangulation, which always has a unique solution in the 2D case.

After that, the intersection points between the projected curve and the original triangulation is

found and used to reconstruct the triangulation. At last, several mesh quality improvement steps

3

are performed on the meshes of the imprinted members and aircraft skin separately. The mesh

quality improvement methods involve splitting, merging, and smoothing optimizations, which

are formulated as linear or quadratic programming problems to make topological and geometric

adjustments.

The thesis proceeds as follows. In Sec. 2, we survey existing related work in mesh

generation of aircraft structures, and in Sec. 3, we demonstrate the details of our algorithm. In

Sec. 4, we present the results of applying this algorithm to a model from Vehicle Sketch Pad

(OpenVSP). In Sec. 5, we summarize the accomplishments of this thesis and future plans.

4

Chapter 2

Prior work

A wealth of methods and algorithms have been developed to generate shell-element

meshes. For maximizing mesh quality, much of the prior work focuses on minimizing energy

to capture smoothness. Some previous studies are able to generate high-quality quadrilateral

meshes by minimizing the smoothness energy [2, 7, 8]. Knoppel et al. [9] further generate an

algorithm for computing the stripe patterns on a surface which can be applied to create a mesh on

the surface. By extending the idea of smooth orientation and position field [2], Huang et al. [10]

remove most of the singularities in the output mesh by formulating a minimum-cost network flow

problem. However, they are all complicated, and some of them involve nonlinear programming

which does not guarantee convergence or global minimum of the objective function. The mesh

generated by the algorithm proposed in this thesis may not always be better, but it is more efficient

and robust.

In addition to the prior work that focuses on minimizing the smoothness energy, other

methods have been developed to generate the mesh or smooth the existing mesh. Parthasarathy

et al. [11] develop a constrained optimization method to generate a smooth mesh. Canann et

al. [12] use a local optimization approach to improve the topology of unstructured quadrilateral

finite element meshes. Some prior work has also been done to use the parameterization of surface

5

patches to generate quadrilateral meshes by initializing the mesh in the parametric domain, then do

the smoothing and project the mesh back to physical domain. [13–15]. After the projection, some

post-processing steps may be implemented to improve the mesh quality. One drawback of using

parameterization to generate meshes is that if the optimization and smoothing are done in the

parametric domain, the projected meshes in physical domain may be distorted. Our optimizations

are done in the physical domain, thus the mesh quality is preserved. Verma et al. [16] provide

a method to produce an isotropic fully-quad mesh using Suneeta Ramaswamy’s tree matching

algorithm and Guy Bunin’s one-defect remeshing. Several studies focus on generating mesh from

geometries with gaps or overlaps, or fixing inter-domain boundaries [17–19].

Recent papers focus more on the adoption of existing algorithms and incorporation of the

existing algorithms and techniques from the other fields. Some papers adapt the advancing front

techniques to generate quadrilateral meshes [20–25]. The advancing front techniques are robust

and simple, but it is usually more time-consuming compared to other global mesh generation

methods. Rouxel et al. [26] define a discrete Riemannian Voronoi diagram for which its dual is an

embedded triangulation. Engwirda et al. [27] offer a robust frontal-Delaunay approach in which

new vertices are constrained by element size and the shape of the model.

Otoguro et al. [28] present a method based on multiblock-structured mesh generation and

projection of the structured mesh to a NURBS mesh, and recovery of the original model surfaces.

Liu et al. [29] combine an octree-based polyhedral mesh generation with the scaled boundary

finite element method to perform stress analysis of standard tessellation language (STL) models.

The octree structure is a commonly used data structure for 3D models, which can help improve

the efficiency of searching desired elements. Some researchers introduce more metrics to the

existing algorithms to improve the mesh quality [30, 31]. Soni et al. [32] propose an efficient

algorithm by applying centroidal voronoi tessellation on the voxelized Surface. Altenhofen et

al. [33] model 3D objects using a volumetric subdivision representation to encode the volumetric

information in the design mesh making the mesh generation process much faster. CDT is an

6

extension of Delaunay triangulation by constraining the desired connections of vertices.

What is lacking in the prior work is an efficient way to add internal members to a model,

which is one of the motivations of the thesis. The algorithm that we propose as a solution to this

is based partly on the algorithm in the aforementioned GeoMACH library [3]. This algorithm

divides the aircraft skin into faces and generates a smooth mesh on each face based on a six-

step algorithm. However, the generated mesh is considered smooth locally in the parametric

domain of each face. The algorithm proposed here can generate smoother meshes since all the

optimizations including smoothing are done globally in the physical domain. Another weakness

of GeoMACH is that it requires the user to generate the geometry within GeoMACH which is

time-consuming. Also, the given CAD geometries cannot be reproduced exactly in GeoMACH.

The current algorithm works with input geometries specified by CAD files.

7

Chapter 3

Methodology

The algorithm begins with a triangulation of the geometry, which would in most cases be

generated by commercial CAD software. The triangular mesh can be represented as ð= (ν,ε,δ),

where ν is the set of all vertices associated with a position vi ∈ IR3. In addition, ε is the set of

edges of the input mesh (i, j) ∈ ε if vi is the neighboring vertex of vi. Similarly, (i, j,k) ∈ δ if

vi, vi, and vk forms a triangle on the surface mesh. The neighborhood of vertex i is defined by

N(i) = { j ∈ ν|(i, j) ∈ ε}.

In our algorithm, each time we define a structural member, four projection points are

needed with also the projection directions if necessary (the details of the projection methods are

presented in Sec. 3.2.1). The layout of the members is decided by the projection of points, and

the input of the projection algorithm are P , the set in which all the projection points for each

member are stored, andD, the set containing all the projection directions of the projection points.

For instance, Pi is the set of four projection points for the ith member, andDi is the set of four

corresponding projection directions.

Finally, the output of our algorithm is the connectivity of the fully quad mesh η and

updated set of point coordinates ν. If vi, v j, vk, and vl forms a quad on the quadrilateral mesh,

(i, j,k, l) ∈ η.

8

3.1 Algorithm overview

(a) aircraft model (b) airfoil (the red box in (a)) (c) projection of points

(d) animation drawing of (c) (e) retriangulation of the skin (f) creation of the rib

(g) triangulation of the rib (h) optimized skin mesh (i) optimized rib mesh

(j) fully quad skin mesh (k) fully quad rib mesh (l) assembly

Figure 3.1: An example of applying our algorithm to generate of shell-element meshes for an
aircraft structure, where a rib is added to the wing component of the aircraft.

9

The general flow of our algorithm is in Alg. 1.

Algorithm 1: flow of the overall algorithm
Input: P , D, ν, ε, δ

Output: η, ν, ηi, νi (i from 1 to the number of members)
Data: P = the set in which all the projection points for each member are stored

D = the set containing all the projection directions of the projection points
Pi = the set of four projection points for the ith member
Di = the set of four projection directions for the ith member
ν = the set of all vertices
ε = the set of all edges
δ = the set of all triangles
νi = the set of all vertices for the ith member
δi = the set of all triangles for the ith member
Pdi = the projected points for the ith member
Ii = the intersection points between ε and the ith member
Si = the four sides of the ith member
C = the intersection points between the ith and jth member
µ = the quad dominant mesh after mesh optimizations for the skin
µi = the uad dominant mesh after mesh optimizations for the ith member
η = the optimized fully quad mesh for the skin
ηi = the optimized fully quad mesh for the ith member

1 for Pi in P do
2 Pdi← projection algorithm(Pi, Di, ε) ; // (Fig. 3.1c, 3.1d and

Sec. 3.2.1)
3 Ii← intersection detection(Pdi, ε); // (Fig. 3.1e and Sec. 3.2.2)
4 δ and ν← retriangulation(Ii, ν, δ); // (Fig. 3.1e and Sec. 3.2.2)
5 Si← member creation(Ii); // (Fig. 3.1f and Sec. 3.2.2)
6 νi and δi← TFIandDT(Si); // (Fig. 3.1g and Sec. 3.3)

7 end
8 for i from 1 to the number of members do
9 for j from i to the number of members do

10 if intersection between the ith and jth members exist then
11 C← intersection detection(νi, δi, ν j, δ j); // (Sec. 3.4)
12 νi and δi← retriangulation(νi, δi, C); // (Sec. 3.4)
13 ν j and δ j← retriangulation(ν j, δ j, C); // (Sec. 3.4)

14 end
15 end
16 for i from 1 to the number of members do
17 νi, µi← mesh optimization(νi, δi); // (Fig. 3.1i and Sec. 3.4.3)
18 νi, ηi← Catmull(νi, µi); // (Fig. 3.1k and Sec. 3.4.3)

19 end
20 µ, η←mesh optimization(ν, δ); // (Fig 3.1h and Sec. 3.5)
21 ν, η← Catmull(ν, µ); // (Fig 3.1j and Sec. 3.6)

10

First, to determine the location, shape, and layout of the structural members, we create

a geometric class that consists of points and edges for each imprinted member created by the

projection of points and retriangulation of the skin of the structure (Fig. 3.1c, 3.1d, and 3.1e).

Then, based on the edges defined in the geometric class, we can determine four boundaries

of a member by finding out the edges on the four boundaries (Fig. 3.1f). By interpolating the

discrete points on the each boundary curve of the member with B-splines and applying the

transfinite interpolation (TFI) technique, we can create evenly distributed points on the interior of

the implicit surface of the member [6]. The initial meshes of the internal members are created by

utilizing the Delaunay triangulation (DT) method on the discrete points generated by TFI and

boundary points in the parametric domain (Fig. 3.1g). After mapping the point coordinates in the

parametric domain (u, v) back to the physical domain (x, y, z) and reserving the connectivities

of the triangulation, the meshes are ready for further operations. A general and robust intersection

involvement method is then applied to the initial mesh to obtain the intersection curves between

all the internal members. If not additionally declared, the intersection of all members will be

detected. With the intersection curves detected, the triangulation in the initial meshes is modified,

and the discrete intersection points are shared and fixed in the following steps to guarantee

the coincidence. Afterward, the mesh quality improvement optimizations, including splitting,

merging, and smoothing optimizations, are implemented on the meshes of the skin and the internal

members separately (Fig. 3.1h and 3.1i). Finally, the quad-dominant mesh is transformed into a

fully quad mesh with one step of the Catmull–Clark subdivision (Fig. 3.1j and 3.1k). Therefore,

the algorithm is divided into five steps:

1. Creation of surfaces of internal members (Sec. 3.2)

2. Generation of the initial triangulation (Sec. 3.3)

3. Detection and addition of intersection curves (Sec. 3.4)

4. Mesh quality improvement (Sec. 3.5)

11

5. Transformation to a fully quad mesh (Sec. 3.6)

3.2 Creation of surfaces of internal members

3.2.1 Creation of edges

Employing of the octree data structure

The accuracy and convergence rate of the finite element analysis depends greatly on the

mesh quality, mesh resolution, and element order. Thus, with a smaller element size, for the same

model, there needs to be more elements which results in more edges and vertices. Especially

for structures like aircraft, high-fidelity physics-based structural analyses are vital for accurate

results in, for instance, prediction of the weight of each component of an aircraft. To handle the

curse of the dimensionality of the number of elements, we use the octree data structure to store

all the triangles in the triangulation based on their positions to increase the speed of search, as

shown in Fig. 3.2. The octree data structure is widely used to partition a 3D space by recursively

subdividing it into eight octants. To put all the triangles in of the initial mesh in the octree data

structure, we first generate a cube in space that contains every triangle in the triangulation. The

first cube created is called the root node. Then, we evenly subdivide the root node into eight

octants by cutting it in half along each axis. Afterward, the triangles are stored in different

subnodes based on the locations of their centroids. For each subnode, we subdivide them again

recursively until the number of triangles in the node at the maximum level of the octree has less

than 200 triangles. These nodes at the maximum level of the octree are called the leaf nodes. As

shown in Fig. 3.2, we store the triangulation of a conventional aircraft in an octree. The octree

nodes are coarser at the region far away from the aircraft, while as they are closer to the aircraft,

the octree nodes are finer.

12

Figure 3.2: The generated octree structure for an aircraft contains the aircraft in it.

Projection algorithm

First, we generate four projection points in space for each member. For instance, to create

a rib in the aircraft wing, we first define two points right above the aircraft wing and two points

right below the aircraft wing, as shown in Fig. 3.3, which are later connected to make two line

segments, one above the wing and one below the wing.

13

Figure 3.3: Two line segments with four projection points are defined to determine the location
and shape of the rib member in the airfoil. The blue points are the projection points, while the
red points are the projected points.

Given the line segments that decide the layout of the internal members, we discretize

the line segment into several even pieces or maintain the original line segment, depending on

the targeted mesh resolution. If the element size of the final output mesh is much smaller than

that of the initial mesh, then the line segment must be split into more pieces to fit the finer

resolution. Then, for each discretization point li ∈ IR3 with i ∈ l, l is the set of all the points on

the line segment. We find the corresponding projected point pi ∈ IR3 with i being a member of

the set storing all the projected points p. All elements in l and p are ordered so that every two

adjacent members in each set are neighboring points in the line segment or projected curve. Two

algorithms can be employed to project the discretization points onto the surface of the model.

If the projection directions are given, we can define a ray starting from the point on the

line pointing along the projection direction and find the intersection point with the model that

gives the shortest distance between the intersection and projection point. Starting from the root

node in the octree, 1 we can first determine the probability of the intersection of the ray and

1https://github.com/mhogg/pyoctree

14

https://github.com/mhogg/pyoctree

a node, which is a cubic box in the octree. If the intersection is possible, we loop through all

the subnodes and check the occurrence of the intersection. By doing this operation recursively,

we end up with a leaf node. Looping through all the triangles in the leaf node and finding the

triangles that intersect with the ray, the distances between the triangles and the projection point

can be found. Among all the projected points, the one that yields the shortest distance is the point

we want. The projection of the line segment below the wing is found with the first projection

algorithm and a given projection direction (Fig. 3.3).

If the projection direction is not given, we can then find the point on the triangulation that

gives us the shortest distance to the projection point. The algorithm is not too different from the

previous one with projection directions. The first step is to start from the root node and iterate

over all eight subnodes and then find the one that has the smallest distance to the projection point.

If it is a leaf node, we loop through all the triangles in this node and find the projected point

and corresponding shortest distance. If it is not a leaf node, we perform the first step recursively

until we end up with a leaf node. Then, we need to check the validity of this point from the leaf

node level to the root node level. At each level, we need to check if the shortest distance found

is shorter than the distance from the projection point to the other nodes. If the found distance

is shorter than that between the projection point and the other nodes, go to the upper level and

check again until we reach the root node level. If not, we need to find the shortest distance

between the triangles in the other node and compare it to the shortest distance found in case that

the projected point is in the node that does not yield the shortest distance between it and the

projection point among all its counterparts. The line segment above the wing is projected with the

second projection algorithm by simply finding the closest points on the triangulation (Fig. 3.3).

After projecting all the designated discretized line segments onto the aircraft, a group of

projected edges and a projected curve can be created by connecting the neighbouring projected

points, where the projected edges are pairs of neighboring projected points pi and pi+1.

15

3.2.2 Creation of the four-sided domains

Once all the projected points of the discretized points on the line segment are found, we

can connect them sequentially and reconstruct the triangulation. For each pair of neighboring

projected points pi and pi+1, we first calculate the middle point mi of their corresponding

projection points li and li+1. Based on pi, pi+1, andmi, we can calculate the reverse direction of

the projection vector rev:

rev =mi−
1
2
(pi +pi+1). (3.1)

If the projection is done with directions, while the reverse of it can be calculated easily without

using Eqn. 3.1, we still calculate the reverse vector in this way because here, the projection may

be done without a direction, in which case Eqn. 3.1 cannot be avoided. Once we have the reverse

projection direction, to find out all the edges in the triangulation we want to have intersection

with, we calculate the normal vector of each triangle. If the dot product of the normal vector and

the projection direction is positive, we mark the corresponding triangle and add all its edges to the

pool of the possible intersection edges εintersect . Then, the intersection points of all the edges in

the pool and each projected edge can be found easily and inserted between pi and pi+1, with their

distances to pi in an increasing order. After inserting all the intersection points between every

pair of neighboring projected points, p is updated. To construct the new triangulation, we iterate

over all the members in p. If a point is located on the edge of a triangle, we connect it and the

opposite vertex in the triangle, and thus two new triangles are added to δ, while the split triangle

is deleted from δ. If it is located on the interior of a triangle, we connect it to the three vertices

of the triangle, and therefore, in this case, three triangles are added to δ and the split triangle is

deleted from δ. A detailed algorithm of how to reconstruct the triangulation is presented in Alg. 2.

After the projected lists are updated with Alg. 2, for a rib, the upper and lower boundary

curves can be defined as p projected from the line segment above the wing and that projected

from the line segment below the wing. Connecting the starting and ending vertices of the upper

16

Algorithm 2: reconstruction of the triangulation
Data: p, l, ν, ε, δ

Result: p, δ

1 for i in p except the last element do
2 mi← 1

2li +
1
2li+1;

3 rev ← mi− 1
2(pi +pi+1)

4 for (x,y,z) in δ do
5 ntri← (vy−vx)× (vz−vy); // normal vector of the triangle

6 if ntri ·rev > 0 then
7 add (x,y), (y,z), and (z,x) to the intersection edges pool εintersect

8 end
9 for (x,y) in εintersection do

10 if (x,y) intersects with the projected edge connecting pi and pi+1 then
11 coord← the intersection point;
12 dist←

√
(pi−coord)2;

13 save (coord, dist) in int;

14 end
15 sort int with dist in the increasing order;
16 insert coord from int between i and i+1 in p; // update p with

intersection points

17 end
18 add p to ν;
19 for i in p do
20 for (x, y, z) in δ do
21 if vi locates on the edge of triangle (x, y, z) then
22 delete (x, y, z) from δ;
23 if vi lies between vx, vy then add (y, z, i) and (i, z, x) to δ;
24 if vi lies between vy, vz then add (z, x, i) and (i, x, y) to δ;
25 if vi lies between vz, vx then add (x, y, i) and (i, y, z) to δ;

26 if vi locates on the interior of triangle (x, y, z then
27 delete (x, y, z) from δ;
28 add (x, y, i), (y, z, i), and (z, x, i) to δ

29 end
30 end

17

Figure 3.4: The projected points and a four-sided domain (rib) is created. The intersection
points between the triangulation and projected edges are denoted as the red points. The black
edges are the triangulation.

and lower boundaries, we get the other two boundary curves. With these four boundary curves,

the four sides are determined and a surface with four sides can be defined. This is the method of

creating a structural member that has intersections with the skin of the model, while for those

members that are defined inside an aircraft between other members, like the wingbox and the

ribs and spars inside the wingbox, the procedure is exactly the same except that the projection of

points is no longer necessary because we can define the four sides by picking points from the

other structural members. For instance, the four points of the spar inside the wingbox are directly

from the front and rear spars.

18

3.3 Generation of the initial triangulation

Figure 3.5: The four-sided surface is separated from the triangulation. Starting from the four-
sided domain on the right hand side, we generate the triangulation on this member. The four
parametric functions of the surface boundaries are denoted as c1, c2, c3, and c4.

As presented in Fig. 3.5, for each member created, we have four boundary curves created

by the projection of points. To generate the triangulation of the members, we first need to

produce the parametric equations for each boundary. A curve in 3D space is topologically of

one dimension; thus, only one parametric coordinate is needed. Take the upper boundary of the

rib in Fig. 3.5 as an example. It is represented by a group of points. Taking the point on the left

end as the starting point and the point on the right end as the ending point, we assign 0, 1 as the

parametric coordinates for the starting and ending points. For the rest of the points between the

two end points, the parametric coordinates are computed as

ui =
i−1
np

, (3.2)

where i is the index for the point, ui is the corresponding parametric coordinates, and np is the

total number of the points on the boundary. Then we can interpolate the physical coordinates of

these points with respect to their parametric coordinate using a second-order B-spline curve, and

we get the parametric functions of the upper boundary. Repeating the previous steps for the other

three boundaries, we end up with the parametric representation of the four sides and can apply

the transfinite interpolation to get a continuous parametric surface based on the four boundary

19

curves and generate the initial mesh nodes in the parametric domain. Delaunay triangulation is

employed on the mesh nodes in the parametric domain to create the initial triangulation. At last,

we map the mesh nodes back to the physical domain to achieve the initial mesh.

3.3.1 Transfinite interpolation

Transfinite interpolation is a technique that constructs a parametric function of a surface

such that it matches the curve functions on the boundary of the surface. A surface in 3D space

is topologically two-dimensional. Given that the parametrized curves c1 and c2 are functions

of the parametric coordinate u describing one pair of opposite boundaries of the surface, while

c3 and c4, as functions with respect to the other parametric coordinate v, describes the other

pair of opposite boundaries. Plugging c1, c2, c3, and c4 into the following equation, we get the

parametric function of the implicit surface,

S(u,v) = (1− v)c1u+ vc2u+(1−u)c3v+uc4v

−
[
(1−u)(1− v)P(1,3)+uvP(2,4)+u(1− v)P(1,4)+(1−u)vP(2,3)

]
,

(3.3)

where S is the function of the surface with respect to u and v, and P(a,b) is the intersection of

two boundary functions. For instance P(1,3) is the intersection point between c1 and c3, which

is the lower left corner shown in Fig. 3.5. With the parametric surface defined, we can generate

mesh nodes in the parametric domain that are evenly spaced on the interior and boundaries of the

surface, for example, the left and right boundary curves in Fig. 3.5. The number of the points

on the boundary is decided by rounding the length of the boundary curve divided by the average

element size of the triangulation, while the number of the points on the interior of the surface

is decided by the number of discretized points on the boundaries. For instance, if there are four

points on each side of the surface, the number of the points on the interior will be four, which

constructs a two by two frame. The generated mesh nodes for the rib in Fig. 3.5 is here:

20

Figure 3.6: The generated mesh nodes are denoted in grey. Since the right boundary curve is
shorter than the left boundary curve. There are less discretized points on the right boundary
curve.

3.3.2 Delaunay triangulation

Delaunay triangulation is ubiquitously used in in mathematics and computational geometry

because its useful geometric properties.

(a) input (b) Delaunay triangulation
Figure 3.7: Given a set of discrete points, Delaunay triangulation generates triangulation that
the circumcircle of each triangle is empty.

The fundamental property is the empty circumcircle criterion in the case of 2D triangula-

tion. For a set of points in 2-D, a Delaunay triangulation of these points ensures the circumcircle

associated with each triangle contains no other point in its interior. It also maximizes the minimum

angle of all the angles of the triangles in the triangulation to avoid a triangle with one or two

extremely acute angles, hence a long/thin shape, increasing the quality of the resultant triangular

21

mesh. Since our surface is in 3D space and not flat enough to be considered a plane, we decide to

do Delaunay triangulation in the parametric domain.

Because any 3D surface in the parametric domain is a square and a square is convex, there

is no need to do constrained Delaunay triangulation (CDT) to ensure the proper connection of the

boundary curves. Once the it is done, we map the vertices back to the physical domain, and that

is the initial mesh. Although the triangulation after mapping may not still satisfy all the criteria of

Delaunay triangulation, in most cases, as the members in the aircraft are mostly flat, the quality

of the mesh is preserved. The results of the rib shown in Fig. 3.6 is below:

Figure 3.8: The initial triangulation of the rib shows good quality. However, the triangles at the
left top corner of the surface have acute angles, Delaunay triangulation cannot deal with that.
We will fix this problem in the following steps.

3.4 Detection of intersections

As it should be and because we create many members in the aircraft, the intersection

of different members is inevitable. We must make sure that for two members that intersect,

the intersection curve must be added to their meshes and shared by both. However, there are

some cases where we do not want to have intersections between specific members, and then the

intersections between these members are ignored. For instance, to transfer the bending loads

from the wings to the ribs and spars, we usually have stringers in the wingbox. To make sure

these stringers have no intersection with the ribs in the wingbox, engineers add elliptical holes on

22

the ribs to let the stringers go through. Instead of making cutouts on the ribs, the intersections

between the ribs and the stringers are ignored and are not detected. Thus, the general procedure

for updating the triangulation is that we first loop through every pair of members and find the

intersection curves, omitting the specific members we do not want intersecting. Then, we add the

detected intersection curves to the corresponding members iteratively. And last, we will fix these

points on the intersection curves in the following steps to make sure the intersection curves still

coincide after all the operations.

3.4.1 Detection of intersections between triangles

Because the meshes of the members are all triangular, we need to detect intersections

between two triangulations. Essentially, the intersection between triangulations is the intersection

between triangles. There are two ways that triangles intersect as shown in Fig. 3.9. In either

case, only one intersection line can be found there has only two end points on the edges of these

two triangles. Thus the mission of finding the intersection curve between two triangulations is

simplified to finding all the intersections between a group of triangle pairs, in which the two

triangles come from two different triangulations. Because the end points are on the edges, the

problem now becomes finding whether one edge intersects with a triangle and, if so, where the

intersection point is. Let t1, t2, and t3 denote the triangle, and the two end points of the edge are

q1 and q2. The signed volume of a tetrahedron can be computed as

SV (a,b,c,d) =
1
6
· [(b−a)× (c−a)] · (d−a), (3.4)

23

(a) (b)
Figure 3.9: In subfigure (a), both the endpoints of the intersection line are on the edges of the
same triangle, while in subfigure (b), the endpoints of the intersection line locate on the edges of
different triangles. The red points are the endpoints of the intersection line.

where a, b, c, and d are four points of a tetrahedral. Two criteria must be satisfied to make sure

the edge intersects the triangle:

The 1st criterion: SV (q1, t1, t2, t3) ·SV (q2, t1, t2, t3)> 0

the 2nd criterion: SV (q1, q2, t1, t2), SV (q1, q2, t2, t3), and SV (q1, q2, t3, t1)

must have the same sign.

(3.5)

If only the first criterion is satisfied, the edge does not intersect with the plane where the triangle

is located, as shown in Fig. 3.10a. If only the second criterion is satisfied, the edge intersects with

the plane but does not intersect with the triangle, which can be seen in Fig. 3.10b. If and only if

both criteria are met, the edge has intersections with the triangle.

24

(a) only the first criteria (b) only the second criteria (c) both criterion
Figure 3.10: There are three different cases of a line segment intersecting a triangle. In cases
(a) and (b), the triangle and the line has no intersection. If only both the criteria are met, there is
intersection between the line segment and the triangle.

3.4.2 Algorithm for finding the intersection points

Once we figure out that the intersection point exits, we can figure out the location of the

intersection point. First of all, the normal vectorN of the triangle is computed as

N = (t2− t1)× (t3− t2). (3.6)

The parametric form l(u)of the line segment is

l(u) = q1 +u · (q2−q1), (3.7)

where u is the parametric coordinate, and the parametric and physical coordinates (û) and q̂ of

the intersection point can be calculated using

û =− (q1− t1) ·N
(̇q2−q1) ·N

,

q̂ = q1 + û · (q2−q1).

(3.8)

25

After we find all the intersection points between two triangulations, we can group them into a list

of points and update the triangulations to include this list of points.

3.4.3 Retriangulation

(a) (b) (c)
Figure 3.11: There are three cases where the intersection points locate, on the interior of the
triangle, on one edge of the triangle and on the vertex of the triangle. The red point is the
intersection point and the red edge is created to divide the triangle.

To update the triangulation, we first find out which triangle the intersection points are

located in by looping through all the triangles in the triangulation. As shown in Fig. 3.11, if the

intersection point stays on the interior of the triangle, we split the triangle into three subtriangles

by connecting the intersection point and all three vertices in the triangle. If the intersection point

stays on the edge of the triangle, we connect the point and the opposite vertex. If the intersection

point stays exactly on a vertex of the triangle, nothing needs to be done.

3.5 Mesh quality improvement

In this section, three optimization problems are formulated to improve the mesh quality, in

which the splitting and merging optimization are the topological optimization, and the smoothing

optimization is the geometric optimization, as shown in Fig. 3.12. By applying the splitting and

26

merging optimization to the mesh, the number of vertices in the mesh may increase, and the

total number of polygons in the mesh also changes, which is caused by splitting a quad or a

triangle and merging two adjacent triangles. On the other hand, the smoothing optimization does

not change the number of vertices or connectivities of polygons but moves the positions of the

vertices. After each smoothing optimization, the updated locations of all vertices are projected

back to the original triangulation to maintain the geometry of the structure. All the optimization

methods aim to decrease the aspect ratio of each polygon in the mesh or make the polygons more

regular.

(a) merging optimization (b) splitting optimization

(c) smoothing (d) fully quad transformation

Figure 3.12: The black line represents the fixed edges. In (a), the red dashed lines are removed
edges from the blue mesh. In (b), the red lines are splitting lines for the blue original mesh. In
(c), the blue edges are the input edges, red edges are the smoothed edges. In (d), it is transformed
to a fully quad mesh.

27

3.5.1 Splitting optimization

The meshes created by commercial CAD software are usually structured. For structures

with complex geometry, like aircraft, engineers often split the entire model into several compo-

nents, for instance, fuselage, wings, and tail, and build these components individually. This is

efficient when it comes to building up the model. However, the extracted shell-element meshes

may have bad quality because the CAD software tends to generate meshes for each component

and merge them, which sometimes results in triangles with large aspect ratios at the regions

where different components intersect. Similarly, in the triangulation and detection of intersection

steps, when we involve the intersection curve to these corresponding members, we, somewhat in

a brutal-forced way, connect discretized points on the intersection curve to the existing triangle

in which these projected points are located, which also results in some poor quality triangles.

To deal with these irregular triangles and also expand the idea to a quad element, the splitting

optimization is derived to allow triangles and quads to be split into a triangle and a quad or two

triangles or two quads, thus making the polygons in the mesh more regular. For instance, if we

split an obtuse triangle into two acute triangles along the median of its obtuse angle, the resultant

two triangles clearly have a lower aspect ratio and more regular shape, and thus, they are higher

quality. This also works for a quad. If we split a 60◦ rhombus into two equilateral triangles, the

resulting triangles triangles obviously have higher quality because, in the initial rhombus, the

angles of the corners are 30◦ off to 90◦, but equilateral triangles are the most regular triangles.

28

Objective functions and design variables

We form the splitting optimization problem as a linear programming problem for robust-

ness and efficiency. The detailed expression is below:

minimize fs = c
ᵀ
sxs

with respect to lbs < xs < ubs

subject to Asxs = bs,

(3.9)

where the design variable xs has the size of eleven times the number of polygons in the mesh,

eleven being the number of splitting options. The lower and upper bounds lbs and ubs are usually

0 and 1; however, in some cases the ubs may be constrained to 0. The equality constraints are

built up with two criteria, agreement on splitting the shared edge and only one option chosen for

one polygon. More details are presented in the following paragraphs.

0 1

23

Figure 3.13: Details of the quad splitting: There are eleven options to split a quad, the last one
being the original configuration, not splitting at all. The number surrounding the top left quad
(option 0) is the local indexing of the quad. From the top left to the bottom right, the options are
indexed from 0 to 10.

29

2 1

0

Figure 3.14: Details of the triangle splitting: There are seven options to split a triangle, the last
one being the original configuration, not splitting at all. The number surrounding the upper left
triangle (option 0) is the local indexing of the triangle. The options are indexed from 0 to 6.

As shown in Fig. 3.13, the eleven options to split a quad can be divided into three types,

splitting by a line connecting middle points of two opposite edges, splitting by a line connecting

a vertex and the middle point of one opposite edge, and not splitting. Similarly, as shown in

Fig. 3.14, the triangles can be split in the same ways, but there are fewer options. Because we

want to make our polygons as regular as possible, we define energy describing the regularity of

the mesh based on the aspect ratio of each polygon and the difference between the angle in each

triangle or quad and 60 or 90 degrees. The expression is

es = c1

n

∑
i=0

li
lavg

+ c2

n

∑
i=0

θi

θ
, (3.10)

where es is the energy, n is the number of edges of a polygon, li is the length of each edge, lavg is

the average length of all the edges in this polygon, θi is the angle of each corner, c1 and c2 are the

coefficients for energy regarding edge lengths and angles, and θ is the reference angle, 60 degrees

for triangles and 90 degrees for quads. The weight, which reflects how much we prefer an given

option, can be calculated as the total energy after the splitting operation. For instance, if we split

a quad into two new quads, the weight is calculated as the sum of the energy of two new quads.

After calculating the weights of all the options, we group them as a vector and assemble it to cs

30

in Eqn. 3.9. There are fewer options for splitting a triangle, but we still assign eleven options to it

because we want to make the number of options the same for a triangle and a quad to make the

assembly of cs easier. Thus, we need to change the upper bounds of the last four triangle splitting

options to zero for validity. The computation of the weight of each option of a triangle is the

same as that of a quad. The design variable xs is the decision of each option for all polygons, and

thus, its length is eleven times the number of polygons.

The first equality constraint

0 1

234

Figure 3.15: An example showing the formulation of the equality constraint: The numbers are
the indices for each vertex in the mesh. The quad can be presented as (0,1,3,4) and the triangle
can be expressed as (1,2,3). They have one shared edge.

Because every option is in contrast to all other options and the polygon is either split or

not split, the equality constraint that can be formed as the sum of all options must be one. As

shown in Fig. 3.15, if we take xt and xq as the decisions of splitting the quad and triangle, the

first linear constraint for this specific case can be formulated as

[
1 ... 1 1 1 1 1 ... 1

]xt

xq

=

[
2

]
, (3.11)

where the total length of the first vector is 22, which is the sum of the number of options for both

the triangle and quad. The sum of all the options should be 2, one for each polygon.

31

The second equality constraint

(a) valid splitting (b) invalid splitting
Figure 3.16: The adjacent polygons must agree on whether to split the shared edge. In subfigure
(a), all the splittings are valid, while in subfigure (b), the splittings are invalid since the triangle
and the quad do not agree on splitting the shared edge.

Up to this point, we only consider the situation of each polygon individually and overlook

their adjacency, so another equality constraint for establishing agreement on whether to split the

shared edges of adjacent polygons must be constructed. Take the simple mesh in Fig. 3.15 as an

example, where the quad (0,1,3,4) and triangle (1,2,3) have one shared edge (1,3). Because

they have the shared edge, they must agree on whether to split the shared edge. For the triangle,

the local indices of the shared edge are (2,0) from Fig. 3.14. Options (2,3,5) split the shared

edge, and options (0,1,4,6) do not split it. For the quad, the local indices of the shared edge are

(1,2), and options (0,2,6) tend to split the shared edge, while options (1,3,4,5,7,8,9,10) do

not split it. Since our algorithm can only handle triangular, quad-dominant, and fully quad mesh,

if the adjacent polygons do not have an agreement on the decision of splitting the shared edge,

a polygon with more than four edges may be created. Thus, the splitting decisions must agree

between the quad and triangle, and we can formulate a linear equality constraint for them:

0 0 1 1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 −1 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0 −1 0 −1−1−1 0 −1−1−1−1

xt

xq

=

0

0

 , (3.12)

32

where xt is the group of decisions for the triangle, and xq is the group of decisions for the quad,

the first row of the first matrix means the triangle and the quad agree to split the shared edge,

while the second row means that they agree on keeping the shared edge.

Sometimes, we also have a list of edges that we want to fix during the splitting optimization

stemming from the intersection curve of the internal members and model skin or vertices at the

high-curvature region. To fix these edges, we find the corresponding edges in the triangulation

and set the upper bound of every option that tends to split the fixed edge to zero. Thus, the fixed

edge cannot be split during the optimization.

3.5.2 Merging optimization

Merging optimization is designed to merge two adjacent triangles to a high-quality quad

to create a quad-dominant mesh. The best part of it is that if the given mesh is a structured mesh,

although each triangle may be irregular, the merging optimization can help to transform it into

a quad-dominant mesh with quads that are each close to square. The merging optimization can

also help decrease the number of edges, with polygons that helps to decrease the computational

cost of the following optimization steps. To control the resolution of the final mesh, merging

optimization is critical. As like the splitting optimization, the merging optimization problem can

also be formulated as a linear optimization problem.

Objective functions and design variables

The detailed expression is presented as

minimize fm = cᵀmxm

with respect to lbm < xm < ubm

subject to Amxm ≤ bm,

(3.13)

33

where the design variable xm is based on each edge, and its length is the number of edges

with the lower lbm and upper ubm bounds set at 0 and 1, where 1 is removing the edge, and

0 is not removing it. The inequality constraint stems from the criteria that, at most, one edge

per triangle can be removed because allowing multiple edges of a triangle to be merged may

result in a polygon with more than four edges. Because our algorithm can only handle triangle,

quad-dominant, and fully quad mesh, we do not want that to happen.

As with the splitting optimization, energy is defined as describing the quality of the

merged quad. It has three terms, where two are exactly the same as the energy defined for the

splitting algorithm, and the third one comes from the penalty of the dihedral angle of the resultant

quad, which is

em = c1

n

∑
i=0

li
lavg

+ c2

n

∑
i=0

θi

θ
+ c3

n

∑
i=0
eᵀi nq, (3.14)

where c3 is the coefficient for the third energy regarding the dihedral angle, ei is the unit vector

pointing along each edge of the quad, and nq is the normal vector of the quad calculated as

the cross-product of the unit vectors in the two diagonal directions. The weight is computed by

subtracting the energy before merging from the energy after merging. The lower the energy after

merging and the higher the energy before merging, the shared edge is more encouraged to be

merged. Assembling the weight, cm can be constructed. The upper bound for an edge shared by

two triangles is set at 1, however, if the edge is found to be shared by two quads or a quad and a

triangle, there is no way that we can merge them, and thus the upper bound is set to be zero in

those two cases. Also, if an edge is fixed, the upper bound for this decision of this edge is zero.

Inequality constraint

To build the matrixAm and bm in the inequality constraint, we first loop through all the

edges to find the indices for edges in each triangle. Then we end up with a matrix that has a size

34

of the number of triangles by three. By assigning corresponding elements in Am as one with

respect to the generated matrix and setting all the elements in bm, the inequality constraint is

constructed.

(a) initial triangulation (b) valid merging (c) invalid merging

Figure 3.17: Starting with the triangle in the initial triangulation, subfigure (a) shows a valid
merging and subfigure (b) shows an invalid merging.

Take triangle 0 from Fig. 3.17 as an example, where i, j, and k are the indices of three

triangle edges. The constraint can be formulated as

[
0 ... 0 1 1 1 0 ... 0

]

x0

...

xi−1

xi

x j

xk

xk+1

...

xn

≤
[

1

]
, (3.15)

where n is the number of all the edges in the triangulation, and the sum of xi, x j, and xk must be

no greater than one, which means that, at most, one edge per triangle can be removed.

35

3.5.3 Smoothing optimization

As described before, the splitting and merging optimizations tend to optimize the mesh

quality locally. The splitting optimization, although constrained by the criteria that the adjacent

polygons must agree on the shared operation, still tends to focus on the quality of each element.

Hence, the resultant mesh may have different element sizes in different regions, and the global

aspect ratio may be even more significant than that before the splitting optimization. Similarly,

in the merging optimization, if the mesh is formed at some regions with large triangles, and

at other regions, it consists of small quads, then the global aspect ratio may remain large after

the merging optimization. To deal with the problems derived from the splitting and merging

optimizations, the smoothing optimization step aims to change the location of each vertex in the

mesh to decrease the aspect ratio, thus improving the overall quality. We allow all the vertices

to move in its tangential plane within a small range, then minimize the sum of the lengths of

all edges with respect to the displacement vector. Finally, we project all the vertices back to the

model to maintain the geometry.

The smoothing optimization method can be formulated as a quadratically constrained

quadratic programming problem:

minimize fsm =
1
2
[(V ᵀ

0 +Dᵀ[E0])− (V ᵀ
1 +Dᵀ[E1])] · [(V0 +D[E0])− (V1 +D[E1])]

with respect to D

subject to mD ≤ r

nD = 0,

(3.16)

where D is the displacement for all vertices, V0 and V1 are the initial position of the end

points for all edges, E0 and E1 are the indices for the end points of all edges, and V0 +D[E0]

and V1 +D[E1] are the updated position of the end points of all edges. The design variable

[(V0 +D[E0])− (V1 +D[E1])] is calculated by subtracting the updated ending points from

36

the updated starting points representing the vector along the edges, and the objective function

measures the lengths of edges. In the inequality constraint,m, as the matrix form of D, is found

iteratively assigning three coordinates of each vertex to the corresponding positions in each row.

Multiplyingm andD, we can measure the squared distance that each vertex moves a distance

smaller than r, and the maximum radius each vertex is allowed to move, which is computed by

the distance between the closest neighboring vertex and itself, times a coefficient. In the equality

constraint, n is the normal matrix created by assigning the normal vector of each vertex to the

associated positions of each row. The equality constraint helps to keep each vertex moving on its

own tangential plane by setting the displacement vector vertical to the normal vector, which is

calculated as the area-weighted normal of adjacent triangles for each vertex.

If we take the inequality constraint as a regularization term, the QP problem can be

simplified to:

minimize fsm =
1
2
[(V ᵀ

0 +Dᵀ[E0])− (V ᵀ
1 +Dᵀ[E1])] · [(V0 +D[E0])− (V1 +D[E1])]

+
1
2
DᵀwD

with respect to D

subject to nD = 0,

(3.17)

where w is the regularization parameter decided by the local curvature for each vertex, and if

some vertices are fixed or the curvature is found to be very high, we set the weight to be an

extremely large number to prevent any movement. Eqn. 3.17 can be solved by applying the KKT

conditions: B Aᵀ

A 0

D∗
λ∗

=

b
c

 , (3.18)

where B is the partial derivative of the first term in the objective function with respect to D,

37

A=n,D∗ and λ∗ are the optimal displacements and associated Lagrange multiplier, respectively,

b is the coefficient of the linear term, and c= 0.

After updating the vertex positions with the optimal solution, we project the vertices down

to the outer surface of the model by iterating over all the triangles and quads in the mesh to find

the closest point to the given updated vertex point. The point that yields the shortest distance from

a triangle to a point is not hard to find analytically [34], but we have to apply a Newton search to

find that for a quad. Since we assume that vertex movement along the tangential plane within

a reasonably small range can still be considered ’close’ to the real geometry, the regularization

term w is set to be large and the vertices are not allowed to go far during each position iteration.

Therefore, we do multiple iterations of the smoothing optimization steps at a time, which helps

us to preserve the geometry while moving the vertices a measurable amount.

3.6 Transformation to a fully quad mesh

(a) (b)
Figure 3.18: The black points are the face points while the red points are the edge points.
Connecting the face points to the edge points, a polygon is divided into quads.

After a series of optimizations, the initial triangulation now becomes a quad-dominant

mesh. To transform a quad-dominant mesh to a fully quad mesh, we only need to take one step

38

of the Catmull-Clark subdivision, which first adds a point on each polygon that is the average

of all original points for the polygon. Then, we add a point on each edge that is the midpoint

of the two end points of the edge. Finally, for each polygon, add edges between the face point

and all the edge points of the polygon. For subdivision of members in the structure, the detailed

algorithm is in Alg. 3, the same algorithm can be applied on the skin mesh, too. This is the end of

one step of the Catmull-Clark subdivision, and given that we only need one step, the rest of the

algorithm is not covered here. Shown in Fig. 3.18 are the subdivisions on the structural members.
Algorithm 3: one-step of Catmull˙Clark subdivision on the members

Data: νi (i from 1 to the number of members)
Result: ηi, νi

1 for i from 1 to the number of members do
2 for j from 1 to the number of subsets in ηi do
3 if the jth subset (x, y, z) is a triangle then
4 insert the face point f and edge points e1, e2, e3 into νi;
5 insert (x, e1, f , e3), (y, e2, f , e1), and (z, e3, f , e2) into ηi;
6 delete the jth set form ηi;

7 if the jth subset (w, x, y, z) is a quad then
8 insert the face point f and edge points e1, e2, e3, e4 into νi;
9 insert (w, e1, f , e4), (x, e2, f , e1), (y, e3, f , e2), and (z, e4, f , e3) into

ηi;
10 delete the jth set form ηi;

11 end
12 end

39

Chapter 4

Results and discussions

To test the robustness of our algorithm, we do several tests on the model OWN-06c

Transonic Airliner provided by NASA from OpenVSP,1 and the eVTOL eCRM-002.2 For

convenience in adding members on the aircraft wing, we remove the turbine engines of the

OWN-06c aircraft and all the internal members, landing gears, and the two inner lift nacelles from

the eCRM-002. Thus, with no obstacles, the projection algorithm works better with no obstacles.

(a)

(b)

Figure 4.1: Some unnecessary components are removed from the input CAD models of OWN-
06c Transonic Airliner (a) and eVTOL eCRM-002 (b).

1http://hangar.openvsp.org/vspfiles/75OWN-06cTransonicAirliner
2https://www.uber.com/us/en/elevate/uberair/

40

http://hangar.openvsp.org/vspfiles/75OWN-06c Transonic Airliner
https://www.uber.com/us/en/elevate/uberair/

4.1 Results with the OWN-06c Transonic Airliner

Skin mesh

(a) (b)

(c) (d)
Figure 4.2: Subfigures (a) and (b) are the overview of the skin mesh. Subfigures (c) and (d)
zoomed figures of a portion of the skin.

First, we test the projection algorithm, and both ways work well on the OWN-06c aircraft,

except that finding the closest point does not behave ideally when we create multiple internal

members on the aircraft wing. Some members are very close to the fuselage, if the given projection

points are not close enough to the wing surface such that the projected points are located on

the fuselage instead of the wing. The reconstruction of the triangulation also behaves nicely on

the OWN-06c aircraft. The input for our algorithm is the surface triangular mesh of the aircraft.

Although only a small number of splitting, merging, and smoothing optimizations are done on

the OWN-06c aircraft skin mesh, the mesh is still transformed into a high-quality unstructured

41

quadrilateral mesh. Also, the intersections of all internal members are successfully detected. As

shown in Fig. 4.2, we created 4 spars and 12 ribs on the aircraft wing, and the intersection curves

between them and the aircraft skin are clearly shown in the region where the mesh element size is

a little smaller.

The reason the aircraft skin mesh near the intersection curve between the imprinted

members and the skin seems to have a lower quality is that after the reconstruction of triangulation,

the region near the intersection tend to have smaller and less regular triangles. The retriangulation

algorithm simply connects the projected points to the three vertices of the triangle and creates

three new triangles if the projected points are located on the interior of a triangle. Assuming

that all the triangles in the original mesh are perfectly equallateral, the created triangles can only

be less regular and smaller than the triangle before splitting. In addition, given that some of

members are close to each other, if the average size of the initial mesh is not small enough, the

retriangulation algorithm will only make the new triangulation worse. In the extreme case, if the

initial triangles are so big that all the projected points of two different members are projected onto

the same triangle, the mesh quality improvement methods cannot help much when intersection

curves are fixed.

Mesh of structural members

The intersection curves between the internal members and the aircraft skin appear to

match up perfectly, as shown in Fig.4.3a. As for the mesh of the internal members, we implement

a sequence of steps in the mesh quality improvement methods. It is clear from Fig. 4.3b that,

for the ribs, the mesh quality improvement methods tend to build structured-like elements in the

center, while at the boundary of these imprinted members, even though the elements are less

regular, the overall quality is considered good. One possible reason for this phenomenon is that

points at the boundary of each imprinted member are created by the projection algorithm, which

42

(a)

(b)
Figure 4.3: Subfigure (a) shows the intersection is properly detected. Subfigure (b) shows the
meshes of the internal members.

43

heavily relays on the quality of the initial mesh from the CAD software. Also, the boundary

points are fixed throughout the algorithm, which means they cannot be moved to improve the

quality of the elements containing them. Conversely, the points at the center are evenly spaced on

the parametric domain of a smooth surface created by the transfinite interpolation algorithm and

are not fixed throughout the optimization. With high-quality initial mesh and the ability to move,

it is easier for the center regions to end up with structured mesh.

The best thing about this algorithm is that it is fairly efficient. For the mesh generation of

the OWN-06c aircraft model, with around 9,000 vertices and 17,000 triangles, it only takes less

than 1 hour to finish even though we add more than 20 structural members, which shows great

potential for structural analysis in the conceptual design phase.

Mesh of the wingbox

To create a wingbox, we create the front and rear spars, ribs, and stringers. One thing that

is different about the wingbox is that, unlike the other members, the stringers in the wingbox

are only considered to intersect with the surfaces of the wingbox and the ribs should have no

intersection with them. As shown in Fig. 4.4b and 4.4c, the members on the upper surface of the

wingbox are the stringers, and as can be seen in the resulting mesh, the intersection between the

stringers and the wingbox is detected properly.

The successful creation and mesh of the wingbox demonstrates great potential of our

algorithm for constructing different kinds of members in different structures, such as the sensors

in a robotic arm.

44

(a) (b)

(c) (d)
Figure 4.4: Subfigure (a) shows the location of the wingbox in the aircraft. Subfigure (b) shows
the created wingbox component. Subfigures (c) and (d) show views of the mesh of the wingbox
from different perspectives.

45

(a)

(b)
Figure 4.5: We create 2 ribs and 4 spars in the wing of the eVTOL to test the robustness of
ouralgorithm

46

4.2 Results with the eVTOL eCRM-002

The results with the eVTOL have the similar features as the results for the transonic

airliner. One thing that requiring some attention is that, with this eVTOL, as we moved in a

the span-wise direction, the edges in the chord-wise direction were sometimes more numerous

and sometimes less numerous. This kind of pattern is not necessary and is one drawback of our

algorithm. We plan to use topology cleanup to fix this problem [12]. Overall, the smoothing

method has taken place with local improvements made to the mesh quality.

Our preliminary results are not mature, and we do not yet have a realistic tool for a

fully global finite element mesh because we will need additional implementation of features like

specifying a circle in space to define the fulselage frame.

47

Chapter 5

Conclusion

In this thesis, we presented a novel algorithm to generate shell-element meshes for large-

scale structural design optimization. Taking an arbitrary triangulation from commercial CAD

software, to project the discretized points on the line segments out of the model onto the model

skin, we first define two projection algorithms: finding a point on the mesh that gives the smallest

distance to the projection point; finding the closest intersection point on the mesh given the

projection point and direction. Then, we reconstruct the triangulation by connecting the projected

points and finding the intersection between the projected points and the initial triangulation.

Based on the projected points, we can fit curves and create a smooth four-sided surface using

transfinite interpolation. The surface can then be transformed into a triangular mesh by evenly

interpolating points on the parametric domain and applying a Delaunay triangulation algorithm.

Finally, the mesh quality of the imprinted members and the skin of the model is improved after a

series of splitting, merging, and smoothing optimizations.

The primary contribution is the overall algorithm, which is established to generate smooth

quadrilateral meshes for an aircraft, taking any arbitrary mesh as input. The algorithm formulates

the key mesh improvement steps as linear and quadratic programming problems, which have

the advantages of being solvable in a computationally efficient and robust way. An important

48

part of this algorithm is the trust region approach applied in the mesh smoothing step, where

this approach turns the inequality constraints into equality constraints and turns the nonlinear

programming problem into a quadratic programming problem. This eliminates the possibility of

non-convergence. The algorithm also works for geometries other than aircraft. For instance, we

can apply it to the shell-element mesh generation of other engineering systems where structures

and materials are important such as vehicles, robots, and medical devices.

In summary, the overall approach is potentially a useful way to generate shell-element

meshes and add imprinted members to the structures with complicated geometry. Starting from

our current algorithm, our future work will be adapting the retriangulation algorithm and in the

current framework searching for any possibility to make it more general, user-friendly and robust.

We will also test the algorithm on other structures from the other fields other than the aerospace

field and structures with more complicated geometry. In addition, we want to extend the ideas in

this algorithm to the generation of high-quality solid element meshes.

The thesis, in full, is an adaption of the material as it appears in Li, Ning, and John T.

Hwang.“Automatic generation of global shell-element meshes for large-scale structural design

optimization” AIAA AVIATION 2020 FORUM. 2020. This thesis is currently being prepared for

submission for publication of the material. Li, Ning; Hwang, John T. The thesis author was the

primary investigator and author of this material.

49

Bibliography

[1] Daniel Raymer. Aircraft design: a conceptual approach. American Institute of Aeronautics
and Astronautics, Inc., 2012.

[2] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant field-
aligned meshes. ACM Trans. Graph., 34(6):189–1, 2015.

[3] John T Hwang and Joaquim RRA Martins. An unstructured quadrilateral mesh generation
algorithm for aircraft structures. Aerospace Science and Technology, 59:172–182, 2016.

[4] John Hwang and Joaquim Martins. Geomach: geometry-centric mdao of aircraft configu-
rations with high fidelity. In 12th AIAA Aviation Technology, Integration, and Operations
(ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, page 5605, 2012.

[5] Andrew Hahn. Vehicle sketch pad: a parametric geometry modeler for conceptual aircraft
design. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, page 657, 2010.

[6] Lars-Erik Eriksson. Practical three-dimensional mesh generation using transfinite interpola-
tion. SIAM journal on scientific and statistical computing, 6(3):712–741, 1985.

[7] Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction field
design. ACM Transactions on Graphics (TOG), 27(2):10, 2008.

[8] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally optimal direction
fields. ACM Transactions on Graphics (ToG), 32(4):59, 2013.

[9] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Stripe patterns on surfaces.
ACM Transactions on Graphics (TOG), 34(4):39, 2015.

[10] Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and
Leonidas J Guibas. Quadriflow: A scalable and robust method for quadrangulation. In
Computer Graphics Forum, volume 37, pages 147–160. Wiley Online Library, 2018.

[11] VN Parthasarathy and Srinivas Kodiyalam. A constrained optimization approach to finite
element mesh smoothing. Finite Elements in Analysis and Design, 9(4):309–320, 1991.

[12] Scott A Canann, SN Muthukrishnan, and RK Phillips. Topological improvement procedures
for quadrilateral finite element meshes. Engineering with Computers, 14(2):168–177, 1998.

50

[13] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover-surface parameterization
using branched coverings. In Computer graphics forum, volume 26, pages 375–384. Wiley
Online Library, 2007.

[14] Pierre-Alexandre Beaufort, Christophe Geuzaine, and Jean-François Remacle. Automatic
surface mesh generation for discrete models: A complete and automatic pipeline based on
reparameterization. arXiv preprint arXiv:2001.02542, 2020.

[15] Jianwei Guo, Fan Ding, Xiaohong Jia, and Dong-Ming Yan. Automatic and high-quality
surface mesh generation for cad models. Computer-Aided Design, 109:49–59, 2019.

[16] Chaman Singh Verma and Tim Tautges. Jaal: Engineering a high quality all-quadrilateral
mesh generator. In Proceedings of the 20th International Meshing Roundtable, pages
511–530. Springer, 2011.

[17] YK Lee, Chin K Lim, Hamid Ghazialam, Harsh Vardhan, and Erling Eklund. Surface mesh
generation for dirty geometries by the cartesian shrink-wrapping technique. Engineering
with Computers, 26(4):377–390, 2010.

[18] Benjamin Villard, Vicente Grau, and Ernesto Zacur. Surface mesh reconstruction from
cardiac mri contours. Journal of Imaging, 4(1):16, 2018.

[19] Dawei Zhao, Jianjun Chen, Yao Zheng, Zhengge Huang, and Jianjing Zheng. Fine-grained
parallel algorithm for unstructured surface mesh generation. Computers & Structures,
154:177–191, 2015.

[20] Antonio CO Miranda and Luiz F Martha. Mesh generation on high-curvature surfaces based
on a background quadtree structure. space, 500:N2, 2002.

[21] Changhyup Park, Jae-Seung Noh, Il-Sik Jang, and Joe M Kang. A new automated scheme
of quadrilateral mesh generation for randomly distributed line constraints. Computer-Aided
Design, 39(4):258–267, 2007.

[22] Carlos A Recarey Morfa, Irvin Pablo Pérez Morales, Márcio Muniz de Farias, Eugenio
Oñate Ibañez de Navarra, Roberto Roselló Valera, and Harold Dı́az-Guzmán Casañas.
General advancing front packing algorithm for the discrete element method. Computational
Particle Mechanics, 5(1):13–33, 2018.

[23] Huibo Dang, Hongjie Zhang, and Huixue Dang. Automatic generation of cfd mesh for
mountainous regions. 2017.

[24] Alexander B Costenoble, Bharath Govindarajan, Yong Su Jung, and James D Baeder.
Automated mesh generation and solution analysis of arbitrary airfoil geometries. In 23rd
AIAA Computational Fluid Dynamics Conference, page 3452, 2017.

[25] Jasmeet Singh and Carl F Ollivier Gooch. Advancing layer surface mesh generation. In
AIAA Scitech 2020 Forum, page 0902, 2020.

[26] Mael Rouxel-Labbé, Mathijs Wintraecken, and J-D Boissonnat. Discretized riemannian
delaunay triangulations. Procedia engineering, 163:97–109, 2016.

[27] Darren Engwirda and David Ivers. Off-centre steiner points for delaunay-refinement on
curved surfaces. Computer-Aided Design, 72:157–171, 2016.

51

[28] Yuto Otoguro, Kenji Takizawa, and Tayfun E Tezduyar. A general-purpose nurbs mesh
generation method for complex geometries. In Frontiers in Computational Fluid-Structure
Interaction and Flow Simulation, pages 399–434. Springer, 2018.

[29] Yan Liu, Albert A Saputra, Junchao Wang, Francis Tin-Loi, and Chongmin Song. Automatic
polyhedral mesh generation and scaled boundary finite element analysis of stl models.
Computer Methods in Applied Mechanics and Engineering, 313:106–132, 2017.

[30] Christos Tsolakis, Fotis Drakopoulos, and Nikos P Chrisochoides. Sequential metric-based
adaptive mesh generation. 2018.

[31] Wei Chen, Xiaopeng Zheng, Jingyao Ke, Na Lei, Zhongxuan Luo, and Xianfeng Gu.
Quadrilateral mesh generation i: Metric based method. Computer Methods in Applied
Mechanics and Engineering, 356:652–668, 2019.

[32] Ashutosh Soni and Partha Bhowmick. Quadrangular mesh generation using centroidal
voronoi tessellation on voxelized surface. In International Workshop on Combinatorial
Image Analysis, pages 97–111. Springer, 2018.

[33] Christian Altenhofen, Felix Schuwirth, André Stork, and Dieter W Fellner. Implicit mesh
generation using volumetric subdivision. In VRIPHYS, pages 9–19, 2017.

[34] David Eberly. Distance between point and triangle in 3d. Magic Software, http://www.
magic-software. com/Documentation/pt3tri3. pdf, 1999.

52

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Prior work
	Methodology
	Algorithm overview
	Creation of surfaces of internal members
	Creation of edges
	Creation of the four-sided domains

	Generation of the initial triangulation
	Transfinite interpolation
	Delaunay triangulation

	Detection of intersections
	Detection of intersections between triangles
	Algorithm for finding the intersection points
	Retriangulation

	Mesh quality improvement
	Splitting optimization
	Merging optimization
	Smoothing optimization

	Transformation to a fully quad mesh

	Results and discussions
	Results with the OWN-06c Transonic Airliner
	Results with the eVTOL eCRM-002

	Conclusion

