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ABSTRACT 
 

DEVELOPMENT AND APPLICATION OF WRF3.3-CLM4CROP TO STUDY OF 
AGRICULTURE - CLIMATE INTERACTION 

by 
Yaqiong Lu 

Doctor of Philogophy 
University of California, Merced 

Dr. Lara M. Kueppers, Chair 
 

Accurate representation of surface energy partitioning is crucial for studying land surface 
processes and the climatic influence of land cover and land use change using coupled 
climate-land surface models. A critical question for these models, especially for newly 
coupled ones, is whether they can adequately distinguish differences in surface energy 
partitioning among different vegetation types. In the first chapter, I evaluated three years 
(2004-2006) of surface energy partitioning and surface climate over four dominant 
vegetation types (cropland, grassland, needleleaf evergreen forest, broadleaf deciduous 
forest) across the United States in a recently coupled regional climate model (WRF3-
CLM3.5) by comparing model output to observations (AmeriFlux, CERES, and PRISM 
data) and to standard WRF output. I found that WRF3-CLM3.5 can capture the seasonal 
pattern in energy partitioning for needleleaf evergreen forest, but needs improvements in 
cropland, grassland and broadleaf deciduous forest.  
 
To extend the capability of the regional climate model in studying the interaction of 
climate and agriculture, in the second chapter, I coupled a version of the Community 
Land Model that includes crop growth and management (CLM4crop) into the Weather 
Research and Forecasting model (WRF) and evaluated against multiple observations. The 
evaluation showed that although the model with dynamic crops overestimated LAI and 
growing season length, interannual variability in LAI was improved relative to a model 
with prescribed crop LAI and growth period, which has no environmental sensitivity. 
Improvements in climate variables were limited by an overall model dry bias. However, 
with addition of an irrigation scheme, soil moisture and energy fluxes were largely 
improved at irrigated sites. With this improved model, I further investigated whether the 
dynamic crop growth influenced the irrigation effects on climate. With prescribed crop 
LAI and growth, irrigation effects on climate were under-predicted in moderately 
irrigated regions. Moreover, relative to the dynamic crop growth version, the prescribed 
crop growth model underestimated irrigation water use and simulated much higher soil 
evaporation. 
 
The third chapter is an application of the coupled model in studying the irrigation effects 
on heat waves. A potential decline in irrigation due to groundwater depletion would not 
only directly affect agriculture, but also could potentially alter surface climate. In this 
study I investigated how irrigation affects heat wave frequency, duration, and intensity 
using fifteen heat wave indices and a regional climate model. Across all indices, 



 

 

xii 

irrigation reduced heat wave frequency and duration, but increased intensity. Irrigation 
effects on heat waves are statistically significant over irrigated cropland and but not 
significant for non-irrigated regions. The magnitude of effect varies by index and is more 
sensitive to the choice of temperature metric than to the choice of temperature threshold. 
Regions experiencing strong groundwater depletion, such as the southern high plains, 
may suffer more and longer heat waves with reduced irrigation.  
 
Overall, my research confirmed the dynamic crop growth model and irrigation are 
important in studying the agriculture and climate interaction. The research on irrigation 
effects, as well as on weather and climate prediction, should include dynamic crop 
growth and realistic irrigation schemes to better capture land surface effects in 
agricultural regions. 
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Introduction 
 
Although the response of agricultural systems to climate is drawing considerable 
attention because of the potential for a global food crisis, current understanding of how 
climate affect agricultural production is highly uncertain since the feedbacks between 
them are not well studied. Agricultural systems are highly vulnerable to climate 
variability, where the area suitable for agriculture, the length of growing seasons and 
yield potentials are expected to change under warming scenarios [IPCC, 2007]. In 
addition, crop growth alters some important physical climate forcings, such as latent heat 
flux, shortwave radiation, longwave radiation and soil moisture. This two-way interaction 
is often referred to as a feedback, describing a nonlinear cycle between two systems. 
Clarifying the importance of these feedbacks could improve regional climate simulations 
in agriculturally intensive areas and enable better prediction of crop production.   
 
Variability in atmospheric CO2, temperature and precipitation highly affect agricultural 
production. The elevated CO2 could increase photosynthetic productivity [Aoki and 
Yabuki, 1977; Cooper and Brun, 1967; Moss, 1962] and therefore lead to an increase of 
yield. Amthor [2003] reviewed the previous observations and suggested doubling CO2 
could increase the yield by 31% in average. At the same time, double CO2 could lead to 
34% reduction of transpiration and double water use efficiency [Kimball and Idso, 1983]. 
In one study, increase in variability of temperature and precipitation resulted in 
significant increases in yield variability and crop failures [Mearns et al., 1992]. Warming 
by 2-4 oC could results in substantial shortening of the growing season, and change of 
crop calendar, particularly in winter [Butterfield and Morison, 1992]. Furthermore, 
increasing temperature and precipitation could have different impacts on yields for 
different crops. For example, a simulation study indicated potato production was 
increasing while wheat and faba bean was decreasing with increased temperature, and 
increasing of precipitation had no effect on the yield of potatoes or spring wheat, but 
could reducing winter wheat yield [Peiris et al., 1996]. 
 
Meanwhile, agriculture also affects climate by altering the surface energy, water, and 
carbon cycle. Cropland plays a very important biogeophysical role in changing climate 
[Feddema et al., 2005; Foley et al., 2005; Pitman et al., 1999]. Agricultural expansion in 
business as usual (A2) scenario results in significant additional warming over the 
Amazon and cooling of the upper air column and nearby oceans [Feddema et al., 2005]. 
Crops alter the small-scale boundary layer structure [Adegoke et al., 2007], such as 
surface wind and boundary layer height, by increasing canopy height during the growth 
process. Compared to natural vegetation, cropland has higher albedo that alters the 
energy budget when converting between forest and cropland [Bonan, 2008; Oleson et al., 
2004]. Cropland also alters the water cycle. Both field observations and modeling have 
shown that conversion of forest to cropland can reduce evaportranspiration and 
precipitation at the regional scale [Sampaio et al., 2007]. Moreover, agriculture and 
associated management practices were found to affect the carbon cycle [Lal, 2004]. 
Global simulation indicates a 24% reduction in global vegetation carbon due to 
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agriculture [Bondeau et al., 2007a]. Growing biofuel crops at previously natural 
vegetation land could increase greenhouse gas emissions by 50% [Searchinger et al., 
2008]. 
 
Both observations and numerical modeling are used to study climate effects on 
agriculture. Laboratory studies using growth chambers and greenhouses showed elevated 
CO2 could increase net photosynthesis [Aoki and Yabuki, 1977; Cooper and Brun, 1967; 
Moss, 1962]. These stuides had a short period measurements and the high CO2 
concentrations were not realistic. Free air CO2 enrichment experiments [Ainsworth and 
Long, 2005; Ainsworth et al., 2002; Long et al., 2006] using long term observation 
confirmed some chamber experiment results that trees were more responsive than 
herbaceous species to elevated CO2, but crop grain yields increased far less than in 
previous enclosed studies. Regression models [Rosenberg, 1982] also have been 
employed to study how climate affects crop yield and this method is still widely used 
today [Diffenbaugh et al., 2012; Lobell et al., 2008b]. Finally, crop growth models (such 
as CERES [Lizaso and Ritchie, 1997; Ritchie and Otter, 1985], SOYGRO[Wilkerson et 
al., 1983], EPIC [Easterling et al., 1992; Rosenberg et al., 1992], AFRC-Wheat 
[Butterfield and Morison, 1992]) enable yield prediction and hazard prevention.  
 
Climate models are widely used to study the effects of agriculture on climate. Climate 
models (called general circulation models initially) were first developed for numerical 
weather prediction in the 1950s, and had a very coarse resolution only contained 
atmosphere circulation. In 1960-1970s, the climate model included both ocean and 
atmosphere circulations. In 1980-2000s, the development of regional climate model and 
sub-grid physical process model (land surface model, boundary layer model, 
microphysics model, cumulus model, etc.) not only aim to improve the forecasting skill 
but also to study the climate change. In climate model, the land surface model provides 
sensible, latent, and momentum flux for atmosphere model to solve the atmospheric 
equations. The potential climate sensitivity to land use change is determined by the 
difference between two simulations (control and sensitive simulations) that differ only in 
land use. A key determinant in accuracy of such research is how well the land surface 
model simulates the surface energy fluxes (i.e., sensible heat flux, latent heat flux, and 
ground heat flux). The development of land surface model is getting more and more 
comprehensive to reflect the reality [Bonan, 2008]. Early land surface models represented 
the physical processes using simple parameterizations. For example, the soil hydrology 
was represented as a bucket, which could hold some maximum amount of water filled by 
precipitation, with the excess water becoming runoff. Currently, most land surface 
models include all the major parameterizations, such as vegetation photosynthesis and 
conductance, snow accumulation and melting, radiation transfer, and turbulence 
processes above and within the canopy, etc. Moreover, some advanced land surface 
models include the carbon cycle and dynamic vegetation growth.  
 
Coupling a land surface model that incorporates dynamic crop growth into a climate 
model enables simulation of the two-way interactions between climate and crop growth. 
Recent work incorporating crop growth models into climate models has revealed that 
dynamic crop growth strongly influences regional climate patterns by altering land 
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surface water and energy exchange [Bondeau et al., 2007b; Levis et al., 2012; Liang et 
al., 2012; Lu et al., 2001; Osborne et al., 2007; Tsvetsinskaya et al., 2000; Xu et al., 
2005]. Most of these studies have not rigorously evaluated results against observations of 
climate and crop variables. Further, interactions between crop growth and irrigation 
effects on climate are not well examined.  
 
The aim of the work is to improve a regional climate model by incorporating a land 
surface model that simulates dynamic crop growth. Particularly, my work focuses on the 
improvement and evaluation of the Weather Research and Forecasting Model (WRF3.3) 
with updated Community Land Model (CLM4), a dynamic crop growth model, and an 
irrigation scheme. As the next-generation mesoscale numerical model, the standard 
version of WRF includes relatively simple land surface schemes, which potentially 
constrain model applications for studying the land surface and ecosystem-atmosphere 
feedbacks. By adding the CLM into WRF, I expected an improvement in surface energy 
flux simulations. Therefore, I first validated the performance for the surface energy fluxes 
for four vegetation types across the continental of United States in the first chapter [Lu 
and Kueppers, 2012]. Since one problem in this model was related to the low crop LAI 
bias and lack of irrigation, I further incorporated the dynamic crop growth model and 
irrigation into a new version (WRF3.3-CLM4crop). I evaluated the crop growth and 
climate variables in the new version and the influence of dynamic crop growth on 
irrigation effects was quantified. In the third chapter, I used the coupled model to study 
irrigation effects on heat wave frequency, duration, and intensity.  
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CHAPTER 1  

Surface energy partitioning over four dominant vegetation types across 
the United States in a coupled regional climate model (WRF3-CLM3.5)  

 
 Introduction 
A large number of observational and modeling studies have confirmed that the land 
surface plays a key role in weather and climate [Feddema et al., 2005; Kalnay and Cai, 
2003; Pielke et al., 2002; Pielke et al., 2007; Pitman et al., 1999; Seneviratne et al., 
2006]. The land surface influences the atmosphere through exchange of energy, 
momentum, water, and CO2 and other trace gases across the atmospheric boundary layer 
[Bounoua et al., 2002; Cox et al., 2000]. Conversion from one land cover to another can 
alter albedo, surface hydrology, boundary layer roughness length, and therefore surface 
energy partitioning. Moreover, various types of land cover changes can generate quite 
different climate changes. For instance, conversion of Amazon forest to pasture has 
significantly increased surface temperature and reduced evaporation and precipitation 
[Malhi et al., 2008; Shukla et al., 1990], while replacing natural grassland with irrigated 
cropland has introduced much more evaportranspiration and reduced surface temperature 
[Bonfils and Lobell, 2007; Diffenbaugh, 2009; Kueppers et al., 2007a; Lobell et al., 
2009]. Even in the absence of irrigation, studies confirm that soil moisture has strong 
leverage on energy flux partitioning at the surface [Dirmeyer et al., 2000; Guo et al., 
2006; Koster et al., 2004].  
 
As climate models become a primary tool for studying the atmospheric role of land 
surface processes, a question for current climate models is whether they can adequately 
distinguish and accurately simulate surface energy partitioning over different vegetation 
types. Plants contribute a large fraction of latent heat flux through evaporation of water 
from leaf surfaces and transpiration from deeper soil layers when stomata open during 
photosynthesis. Plants also affect net radiation by altering the surface albedo. A change in 
plant height can change the boundary layer turbulence by influencing surface roughness, 
and therefore the total energy exchange via latent and sensible heat fluxes [Davin and de 
Noblet-Ducoudre, 2010]. In most climate models, several important vegetation 
parameters (plant function type/vegetation type, leaf area index, stem area index, and 
canopy top/bottom height) are prescribed according to satellite observations and ground 
measurements. These parameters are not necessarily accurate at the site-scale due to the 
algorithm and validation methods used in retrieving satellite data or aggregating ground 
data [Yang et al., 2006]. Validation of surface fluxes over different vegetation types can 
help identify deficiencies in key parameters and model formulations to target for 
improving model performance.  
 
Increasing ground and satellite based observations of surface energy fluxes enable 
validation of energy partitioning in climate models. Ground based networks, such as 
FLUXNET [Baldocchi et al., 2001] and SURFRAD [Augustine et al., 2000] have helped 
to identify the source of radiation budgets and soil moisture errors [Markovic et al., 2008; 
Stockli et al., 2008; Williams et al., 2009]. Satellite derived data, such as ISCCP [Raschke 



 

17  

et al., 2005] and CERES [Wielicki et al., 1996] have also been used in model validation 
[Su et al., 2010; Wild and Roeckner, 2006]. However, many of the validation studies have 
focused on site averages without considering the vegetation type [Markovic et al., 2008] 
or a specific vegetation type in the domain, such as tundra in the arctic [Lynch et al., 
1999]. The validation of surface energy partitioning over a range of different vegetation 
types at continental scales has not been generally reported, even though observations 
suggest that surface energy partitioning varies considerably with vegetation type [Wilson 
et al., 2002b].  
 
The aim of this work is to examine energy partitioning and surface climate simulated by a 
recently coupled regional climate model, WRF3-CLM3.5, for four major vegetation types 
across the United States, and to identify the model’s strengths and deficiencies to help 
prioritize model improvements. As the next-generation mesoscale numerical model, the 
standard version of WRF includes relatively simple land surface schemes, which 
potentially constrain model applications for studying the land surface and ecosystem-
atmosphere feedbacks. The newly coupled model improved the surface process 
simulation in California [Subin et al., 2011], but has not been validated at the continental 
scale.  We used the standard version of the Weather Research and Forecasting (WRF) 
model version 3.0 [Skamarock et al., 2008], AmeriFlux site observations [Wofsy and 
Hollinger, 1998], and CERES data [Wielicki et al., 1996; Young et al., 1998] to evaluate 
energy flux partitioning. We analyzed the bias in surface climate variables (daily 
maximum temperature, daily minimum temperature and precipitation) by comparing to 
PRISM datasets [Di Luzio et al., 2008]. We focused on four dominant vegetation types 
with adequate representation in the AmeriFlux network (cropland, grassland, needleleaf 
evergreen forest and broadleaf deciduous forest).  
 

Model and Data 
 
The Community Land Model version 3.5 (CLM3.5) [Oleson et al., 2008] has been 
coupled into The Weather Research and Forecasting Model version 3 (WRF3) 
[Skamarock et al., 2008] in an effort to improve simulations of the effects of land cover 
and land use change on regional climate. Details of the coupling and model validation in 
California are documented elsewhere [Subin et al., 2011], but will be briefly summarized 
here. 
 
CLM3.5 represents the surface with five primary sub-grid land cover types (glacier, lake, 
wetland, urban1, and vegetated) in each grid cell. The vegetated portion of a grid cell is 
further divided into patches of up to 4 of 16 plant functional types (PFTs) [Bonan et al., 
2002], each characterized by distinct physiological parameters [Oleson et al., 2008]. The 
spatial distribution of plant function types and leaf area index are obtained from 1-km 
MODIS observations from 2001-2003. LAI is prescribed monthly and is updated daily by 
linearly interpolating between monthly values. The major improvements in CLM3.5 
include new surface datasets [Lawrence and Chase, 2007], an improved canopy 

                                                
1 The urban sub-grid land cover type is not active in WRF3-CLM3.5 
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integration scheme [Thornton and Zimmermann, 2007], scaling of canopy interception 
[Lawrence et al., 2007], a simple TOPMODEL-based model for surface and sub-surface 
runoff [Niu et al., 2005], a simple groundwater model for determining water table depth 
[Niu et al., 2007], and a new frozen soil scheme [Niu and Yang, 2006]. 
 
We set up two 5-year simulations (2002-2006) for standard WRF3.0.1 and WRF3-
CLM3.5, which differed only in the land surface model (Noah vs. CLM). The Noah land 
surface model [Chen and Dudhia, 2001] has 4 soil layers (compared to 10 soil layers in 
CLM3.5) and only one vegetation type (instead of 4 PFTs in  CLM3.5) for each grid cell. 
There is no separate treatment of shaded and sunlit canopy (CLM3.5 treats shaded and 
sunlit differently). The other physical packages used in our simulations include the YSU 
PBL scheme [Hong et al., 2006], the Rapid Radiative Transfer longwave scheme 
[Mlawer et al., 1997], the Goddard shortwave radiation parameterization[Chou and 
Suarez, 1994], the Purdue Lin bulk microphysics scheme [Lin et al., 1983] and the Kain-
Fritsch cumulus scheme [Kain, 2004]. These physical configurations yielded the best 
results for WRF3-CLM3.5 compared to 2 alternate configurations (one with Duhia short-
wave scheme and one with Net Grell cumulus scheme, keeping other schemes the same).  
We used NCEP/DOE Reanalysis II data as boundary conditions for the period January 
2002-December 2006. The simulations focused on the continental United States (U.S.) 
with 25 vertical layers and 50 km horizontal resolution. We interpolated (using the 
inverse distance weighting method) 0.5 deg CLM surface input data (including plant 
functional types, plant function type percent, leaf area index, and stem area index) into 
the model domain. For analysis, we removed 8 grid cells from the full perimeter of the 
domain as a buffer, which diminished the original domain from 109 ×129 to 93×113 grid 
cells (Fig.1). We extracted the last 3 years (2004-2006) of output to evaluate model 
performance over the entire U.S. relative to ground-based and satellite observations and 
standard WRF. 
 

 
Figure 1 Distribution of the four dominant vegetation types in the model domain. The 

black circles indicate the AmeriFlux sites used in this work and plus signs are grid cells 
nearest to each observation site. 
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As part of the FLUXNET network, AmeriFlux is currently composed of 133 sites (both 
active and inactive) across North America, Central America and South America. The 
network collects continuous observations of ecosystem level exchanges of CO2, water, 
energy, and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. 
Thirteen AmeriFlux sites were used in the analysis. For most comparisons, we used the 
gap-filled Level 4 database, which has the best quality sensible heat flux (H) and latent 
heat flux (LE) data. Since lack of energy closure [Wilson et al., 2002a] will affect the 
magnitude of observed H, LE, and G, we emphasize the Bowen Ratio comparison. 
Besides the gap-filled Level 4 data, we used Level 2 data with gaps for ground heat flux 
(G) (only for sites that had > 90% data), net radiation, and radiative fluxes 
(downward/upward solar and longwave radiation). In addition to the observed energy 
variables, we examined the three components of modeled latent heat flux: soil 
evaporation (LESOI), wet leaf evaporation (LEVEG), and dry leaf transpiration 
(LETRAN) to diagnose the model deficiencies even though there are no observations of 
these variables in the flux tower sites.   
 
Although there are a total of 32 sites with Level 4 data from 2004 to 2006, we only used 
13 sites (circles in Fig.1) in the analysis after a vegetation type match procedure. Because 
50 km resolution and 4 or fewer PFTs per model grid cell are not directly comparable to 
site-level vegetation types, we assigned all model grid cells to one of four dominant 
vegetation types (cropland, grassland, evergreen needleleaf forest and deciduous 
broadleaf forest) according to the plant functional type with the highest percent (and a 
minimum of 30%) in the grid cell (Fig. 1). Even though broadleaf deciduous trees are not 
>50% of all BDT grid cells, PFT level fluxes and grid level energy fluxes are very well-
matched from September to April, and grid level fluxes are only slightly less (<14 W m-2) 
than BDT PFT level fluxes in summer. Then for each AmeriFlux site, we selected the 
nearest model grid cell with the same dominant vegetation type that occurs in the sites 
(Table 1).  Nearest grid cells that were far away (>100km) from observation sites were 
not used.  
 
We interpolated (using the inverse distance weighting method) the Clouds and the Earth’s 
Radiant Energy System (CERES) Monthly TOA/Surface mean (SRBAVG) datasets 
[Wielicki et al., 1996; Young et al., 1998] into our model domain for a continental view of 
downward solar radiation, upward longwave radiation, and net radiation. CERES is a 
global satellite product that provides radiation fluxes at top-of-atmosphere and also at the 
surface (data are available for download at 
http://eosweb.larc.nasa.gov/PRODOCS/ceres/level3_srbavg_table.html).  
 
We also used Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
data [Di Luzio et al., 2008] to evaluate the surface climatology (daily minimum 
temperature, daily maximum temperature, and precipitation). PRISM is recognized as 
one of the highest-quality spatial climate datasets over the United States. It synthesizes 
and interpolates point measurements of precipitation, temperature, and other climatic 
factors to produce continuous, digital grid estimates of monthly, yearly, and event-based 
climatic parameters with a 0.05 deg resolution (http://www.prism.oregonstate.edu/). As 



 

20  

with CERES, we interpolated the PRISM data to the model domain for the comparison 
with model output. 
 

Table 1. Vegetation composition at AmeriFlux sites and corresponding model plant 
function types and percentages. 

BDT Temperate: Broadleaf deciduous tree- temperate, BDT Boreal: Broadleaf deciduous tree- boreal, NET 
Temperate: Needleleaf evergreen tree- temperate, NET Boreal: Needleleaf evergreen tree- boreal  
ARM=ARM SGP Main, Bo1=Bondville, Ne1=Mead Irrigated, Ro3=Rosemount G19 
Fpe=Fort Peck, Var=Vaira Ranch, Wrc=Wind river crane site, Me2=Metolius Intermediate Pine, 
MOz=Missouri Ozark, MMS=Morgan Monroe State Forest, UMB=UMBS, Bar=Barlett 
Experimental Forest, Ha1=Harvard Forest 
 

 
 
 

Site Site Vegetation  Model PFTs  
PFT 1 % PFT 2 % PFT 3 % PFT 4 /other % 

    Cropland      

ARM Wheat, corn, soybean 
periodic rotation 

Crop 92 BDT Temperate 4 C3 grass 1 Bare Ground 3 

Bo1 Corn, soybean annual 
rotation 

Crop 93 BDT Temperate 7 - - - - 

Ne1 Maize 
 

Crop 87 C3 grass 7 BDT Temperate  3 Bare Ground 3 

Ro3 Corn, soybean annual 
rotation 

Crop 72 C3 grass 16 BDT Temperate 10 Bare Ground 2 

    Grassland      
Fpe Grassland 

 
C3 grass 65 Crop 14 BDT Temperate 2 Bare Ground 19 

Var Grazed C3 grassland 
in a region of savanna 

C3 grass 76 NET Temperate  16 BDT Temperate  7 Bare Ground 1 

Evergreen needleleaf forest 

Wrc Douglas-fir and 
western hemlock 

NET Temperate  49 C3 grass 36 NET  Boreal 12 BDT Temperate 3 

Me2 Mature ponderosa 
pine 

NET Temperate 53 C3 grass 33 NET Boreal 8 BDT Temperate 6 

  Deciduous broadleaf forest    
MOz Oak hickory forest BDT Temperate 35 Crop 31 C3 grass 25 C4 grass 9 

MMS Mixed hardwood 
deciduous forest 

BDT Temperate  54 C3 grass 24 Crop 20 C4 grass 2 

UMB Deciduous Broadleaf 
Forest 

BDT Temperate 35 C3 grass 28 NET Temperate 20 Crop 17 

Bar Temperate northern 
hardwood forest 

BDT Boreal 39 NET Boreal 31  C3 arctic grass 29 Crop 1 

Ha1 Temperate deciduous 
forest 

BDT Temperate 45 C3 grass 39 NET Temperate 11 Crop 5 
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Results 

Surface climate  
 
We compared the three-year (2004-2006) 2-meter daily mean minimum temperature 
(T_min), daily mean maximum temperature (T_max) and daily mean precipitation to 
PRISM data. The simulation has a warm bias with regional variation in magnitude. 
WRF3-CLM3.5 overestimated the T_min (Fig. 2a) over all of the United States, 
especially in the Midwest (> 8K), where most area is covered by crops or grassland. 
WRF3-CLM3.5’s performance is better for T_max (Fig. 2b), with most of the West 
having a smaller warm bias (<4K) and some mountain areas underestimating the T_max 
by 4-6K. For all seasons, the Midwest has a consistent warm bias and the highest warm 
bias appeared in summer (not shown). Warm biases in the Midwest have also been seen 
in other combinations of climate and land surface models, such as RegCM-BATS 
[Walker and Diffenbaugh, 2009] and RegCM-CLM [Tawfik and Steiner, 2011] . WRF3-
CLM3.5 underestimated precipitation (Fig.2c) in the Midwest, with some overlap 
between areas with a dry bias and the warm bias region. Low precipitation may be 
exacerbating the warmer climate in the overlap region. On the west and east coast, where 
there is forest cover, the model generally simulated more precipitation than in the PRISM 
dataset.  
 
For the domain mean time series (Fig. 2d), the summer has the highest T_max difference, 
while the T_min bias is consistently large in all seasons (Fig. 2d). The large temperature 
bias also exists in standard WRF, with reduced summer T_max bias but increased winter 
T_min bias. Unlike the consistent year-to-year temperature bias, the precipitation bias has 
more interannual variation. For instance, summer has a large dry bias in 2004 and 2005, 
but not in 2006 (Fig. 2d). Compared to WRF3-CLM3.5, standard WRF shows a greater 
daily precipitation in nearly all months (Fig. 2d).  
 
At the site-scale, WRF3-CLM3.5 has a consistent, large warm bias at the 13 flux tower 
sites in all seasons, with a range from +2.9K to +7.3K in the monthly mean bias (Table 2) 
averaged over each vegetation type. Cropland has the highest daily average 2 m 
temperature (T2) bias while evergreen forest has the lowest T2 bias. The daily 
precipitation bias has more seasonal variation among vegetation types. Generally WRF3-
CLM3.5 overestimates the precipitation in winter and underestimates the precipitation in 
summer (not shown) at the 13 flux tower sites. With respect to monthly mean 
precipitation, the model simulated too little precipitation for crop and deciduous forest 
and excess precipitation for grasslands and evergreen forest (Table 2).   
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Figure 2. Annual difference in (a) minimum daily temperature, (b) maximum daily 

temperature, (c) daily precipitation between WRF3-CLM3.5 and PRISM from 2004 to 
2006, and (d) monthly time series of T_max, T_min and precipitation averaged over the 

contiguous United States for WRF3-CLM3.5, standard WRF (WRFNOAH), and PRISM. 
 
Table 2. Comparison of annual, site-level 2m temperature and daily precipitation between 

WRF3-CLM3.5 (model) and AmeriFlux (obs) averaged for the four vegetation types. 
Standard errors of the mean are given in parentheses, n indicates the number of sites for 

each vegetation type. 
 n 2m temperature (oC) Daily precipitation 

(mm/day) 
  model obs model obs 

Crop 4 19.1 (0.7) 11.8 (0.6) 1.8 (0.4) 2.2 (0.4) 
Grass 2 16.2 (0.9) 10.6 (0.8) 2.0 (0.7) 1.4 (0.5) 

Evergreen 2 11.5 (0.4) 8.6 (0.5) 5.5 (1.0) 3.6 (1.3) 
Deciduous 5 13.7 (0.5) 9.9 (0.5) 2.7 (0.4) 2.8 (0.4) 
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 Daily mean surface energy fluxes  
The 13 observation sites we selected capture only a small subset of the area of each 
dominant vegetation type. Compared to hundreds of model grid cells, most of the 
observation sites are within the range of the WRF3-CLM3.5 simulation for latent heat 
flux (LE) (Fig. 3a). Modeled sensible heat flux (H) is generally greater than observed 
(Fig. 3b), consistent with WRF3-CLM3.5’s warm bias. Flux values at the nearest grid 
cells tend to be higher than observations for both fluxes for all dominant vegetation types. 
 
 

 
Figure 3. Three years (2004-2006) of daily mean (a) latent heat flux and (b) sensible heat 

flux for the four dominant vegetation types evaluated. The bottom and top of each box 
are the 25th and 75th percentile (the lower and upper quartiles, respectively) among all 

grid cells for the dominant type, and the band near the middle of the box is the 50th 
percentile. The ends of the whiskers are the lowest and highest data points still within 1.5 

times the interquartile range. Black circles are outliers, blue circles are the three-year 
daily mean fluxes over 13 AmeriFlux towers (black circles in Fig. 1), and red circles are 

mean fluxes for the grid cells nearest to observation sites (plus signs in Fig.1); “n” 
indicates the number of observed sites for each vegetation type. 

 

Monthly variation in surface energy partitioning  
WRF3-CLM3.5’s performance for monthly partitioning of surface energy is shown for 8 
out of the 13 sites in Fig. 4, with two representative sites for each vegetation type. 
Ground heat flux (G) was only available at four sites (Na1, Var, Me2 and MMS) where 
percent of data available is greater than 90%. Without an irrigation scheme in the model, 
WRF3-CLM3.5 produced lower LE at irrigated crop sites Ne1 while partitioning more 
energy to H in the summer (Fig. 4a). Irrigation at Ne1 results in an observed increase in 
LE in summer (maximum in August, 114.9 W m-2) corresponding with a decrease in H 
(minimum in August, 7.8 W m-2). However, WRF3-CLM3.5 produced a large H (85.7 W 
m-2 in August) and small LE (41.2 W m-2 in August) in summer. Similar patterns were 
found at two non-irrigated sites (Ro3 and Bo1) could due to the underestimated 
precipitation or leaf area index. At the non-irrigated ARM site, the model reasonably 
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simulated monthly variation in H and LE with a slightly higher magnitude than observed 
(annual average of 17.8 W m-2 greater H and 6.9 W m-2 greater LE). 
 
Due to different climate conditions, observed energy fluxes indicate a clear difference in 
the timing of the growing season at the two grass sites (Fig 4b), which is not replicated by 
the model. The growing season is spring and summer at Fpe, which has a continental 
climate, but is winter and spring at Var due to the Mediterranean climate. The growing 
season usually is associated with large LE due to greater soil evaporation and plant 
transpiration. The flux tower measurements do show a maximum LE in July at Fpe (86.6 
W m-2) and in April at Var (63.1 W m-2). However, simulated H and LE at Fpe and Var 
have a very similar temporal pattern (gradually increasing in spring, reaching peak in 
summer). Such a pattern is reasonable at Fpe but is incorrect at Var where the natural 
grass has senesced in summer.  
 
For the evergreen forest sites, the energy flux simulations have a pattern similar to the 
observations, but with greater magnitude (Fig.4c). The annual averaged LE and H 
differences are 13.6 W m-2 and 4.8 W m-2 greater than observed at the Wrc site and 21 W 
m-2 and 19.6 W m-2 greater at the Me2 site.  
 
For the deciduous forest sites (Fig.4d), the flux observations indicated the clear growing 
season pattern of deciduous broadleaf trees, which was not represented in the simulations. 
All AmeriFlux deciduous sites observed an LE increase in spring and summer 
accompanied by a decrease in summer H when new leaf growth generates stronger 
photosynthesis and enables more transpiration at the surface. In the simulation, H peaks 
in the summer season, which is not in agreement with the observation of a peak in March 
and April before leaf emergence. The same results were observed at the UMBS site for a 
different time period [Schmid et al., 2003]. At MMS and Ha1, H was correctly simulated 
before May, but continued to increase and reached peaks in June (Ha1) and August 
(MMS), while observed H decreased after April. LE was overestimated at Ha1 in most of 
the months by an average of 18.5 W m-2 and MMS was overestimated in spring and 
winter by an average 17.9 W m-2.  
 
In the model, G is calculated as net radiation (Rn) minus H and LE, therefore errors in Rn, 
H, and LE could all contribute to the G bias making it hard to diagnose. The simulated G 
is higher than observations in nearly all months, and the bias magnitude ranges from 1 W 
m-2 to 4 W m-2 over the four sites with adequate data (Ne1, Var, Me2, and MMS, right 
panels in Fig. 4).  
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Figure 4. Seasonal energy partitioning (2004-2006 mean) for four dominant vegetation 

types at 8 observation sites (hashed bars) and the nearest grid cells (solid bars). H is 
sensible heat flux, LE is latent heat flux, LESOI is soil evaporation, LEVEG is leaf 

evaporation, LETRAN is leaf transpiration, and G is ground heat flux. Observed H and 
LE are Level 4 Ameriflux data. G is Level 2 data and only available for select sites.  

 
The Bowen ratio comparison shown in Figure 5 indicates that the model is good at 
capturing the monthly partitioning for evergreen forest vegetation, but misses features of 
the monthly patterns for cropland, grassland, and deciduous forest. For cropland, both 
WRF3-CLM3.5 and standard WRF overestimated the Bowen ratio (1.3-1.8) due to 
underestimated latent heat flux. The observed crop Bowen ratio (Fig. 5a) was very low 
(0.26-0.36) between May and September due to increased latent heat flux introduced by 
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irrigation or rainfall. Over the four crop sites, the Bowen ratio from April to September 
(growing season) was 1.25 for ARM site, 0.75 for Ne1, 0.58 for Bo1, and 0.42 for Ro3. 
For grassland (Fig. 5b), instead of showing the average of the two sites, we plot the 
Bowen ratios individually since the two sites have very different climates. At the Var site, 
the observed Bowen ratio is very large (9-21, peak in September) due to little LE and 
very large H. WRF3-CLM3.5 did not capture the peak while standard WRF 
overestimates the peak by 13. The large standard errors in the observed summer Bowen 
ratio realistically reflect the large variation in observed H and LE at the Var site, which 
suggests challenges for accurate simulations over grassland areas. The underestimated 
Bowen ratio by WRF3-CLM3.5 in summer is mainly due to excess LE at the Var site. 
The source of the incorrect LE can be explained by excess plant transpiration (Fig. 4b) 
due to a too large leaf area index in summer.  At the Fpe site, both WRF3-CLM3.5 and 
standard WRF slightly overestimate the Bowen ratio.  For evergreen forest (Fig. 5c), 
although the magnitude of the simulated H and LE are both higher than observed (Fig. 3), 
the Bowen ratio matches observations quite well. Notably, the WRF3-CLM3.5 
simulation of energy partitioning performs better than standard WRF for evergreen 
forests in most months. For deciduous forest (Fig. 5d), the simulated Bowen ratio is much 
smaller than observed in spring due to excessive LE (H values are reasonable). Similar to 
evergreen forest, standard WRF simulated a lower Bowen ratio compared to WRF3-
CLM3.5.  
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Figure 5. Monthly Bowen Ratio for a) cropland, b) grassland, c) evergreen needleleaf 

forest, and d) broadleaf deciduous forest comparing WRF3-CLM3.5 (WRFCLM), 
standard WRF (WRFNOAH), and Ameriflux observations. The WRFCLM and 

WRFNOAH values are the mean of nearest grid cells for each type (plus signs in Fig. 1), 
and the observation values are the mean of the Ameriflux sites (black circles in Fig. 1). 

The error bars indicate the standard errors (n = 3 years). For grassland, instead of 
showing the average of the two sites, we plot the Bowen ratios individually for Fpe and 

Far site since the two sites have very different climates. 
 

Surface radiation budgets  
The simulation of surface to atmosphere energy fluxes is highly dependent on the surface 
radiation budget. Net radiation is the balance between net solar radiation and net 
longwave radiation. Incorrect simulation of the radiation budget affects the magnitude of 
the components of the surface energy balance. And in the nonlinear climate system, the 
magnitude change for H, LE and G may not be the same; therefore the bias in the 
radiation budget could alter surface energy partitioning.  
 
The relatively reasonable simulation of continental-scale net radiation (Fig. 6a) is due to 
two canceling errors. Over-predicted upward longwave radiation (Fig. 6b) is canceled by 
the over-predicted downward solar radiation (Fig. 6c). For most regions, the bias in mean 
net radiation is not large (within ±15 W m-2) compared to the bias in downward solar 
radiation (40-60 W m-2) and upward longwave radiation (20-60 W m-2). In the Midwest, 
where the warm bias is quite large, the bias in net radiation is actually low (20 W m-2). 
This is because the higher surface temperature in this region generates higher upward 
longwave radiation, by 70 W m-2.  
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Figure 6. Annual differences between WRF3-CLM3.5 and CERES in 2004 for (a) net 

radiation, (b) upward longwave radiation, and (c) downward solar radiation. 
 
At the site level, the model generated 20% or more excess net solar radiation and 
longwave radiation for all four vegetation types (Table 3), further confirming a 
systematic over-estimation. The excess downward solar radiation for all vegetation types 
is a discrepancy that has been found in many climate models [Wild, 2008]. We also found 
that WRF3-CLM3.5 tends to produce a larger downward solar radiation bias in summer 
than in winter (not shown), which may be due to 20% less cloud cover in summer but not 
winter (using a rough comparison to CERES cloud cover data, not shown). As would be 
expected, the model produces excess upward (emitted) longwave radiation due to the 
overestimated surface temperature. The large bias also dominates the net longwave flux 
since the bias in downward longwave is negligible except for over crops (Table 3). The 
temporal variation in the net radiation bias is similar to the downward solar radiation bias: 
higher in summer than winter (Fig 7), which highlights that downward solar radiation is 
fundamentally important to correct simulation of net radiation.  
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Figure 7. Monthly net radiation for WRF3-CLM3.5 nearest grid cells (red line) and 

Ameriflux sites (black line) for a) cropland, b) grassland, c) evergreen needleleaf forest, 
and d) broadleaf deciduous forest in 2004.  

 
 
Table 3. Surface radiation budgets of WRF3-CLM3.5 (model) (obs) over four dominant 

vegetation types. Values for cropland (crop), grassland (grass), evergreen needleleaf 
forest (evergreen) and deciduous broadleaf forest (deciduous) are the averages over sites 

for each dominant vegetation type (Table 1). 

SW down: downward solar radiation, SW up: upward solar radiation, Net SW: net solar radiation, 
LW down: downward longwave radiation, LW up: upward longwave radiation, Net LW: net 
longwave radiation. 
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a)  Crop b)  Grass

c)  Evergreen d)  Deciduous

 Net radiation SW down SW up Net SW LW down LW up Net LW 

0  Model Obs Model Obs Model Obs Model Obs Model Obs Model Obs Model obs 

Crop 88.9 81.7 221.9 191.9 35.2 40.2 186.7 151.7 332.6 371.5 430.4 379.8 -97.8 -8.3 

Grass 93.3 59.7 231 183.5 39.2 43.8 191.8 139.7 307.4 302.5 405.9 376.5 -98.5 -74 

Evergreen 112.1 90.5 203.6 165.8 23.9 17.8 179.7 148 308.3 304.2 375.9 360.3 -67.6 -56.1 

Deciduous 100.5 88.8 209.9 164.6 29.7 23.8 180.2 140.8 320.9 317.8 400.6 371.1 -79.7 -53.3 
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Discussion 
 
Both WRF and CLM have deficiencies that should be resolved in future versions to 
reduce the warm bias. The large warm bias in the standard version of WRF suggests there 
are problems in WRF. For example, the downward solar radiation bias contributes 
substantially to the warm bias based on a one-year sensitivity test that artificially reduced 
downward solar radiation by 30% (WRF3-CLM3.5 simulated a 3K lower 2 meter air 
temperature averaged over land grid cells). Reducing downward solar radiation is not 
simple because it is associated with many factors. Previous work [Markovic et al., 2008; 
Wild et al., 2001] suggests the overestimate of downward solar radiation at the surface 
could be either due to less cloud cover for cloudy days or less sky absorption of 
downward solar radiation for clear days. Ignoring aerosols in the model may also 
contribute to excess downward solar radiation [Wild, 2008]. The negative precipitation 
bias in the Midwest (Fig. 2c) suggests that an underestimate of cloud cover may 
contribute to excess downward solar radiation in the Midwest. Further validation with 
WRF3-CLM3.5 focusing on the cloud cover and clear sky absorption are strongly 
encouraged but are beyond the scope of this paper.  
 
Fortunately, the newer WRF3.2 includes boundary layer physics and microphysics that 
could improve the overall simulation. A one-year sensitivity test using standard WRF3.2 
with the MYNN boundary scheme [Nakanishi and Niino, 2009] and Thompson 
microphysics scheme [Thompson et al., 2008] showed a reduction in the downward solar 
radiation by 30 W m-2, in T_max by 3K, and in T_min by 2K.   
 
With respect to CLM, the large warm bias in the Midwest could be due in part to 1) the 
missing irrigation scheme, and 2) the lower crop leaf area index used in the model. A 
large area in the Midwest is covered by irrigated agriculture according to global irrigation 
maps [Siebert et al., 2005]. Without an irrigation scheme, WRF3-CLM3.5 may 
overestimate temperature by 3-5K in summer in the Midwest [Lobell et al., 2009; Sacks 
et al., 2009]. Considering the strong coupling between soil moisture and precipitation in 
the Midwest [Koster et al., 2004], low soil moisture could reduce cloud cover and 
enhance the downward solar radiation, further heating the land surface and contributing 
to a positive feedback in this region and producing a large warm bias. Also, the much 
lower maximum leaf area index used in the model (Table 4) could reduce LE and 
therefore increase H and near-surface temperature. The simulated seasonal variation in 
LAI is much lower than the direct measurements at the Bo1 site [Wilson and Meyers, 
2007].  
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Table 4. Comparison of maximum leaf area index between model and observation for 
Ameriflux sites with measurements (obs) and corresponding model grid cells (model). 

 Max Leaf area index 
Model Obs 

Crop1 1.91 6.6 
Grass2  1.4 2.45 
Evergreen3 4.3 3.62 
Deciduous4 4.2 4.5 

1Crop: the mean maximum leaf area index at Bon, Ne1 and Ro3. 
2Grass: the mean maximum leaf area index at Fpe and Var. 
3Evergreen: the mean maximum leaf area index at Wrc and me2. 
4Decidous: the mean maximum leaf area index at MOz, MMS, UMB, Bar and Ha1. 

 
Although CLM3.5 includes significant improvements in surface input data [Lawrence 
and Chase, 2007], there is still space for further improvements due to uncertainties in 
algorithm and validation methods used to produce the surface data [Yang et al., 2006]. In 
particular, leaf area index (LAI) is a key physiology parameter that strongly influences 
the LE and surface albedo. With lower LAI, the model may generate lower LE if other 
conditions remain the same. The lower LE would shift the Bowen ratio, increasing the 
near surface temperature and even possibly reducing precipitation due to less water vapor 
transport.  For example, the underestimated LE at the Fpe site may be because of the 
lower LAI used in the model, which is 1.4 m2 m-2 for maximum LAI while the observed 
LAI is 2.5 m2 m-2 (Table 4). The mean maximum LAI over the crop sites is 6.6 m2 m-2, 
while the model mean maximum value is 1.9 m2 m-2, which reduced the partitioning to 
LE in WRF3-CLM3.5. Although the prescribed LAI in the model does not capture the 
observed interannual variability [Lu et al., 2001], LAI in WRF3-CLM3.5 is quite good 
for three deciduous sites (Fig. 8), where the observed LAI values are similar to the model 
values. At Ha1, the observed LAI is larger than the model LAI, but the lower LAI in the 
model yielded a larger LE, which suggests that there are other factors driving the 
overestimated LE. For instance, the large LE and H in summer may be due to the excess 
net radiation (Figure 7). Overestimated precipitation in February and March may also 
help account for the high LE in those months.  
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Figure 8. Monthly variation in leaf area index for WRF3-CLM3.5 and AmeriFlux 

observations at three deciduous sites, (a) MMS, (b) UMB and (c) Ha1. LAI used in 
WRF3-CLM3.5 is an interpolation of CLM3.5 standard input [Lawrence and Chase, 
2007], a prescribed LAI that does not change from year to year (lines). The LAI at 

AmeriFlux sites are ground observations available for some months (circles).  
 
In CLM3.5, an additional soil resistance term [Sellers et al., 1992] was added that 
effectively reduced the unreasonably large soil evaporation in CLM3 [Lawrence et al., 
2007]. However, our simulation (Fig. 4d) suggests that the excessive soil evaporation is 
still a problem for broadleaf deciduous forest before leaf emergence in January, February, 
and March, which is also supported by offline simulations [Stockli et al., 2008]. At Ha1 
and MMS (Fig. 4d), it is obvious that the soil evaporation (LESOI) is the largest among 
the three LE components in spring. The large soil evaporation substantially reduced the 
Bowen ratio before leaf emergence. The new treatment of soil evaporation in the latest 
version of CLM [Sakaguchi and Zeng, 2009] reduced the annual average soil evaporation, 
but mostly in summer in the U.S. [Lawrence et al., 2011]. Further improvements to 
reduce spring soil evaporation in broadleaf deciduous regions are highly recommended.   
 

Conclusion 
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Our analyses show that WRF3-CLM3.5 output is in good agreement with observed 
energy partitioning over needleleaf evergreen forests, but has errors in cropland, 
grassland and broadleaf deciduous forest. Since none of the current climate models can 
perfectly simulate energy fluxes and standard WRF has a large wet bias, we believe 
WRF3-CLM3.5 could be usefully applied in land use conversion research after specific 
improvements. One recommendation that could immediately improve the simulation is 
correcting LAI based on available ground observations. For studies focused on the 
Midwest U.S., irrigation processes must be added as in [Sacks et al., 2009] for a better 
simulation not only of energy fluxes, but also of temperature and precipitation, due to the 
strong soil moisture-precipitation feedback. After adding irrigation processes and 
correcting the LAI, WRF3-CLM3.5 should be reliable for studying conversions between 
grassland, dryland crops and irrigated crops, or between needleleaf evergreen forest and 
grassland. Studies involving deciduous forests need to consider the excessive spring soil 
evaporation that cannot be easily corrected in the current model version.  
 
Our analysis shows that a large warm bias exists both in standard WRF and WRF3-
CLM3.5, and that this bias is substantially diminished when downward solar radiation is 
artificially reduced, suggesting that the WRF model has some deficiencies independent of 
the land surface model. The very large downward solar radiation in WRF is the driving 
force for the warm bias, which could be due to too little cloud cover or insufficient sky 
absorption of downward solar radiation on clear days. Further examination of these 
potential deficiencies are beyond the scope of this paper, but will be important for 
improving the quality of regional climate model studies using WRF. A more recent 
version of WRF includes new schemes for microphysics and boundary layer physics 
[Nakanishi and Niino, 2009; Thompson et al., 2008] that also may improve the overall 
simulation. 
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CHAPTER 2 

Evaluation of a regional coupled climate-cropland model (WRF3.3-
CLM4crop) with irrigation practice 

 

Introduction 
 
The response of agricultural systems to changing climate has attracted considerable 
attention due to increased potential for global food crises [Adams et al., 1990; Lawlor and 
Mitchell, 1991; Long et al., 2006; Mendelsohn et al., 1994; Rosenzweig and Parry, 1994]. 
Crop models, including phenology process based model and statistical models, are widely 
used to simulate climate impacts on crop growth and production. For example, warming 
by 2-4 oC could shorten the growing season and alter crop calendars [Butterfield and 
Morison, 1992; Peiris et al., 1995], elevated CO2 can increase crop yield [Brown and 
Rosenberg, 1999; Easterling et al., 1992; Mearns et al., 1992], and crop regression 
models suggest that yields of wheat, maize, and barley are declining with increased 
temperature globally [Lobell and Field, 2007; Lobell et al., 2008b]. Although agronomic 
models have increased our understanding of crop responses to climate change, they have 
not accounted for interactions between climate and crop growth.  
 
 Crop growth and climate are highly coupled. Optimum soil temperature and moisture 
yield the maximum seed germination rate for a given crop [Covell et al., 1986; 
Wagenvoort and Bierhuizen, 1977]. Growing degree days (sum of daily degrees above a 
baseline) based on the air temperature determines the phenological phase and 
physiological activity of crops [Bonhomme, 2000]. Furthermore, crop productivity is 
reduced by many forms of environmental stress, such as extreme temperature, drought, 
and air pollution [Pessarakli, 1999]. At the same time, cropland plays a very important 
biogeophysical role in changing climate [Feddema et al., 2005; Foley et al., 2005; 
Pitman et al., 1999]. Crops alter the small-scale boundary layer structure [Adegoke et al., 
2007], such as surface wind and boundary layer height, by increasing canopy height 
during the growth process. Compared to natural vegetation, cropland has higher albedo 
that alters the energy budget when converting between forest and cropland [Bonan, 2008; 
Oleson et al., 2004]. Cropland also alters the water cycle. Both field observations and 
modeling have shown that conversion of forest to cropland can reduce 
evaportranspiration and precipitation at the regional scale [Sampaio et al., 2007].  
 
Cropland management, such as irrigation, has been found to alter climate at global and 
regional scales [Adegoke et al., 2003; Cook et al., 2011; Harding and Snyder, 2012; Jin 
and Miller, 2011; Ozdogan and Salvucci, 2004; Sorooshian et al., 2011]. The extra water 
applied to the soil enhances evapotranspiration, thereby reducing surface temperature 
through evaporative cooling [Kueppers et al., 2007b; Lobell et al., 2009; Sacks et al., 
2009]. Condensation of the water vapor in the atmosphere releases latent heat that 
provides energy for cloud convection and precipitation [DeAngelis et al., 2010; Saeed et 
al., 2009], an effect that can propagate to neighboring regions [Lo and Famiglietti, 2013]. 
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The surface cooling reduces emission of surface long wave radiation, while the water 
vapor in the upper air can absorb and release more long wave radiation to the surface 
[Boucher et al., 2004; Kueppers and Snyder, 2012], thereby increasing the surface net 
radiation. Irrigation also can increase net solar radiation at the surface due to the 
decreased albedo of wet soil [Otterman, 1977]. A key issue is that the simulation models 
used to explore these mechanisms have prescribed crop leaf area values that do not 
respond to environmental change or inter-annual variation in weather and climate. This 
prescribed approach could overestimate and underestimate evapotranspiration from 
croplands, depending on time of year and environmental conditions, because crop leaf 
area and physiological activity are known to dynamically respond to climate variation 
[Fang et al., 2001; Porter and Semenov, 2005]. 
 
Coupling of process-based crop growth models into climate model enables simulation of 
the two-way interactions between climate and crop growth. Recent work incorporating 
crop growth models into climate models has revealed that dynamic crop growth strongly 
influences regional climate patterns by altering land surface water and energy exchange 
[Bondeau et al., 2007b; Levis et al., 2012; Liang et al., 2012; Lu et al., 2001; Osborne et 
al., 2007; Tsvetsinskaya et al., 2000; Xu et al., 2005]. Most of these studies have not 
rigorously evaluated results against observations of climate and crop variables. Further, 
interactions between crop growth and irrigation effects on climate are not well examined. 
Therefore, our objectives were to, 1) evaluate a newly coupled regional climate-cropland 
model’s performance in simulating crop growth and surface climate using multiple 
observational datasets, and 2) investigate interactions between irrigation and dynamic 
crop growth effects on surface climate.  
 

Methods 
 

Regional climate model 
 
We coupled the Community Land Model version 4 (CLM4) to the Weather Research and 
Forecasting Model version 3.3.1 (WRF3.3) to utilize an advanced land model for 
simulations of the effects of crop growth and irrigation on regional climate. CLM4 
includes new treatments of soil column-groundwater interactions, soil evaporation, 
aerodynamic parameters for sparse/dense canopies, vertical burial of vegetation by snow, 
snow cover fraction and aging, black carbon and dust deposition, and vertical distribution 
of solar energy [Lawrence et al., 2012; Oleson et al., 2010]. The CLM land surface 
model improved minimum temperature and precipitation over the Noah land surface 
model in simulations using an earlier version of the coupled model (WRF3.0-CLM3.5) 
[Jin et al., 2010; Lu and Kueppers, 2012; Subin et al., 2011]. However, we also found 
that the CLM prescribed crop leaf area index in the Midwest was lower than 
observations, potentially contributing to a large warm bias [Lu and Kueppers, 2012]. 
Further, in both Noah and CLM4, as for natural vegetation, crop plant parameters, such 
as leaf area index and stem area index are fixed for each month and do not change from 
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year to year. This limits the usefulness of WRF3.0-CLM3.5 for studying two-way 
interactions between crops and climate. 
 
To better simulate interactions between the atmosphere and cropland, we further 
developed a crop version of the coupled model (WRF3.3-CLM4crop) that simulates 
dynamic crop growth following work by Levis and colleagues [2012]. Crop growth has 
large inter-annual variability with a large impact on surface energy and water cycles [Lu 
et al., 2001]. While it was ignored in early land surface models, recently, several land 
surface models have integrated dynamic crop growth, which has improved temperature 
and precipitation simulations relative to observations [Bondeau et al., 2007b; Gerten et 
al., 2004; Krinner et al., 2005; Levis et al., 2012; Osborne et al., 2007; Sitch et al., 2003; 
Tsvetsinskaya et al., 2000]. The details of the WRF3.3-CLM4crop crop growth 
parameterization and modification are described in Appendix A, but are briefly 
summarized here. The new dynamic crop growth module updates the leaf area index 
(LAI); stem area index; canopy height; and leaf, stem, grain, and root carbon at each time 
step and the values vary from year to year, depending on environmental conditions. The 
LAI, stem area index, and canopy height are used in hydrology and radiation modules to 
calculate the energy and water state variables that are transferred into the atmospheric 
model. LAI and plant carbon allocation differ according to phenological stage (planting, 
leaf emergence, grain filling, and harvest). Transitions between phenological stages are 
controlled by growing degree days (with a base of 8 °C for C3 crops and 10 °C for C4 
crops). 
 

Irrigation scheme 
 
We adopted a precision agriculture-type irrigation scheme, where the amount and timing 
of irrigation simulates efficient irrigation practices. Irrigation water is applied as a 
function of root water stress (βt), leaf temperature (Tveg) and LAI. The root water stress is 
monitored by βt, which varies from near zero (dry soil) to one (wet soil). Leaf 
temperature also is used not only to more realistically simulate irrigation systems [Howell 
et al., 1984; Wanjura et al., 1992], but also to maintain optimum plant growth because 
high leaf temperature can inhibit plant photosynthesis [Wise et al., 2004]. Irrigation starts 
after leaf emergence (LAI>0.1 m2 m-2), and occurs when either plant water is low (βt 
<0.99) or leaf temperature is too high (Tveg >35°C). Irrigation water is applied in the form 
of rain at a constant rate of 0.0002 mm s-1, selected to match the range of current 
irrigation systems (4-20 gallons per minute per acre). Cropland equipped for irrigation 
(Figure 9a) was derived from the 0.05 deg global irrigation map [Siebert et al., 2005], as 
updated in 2006 (http://www.geo.uni-
frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html). The simulated 
annual irrigation water use (Figure 9b) is within 14% of U.S. water usage estimated by 
USGS for 2005 [Kenny et al., 2005]. The range in annual simulated irrigation water use 
from 2004-2006 was 113-149 billion gallons per day (143 for 2005); the USGS survey 
estimates 128 billion gallons per day in 2005 (http://ga.water.usgs.gov/edu/wuir.html).  
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Figure 9. Modeled domain showing a) percent of cropland equipped for irrigation (%) 

within each grid cell (Siebert et al. 2005), and b) mean 2004-2006 irrigation water 
applied (million gallons per day) simulated in WRF3.3-CLM4crop. The four AmeriFlux 

observational sites are indicated in (a).  

Experiments design 
 
We set up two 10-year (2002-2011) simulations using WRF3.3-CLM4crop to evaluate 
crop growth (leaf area index and growing season length). One is a control simulation 
without irrigation (hereafter referred to as CROP), and the other includes irrigation 
(hereafter referred to as CROPIRR). In addition, we set up two additional 5-year (2002-
2006) standard simulations with (hereafter referred to as STDIRR) and without irrigation 
(hereafter referred to as STD) using the prescribed LAI version of the coupled model 
(WRF3.3-CLM4) to quantify interactive effects of dynamic crop growth and irrigation on 
surface air temperature and energy fluxes. The physical modules used in all simulations 
include the MYNN boundary layer scheme [Nakanishi and Niino, 2006], the CAM 
longwave/shortwave radiation scheme [Collins et al., 2004], the new Grell cumulus 
scheme [Grell and Devenyi, 2002], and the Thompson microphysics scheme [Thompson 
et al., 2004].  The simulations focused on the continental United States (U.S.) with 25 
vertical layers and 50 km horizontal resolution. We interpolated (using the inverse 
distance weighting method) 0.5 deg CLM surface input data (including plant functional 
types, plant function type percent, leaf area index, and stem area index) into the model 
domain. We used NCEP/DOE Reanalysis II data as lateral boundary conditions 
[Kanamitsu et al., 2002]. For analysis, we removed 8 grid cells from the full perimeter of 
the domain as a buffer, which diminished the original domain from 109 ×129 to 93×113 
grid cells. The first two years of the simulations were discarded as spin-up and the 
analysis focused on the final 8 years (2004-2011).  
 

Validation data 
 

a) b)
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We validated leaf area index (LAI), sensible heat flux (H), and latent heat flux (LE) at 
four AmeriFlux sites in the Midwest (showed on Figure 9a). We obtained 9-years (2002-
2010) of LAI data [Fischer, 2005] at ARM SGP Main (SGP), which is measured with a 
light wand (Licor LAI-2000) during the active growing season (Marc Fischer, personal 
correspondence) from 2002 -present. We downloaded LAI measurements at three other 
sites (Bondville, Mead irrigated, Mead rainfed) from 
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level2/AllSites/biological_data/. Model LAI (for 
crop PFTs only), H, and LE were extracted at the grid cell nearest to each site from the 
CROP simulation for non-irrigated sites (SGP, Bondville, Mead rainfed, Rosemount-
G19) and from the CROPIRR simulation for Mead irrigated site. We compared monthly 
variation in LAI and interannual variation in peak LAI. For the monthly LAI comparison, 
the simulated LAI is the 10-year (2002-2011) averaged monthly LAI, while the observed 
LAI is averaged over different numbers of years depending on availability of 
observations. We didn’t compare peak LAI variation at Bondville because observations 
were only available for 5 years, 1997-2001. For H and LE, we compared three year 
(2004-2006) averaged monthly variation using gap-filled level 2 observations. 
 
We used in-situ soil moisture data from the international soil moisture network 
(http://www.ipf.tuwien.ac.at/insitu/). Over the validation period 2004-2006, the soil 
moisture measurements are available from SCAN, SNOTEL, ARM, and AmeriFlux 
networks. Sites measured the soil moisture at different depths, which differ from the soil 
depths used in WRF3.3-CLM4crop. Therefore, we compared the soil water (mm) in the 
upper soil (0-50 cm) instead of directly comparing the soil water content (m3 m-3) at each 
soil layer. After a data quality control procedure (missing values < 10%), we selected 18 
SCAN sites, 47 SNOTEL sites, 10 ARM sites, and 9 AmeriFlux sites.  
 
We validated the 3-year (2004-2006) daily mean temperature (an average of minimum 
and maximum temperature), dew point temperature and precipitation using the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) 4km product 
[Di Luzio et al., 2008]. We interpolated the PRISM values to the model domain for 
comparison with model output.  
 

Results 

Model evaluation 

1) Leaf area index (LAI) comparison 
 
Compared to site observations, the dynamic crop growth model overestimated monthly 
LAI in most months and sites, displayed a longer growing season, and failed to capture 
the rapid decline of LAI after the peak (Figure 10). The prescribed LAI and MODIS LAI 
both underestimated the site-based LAI and showed no difference at the Mead irrigated 
and rainfed sites. While the dynamic crop growth model correctly increased LAI at Mead 
with the added irrigation scheme, the magnitude of the LAI difference is much larger 
than the observed difference between Mead irrigated and Mead rainfed.  
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Figure 10. Simulated monthly LAI compared to observations at four AmeriFlux sites. 

Modeled and MODIS LAI are averaged for 2002-2011, and observed LAI is averaged for 
2002-2010 for ARM SGP Main site, 2002-2007 for Mead irrigated and rainfed sites, and 

1997-2001 for Bondville).  
Although the dynamic crop simulation (CROP) overestimated peak LAI in some years, it 
captured the inter-annual variation in peak LAI better than the simulation with prescribed 
LAI (Figure 11), which has no interannual variation. MODIS LAI  [Zhu et al., 2012] 
underestimated peak LAI at the three sites by a magnitude similar to the overestimation 
by the CROP simulation. Irrigation reduced the inter-annual variability at Mead in the 
CROPIRR simulation, where the dynamic crop growth model showed larger variability at 
the rainfed site than at the irrigated site. But in observations, the variation in peak LAI at 
Mead rainfed is not as large as in the simulation. This may be because interannual 
variability in precipitation was overestimated (simulated standard deviation is 26.6% 
greater than observed).  
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Figure 11. Variation in simulated annual peak LAI compared to three AmeriFlux sites 

 

2) Planting date 
 
We compared the planting date for C3 and C4 crops to observed soybean and maize 
planting dates [Sacks et al., 2010]. Over 34.4% C3 and 61.5% C4 cropland, simulated 
planting dates were within the observed planting date range. For C3 cropland, the model 
simulated too-early planting by 5.7±0.4 days in the remaining 65.6% of C3 crop area. For 
C4 cropland, the model simulated too-early planting by 8.7±2.1 days in 37.4% of the C4 
crop area, mostly in the Midwest and East. Only 1.1% of simulated C4 cropland had later 
than observed planting dates, by 10.4±3.4 days in Montana and Wyoming.  
 

3) Surface climate 
 
The CROP simulation overestimated mean daily temperature (Tmean; Figure 12a) in the 
Midwest by up to 4 oC with seasonal variation in the bias. The largest bias (+8 oC) was in 
July and smallest (+0.5 oC) was in March. The warm bias was reduced by 2-5 oC from the 
previous version of the coupled model [Lu and Kueppers, 2012]. Dew point temperature 
(Td) was underestimated in most regions (Figure 12b), indicating low humidity in the 
model simulations. Of 18% area of the entire U.S., such underestimation was strongly 
correlated (r>0.8) to the dry precipitation bias. Precipitation (ppt; Figure 12c) was 
underestimated in the Midwest and Eastern U.S. and overestimated in the Western U.S. 
by up to 2 mm day-1. Where the model simulated excessive precipitation in the Western 
U.S., there was a cold bias and the low dew point temperature was due to underestimated 
air temperature.  
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Figure 12. Averaged (2004-2006) difference between the CROP simulation and PRISM 

observations for (a) mean daily air temperature, (b) dew point temperature, and (c) 
precipitation.  

The RMSE between PRISM and the four simulations (Table 5) indicated that adding both 
the dynamic crop model and the irrigation scheme slightly improved model simulation of 
temperature and precipitation. Adopting dynamic crop growth (CROP) reduced the 
RMSE by 5.6% on average for daily maximum temperature (Tmax), daily minimum 
temperature (Tmin), Tmean, and ppt compared to STD across all grid cells. Adding the 
irrigation scheme reduced the RMSE by 5.3% on average for Tmax, Tmin, Tmean, and 
ppt when comparing STD to STDIRR, and but only by 1.8% when comparing CROP to 
CROPIRR. The irrigation scheme reduced the RMSE not only in grid cells with irrigated 
cropland but also in grid cells with non-irrigated cropland. From STD to STDIRR, the 
RMSE decreased by 5.7% for irrigated cropland and by 7.5% for non-irrigated cropland. 
From CROP to CROPIRR, the RMSE decreased by 5.9% for irrigated cropland for Tmax, 
Tmin, Tmean, and Td and by 1.9% for non-irrigated cropland, but only for Tmin and 
Tmean.  
 
Table 5. Spatially averaged Root Mean Square Error (RMSE) for maximum temperature 

(Tmax), minimum temperature (Tmin), mean temperature (Tmean), dew point 
temperature (Td), and precipitation (ppt) between PRISM and the four simulations (STD, 

STDIRR, CROP, and CROPIRR) in 2004-2006. 

 
All domain Non-irrigated cropland Irrigated cropland 

 
STD STDIRR CROP CROPIRR STD STDIRR CROP CROPIRR STD STDIRR CROP CROPIRR 

Tmax (oC) 3.51 3.29 3.47 3.42 3.57 3.24 3.49 3.51 3.5 3.21 3.54 3.37 
Tmin (oC) 2.82 2.68 2.53 2.47 2.43 2.27 2.01 1.97 3.27 3.06 2.83 2.67 
Tmean (oC) 2.71 2.51 2.48 2.41 2.62 2.35 2.29 2.25 3.09 2.81 2.76 2.57 
Td (oC) 2.7 2.76 2.71 2.69 2.35 2.42 2.28 2.37 2.78 2.74 2.78 2.61 
ppt (mm/day) 1.25 1.22 1.22 1.22 1.32 1.27 1.28 1.29 1.29 1.25 1.27 1.27 

 

4) Soil moisture 
 
The coupled model generally over-predicted the soil moisture in the Western US and 
under-predicted soil moisture in the Midwest and Eastern US relative to site level 

a)   Mean  daily  temperature  (oC)   Dew  point  temperature  (oC)   Precipitation  (mm/day)b) c)

Figure  4.  A  comparison  of  three  years  averaged  (2004-­2006)  difference  (CROP-­PRISM)  of  

(a)  mean  daily  temperature,  (b)  dew  point  temperature,  and  (c)  precipitation.  
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observations (Figure 13a). Adding the dynamic crop model did not improve the soil 
moisture simulation; at some sites, the low soil moisture bias was exacerbated because 
higher LAI in the dynamic crop model increased evapotranspiration over that in the 
prescribed crop (not shown). However, adding irrigation largely improved the soil 
moisture simulation at irrigated grid cells. At the Mead irrigated site, the simulation 
including both irrigation and dynamic crop growth best matched the observed soil 
moisture levels over the growing season (Figure 13b).  
 

 
Figure 13. Comparison of simulated and observed soil moisture. a) Soil water (0-0.5m) 
difference between CROP and observed and b) soil moisture comparison at the Mead 

irrigated site.   
 

5) Surface energy fluxes 
 
Incorporating only dynamic crop growth does not substantially improve simulated 
surface energy fluxes, but the addition of irrigation does. Both STD and CROP simulated 
much higher sensible heat flux (H) than observed at all four Ameriflux sites (Figure 14) 
and did not capture the double peak pattern at Bo1 and Ne1. There was only slightly 
improvement in simulated H at Ro3 and Ne1 sites. At ARM and Bo1 sites, the CROP 
simulation actually produced higher H than STD, worsening the high bias. CROP 
simulated higher latent heat flux (LE) than STD, but still produced a peak in LE that was 
1 to 2 months early at Ro3 and Bo1. With the addition of irrigation, biases in H and LE at 
the Mead irrigated site were reduced most in CROPIRR. The double peak pattern of H 
and the peak month of LE were well simulated by CROPIRR, but were not captured in 
STDIRR, which lacks a dynamic crop growth model.    
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Figure 14. Comparisons of 2004-2006 monthly mean sensible heat flux (panel letters 

needed) and latent heat flux (panel letters needed) between model simulations and 
observations at four AmeriFlux sites.  
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The role of dynamic crop growth in climate effects of irrigation 
 
We compared three years (2004-2006) difference in surface variables between the two 
sets of simulations to quantify how dynamic crop growth influences irrigation effects on 
surface energy fluxes and temperature. One set is CROPIRR and CROP that adopted 
dynamic crop growth, the other set is STDIRR and STD that used prescribed crop LAI.  
 
Dynamic crop growth requires more irrigation water during the growing season than 
prescribed crop growth (Figure 15a). From April to September, the irrigation water 
applied in the CROPIRR simulation is almost double that in STDIRR. In winter, the 
simulation with prescribed crop had higher irrigation water (0.05 mm/day) because the 
dynamic crop module in CROP does not simulate winter crops or cover crops and 
therefore does not apply irrigation water from November to February. When comparing 
the two simulations with dynamic crop growth (CROPIRR and CROP), LAI was 32% 
greater with irrigation, while LAI did not change with irrigation under prescribed LAI 
(STDIRR and STD) (Figure 15b).  
 

 
Figure 15. Monthly variation in domain averaged a) irrigation water (mm/day) and b) leaf 

area index (m2/m2) in prescribed crop and dynamic crop simulations.  
 
 
Combined dynamic crop growth plus irrigation improved the simulated partitioning of  
latent heat flux. In CLM, the latent heat flux was partitioned into soil evaporation, wet 
leaf evaporation, and dry leaf transpiration. Because the LAI does not change with 
prescribed crop, a large fraction of the water applied to the soil column evaporated from 
the soil. In STDIRR, 50% of the total evapotranspiration was soil evaporation and 35% 
was leaf transpiration (Figure 16). In the simulation with dynamic crop growth, the 
increase in LE with irrigation is mainly due to increased leaf transpiration resulting from 
the larger leaf area; soil evaporation is only a small portion of LE.  
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Figure 16. Simulated 2004-2006 averaged latent heat flux partitioned into three 

components for the four models.  
 
 
The averaged JJA differences in climate variables with irrigation have a similar pattern 
but different magnitude in STDIRR and CROPIRR as the cell-fraction of irrigated 
cropland percentage increased (Figure 17).  Irrigation increased LE while reduced H in 
both STDIRR and CROPIRR, and such effects is 34.6% higher for ΔH and 24.6% higher 
for ΔLE in CROPIRR with dynamic crop in moderately irrigated region (20-50% 
irrigated). Irrigation increased net radiation in a similar magnitude in STDIRR and 
CROPIRR except when irrigation land >60%, such increase in net radiation is 41.9% 
lower with dynamic crop. Irrigation reduced 2-meter air temperature (T2) stronger in 
CROPIRR than STDIRR when irrigated land >20%.  
 

0
20

40
60

80
10
0
12
0
14
0

STD CROP STDIRR CROPIRR

Soil  evaporation
Leaf  evaporation
Transpiration

L
a
te
n
t  
h
e
a
t  
fl
u
x
  (
W
.m

-­2
)



 

46  

 
Figure 17. 2004-2006 JJA averaged difference along different grid cell irrigated cropland 

percentage of a) latent heat flux (W.m-2), b)  sensible heat flux (W.m-2),c) net radiation 
(W.m-2) and d) 2m air temperature (°C) in prescribed crop and dynamic crop 

simulations. The error bar shows the standard error among 9 months.  
 

Discussion and conclusion 

Model evaluation 
 
By coupling CLM4Crop into WRF (version 3.3), our work is a first step to extending the 
capability of WRF to simulate two-way interactions between crop growth and climate. As 
one of the most widely used regional climate models, standard versions of WRF do not 
include a comprehensive land surface model. Jin et al. [2010] first coupled the CLM 
(version 3) into WRF (version 2) and then Subin et al. [2011] updated the coupled model 
into a new version (WRF3.0-CLM3.5). We updated the coupled model to WRF3.3-
CLM4 and incorporated a dynamic crop growth model to better reflect seasonal changes 
in LAI, and added an irrigation scheme to capture large effects of increased soil moisture 
on surface energy and water fluxes.  
 
The surface energy flux evaluation suggested that improvements to dynamic crop growth 
are not sufficient to better simulate energy fluxes; improvements to other physical 
processes (such as precipitation) are equivalently important. We expected the larger and 
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more dynamic LAI simulated in CROP to improve simulation of surface energy fluxes 
where the prescribed LAI was small compared to observations. However, site-level 
comparisons to three non-irrigated AmeriFlux sites in the Midwest suggest that we did 
not realize the expected improvements. The reason may be that although the LAI is larger 
in CROP, the low precipitation bias persists, resulting in low soil moisture, limiting 
evapotranspiration regardless of the LAI. This also is accompanied by too low cloud 
cover and too large downward solar radiation, and net radiation. As a consequence, gross 
energy fluxes (e.g., latent heat flux, sensible heat flux) and the Bowen ratio have RMSEs 
in CROP comparable to those in STD at ARM and Bo1. At the Ne1 site, when irrigation 
was applied, surface energy flux partitioning was substantially improved. Therefore, we 
suspect that in regions with a dry bias, if the precipitation simulation could be improved, 
surface energy fluxes and flux partitioning will also improve.  
 
While an improvement over previous versions, our evaluations revealed some of the 
improvement could because of incorrect reason. For example, in the previous version 
(WRF3.0-CLM3.5), there is a very large warm bias that up to 10 oC in the Midwest. Such 
warm bias in the Midwest was reduced by 2-3 oC when updating the land surface model 
as well as using MYNN boundary layer in STD and further reduced by 1-2 oC when 
adding dynamic crop growth model and irrigation practice. However, the overestimated 
LAI and longer growing season also contributed to the reduced warm bias in CROP and 
CROPIRR.   
 
Comparing to CLM4CNCrop [Levis et al., 2012], WRF3.3-CLM4crop has similar biases 
in crop growth even with modified carbon allocation parameters. Both models 
overestimated the LAI and growing season length. CLM4CNCrop simulated a higher 
LAI for soybean (C3 crop) than for maize (C4 crop); our model displayed similar results. 
Mean C3 LAI is greater than C4 LAI by 0.19 but with clear spatial variation (higher C3 
LAI in the northern US and higher C4 LAI in the southern US). Excluding the soil carbon 
and nitrogen calculations from WRF3.3-CLM4crop limits its capability for studying 
biogeochemical interactions between cropland and climate. Levis et al. [2012] found 
adding dynamic crop growth resulted in the strongest improvements in simulation of 
biogeochemical variables (such as NEE) relative to biogeophysical variables (such as H 
and LE). Our current model can be only used to study biogeophysical interactions 
between climate and cropland. Furthermore, root distribution parameters [Zeng, 2001] 
were not updated as crops developed through the growing season in both models. Root 
carbon was simulated, but did not update the root distribution parameters. In future 
versions, a root growth submodel is needed to better capture the relationship between 
crop growth and root water uptake.  
 
Irrigation increased latent heat flux (LE) comparably to other modeling studies that 
implemented precision irrigation schemes. Irrigation produced an increase in JJA LE of 
21.4 W.m-2 under prescribed crop and 30.8 W.m-2 with dynamic crops over irrigated land. 
Harding and Snyder [2012] simulated an increase in JJA LE of 21 W.m-2 using standard 
WRF, Sacks et al. [2009] simulated an increase in JJA LE 20-30 W.m-2 using CCSM, and 
Cook et al. [2011] simulated an annual increase in LE by 16-20 W.m-2 using GISS 
ModelE. Previous work using simpler irrigation schemes produced much greater 
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increases in LE. For example, Kueppers et al. [2007b] simulated a 152 W.m-2 (20yr JJA 
average) increase in LE in California, and De Ridder and Gallee [1998] simulated a 75 
W.m-2 (at midday) increase in LE in southern Israel. In observation, LE is 16.5 W.m-2 
higher in JJA average at Mead irrigated than Mead rainfed site. 

The role of dynamic crop growth in climate effects of irrigation 
 
Our results suggest that the dynamic crop growth model is important for evaluation of 
crop management effects on climate. Without dynamic crop growth, models could 
underestimate the irrigation effects on climate in moderately irrigated regions. This is due 
to the amount of irrigation water applied. On average, simulations with dynamic crop 
growth required more irrigation water and therefore resulted in stronger increases in LE 
and decrease in H and T2 in moderately irrigated cropland. In addition, the dynamic crop 
growth simulation had a more reasonable simulation of latent heat flux components, with  
higher latent heat flux resulting from increased leaf evapotranspiration, not increased soil 
evaporation as occurred with prescribed LAI. The large soil evaporation is not reasonable 
because observations have shown that soil evaporation is about 30% of 
evapotranspiration for irrigated cropland [Lascano et al., 1987].  
 
Our simulation used a precision irrigation practice and the amount of annual irrigation 
water over the entire domain was validated with a USGS irrigation survey. However, the 
amount of water added to each state differed substantially from the USGS irrigation 
survey (Figure 18). This is due to model biases in soil moisture. For example, too much 
irrigation water was added to Texas and Nebraska in the model because the dry bias in 
this region resulted in insufficient soil water to support crop growth, while less irrigation 
water was applied in western states, such as California, Idaho, and Colorado due to the 
wet biases in these states. Therefore, ensemble simulations with multiple regional climate 
models and irrigation schemes may be required to accurately quantify effects of irrigation 
on surface climate.  
 

 
Figure 18. State level irrigation percentages for model (CROPIRR) and USGS in 2005. 
The total amount applied is 143 million gallons per day in CROPIRR, and 128 million 

gallons per day according to the USGS survey. 

Conclusions 
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In summary, this work evaluated the performance of a coupled crop-climate model 
(WRF3.3-CLM4crop) in simulation of crop growth and surface climate. We found the 
coupled model overestimated crop leaf area index and growing season length but 
displayed a reasonable interannual variability. Adding both the dynamic crop model and 
the irrigation scheme improved model simulation of temperature and precipitation within 
and beyond agricultural regions. Adding irrigation reduced the dry bias at irrigated 
cropland and great improved the energy fluxes simulation at Mead irrigated site while the 
improvement was limited in other regions by the model’s dry bias. A dynamic crop 
growth model is important for evaluation of crop management effects on climate. 
Excluding dynamic crop growth could under-predict effects in moderately irrigated 
regions, and could underestimated irrigation water demands.  
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CHAPTER 3 

Increased heat waves with loss of irrigation in United States 
 

Introduction 
 
Long-term temperature observations have indicated an increased frequency and intensity 
of heat waves since the 1950s [Gaffen and Ross, 1998; IPCC, 2007], resulting in higher 
heat-related mortality and other public health challenges. For example, there were at least 
700 excess deaths during the 1995 Chicago heat waves [Semenza et al., 1996], and 
15,000 excess deaths during the 2003 heat waves in France [Fouillet et al., 2006]. More 
frequent and hotter heat waves can also increase heat stress in livestock, wildlife, crops, 
and forests [Ciais et al., 2005; Hahn, 1999; van der Velde et al., 2010] and therefore 
affect regional economies and ecosystems [Jolly et al., 2005; Reusch et al., 2005]. 
Projections of future climate using global climate models suggest more heat waves over 
nearly all land areas [IPCC, 2007]. Therefore, understanding factors that contribute to 
heat waves is becoming increasingly important for impact prediction and decision-
making.  
 
Human activities are contributing to the increased frequency and intensity of heat waves. 
Many studies have shown that industrial greenhouse gas emissions increase both global 
mean temperature and heat index of heat waves [Karoly et al., 2003; Stott et al., 2004; 
Tett et al., 1999], yet land use and land use change can also alter heat waves at the 
regional scale. Urban heat islands exacerbated the impact of heat waves in the Midwest in 
1995 [Kunkel et al., 1996] and historical meteorological data indicates that agricultural 
irrigation raised the dew point temperature during heat waves in Chicago [Changnon et 
al., 2003]. With the same air temperature, higher dew point temperature can increase the 
apparent temperature [Steadman, 1984] resulting in greater mortality and severe human 
health effects [Conti et al., 2005; Naughton et al., 2002; Smoyer, 1998].  
 
Irrigation has been found to alter climate at global and regional scales [Adegoke et al., 
2003; Cook et al., 2011; Harding and Snyder, 2012; Jin and Miller, 2011; Ozdogan and 
Salvucci, 2004; Sorooshian et al., 2011]. The extra water applied to the soil enhances 
evapotranspiration, thereby reducing surface temperature through evaporative cooling 
[Kueppers et al., 2007b; Lobell et al., 2009; Sacks et al., 2009]. Condensation of the 
water vapor in the atmosphere releases latent heat that provides energy for cloud 
convection and precipitation [DeAngelis et al., 2010; Saeed et al., 2009], an effect that 
can propagate to neighboring regions [Lo and Famiglietti, 2013]. The surface cooling 
reduces emission of surface long wave radiation, while the water vapor in the upper air 
can absorb and release more long wave radiation to the surface [Boucher et al., 2004; 
Kueppers and Snyder, 2012], thereby increasing the surface net radiation. Irrigation also 
can increase net solar radiation at the surface due to the decreased albedo of wet soil 
[Otterman, 1977]. However, there have been few studies of the effects of irrigation on 
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temperature extremes [Lobell et al., 2008a] and the degree to which irrigation affects heat 
wave frequency, duration, and intensity is not well studied. 
 
In this paper, we analyze the effects of irrigation on heat waves in the contiguous United 
States using a newly coupled regional climate-land surface model (WRF3.3-CLM4crop), 
which includes a weather-sensitive irrigation scheme and dynamic crop growth. A key 
issue is that the simulation models used to explore the irrigation effects typically have 
prescribed crop leaf area values that do not respond to environmental change or inter-
annual variation in weather and climate. This prescribed approach could overestimate and 
underestimate evapotranspiration from croplands, depending on time of year and 
environmental conditions, because crop leaf area and physiological activity are known to 
dynamically respond to climate variation [Fang et al., 2001; Porter and Semenov, 2005]. 
In our simulations, crop growth in the model depends on growing season temperatures 
and soil moisture, and better captured interannual variability in crop growth. We also 
adopted a diversity of heat wave indices because variation in definition resulted in 
different geographic distributions. As pointed out by Smith et al. (2013), climate 
researchers use a statistical quartile from a period of climate data as a threshold to detect 
heat waves, while health researchers use absolute critical temperature values that could 
result in human death to determine heat waves. Therefore, we adopted the same fifteen 
heat wave definitions to quantify responses important both for climate and human health.   

Methods 
 
We performed two 10-year (2002-2011) simulations using WRF3.3-CLM4crop to 
evaluate irrigation effects on heat waves. One is a control simulation without irrigation 
(hereafter referred to as CROP), and the other includes irrigation (hereafter referred to as 
CROPIRR). The physical modules used in all simulations include the MYNN boundary 
layer scheme [Nakanishi and Niino, 2006], the CAM longwave/shortwave radiation 
scheme [Collins et al., 2004], the new Grell cumulus scheme [Grell and Devenyi, 2002], 
and the Thompson microphysics scheme [Thompson et al., 2004].  The simulations 
focused on the continental United States (U.S.) with 25 vertical layers and 50 km 
horizontal resolution. We interpolated (using the inverse distance weighting method) 0.5 
deg CLM surface input data (including plant functional types, plant function type percent, 
leaf area index, and stem area index) into the model domain. We used NCEP/DOE 
Reanalysis II data as lateral boundary conditions [Kanamitsu et al., 2002]. For analysis, 
we removed 8 grid cells from the full perimeter of the domain as a buffer, which 
diminished the original domain from 109 ×129 to 93×113 grid cells. The first two years 
of the simulations were discarded as spin-up and the analysis focused on the final 8 years 
(2004-2011).  
 
We adopted a precision agriculture-type irrigation scheme, where the amount and timing 
of irrigation simulates efficient irrigation practices. Irrigation water is applied as a 
function of root water stress (βt), leaf temperature (Tveg) and LAI. The root water stress is 
monitored by βt, which varies from near zero (dry soil) to one (wet soil). Leaf 
temperature also is used, not only to more realistically simulate irrigation systems 
[Howell et al., 1984; Wanjura et al., 1992], but also to maintain optimum plant growth 
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because high leaf temperature can inhibit plant photosynthesis [Wise et al., 2004]. 
Irrigation starts after leaf emergence (LAI>0.1 m2 m-2), and occurs when either plant 
water is low (βt <0.99) or leaf temperature is too high (Tveg >35°C). Irrigation water is 
applied in the form of rain at a constant rate of 0.0002 mm s-1, selected to match the range 
of current irrigation systems (4-20 gallons per minute per acre). Cropland equipped for 
irrigation was derived from the 0.05 deg global irrigation map [Siebert et al., 2005], as 
updated in 2006 (http://www.geo.uni-
frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html). The simulated 
annual irrigation water use (Figure 9b) is within 14% of U.S. water usage estimated by 
USGS for 2005 [Kenny et al., 2005]. The range in annual simulated irrigation water use 
from 2004-2006 was 113-149 billion gallons per day (143 for 2005); the USGS survey 
estimates 128 billion gallons per day in 2005 (http://ga.water.usgs.gov/edu/wuir.html).  
 
We analyzed irrigation effects on fifteen heat wave indices (HINs) summarized in Smith 
et al. (2013) Table 1 (Table S1 in Appendix B). We also used the daily mean heat index 
[Schoen, 2005] during a heat wave to represent the intensity of the heat wave because it 
shows both temperature and humidity effects. The heat index is defined as:    
   
where T is temperature and D is dew point temperature at the lowest atmosphere layer. 
We compared 8-year (2004-2011) differences (CROPIRR-CROP) in heat wave 
frequency (number of heat waves per year), duration (number of consecutive days 
comprising each heat wave), and intensity to quantify irrigation effects on heat waves. 
We discuss statistically significant results based on a student t test (n=24, which includes 
JJA in the 8 years, p<0.05).   

Results 
 
Most HINs showed significant irrigation effects on heat waves in the California’s Central 
Valley and the Southern High Plains (Figure 19). Heat wave frequency and duration was 
significantly decreased with irrigation in the California’s Central Valley and the Southern 
High Plains for up to 8 out of 15 HINs (Figure S1 in Appendix B). The highest reduction 
of frequency was found in the Southern High Plain by 2 events/year. Conversely, heat 
wave intensity was significantly increased in California’s Central Valley and the 
Southern High Plains for 7 out of 15 HINs by 0.2-1.0 oC. Irrigation reduced heat wave 
frequency and duration because its cooling effects made fewer days exceed the threshold. 
Increased heat wave intensity with irrigation is because the dew point temperature 
increased further than the air temperature was reduced. Although irrigation significantly 
increased heat wave frequency and duration in some grid cells, the spatial distribution is 
scattered and not consistent for the 15 HINs, perhaps due to the remote impact of the 
atmospheric circulation.  
 
 

HI = T !1.0799e0.03755T [1! e0.0801(D!14) ]
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Figure 19. The 8-year (2004-2011) averaged significant difference (CROPIRR-CROP) of 
heat wave frequency, duration, and intensity. We showed all significant difference (t-test, 
n=24, p<0.05) for the fifteen indices on a same map. For a grid cell that have significant 

different for more than one index, we averaged the difference across the indices. The 
stippled area indicated the significant difference in more than five heat wave indices. The 
significant differences for each heat wave index were showed in supplement figures S1-3.  
 
The fifteen HINs resulted in divergent irrigation effects on heat waves as irrigated 
percent increased (Figure 20). Most HINs were more strongly affected as irrigated 
percent increased and effects were strongest with irrigated percentage >50%. Across all 
of the HINs, irrigation consistently decreased heat wave durations, while effects on 
frequency and intensity were inconsistent across HINs. In intensively irrigated cropland 
(irrigated percent >50%), irrigation reduced duration by 0.1-2.6 days/event across all 
HINs. While irrigation increased heat wave frequency by 0.1-1.0 events/year for 3 HINs, 
it decreased frequency by 0.1-4.2 events/year for the other 12 HINs. Heat wave intensity 
increased by 0.05-1.8 oC for 7 HINs but decreased by 0.05-0.8 oC for the other 8 HINs. 
Averaged over all HINs, irrigation reduced heat wave frequency and duration, but 
increased intensity.  
 
 

 
Figure 20. The 8-year (2004-2011) averaged difference (CROPIRR-CROP) of heat wave 

frequency, duration, and intensity for fifteen heat wave indices as grid cell irrigated 
cropland percentage increasing. We colored the indices use relative and absolute 
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threshold as orange and green respectively. The black line indicates the average over the 
15 indices. 

 

Discussion and conclusions 
 
Our primary goal was to evaluate irrigation effects on heat wave frequency, duration, and 
intensity across a diversity of climatological and health-related heat wave definitions. 
Irrigation effects on heat waves were statistically significant over irrigated cropland, but 
the effects were not significant in non-irrigated regions. Effect size, and in some cases 
sign, varied across the fifteen HINs evaluated. However, on average across all HINs, 
irrigation reduced heat wave frequency and duration, but increased intensity in our 
model. These effects were greater as the percent of land area that was irrigated in a model 
grid cell increased.   
 
The model produced too many heat wave days for all fifteen heat wave indices due to a 
persistent warm bias (Lu et al. in prep). The number of heat wave days derived from 
CROPIRR was higher than that found by Smith et al. (2013) using the North American 
Land Data Assimilation System (NLDAS-2) dataset. Whether the overestimated heat 
wave baseline affects our estimate of irrigation effects on heat waves (difference between 
CROPIRR and CROP) is unknown. However, evaluation of the coupled model (Lu et al., 
manuscript) indicated that by implementing dynamic crop growth, model performance is 
improved over prior versions. Further, the increase in latent heat flux due to irrigation is 
comparable to other models results and observations. Therefore, although the actual 
magnitude may differ from what is represented in the model, the pattern should be 
qualitatively correct.  
 
Using fifteen different heat wave indices extended our understanding of how irrigation 
affects heat waves. In particular, the heat index temperature metric has a larger impact on 
the index’s sensitivity to irrigation than does the threshold percentile. For example, 
irrigation increased heat wave intensity for HI01-HI04 (mean daily temperature metric) 
but decreased heat wave intensity for HI08-10 (maximum daily apparent temperature 
metric). Using the same temperature matric but different threshold percentiles resulted in 
qualitatively similar irrigation effects on heat waves. For example, irrigation reduced heat 
wave frequency for HI01-HI04 significantly in California central valley and south high 
plain, although the magnitude decreasing as the percentile increasing. Furthermore, we 
found the climatological heat wave indices (i.e. the relative indices) are more sensitive to 
irrigation than the health related indices (i.e. the absolute indices). More area showed 
significant difference for HI01-10 than HI11-15, and the magnitude of the differences are 
higher as well.   
 
The southern high plains are most likely to suffer more and longer heat waves if there is a 
reduction in irrigation due to groundwater depletion. Although both California’s Central 
Valley and Southern High Plains are experiencing groundwater deficits (Famiglietti and 
Rodell 2013) and they both displayed significant changes in heat waves with irrigation, 
Scanlon et al. [2012] suggest that the groundwater in the Central Valley is renewable 
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through artificial recharge with excess surface water. However, in the Southern High 
Plains, 35% of the area will be unable to support irrigation within the next 30 years under 
current depletion rates [Scanlon et al., 2012]. Our results indicate that such declines in 
irrigation will lead to an increase of heat wave frequency and duration, exacerbating 
anticipated increases in temperature due to global climate change. Therefore, sustainable 
irrigation and adaptation are required in the regions not only to overcome direct drought 
damages, but also to diminish the potential climate consequences of less irrigation.  
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Conclusion 
 
My work demonstrated the comprehensive land surface model that incorporated the 
dynamic crop model and irrigation could improve the surface energy fluxes simulation. 
In the first chapter, the analyses show that WRF3-CLM3.5 output is in good agreement 
with observed energy partitioning over needleleaf evergreen forests, but has errors in 
cropland, grassland and broadleaf deciduous forest. The poor energy flux simulations in 
cropland worsen the warm bias in the Midwest. So in the second chapter, I updated the 
coupled model to WRF3.3-CLM4crop that incorporated the dynamic crop model and 
irrigation. Comparison to one AmeriFlux site confirmed that when irrigation and dynamic 
crop growth were both applied, surface energy flux partitioning was substantially 
improved. However, the improvement over non-irrigated cropland was limited by the dry 
bias. Although the LAI is larger, the low precipitation bias persists, resulting in low soil 
moisture, limiting evapotranspiration regardless of the LAI, and hence still overestimated 
sensible heat flux and underestimated latent heat flux. Efforts to improve crop surface 
energy flux simulations also apply to other vegetation types. Solving the model dry bias 
before adding a dynamic vegetation model is likely to be more fruitful. Unlike crops that 
may be irrigated, natural grass land and forest depend on precipitation. Although a 
dynamic vegetation model may improve the leaf area index simulation, improvement of 
the surface energy fluxes could be limited by the dry bias.  
 
The improved surface energy fluxes, particularly the higher latent heat flux, reduced the 
warm bias in the Midwest. In the previous version (WRF3.0-CLM3.5), there is a very 
large warm bias of up to 10 oC in the Midwest due to the deficiencies in both WRF and 
CLM. Such a warm bias in the Midwest was reduced by 2-3 oC when updating the land 
surface model as well as using MYNN boundary layer in WRF3.3 and further reduced by 
1-2 oC when adding dynamic crop growth model and irrigation. However, some of the 
improvement may also be due to new errors introduced by the dynamic crop model. For 
example, the overestimated LAI and longer growing season also contributed to the 
reduced warm bias. Even with these changes, the warm bias in the Midwest still exists. 
The downward solar radiation bias contributes substantially to the warm bias. Reducing 
downward solar radiation is not simple because it is associated with many factors. 
Previous work [Markovic et al., 2008; Wild et al., 2001] suggests the overestimate of 
downward solar radiation at the surface could be either due to less cloud cover for cloudy 
days or less sky absorption of downward solar radiation for clear days. Ignoring aerosols 
in the model may also contribute to excess downward solar radiation [Wild, 2008]. And 
there could be other reasons not yet detected also contributing to the warm bias.  
 
The bias in temperature and soil moisture produced errors in the dynamic crop growth 
and irrigation schemes. Crop growth depends on growing degree days. The warm bias 
accelerated accumulation of growing degree days. The differences in the crop phenology 
need to be quantified in a future version when crop phenology survey data are available. 
Accurately simulating irrigation amount is also limited by the warm bias. Our simulation 
used a precision irrigation practice and the amount of annual irrigation water over the 
entire domain was validated with a USGS irrigation survey. However, the amount of 
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water added to each state differed substantially from the USGS irrigation survey. This is 
due to model biases in soil moisture. For example, too much irrigation water was added 
to Texas and Nebraska in the model because the dry bias in this region resulted in 
insufficient soil water to support crop growth, while less irrigation water was applied in 
western states, such as California, Idaho, and Colorado due to the wet biases in these 
states.  
 
There are several limitations of the coupled model that need to be resolved in the future 
version. Excluding the soil carbon and nitrogen calculations from WRF3.3-CLM4crop 
limits its capability for studying biogeochemical interactions between cropland and 
climate. Levis et al. [2012] found adding dynamic crop growth resulted in stronger 
improvements in simulation of biogeochemical variables (such as NEE) relative to 
biogeophysical variables (such as H and LE). Our current model only can be used to 
study biogeophysical interactions between climate and cropland. Furthermore, root 
distribution parameters [Zeng, 2001] were not updated as crops developed through the 
growing season in both models. Root carbon was simulated, but did not update the root 
distribution parameters. In future versions, a root growth submodel is needed to better 
capture the relationship between crop growth and root water uptake. 
 
My work suggests that the dynamic crop growth model is important for evaluation of 
crop management effects on climate. Without a dynamic crop growth, climate models 
could underestimate the irrigation effects on temperature in moderately irrigated regions, 
which is due to the amount of irrigation water applied. On average, simulations with 
dynamic crop growth required more irrigation water and therefore resulted in stronger 
increases in LE and decrease in H and T2 in moderately irrigated cropland. In addition, 
dynamic crop growth showed a more reasonable simulation of latent heat flux 
components, with higher latent heat flux resulting from increased leaf evapotranspiration, 
not increased soil evaporation as occurred with prescribed LAI. Beside irrigation, the 
study of other crop management practices may also need dynamic crop growth. For 
example, the time to apply cover crop or conservation tillage is related to crop planting 
and harvest date that varies each year.  
 
The coupled model has many potential applications in studying the interaction between 
climate and agriculture. The third chapter showed one application of WRF3.3-CLM4crop 
in studying the irrigation effects on heat waves. The results showed irrigation effects on 
heat waves were statistically significant over irrigated cropland, but the effects were not 
significant in non-irrigated regions. On average across all fifteen heat wave definitions, 
irrigation reduced heat wave frequency and duration, but increased intensity in our 
model. These effects were greater as the percent of land area that was irrigated in a model 
grid cell increased. Beside this application, the coupled model has other potential 
applications, such as how climate variability changes the crop growth, how the expansion 
of cropland affects climate, and the irrigation requirement in future climate scenarios. 
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APPENDIX A  

Dynamic crop module in WRF3.3-CLM4crop 
 
We incorporated the dynamic crop growth module from CLM4CNCrop into the coupled 
regional model WRF3.3-CLM4. The dynamic crop growth module is based on AgroIBIS 
[Kucharik, 2003], is described in detail in Levis et al. (2012) and is summarized in this 
appendix.  
 
A1. Modifications 
 
We made several modifications to the dynamic crop module to better fit the coupled 
regional model framework. First, we fixed the soil carbon and nitrogen state variables. In 
the original CLM4CNCrop model, crop growth is linked to the carbon and nitrogen 
model, which updates multiple soil and plant carbon and nitrogen variables at each time 
step based on crop phenology and environmental changes. It requires a long spin-up time 
(over thousands of years) to enable the soil carbon and nitrogen to reach current steady 
states. For a high-resolution regional climate model, such long spin-up simulations are 
difficult with current computing resources. Further, even though soil carbon and nitrogen 
are simulated in CLM4CNCrop, these values would not be routinely coupled to 
atmospheric carbon and nitrogen in a regional model. Since our regional scale focus is on 
biogeophysical, not biogeochemical feedbacks, between land and atmosphere, we 
assumed that for crops, the soil carbon and nitrogen could be maintained at optimum 
levels year to year.  
 
Second, at this stage, we consider WRF3.3-CLM4crop able to simulate C3 and C4 crops, 
not more specific crop types. The current version of CLM4CNCrop simulates three crops 
(summer cereal, soybean, corn). The growth of these crops is strongly dependent on 
photosynthetic pathway. We assume that at a regional scale, it’s inappropriate to expect 
the model to simulate specific crops across the domain with validation only at one or 
several grid cells where observations are available. Therefore, we used C3 and C4 crop 
types to represent the potential growth of major crops (e.g., C3 crops: wheat, soybean, 
and C4 crops: corn, sorghum). The next phase of our work will aim to gather more 
observations and validate growth parameters for more specific crop types. 
 
Third, we made changes to crop phenology and carbon allocation to better suit the 
regional coupled model framework and applications. In the planting phase, we changed 
the 20-year running mean growing degree days into 5-year running mean growing degree 
days to better match our simulation period. In the harvest phase, we assumed harvest 
occurs when the crop reaches 1.5 times the GDD required for maturity rather than 
occurring as soon as the crop reaches maturity as in CLM4CNCrop, since some crops 
such as corn [Nielsen, 2011] are left in the field after maturity to dry. We also modified 
the carbon allocation to better reflect environmental stress on crop growth as described in 
section A3 of the appendix.  
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A2. Phenology 
 
Planting 
 
The thresholds for planting, and thus initiation of the crop development cycle, are defined 
as: 
 

   (1) 

 
Where is the instantaneous 2-meter air temperature (°C),  is a crop-specific 
planting temperature (7°C for C3 crop and 10°C for C4 crop), is the 5-year 
running averaged growing degree days (base 8 °C) from March to September, and

is the minimum growing degree day requirement (50 degree days for both C3 
and C4 crops). C3 crop must meet the planting temperature requirement between March 
1st and May 14th , and C4 crop between May 1st and June 14th . 
 
At planting, some initial values are assigned, including leaf area index (0.1 m2/m2), stem 
area index (0.01 m2/m2), leaf carbon (3 gC/m2), stem carbon (3 gC/m2), and fine root 
carbon (4.5 gC/m2). The growing degree day value necessary for the crop to reach 
vegetative and physiological maturity, , is updated:  

  (2) 

where is the 5-year running averaged growing degree days from March to 
September. 
 
Leaf emergence 
 
Leaves emerge when the growing degree days for soil temperature (0.05m depth soil, 
third layer of CLM) since planting ( , base 0°C and 8°C for C3 and C4 crop) 
reaches 3% of . At this phase, available carbon is allocated to leaf, live stem, and 
fine root according to constant allocation coefficients. Leaf area index generally increase 
and reach a maximum value, which is prescribed as 6 m2.m-2 for C3 and 5 m2.m-2 for C4 
crop. And the stem area index is updated as stem carbon gain or loss. 
 
Grain fill 
 

T2m > Tp
GDD8 >GDDmin

T2m Tp
GDD8

GDDmin

GDDmat

GDDmat
c3crop = 0.85GDD8

GDDmat
c4crop = 0.85GDD10

GDD8 = GDD8 +T2m ! 8 , 0 " T2m ! 8 " 30
odays

GDD10 = GDD10 +T2m !10 , 0 " T2m !10 " 30
odays

GDD10

GDDTsoi

GDDmat
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Grain begins to fill when the growing degree days since planting ( ) reaches 70% 
for C3 and 65% for C4 crop of . The leaf area index and stem area index decline 
and transfer some amount (defined in A3) of leaf and live stem carbon to grain. 
 
Harvest 
 
We assumed harvest occurs when the crop reaches 1.5 times the GDD required for 
maturity ( ) rather than as soon as the crop reaches maturity as 
defined in CLM4CNCrop, since crops, such as corn were left in the field after maturity to 
dry [Nielsen, 2011] 
 

A3. CN Allocation 
 
Initial leaf carbon and nitrogen is assigned at planting. We adjusted the value from 
1gC/m2 in CLM4CNCrop to 3 gC/m2 because the small initial leaf carbon generated a too 
small leaf carbon, resulting in low LAI compared to observations and too little Gross 
Primary Production (GPP) for carbon allocation. The initial leaf nitrogen was calculated 
using leaf C:N ratio from Levis et al. (2012). C and N allocation starts with leaf 
emergence and ends with harvest. Carbon allocation is based on allocation coefficients 
and the nitrogen is assigned based on the tissue (leaf, stem, root, and grain) C:N ratio. 
 
Leaf emergence to grain fill 
 
The allocation coefficients to each C pool are defined as: 
 

  (3) 

 
 is a plant functional type dependent variable that indicates the root water stress and 

varies from near zero (dry soil) to one (wet soil). We used  to better inform carbon 
allocation between root and shoot. When the soil is dry (small ), more carbon is 
allocated to the root [Ericsson et al., 1996] to a maximum of 0.7. The rest of the available 
carbon is allocated to leaf and live stem in equal amounts.  
 
Grain fill to harvest 
 
During the grain filling period, fine root carbon allocation is still controlled by , while 
the maximum C allocation to fine root is changed to 0.2. 80% of the remaining carbon is 
allocated to grain and the other 20% to tissues that are not explicitly simulated in the 
model, such as corn silk, flowers, etc. We assume the leaf and live stem carbon decline in 
this stage, and some portion of the carbon is transferred to grain.  

GDDplant

GDDmat

GDDplant >1.5GDDmat

agr ain = 0

a froot = 0.7(1! " p )

aleaf = 0.5(1! a froot )

alivestem = 0.5 (1! a froot )

! p

! p

! p

! p
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  (4) 

	
   	
  
  
where tran is the transfer coefficient of leaf and live stem carbon to grain carbon,  
is an adjusted coefficient for each timestep,  is the soil growing degree days 
since planting (base 8 °C for C3 crop and 10 °C for C4 crop), and  is the 5-year 
running averaged soil growing degree days from April to September (base 8 °C for C3 
crop and 10 °C for C4 crop).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a froot = 0.2(1! " p )

agr ain = 0.8 (1! a froot )

aleaf = 0

alivestem = 0

tran = ctimestep(tan
GDDplant

GDDp

)

ctimestep
GDDplant

GDDp
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APPENDIX B 
 

 
Figure S1. The 8-year (2004-2011) averaged significant difference (CROPIRR-CROP) of 

heat wave frequency for fifteen heat wave indices. 
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Figure S2. The 8-year (2004-2011) averaged significant difference (CROPIRR-CROP) of 

heat wave duration for fifteen heat wave indices. 
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Figure S3. The 8-year (2004-2011) averaged significant difference (CROPIRR-CROP) of 

heat wave intensity for fifteen heat wave indices. 
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Heat Wave 

Indices  
Temperature 

Metric 
Threshold Duration HI Type 

HI01 Mean daily 
temperature 

>95th percentile 2+ consecutive 
days 

Relative 

HI02 Mean daily 
temperature 

>90th percentile 2+ consecutive 
days 

Relative 

HI03 Mean daily 
temperature 

>98th percentile 2+ consecutive 
days 

Relative 

HI04 Mean daily 
temperature 

>99th percentile 2+ consecutive 
days 

Relative 

HI05 Minimum daily 
temperature 

>95th percentile 2+ consecutive 
days 

Relative 

HI06 Maximum daily 
temperature 

>95th percentile 2+ consecutive 
days 

Relative 

HI07 Maximum daily 
temperature 

T1: >81st 
percentile T2: 

>97.5th 
percentile 

Everyday, >T1; 
3+ consecutive 
days, >T2; Avg 
Tmax> T1 for 

whole time 
period 

Relative 

HI08 Maximum daily 
apparent 

temperature 

>85th percentile 1 day Relative 

HI09 Maximum daily 
apparent 

temperature 

>90th percentile 1 day Relative 

HI10 Maximum daily 
apparent 

temperature 

>95th percentile 1 day Relative 

HI11 Maximum daily 
temperature 

>35oC 1 day Absolute 

HI12 Minimum & 
maximum daily 

temperature 

Tmin>26.7 oC 
Tmax>40.6  oC 

≥1 threshold for 
2+ consecutive 

days 

Absolute 

HI13 Maximum daily 
heat index 

>80 oF 1 day Absolute 

HI14 Maximum daily 
heat index 

>90 oF 1 day Absolute 

HI15 Maximum daily 
heat index 

> 105 oF 1 day Absolute 

Table S1. The fifteen heat wave indices definition adopted from Smith et al., (2013), 
table 1.  

 




