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Decades of successful active fire mapping from space, have led to global informational products of growing im-
portance to scientific community and operational agencies. In contrast, detecting fires from space faster than cur-
rent conventional capabilities in the continental U.S. has not been considered attainable, except in remote,
sparsely populated areas. We present a research prototype version of the GOES Early Fire Detection (GOES-
EFD) algorithm focused on minimizing the time to first detection of a wildfire incident. The algorithm is designed
for regional-scale surveillance and combines multitemporal anomaly tests developed in our previous work, con-

Keywords:
Ge)(;‘:,tationary textual hot-spot tests, and dynamic event classification and tracking. The GOES-EFD version 0.4 was initially test-
Satellite ed with 40-day summer 2006 data over central California. The algorithm identified most of large (final

size > 2 ha) wildfires within 30 min and 31% of the wildfires were detected before they were reported by the pub-
lic. Under identical operation conditions, GOES-EFD 0.4 provided quicker initial detection than the temporally fil-
tered operational WF-ABBA algorithm (version 6.1) and committed fewer false alarms. There is a substantial
potential for further reducing detection latency and increasing reliability. Following the ongoing optimizations,
tests, and integration in collaboration with the fire management agencies and first responders, GOES-EFD
could be deployed for regional scale real-time surveillance to complement existing fire identification methods.
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1. Introduction and background

Wildland fire response and management represent issues of grow-
ing global importance. In the last 15 years, the number of large wildfires
(or simply fires, hereafter) and annual area burned, particularly in the
western U.S., has increased markedly, resulting in significant threat to
public safety and the environment. Incident response and management
have caused critical budget impacts due to overwhelming costs of sup-
pression. For example, in an average year during 2005-2014, wildfires
consumed 2.7M hectares at a cost of $1.6B (suppression only) to federal
agencies (NIFC, 2014). Only ~1% of ignitions in the U.S. become large

Abbreviations: ABI, [GOES-R] Advanced Baseline Imager; BT, brightness temperature;
BT,, brightness temperature in GOES band 2 (~4 pm); BTy, brightness temperature in
GOES band 4 (~11 um); c.c., connected component; DDM, Dynamic Detection Model;
EFD, early fire detection; GOES, Geostationary Operational Environmental Satellites;
GOES-EFD, GOES Early Fire Detection; GVAR, GOES VARiable [format]; IADC, Iterative
Anomaly Detection and Classification; INR, [GOES] Image Navigation and Registration;
MODIS, Moderate Resolution Imaging Spectroradiometer; OCM, Operational Cloud
Masking; RCD, Retrospective Cloud Detection; SCD, Single-Frame Cloud Detection; TIR,
thermal infrared; WF-ABBA, Wildfire Automated Biomass Burning Algorithm; VIIRS,
Visible Infrared Imager and Radiometer Suite.

* Corresponding author.
E-mail address: akoltunov@ucdavis.edu (A. Koltunov).

http://dx.doi.org/10.1016/j.rse.2016.07.021
0034-4257/© 2016 Elsevier Inc. All rights reserved.

escaped fires, i.e. fires that have exceeded initial attack capabilities
and expanded beyond 40 ha of forest or 120 ha of shrub/grass (QFR,
2014). However, these fires have highest risk potential to firefighter
safety and are responsible for most of the total burned area and suppres-
sion costs (e.g. NICC, 2013). The suppression costs form only a small
fraction of the total societal losses from large wildfires that include
loss of life and property and impacts on public health, economic activity,
and environment (QFR, 2014). Consequently, rapid and prioritized re-
sponse to fire ignitions that have a great risk to become large incidents
could lead to high benefits to society.

Timely and informed management decision making critically de-
pends on how quickly ignitions are identified and confirmed. Earlier de-
tection often leads to a smaller fire size at initial attack, thus increasing
the probability of containment (Hirsch et al., 1998). How rapidly the
value of wildfire detection information decreases with time depends
on various factors, including a human component. The authors are not
aware of studies providing a quantitative account of this issue. Fire man-
agers and first responders are convinced that to contain potentially
damaging wildfires, ignitions should be identified within the first
hour, but preferably within minutes.

New ignitions over the continental U.S. are identified primarily by
human observations, i.e. the general public, commercial airline flights,
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fire lookout stations, aerial reconnaissance during periods of high fire
danger or ignition potential. Most of the ignitions are rapidly seen
and reported. However, as the conventional discovery methods are
non-systematic, infrequent, and/or geographically localized, there are
routinely situations where a fire went undetected for hours or days,
both in remote and populated areas (e.g. downed power lines in the
overnight hours, smoldering ignitions after lightning events, and in-
completely extinguished or illegal campfires). Furthermore, after an ini-
tial report, significant confusion and uncertainty often remain about the
incident location, magnitude, or its very existence, making it more diffi-
cult for first responders and managers to develop and execute an appro-
priate response strategy.

Under these circumstances, the thermal infrared (TIR) observa-
tions from currently operational environmental and weather satel-
lite programs, such as NASA's Earth Observing System, NOAA's
Polar-orbiting Operational Environmental Satellites (POES), its suc-
cessor JPSS (Joint Polar Satellite System), and Geostationary Opera-
tional Environmental Satellites (GOES), have been considered as
potential means to rapidly detect wildfire starts over large areas
and be used for initially alarming or as a necessary confirmation of
recent alarms received from conventional sources. Indeed, as these
programs were launched to support a broad range of civilian applica-
tions, they offer a range of valuable practical advantages, including
low per-application cost, global systematic coverage, operational
stability, and long-term continuity.

Nevertheless, while active fires have been successfully mapped by
these programs for decades (Justice et al., 2011; Csiszar et al., 2014;
Prins et al., 2001; Schmidt and Prins, 2003; Prins et al., 2010), the corre-
sponding fire detection products have not significantly reduced the
time to first detection of new ignitions (Martell, 2015). Measurements
by polar-orbiting sensors are a few hours apart, often have significant
data dissemination lags, and therefore they currently have a marginal
value as early warning tools. Images from GOES do have sufficiently fre-
quent temporal coverage of the Western hemisphere: normally, at 15-
min time steps, and every 5-7 min under GOES Rapid Scan operations.
However, they also have a coarse spatial resolution (e.g. ~25 km? over
California). Consequently, small-magnitude thermal anomalies at the
pixel level during early phases of burning can be difficult to automatical-
ly discern from naturally dynamic background. Despite this and other
factors complicating geostationary detection (Schmidt et al., 2012), pre-
vious individual case studies (e.g. Feltz et al., 2003; Weaver et al., 2004;
Koltunov et al., 2012a) indicated that the high temporal coverage of
GOES imagery could often be sufficient to provide early alarms about
new ignitions. Thus, it is natural to ask a question: is the early warning
potential of the GOES satellites already fully utilized by the current op-
erational wildfire algorithm?

1.1. Early detection of new ignitions is a new type of satellite wildfire remote
sensing

Wildfire remote sensing from GOES is operationally realized by
the Wildfire Automated Biomass Burning Algorithm (WF-ABBA,
Prins and Menzel, 1992, 1994; Prins et al., 1998, 2001, 2003) that in
the early 1990s pioneered geostationary wildfire remote sensing
and recently expanded to other geostationary satellites across the
globe (Prins etal., 2010). The WF-ABBA algorithm was not specifical-
ly designed as an early warning tool; and its primary applications in-
clude fire weather analysis and forecasting; climate, land-use, and
land-cover change research; emissions, aerosol, and trace gas model-
ing, and other environmental applications. Consistently with these
applications, WF-ABBA was developed and optimized for the perfor-
mance measures based on counting correctly classified pixels (i.e.
pixelwise false positive and false negative rates) and maximizing
the number of eventually detected incidents (Koltunov et al.,
2012a). In contrast, early fire detection (EFD) systems need to in-
spect images for a very different type of targets: previously

Table 1
Primary objectives and features for two distinct types of geostationary wildfire remote
sensing: Active Fire Monitoring and Early Fire Detection.

Active fire monitoring
e.g. WF-ABBA

Early fire detection
e.g. GOES-EFD

Maximize detected fire pixels Maximize detected fire ignitions
(incidents)
Minimize false alarms

Minimize time to initial

Minimize false detection fire pixels
Estimate fire characteristics (radiative power,

area, temperature) detection
Globally, not regionally calibrated Regionally and seasonally
calibrated
Global coverage is essential Deployment in selected regions,
as needed

Operational system available In research and development

undetected ignition events that may span multiple pixels in GOES
images (see Table 1). Furthermore, the primary objective of an EFD
system is to detect new events as rapidly as possible, which is a
low priority for most WF-ABBA users. Indeed, for a typical seven-
day wildfire incident, a two-hour delay in initial detection in GOES
data increases the pixelwise false-negative rate by about 1% (rough-
ly, the ratio of delay time to burning time), with a similar expected
effect on products like estimates of total gas emissions from this in-
cident. However, such a delay is likely to greatly reduce the value
of the detection information for initiating a timely tactical response.

Target objects of an EFD algorithm are by orders of magnitude more
rare than fire pixels. Although the incident in our example is present in
as many as 672 GOES images (95 images per day, with routine scan-
ning), there is only one true target object for an EFD system for this inci-
dent, whereas there can be nearly 2000 true wildfire pixels to detect
(assuming without loss of generality 3 fire pixels per image on average).
Thus development and real-data validation experiments may not have
many true-positive examples to work with, unless the image sequence
is very large. This situation is further complicated, as higher-resolution
imagery that is effective at validating expected pixelwise performance
(Schroeder et al., 2008a, 2008b) is too infrequent to resolve ignition
times, making the EFD developer rely on an often incomplete and occa-
sionally inaccurate wildfire report data to evaluate detection timeliness
for incidents (Koltunov et al,, 2012a).

Furthermore, hot spot pixels from the same wildfire incidents do not
occur at random locations or random times: they have very strong tem-
poral and spatial autocorrelations. Hence, to achieve the same relative
detection accuracy (i.e. # true positives/# positives) for incidents as
for pixels the false positive pixels would have to show a similar strength
of spatio-temporal autocorrelation as true wildfires, which would make
it possible to report one false incident per hundreds or thousands of
these pixels. Unfortunately, spatio-temporal autocorrelation between
non-fire hot spot pixels is not strong, i.e. they appear more randomly
in the image sequence. As a result, an algorithm that is reliable when
target objects are pixels inevitably becomes far less reliable when the
target objects are wildfire incidents. A practical illustration of this phe-
nomenon was provided by Koltunov et al. (2012a), who evaluated
WEF-ABBA over California fire season 2006 and found that >75% of de-
tected fire pixels were true wildfire pixels, but only between 17 and
40% of apparent new fire starts were true wildfire incidents. The chal-
lenge in keeping false positives under control is magnified, as the EFD
goals discussed above necessitate detection of significantly subtler
anomalies to prevent delays. Indeed, under Gaussian noise assumption
the false positive probability grows exponentially with detection sensi-
tivity; so, for example, detection with a Z-score (standardized residual)
threshold of 1.75 instead of 3.5 entails a nearly 170-fold increase in the
number of potential false positives.

Thus, monitoring/characterization of active fires and early detection
of fire starts represent two clearly distinct types of wildfire remote sens-
ing, although the same general term “fire detection” has been
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commonly applied to both. Table 1 briefly summarizes the differences
between these two problems.

1.2. Toward GOES early wildfire detection capabilities

As of today, there is no GOES image processing system with a dedi-
cated focus on maximizing detection timeliness while minimizing
false initial alarms. What aspects of the GOES image analysis need to
be improved to advance toward these goals?

The physical basis for TIR fire detection at subpixel scale (Matson
and Dozier, 1981) stems from Planck's law and underpins most of
today's operational wildfire monitoring algorithms, including WF-
ABBA, the MODIS Fire and Thermal Anomalies algorithm (Giglio et al.,
2003; Giglio, 2010), and their successors (Schmidt et al., 2012;
Schroeder et al., 2014) adapted for the GOES-R Advanced Baseline Imag-
er (ABI) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors,
respectively. Conceptually, subpixel fire-candidates are found by detect-
ing anomalously large brightness temperatures (BT) in a shortwave TIR
(often called middle infrared) band centered near 4 um that co-occur
with large differences between the BT in the shortwave and a longwave
TIR (e.g. ~11-um) band.

While improvement in this physical principle is strictly constrained
by the available satellite bands, the way the available bands are ana-
lyzed leaves much greater room for detection timeliness optimizations.
All operational fire monitoring algorithms are implemented as several
contextual and fixed-threshold TIR tests that are logically merged and
coupled with auxiliary techniques and data along with the visible chan-
nel to filter out false positives. Thus, to detect anomalies these algo-
rithms utilize multispectral information from only the inspection frame
(in this paper, the term frame stands for one of the many multispectral
images composing a satellite image sequence; and inspection refers to
automatic analysis to detect and categorize anomalies in the image).
The temporal dimension is only used (e.g. by WF-ABBA) as an optional
post-processing step to verify consistency of single-frame detections,
not for seeking fire-candidates as a class of temporal changes in the
pixel values, which indicates an underutilized potential for improve-
ment. This potential was illustrated by Koltunov and Ustin (2007),
who applied a multitemporal anomaly detection method called Dynam-
ic Detection Model (Koltunov et al., 2009) to MODIS imagery and found
that temporal dimension of satellite data could be significantly more in-
formative than the spatial dimension for detecting thermal anomalies,
such as fires. In line with those findings, in recent years, there has
been a growing consensus about the need to incorporate a temporal
change analysis and several studies suggesting improvements in active
fire monitoring (Calle et al., 2006; Mazzeo et al., 2007; Schroeder et al.,
2008a; Xu et al., 2010; Roberts and Wooster, 2014). As a result, new al-
gorithms have emerged (e.g. Mazzeo et al., 2007; Xu et al., 2010;
Roberts and Wooster, 2014) offering different implementations of the
multitemporal approach. However, the temporal domain analysis also
introduces problems leading to new types of false alarms. Indeed,
some dynamic events and changes in the image or in the monitored
scene can be misinterpreted as fire ignitions. These include apparent
changes in the pixel intensities due to image misregistration across
time, cloud motion, intermittent sun glints, and other dynamic events
and factors. As a result, development of a functionally complete and re-
liable early fire detection algorithm requires detailed analysis of the ap-
parent anomalies and fairly complex inter-related additional processing
steps. These complexities are often magnified, when the objective is to
maximize the timeliness of initial wildfire detection, due to the need
to elevate algorithm sensitivity and because retrospective analysis de-
lays detection.

1.3. Paper objective and outline

To address the urgent need for timely and cost-effective information
about new fire ignitions, and the limitations of existing operational

satellite fire detection algorithms to provide early warning capabilities,
the Center for Spatial Technologies and Remote Sensing (CSTARS) at Uni-
versity of California, Davis in collaboration with USDA Forest Service Re-
mote Sensing Applications Center (RSAC) have been developing a new
GOES Early Fire Detection (GOES-EFD) system that specifically focuses
on the timeliness and reliability of the first detection of new wildfire in-
cidents. This paper presents the GOES Early Fire Detection algorithm
version 0.4. In the following, we will use the acronym GOES-EFD 0.4
or simply GOES-EFD, where appropriate. With our algorithm, we evalu-
ate the potential of alternative image analysis methodologies to identify
new ignitions before operational capabilities realized by WF-ABBA 6.1
and before conventional wildfire identification mechanisms. In Section
2, we begin with a conceptual overview of the system and then discuss
individual components in Sections 2.3-2.7. An experimental test of the
GOES-EFD using California 2006 fire season data is presented in
Section 3, followed by discussion and conclusion. A short preliminary
version of this paper can be found in Koltunov et al. (2012b).

2. GOES-EFD system version 0.4

The development of the GOES-EFD algorithm benefits from years of
research by different teams in the areas of subpixel fire detection phys-
ics (Matson and Dozier, 1981), multitemporal thermal anomaly detec-
tion (Koltunov and Ustin, 2007; Koltunov et al., 2009), contextual hot
spot detection (Prins and Menzel, 1994; Giglio et al., 2003; Giglio,
2010; Schroeder et al., 2014), automatic image registration (Irani,
2002), and wildfire incident analysis (Koltunov et al., 2012a).

2.1. Major procedural components

The GOES-EFD system version 0.4 utilizes only two thermal bands of
the GOES Imager: centered at ~4 pm and ~11 pm, respectively. The use
of the visible channel is planned for a future version. Let BT, and BTy,
denote the brightness temperature bands derived from these two orig-
inal GOES bands; and the difference band ABT=BT4-BT11.

System operation includes several major procedural components
that are executed in different combinations and variants. These compo-
nents include:

1. Initial frame preprocessing (Fig. 1), including GVAR-to-BT conver-
sion, single-frame cloud detection (Section 2.4.1), and band-to-
band registration (Koltunov et al.,, 2012b);

N

. Image registration (Koltunov et al., 2012b);

. Anomaly detection (Section 2.3), including multitemporal and con-
textual tests;

. Cloud masking (Section 2.4);

. Pixel classification (Section 2.5);

. Temporal filtering (Section 2.6);

. Event tracking (Section 2.7).

w

N o U

Frame Preprocessing

GOES &4pm GVAR GOES 11pm GVAR
Band Band

v \

~
Brightness Temperature (BT) Calculation
Single-frame Cloud Detection (SCD)
Band-to-Band Registration
y,

v v v v

| BT 4um Band || BT 11pm band " ABT Band | Uouds, Missing
Values

Fig. 1. Schema of the GOES-EFD preprocessing module.
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2.2. Operation overview

We define the term scene as a monitored region geographically corre-
sponding to a rectangular subset of the GOES full scan image (an example
is shown in Fig. 12). In an operational environment, GOES-EFD can pro-
cess large monitoring areas (e.g. Western U.S. or the entire GOES Imager
scan area) as a single scene. Alternatively, large areas can be divided
into smaller scenes to be individually processed by separate instances of
the GOES-EFD system software. The distributed processing by smaller
scenes can lead to improved detection performance, owing to the reduced
environmental and scan angle variability within the scene and because
the processing can begin sooner. Among potential downsides are the
overhead costs of operation and possible shortage of useable pixels
when the scenes are too small. Optimizing the partition and operational
coverage of large areas by GOES-EFD scenes is an interesting research
topic outside the scope of this paper.

For a given scene, GOES-EFD operates in two modes: Training mode
and Detection mode. The Detection mode includes all the above seven
components and refers to a regular mode of operation, in which GOES
multispectral frames are automatically inspected to detect fires. The
Training mode includes only the first four procedural components.

The Training stage (Fig. 2) is normally performed for each monitored
scene once a year, before the beginning of the Detection mode, e.g. on
the onset of the fire season. In the Training mode, GOES-EFD prepares
several static datasets and calculates static parameters, including:

« acoordinate system for the scene, which can be a coordinate system of
e.g. any specific GOES frame and which acts as an intermediary pa-
rameter facilitating image alignment and georeferencing;

« a set of GOES images defining a static (i.e. fixed) baseline period and

Training Stage

Past GOES Images |

————

!

Land

Reference Cover

Images for Preprocessing Map
Registration

v ‘/

[ Image-to-Sequence Registration ]

v

Basis Image (andidates '

Quality Control
(automated, interactive)

v l v

Basis Images,
Cloud Cover,
Reference Coordinate System,
Motion Parameters

Fig. 2. Schema of the GOES-EFD Training stage operation (see text in Section 2.2 for
details).

representing background (i.e. “no anomaly”) conditions on the ground
for anomaly detection during the Detection stage, as further detailed in
Section 2.3; these images are called basis images (Section 2.3.1).

* registration (i.e. relative image motion) parameters for the basis im-
ages; and

* cloud/missing-value masks for the basis images.

Toward these goals, the algorithm analyzes a large sample (e.g. hun-
dreds) of past GOES images (Fig. 2) of the scene, which we term the train-
ing frames. The training frames should represent diurnal and preferably
also seasonal thermal variation, e.g. all images from previous 1-2 months
or last year, as available. High cloud cover scenes may require more train-
ing frames. First, all training frames are preprocessed (Fig. 1) and auto-
matically registered toward a number of reference frame-candidates
(Koltunov et al., 2012b). If the average estimated pixel motion is <3 pixels
(or another a priori known bound) and the R? of the linear model be-
tween the reference images and the image being registered exceeds 0.3,
then registration is considered successful. Next, the reference image set
that provided successful registration of the largest number of frames is
automatically selected. Because the outcome of this selection process nat-
urally includes the estimated image motion parameters for all training
images, a multitemporal cloud detection algorithm can be applied,
resulting in refined cloud masks for all training images. This algorithm is
called the Retrospective Cloud Detection (RCD) algorithm and described
in Section 2.4.3. Finally, well-aligned frames with low cloud cover (e.g.
<5%) representing the 24-hour cycle at a half-hourly to hourly step are
sorted by the increasing cloud cover; and for each half-hour/hour band
the least cloudy images from different dates are automatically selected
as static basis image candidates. As a recommended optional step, these
images can be then interactively reviewed, in particular, to make sure
that the undetected clouds, residual misalignment, and other possible ar-
tifacts are minimal. The presence of potential active fires is not a factor in
approving or rejecting a basis image. A rejected basis image candidate can
be replaced with an alternative training image from a similar observation
hour on that or a different day, as available. In general, more basis images
tend to provide a better detection performance at the expense of compu-
tation time.

During the Detection stage (Fig. 3), the current image is first
preprocessed (Fig. 1), and the image motion parameters are computed.
Next, the Iterative Anomaly Detection and Classification (IADC) module
(Section 2.5) is applied to assign pixels into one of 12 thematic classes.
Each iteration of IADC performs anomaly detection tests and combines
their outputs with auxiliary information, such as land and ocean
masks. The resulting thematic classes include: “no-anomaly”, clouds,
several fire confidence classes related to the magnitude of the thermal
anomaly, and other classes. Frames with >90% cloud cover over land
or those for which initial preprocessing failed for any reason are exclud-
ed from further analysis. The classification output product from IADC
can be immediately delivered to the user. However, to reduce false pos-
itives, GOES-EFD employs a temporal filter (Section 2.6), which rejects
fire pixels that were not detected in the previous frame. The filtered
fire detections at the chosen level of confidence are further analyzed
across spatial and temporal dimensions by the Event Tracker algorithm
(Section 2.7) to extract events, i.e. groups of confidently detected pixels
that are likely to represent the same incident. The new, previously un-
detected events extracted by the Event Tracker are the primary output
of the GOES-EFD algorithm. In the following sections we discuss the in-
dividual components and modules of the system and their use during
the Training mode and Detection mode in more detail.

2.3. Anomaly detection
2.3.1. Multitemporal anomaly detection with Dynamic Detection Model

The GOES-EFD module for detecting anomalous temporal changes in
the image sequence is a core capability facilitating image registration,
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Fig. 3. Schema of the GOES-EFD Detection stage operation (see text in Section 2.2 for
details).

cloud detection, and fire pixel detection. It is based on the Dynamic De-
tection Model (DDM, Koltunov et al., 2009), which can be viewed as a
special type of multiple regression methods. This model stems from a
generic physical hypothesis that temporal and spatial invariants (sepa-
rable parameters) play a dominant role in forming many remote sens-
ing image datasets, including for instance, images of radiance,
brightness temperature, vegetation indexes, to name only a few. There-
fore, at a detection time t and pixel location s, a DDM models the back-
ground (“no anomaly”) value W(s,t) as a space-invariant dynamic
combination of values that were observed at that pixel previously, at
some number P of previous time moments termed basis times and de-
noted ty, ..., tp. As discussed by Koltunov et al., (2009), the basis times
define both the baseline time period for comparison and determine
the range of surface, sensor, and environmental parameters in the
scene that DDM models. As we further detail in Section 2.3.3, GOES-
EFD uses two linear models of background:

W(s, t) = B(t)g +P1(OW(S, tr) + ... + P (WS, to). (1)

Both models of type (1) are applied to each of the three brightness
temperature bands defined in Section 2.1, and thus the generic variable
W we use may stand for either BT, or BT;1, or ABT. The unknown pa-
rameter vector (3(t) depends on the observation conditions at time t
but is the same for all pixel locations s. Thus in mathematical terms,
model (1) projects the inspection image band, as a single high-dimen-
sional vector, onto a linear non-orthogonal vector subspace spanned
by the images W(s,t;), ... ,W(s,tp) and a vector of all ones. These im-
ages are called basis images because they constitute a basis in the
above subspace. To reconstruct the background, the unknown coeffi-
cient vector 3(t) is estimated in the least-squares sense using a random

set of training pixels that are not a priori known anomalies. Pixels that
are outliers with respect to the prediction model (1) are considered
anomalies. Using a physical approach, Koltunov et al. (2009) derived
the ranges of weather and sensor characteristics and the surface
thermophysical properties, under which radiance can be accurately
modeled by the linear model (1) with eight basis images. In general,
more complex practical scenarios can be modeled by increasing the
number of basis times, using a non-linear background model, or both
(Koltunov and Ustin, 2007), at the cost of extra computational power.

We see from the discussion in the previous paragraph that the term
“multitemporal” that we use to characterize the DDM-based back-
ground modeling should not be interpreted as if only the temporal di-
mension from the pixel in question is used to estimate W(s,t).
Perhaps, a more precise (though less concise) term would be “blended
spatial-multitemporal”. This is because indirectly through {B(t)}r—o.
the predicted value depends on the dynamically chosen training pixel
values at basis times and at the inspection time. This differentiates
DDM from the time series analysis techniques in which each pixel is
processed independently across temporal domain (e.g. Verbesselt et
al., 2010; Roberts and Wooster, 2014).

A characteristic property of DDM is that the time variable t is not di-
rectly used as a predictor variable. Therefore, the image on the left-hand
side of Eq. (1) can be a past image modeled using chronologically subse-
quent basis images on the right-hand side of Eq. (1). This property is uti-
lized by GOES-EFD for retrospective cloud detection (Section 2.4.3)
during the Training stage.

The forward application of the model (1) to a given pixel requires
that all basis image values at that pixel correspond to the same object
in the scene. Therefore, a single set of basis images can meet this re-
quirement only if all basis images are completely free of clouds, fires,
and other anomalies. This is not a realistic scenario, unless the number
of basis images in the scene-wide model is small. Therefore, to avoid un-
necessary underfitting of the background model (1) by using too few
basis images, we analyze missing value (i.e. “known anomaly”) masks
for various subsets of the basis images ty, ... ,tp and determine which
pixels can be modeled for each subset. For example, pixels with missing
values only at t; cannot be modeled using the entire set ty, ... ,tp; yet
they can be modeled using t,, ... ,tp or any subset thereof, perhaps
with larger error. Pixels with missing values only at t; and t, can be
modeled using ts, ... ,tp or any subset thereof, and so on. Using this in-
formation, we compile an ordered list of basis time subsets by removing
basis times one-by-one, until the current list of subsets can model all but
an acceptable number of land pixels (according to the auxiliary land
mask), or until there is only one basis time in a subset. In this way, we
can avoid the exhaustive search and the associated combinatorial com-
putational complexity.

Next, for each subset in the list of basis time subsets, a background
model is estimated by robust stepwise regression using training pixels
chosen at random from where the model is applicable, i.e. where none
of basis images defining the model have a known anomaly, as discussed
in the previous paragraph. As a result, multiple DDM-based background
models are constructed for each pixel, thus providing a pool of options
for background estimation. GOES-EFD 0.4 uses only one option per
pixel, which is the model with the maximal adjusted determination co-
efficient. A typical example of scene coverage with 32 multitemporal
models per pixel is given in Fig. 4c, where the scene is shown in Fig.
12 and referred to as Scene 1, hereafter (further details on the fire sea-
son 2006 experiment datasets are available in Section 3.1). In Fig. 4c, dif-
ferent models are represented with different colors, and the
corresponding model r.m.s.e. map is displayed in Fig. 4d. The dark
blue areas in these figures represent clouds detected by the GOES-EFD
cloud detection algorithms (Section 2.4 and Fig. 7) and also other
known anomalies and non-burnable surfaces, such as water. As seen
from Fig. 4c, for most pixels, the background can be modeled with a sin-
gle set of basis images, in this case model #13 with 28 out of 29 basis im-
ages and r.m.s.e. of ~0.4 K. Areas, for which models with fewer basis
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Fig. 4. Example of thermal background modeling with 32 multitemporal DDM-type models (see also text in Section 2.3.1) for a scene in central California shown in Fig. 12. GOES input
brightness temperature bands, BT4 and BT;; (Section 2.1), are shown in the top row images. For each pixel, GOES-EFD analyzes a pool of applicable DDM-models and estimates the
best DDM-model shown in image (c). The absolute accuracy (r.m.s.e.) of background modeling with different models is shown in image (d). The cloud areas masked with dark blue
color in (¢) and (d) were detected by the Operational Cloud Masking (OSM) algorithm (Section 2.4.2 and Fig. 7). The frame timestamp is 2006.08.03-19:00 PST. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article).

images are used due to missing values at basis times, such as models #2
and #32, typically have greater r.m.s.e. of background estimation.
Detection of subtle subpixel anomalies using multitemporal back-
ground reconstruction requires subpixel level co-registration of frames.
The GOES image navigation and registration (INR) system is designed to
dynamically adjust GOES Imager scan mirror pointing (Carr, 2009).
However, even under normal operation of onboard systems, minor in-
accuracies in INR may lead to temporal misalignments in TIR bands,
which may reach half a pixel or more (Boeing, 2006), in addition to reg-
ularly occurring band-to-band misregistration of a smaller magnitude
(Grotenhuis et al., 2012). In addition, there have been several instances
of a major failure of the INR components when image misalignment
reached multi-pixel scales, including GOES-10 in 2006 and most recent-
ly, GOES-15 star tracker failure in April 2015. To mitigate these issues,
GOES-EFD includes an automatic thermal image registration method
(Koltunov et al., 2012b) that is a member of a family of direct methods
(Hanna, 1991; Irani, 2002) for image alignment or motion estimation.
The anomaly detection is performed in the inspection image coordinate
system, i.e. the basis images are warped (moved and interpolated) to-
ward the inspection image before substitution into Eq. (1). The binary
masks are also aligned with the inspection image. The GOES-R ABI im-
ages are planned and expected to have significantly better alignment
than the current generation of GOES; and they will be registered and
resampled on the ground before distribution to the users as a Level 1B

product. The magnitude and spatial and temporal distribution of the
navigation and registration errors in these images is an important ques-
tion to be answered after the GOES-R launch.

2.3.2. Contextual anomaly detection

Decades of operational success in contextual active fire detection
have clearly demonstrated that that the spatial context should not be
dismissed as an ignition information source. The contextual anomaly
(“hot spot”) detection in GOES-EFD is based on the same principle as
the WF-ABBA and the MODIS Fire and Thermal Anomalies algorithm.
The background value at a pixel is estimated by averaging values for
valid neighboring pixels in a window. The window size is increased
starting from 3 x 3 pixels until eight valid neighbors are available or
the valid neighbor fraction in the window exceeds 0.25. Windows larger
than 11 x 11 pixels are not considered. There are important differences
between our implementation of this idea and the other wildfire algo-
rithms. Our contextual analysis is applied to brightness temperatures,
does not utilize external surface emissivity data, and does not directly
account for oversampling along the GOES Imager scan. Also, the rule
for determining valid neighbors is different: in GOES-EFD, valid pixels
are determined based on classification of the multitemporal anomaly
detection outputs (discussed in Section 2.5), i.e. entirely independent
of the contextual test itself. This indirectly mitigates the influence of
anomalies on the background estimation due to oversampling.
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2.3.3. Anomaly detectors

Using multitemporal and contextual approaches to anomaly detec-
tion, three anomaly detection tests (for brevity called detectors, hereaf-
ter) are applied for each BT band:

- DDM1: a multitemporal detector using the same static basis images
(chosen in advance, during the Training stage, as discussed in
Section 2.2) for predicting background of all inspection images.

- DDM2: a multitemporal detector using the basis images of DDM1
and an image taken at t — 30 min. If the t — 30 min image is not
available or if it is the frame immediately before the inspection
frame, then an earlier image is used.

- CNTXT: a contextual hot spot detector.

Each detector is applied separately to each of the brightness temper-
ature bands, BT4, BTy, and ABT. The background prediction residuals
are standardized by dividing by their respective r.m.s.e. estimates, O:

7 — BTobserved B BTpredicted
o .

These standardized residuals, also called Z-scores, are used to detect
and classify changes in the scene, as described in the following sections.
In the following, we will be using subscripted variables: Z4, Z;1, and Z,,
to indicate the corresponding BT band. Also when necessary, we will be
labeling the Z-scores with a superscript, such as “ddm1”, “ddm2”, or
“cntxt”, specifying the corresponding anomaly detector. Omission of a
superscript should be interpreted as “for any detector”, unless explicitly
stated otherwise or obvious from the context.

As seen from the detector definitions, they analyze images from dif-
ferent and largely complementary perspectives. The contextual ap-
proach has been extensively discussed in the past (see e.g. Giglio et al.,
2003; Schmidt et al., 2012), and so we focus our discussion primarily
on multitemporal detectors. The multitemporal detectors differ by
their respective sets of basis images, and thus they are sensitive to dif-
ferent temporal scales, types, and history of change in the scene.

Because DDM uses a fixed baseline, the background reconstruction
quality for frame W(t) depends on the generalization capability of the
basis images and the change status at time t, yet it is completely inde-
pendent of the thermal signal history or history of detection before
time t. In this way, the static-baseline DDM1 is a system with no
short-term memory. In other words, DDM1 provides frame-wise snap-
shots for cumulative effects of scene changes occurred since the end of
the baseline period. Therefore, it is effective at consistently re-detecting
ongoing wildfire events, persistent clouds, and other persistent changes
in land cover. It also performs consistently following extended periods
of cloudiness and after protracted data gaps in GOES image sequences.
Furthermore, no matter how slowly an anomaly intensifies, it will be
detected by DDM1, as soon as the cumulative effect of this event in
the BT reaches a detectability threshold. On the other hand, even high
magnitude change events can go undetected, if the total cumulative ef-
fect is small, as is in the case of repeat land cover changes. Another
weakness of DDM1 is that after a permanent land cover change, such
as burn or urban development, it can produce persistent anomalies un-
related to new wildfire ignitions. These types of changes typically affect
a very small fraction of the scene pixels, thus minimizing the problem.

In contrast, DDM2 has the capability to respond to changes relative
to recent baseline conditions. Such changes are often associated with
new fire ignitions. Slowly progressing changes, however, may go unde-
tected by DDM2, especially when the image frequency is high, e.g. dur-
ing the GOES Rapid or Super Rapid Scan mode. For pixels that were not
anomalies in the basis images, background estimation is usually signifi-
cantly more accurate with DDM2 than with DDM1, because just one
basis image W(t — 30 min) at these pixels already provides a close ap-
proximation to the inspection image W(t). In this case, the information
in the other (static) basis images, in effect, is used mainly to

approximate the thermal gradient AW = W(t) — W(t — 30); whereas
in case of DDM1, the same static images model both, W(t — 30) and
AW.The detector accuracies are illustrated in Fig. 5a showing BT, recon-
struction r.m.s.e for approximately an 11-day period in August 2006 ata
GOES pixel, which seven years later would include the origin of the 3rd
largest wildfire in California history - the Rim Fire. Fig. 5b-c shows typ-
ical examples of, respectively, daytime and nighttime BT, approxima-
tion with these detectors for that pixel. It can also be seen from Fig. 5
that in absolute units, all three detectors are more accurate at night
time, when spatial and temporal gradients of brightness temperatures
are minimal. At night the contextual detector tends to outperform
DDM1. Overall, the most sensitive detector is DDM2, followed by
DDM1, and CNTXT.

An example in Fig. 6 illustrates how “labor sharing” between the two
DDM-based detectors works when a change event, such as a fire, starts
at time t,,. This figure displays a 15-min step time series for the observed
BT, and the BT, approximated by the two multitemporal detectors at a
GOES pixel s, where an anomaly from an actual fire first appears around
16:45 local time. In general, the more sensitive DDM2 (dark red crosses
in Fig. 6) statistically tends to provide closer approximation for back-
ground and stronger response to change events than DDM1 (light
blue squares), and thus the fire has a greater chance to get detected
for the first time. Yet regardless of whether the anomaly in pixel s gets
detected or missed in frame W(t,), for the next frame W(t, ; 1) the
DDM2 does not use W(t,) as a basis image. In this way, we avoid viola-
tion of the “no-anomaly” assumption for basis image values and reduc-
tion in the chance for the second detection at W(t,, ;- 1) by DDM2. In the
following frame at time t,  », image W(t,) normally becomes a basis
image for DDM2 for pixel s, unless an anomaly was detected at (s,t;,)
and flagged as a missing value (brown stars in Fig. 6), in which case
DDM2 reduces to DDM1 (Section 2.3.1). For example, in Fig. 6, two
frames after the initial anomaly detection at 16:45, the BT, predictions
for both models become identical until 18:15, when the 17:45 basis
image for DDM2 no longer has a known anomaly. Thus, the static
DDM1 takes over when DDM2 is deemed unreliable and provides detec-
tion as long as the cumulative effect signal is significant. If the anomaly
detected at time t,, was a fire, then by t,,  , the fire has been burning for
at least 45 min under GOES Regular Scan (25 min under Rapid Scan),
and therefore it often presents a sufficiently strong signal to be re-de-
tected by the less sensitive DDM1 model.

Also, these detectors have different practical application constraints.
In particular, because baseline images of DDM1 are fixed, GOES-EFD
prepares them in advance during the Training stage, thus making it fea-
sible to apply retrospective automated analyses or interactively correct
or replace some of the basis images. As a result, the influence of clouds,
fires, and other atypical objects in the static basis images that violate the
background model assumptions can be minimized. In contrast, the dy-
namic detector DDM2 can rely only on the less accurate fully automatic
real-time techniques to determine pixels where it cannot be applied.
These techniques include:

1) GOES-EFD real-time cloud, fire, and other anomaly detection out-
puts for the t — 30 min basis frame;

2) arobust stepwise regression that can either exclude the t — 30 min
frame from the model, if that increases the adjusted determination
coefficient, or flag these pixels as outliers to the regression model,
or both.

2.4. Cloud detection and masking

Clouds markedly affect fire detection, rendering cloud delineation
indispensable for a fire detection system. Cloud cover information is re-
quired during different stages of the system operation, with their re-
spective constraints and quality requirements. Therefore, depending
on specific circumstances and a processing stage, GOES-EFD can use
the following three cloud detection algorithms:
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Fig. 5. Performance of GOES-EFD detectors. (a): The r.m.s.e. time series from 2006.08.04-0300 to 2006.08.15-0930 PST for the three detectors used by GOES-EFD: DDM1, DDM2, and CNTXT
(defined in Section 2.3.3), applied to model the observed GOES-11 3.9 um brightness temperatures (BT,) during California 2006 experiment (Section 3). (b) and (c): typical examples of
day time and night time reconstruction of GOES-11 BT, values in August 2006 by the above three detectors for a non-fire pixel location with no cloud cover observed or detected. The pixel
GOES-11 coordinates (line, element) = (4148, 17,472) on 2006.08.03-1900 PST (37.83N, 120.10W).

1) Single-Frame Cloud Detection (SCD),

2) Operational Cloud Masking (OCM), or
3) Retrospective Cloud Detection (RCD).

The algorithms in this list are ordered by the increasing complexity
and are discussed below.
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Fig. 6. GOES-11 15-min step time series illustrating brightness temperature
approximation by detectors DDM1 and DDM2 (as discussed in Section 2.3.3), following
a detected fire at ~16:45 PST at this pixel. The detected fire points in the BT time series
are marked with dark brown stars. For the first two detections (at 16:45 and 17:00), the
DDM1 Z-scores (2.9 and 4.5) are lower than those of DDM2 (4.4 and 8.3). In images
from 17:15, 17:30, 17:45, and 18:00, DDM2 reduces to DDMT1, due to an anomaly in the
corresponding image from 30 min ago. The pixel GOES-11 coordinates (line,
element) = (4332, 17,772) on 2006.08.13-1700 PST (35.58N, 118.52W). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

24.1. Single-Frame Cloud Detection (SCD)

As the name suggests, this algorithm uses only information data
from the inspection frame and conservatively (i.e. with a low false pos-
itive rate) detects opaque high altitude clouds or snow. Presently, it uses
a simple condition BT;; <270 K that may need to be adjusted depending
on the geographic region and monitoring seasons. The SCD algorithm is
used as a pre-screening procedure during both Training and Detection
stage. In particular, it is applied before a more sophisticated
multitemporal technique, and when a multitemporal cloud detection
algorithm cannot be applied. Also, single-frame clouds define regions
that cannot be used to estimate the frame or band-to-band motion
parameters.

24.2. Operational Cloud Masking (OCM)

The OCM algorithm is a part of the Iterative Anomaly Detection and
Classification block (Section 2.5). It is applied during the Detection
mode (Fig. 3), following frame-to-sequence registration. This algorithm
combines Z-scores obtained from the static multitemporal detector
DDM1, using an initial cloud mask and a land mask as ancillary inputs.
The initial cloud mask can come from SCD, a previous iteration of
OCM, or another source; and it is supposed to flag clouds conservatively,
because these detections are immediately accepted by the OCM. For ex-
ample, in Fig. 7 the SCD detects the coldest clouds (shown in dark blue
colors in Fig. 7c) that are excluded from modeling background with
DDMT1 and from image motion estimation. In the next step (Fig. 7d),
the multitemporal OCM inherits these single-frame detections and
masks out additional cloud and fog pixels colored in lighter shades of
blue and corresponding to detections by tests C1-C4 described below.

The OCM algorithm flags a pixel as “cloud” if any of the tests C1-C5
below returns true for that pixel.
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Fig. 7. Two-stage cloud masking illustration (see also text in Section 2.4). GOES input brightness temperature bands, BT, and BT;; (Section 2.1), are shown in the top row images. The first
stage applies SCD (Single-frame Cloud Detection) algorithm (c), whose detections are flagged as missing values for the multitemporal analysis using the Operational Cloud Masking
algorithm and added to the final cloud map (d). The frame timestamp is 2006.08.03-19:00 PST.

Test C1 detects cold high-altitude clouds or snow as an anomalous
drop in BTq1:

74m1-_300R (zﬁm1<_2.0 AND BT11<275 ) )

Test C2 is looking for nighttime clouds and fog using the condition:

744mlc_15 AND Z4dmi<_1 5 3)

Test C3 flags water body pixels in which DDM1 detected anomalous
changes in BT4, BT11, or ABT:

(244 [>2.00R Z{{™ 1Z4[>2.00R |Z{{™ |-2.00R 28" [>2.00R (|24 [~1.0AND 24" [>1.0)..

“4)

These changes can be due cloud, fog, surface reflections, other changes,
and unchanged surfaces poorly modeled by DDM1 for any reason. The
aggressive detection provided by this test intends to account for greater
complexity of modeling background conditions over water and allow
anomalies with lower confidence to be excluded from background
estimation.

Test C4 attempts to identify thin or warm clouds or haze using the
following condition:

(734m<—2. 0ANDZ{"™>2.0) OR (Z4"" <—1.0ANDZ{4™ <—1.5ANDZ{"'>1.5) OR (74" <—2. 5 ANDZ"™>2.5 )

)

2.4.3. Retrospective Cloud Detection (RCD)

The Retrospective Cloud Detection algorithm is applied only during
the Training stage (Section 2.2). This algorithm cannot be applied in
the real-time mode, because for a given frame, it takes advantage of
the entire input sequence, including subsequent frames. The RCD algo-
rithm proceeds iteratively as follows:

1) Initially assign set S to be the entire sequence.

a. Define the set of basis images B as the least cloudy images from S at
hourly steps.

2) Define the set of inspection images I as non-basis images in S.
3) Detect clouds in the inspection images:

a. Estimate background values in the current set of inspection im-
ages, using DDM1 with known clouds/anomaly masked out for
the background estimation purposes.

b. Apply tests C1-C4 of the OCM algorithm.

4) Use the resulting cloud maps to detect clouds in the basis images:
a. Assign: S < [, then I < B, and repeat step 3).

5) Repeat steps 1)-4) using the updated cloud maps.
2.5. Iterative Anomaly Detection and Classification (IADC) module

The IADC module is activated at the Detection stage after the inspec-
tion frame has been preprocessed (Fig. 3) and registered with respect to
the scene coordinate system. We define a fire-candidate (FC) test,
which identifies a fire pixel-candidate at the confidence level -y as a
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Fig. 8. Schema of the GOES-EFD Iterative Anomaly Detection and Classification (IADC)
block (see text in Section 2.5 for details).

pixel for which the condition
Z4>y AND Zp>7, for vy 2.0, where v = min(Z4,Z,) (6)

holds for any multitemporal detector (DDM1 or DDM2). Based on their
values of vy, such pixels are initially binned into fire confidence classes
that for the sake of this presentation can be named: “very low”
(2<vy<25),“low” (2.5 <v<3), “medium-low” (3 <y <3.5), “medium”
(3.5<vy<4), and “high” confidence (y > 4). GOES-EFD v.04 reports only
medium and high confidence detections; lower confidence detections
are utilized for filtering false positives.

The current version of IADC consists of two passes shown in Fig. 8.
The primary goal of Pass 1 is to identify pixels whose thermo-physical
properties have significantly changed, e.g. clouds, higher intensity
fires, and miscellaneous anomalies. These pixels will not be used during
the Pass 2 for determining the coefficients (3(t) in the background model
(1) or for contextual background estimation. Pass 1 proceeds in three it-
erations or until the class membership does not change for >99.95% of
land pixels, whichever comes first. In each of these iterations, the fol-
lowing steps are performed:

« apply detector DDM1 to BTy, BT;4, and ABT bands;

« identify potential fire pixels by the FC test (Eq. (6)) applied to DDM1
only;

« detect cloud pixels with the OCM algorithm (Section 2.4.2).

Pass 2 begins with the following steps:

* apply detectors DDM1, DDM2, and CNTXT to bands BTy4, BT, and
ABT; these detectors estimate background values using only land
pixels classified as background by Pass 1;

« identify potential fire pixels by the FC test applied to DDM1 and DDM2
and use y = max{yddm?, yddm2y.

* detect cloud pixels with the OCM algorithm, which may reject some of
the fire pixel candidates resulted from the FC test.

Pixels classified as fires based on temporal information as described
above are subject to additional false-alarm elimination tests. These tests
use the contextual detector Z-scores to detect possible hot spots by the
following condition:

Z§1%>1.5 AND Z&"™>1.5. (7)

A fire pixel candidate is eliminated if condition (7) is false (i.e., not a
hot spot) and any of the following conditions returns true:

- the fire is detected by DDM2 and was an anomaly with Z§9™?< — 2.0
in the image at t — 30 min;

- the fire pixel is detected by DDM2, not detected by DDM1, and was
not assigned to any of the fire or cloud classes in the image at t —
30 min;

- the fire pixel is adjacent to a detected cloud pixel in any of the frames
time-stamped t, t — 30 min, or t — 15 min. Areas surrounding de-
tected clouds often represent thin clouds, or locations of clouds in re-
cent frames, and therefore such detections are more likely to be false
positives;

- the fire pixel is not adjacent to a hot spot pixel defined by Eq. (7).

The first three tests are aimed at eliminating false positives some-
times committed by the multitemporal detector DDM2 mainly due to
undetected clouds in the basis images or possible residual
misregistration.

Furthermore, a fire pixel that passed through the above filters is
rejected if:

- BT4 <290 K, or
- Z§mic _20.

The remaining fire pixels are subject to an object-based analysis
aimed to find detections that form valid spatially connected regions.
The Event Tracker module (described in detail later in Section 2.7) will
use this information to dismiss new detected fire-like events in the in-
valid regions. The validity of a region is defined in terms of the number
of pixel-members, their anomaly confidence values, and the region ori-
entation in the image coordinate system (see example in Fig. 9). A sin-
gle-pixel fire region is considered valid, and medium or high
confidence (y > 3.5, see Eq. (6)) fire regions with 5 or more pixels are
considered invalid. Remaining regions are flagged invalid if any of the
following conditions holds true:

- The region has four or more fire pixels detected at any confidence
(y > 2.0) and no fire pixels detected with high confidence
(y>4.0). Such regions often appear as uniformly low magnitude
anomalies spread over large areas. For example, in Fig. 9b all five
pixels of the boxed object are detected at 2 <<y <4 (in this example
Z, is equal to y and shown as numbers inside the pixels). Therefore,
although pixel with Z, = 3.72 is a medium-confidence fire-like
anomaly, it is considered to be most likely caused by the same rea-
son as the as the entire object and thus inconsistent with wildfire dy-
namics and the GOES pixel footprint size and the oversampling
pattern.
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Fig. 9. Fragments of DDM2 Z-score images with black dashed boxes indicating examples of
(a) valid multi-pixel objects that are accepted as possible new fires by the IADC block
(Section 2.5) and (b) an invalid object where a new fire is rejected as a likely false
positive. Anomalies known from IADC Pass 1 are marked with a NaN (not-a-number)
symbol. See text in Section 2.5 for details.

- The medium or high confidence region (y > 3.5) is vertically orient-
ed in the image coordinate space. We fit an ellipse to the points
representing centers of region pixels by computing the region cen-
tral moments. If the angle between the ellipse's major axis and the
x-axis of the image plane is between — /4 and /4, then the region
is a valid region. The rejection of vertically oriented regions is based
on the GOES Imager oversampling in the x-direction.

Although the object-based analysis can in some cases reject large on-
going true wildfire incidents, incidents adjacent to undetected reflective
clouds, new ignitions a few kilometers apart from another wildfire, and
some other rare types of new ignitions, it also helps reduce spatially
contiguous false positives due to undetected clouds or fog, temporal
misregistration, and error in background modeling by the DDM due to
underfitting.

2.6. Temporal filter

The IADC output is the inspection image classification derived using
information available at the time of inspection image acquisition. Al-
though it is the most rapidly available fire product, it can also have
large false positive rates. Thus, to reduce the number of false positives,
a temporal filter is applied, masking out fire pixels until they get detect-
ed in two consecutive frames at a medium or high confidence (y > 3.5).
By delaying detection, the temporal filter can give an order of magni-
tude reduction in false positive rates (Koltunov et al., 2012b). To
match fire pixels across time, we first account for pixel displacements
due to frame-to-frame misalignment, and then apply a one-pixel buffer.
This prevents the filter from missing repeat detections in cases when
combination of nearest-neighbor interpolation and imperfect motion

estimation results in a 1-pixel misalignment of the interpolated
frame-wise anomaly masks. The filter of GOES-EFD 0.4 is suboptimal,
particularly because it does not take into account the time interval be-
tween frames and gaps in clear pixel data due to cloud cover.

2.7. Event tracker

Following Koltunov et al. (2012a), we introduce the term detected
efd-event (also efd-event, or simply event, hereafter) as a set of GOES-
EFD designated fire pixels in the image sequence that, according to the
algorithm, should be considered by the user of the fire detection infor-
mation as a possible single fire incident. An efd-event may or may not
correspond to an actual wildfire. Similar to actual fire incidents, these
detected events are dynamic objects in the GOES image sequence:
they may persist in more than one frame and consist of multiple pixels
per frame. By definition, every pixel that is flagged fire by the IADC is a
member of exactly one efd-event.

As the GOES-EFD primary targets are new incidents, it includes an
event analysis module, called Event Tracker (see the concept illustration
in Fig. 10), which decides whether a fire pixel represents:

= anew efd-event, i.e. a group of pixels to be considered a previously un-
detected ignition, or

an ongoing efd-event, i.e. an efd-event that was already detected by the
algorithm in previous images and therefore assumed to have been re-
ported to first responders.

The method used by the Event Tracker is based on analyzing tempo-
ral evolution of spatially connected components (c.c.) formed by confi-
dently detected fire pixels ('y > 3.5) in the GOES image coordinate
system. We note that this temporal analysis complements the single-
frame analysis of connected components by IADC (Section 2.5). The al-
gorithm is controlled by two parameters: h and b. The history length h is
the size of a temporal window during which spatially overlapping (up
to the buffer distance b) connected components are considered the
same event. GOES-EFD 0.4 uses h = 48 h and buffer b = 6.8 km,
which is approximately 1.2 times the linear ground size (in the north-
south direction) of the largest GOES-West thermal infrared pixel in Cal-
ifornia. For a frame collected at detection time t, the Event Tracker com-
bines fire pixels into efd-events as follows:

1. Group fire pixels into spatially connected components.

2. Initially, and also when there are no frames or detections available
during last h hours, each c.c. is considered a new efd-event.

3. When past fire pixels are available, for each fire pixel (x, t) find the
nearest location x¢ that was flagged as a fire pixel at least once during
the last h hours. If || x — x || <b, then pixel (x, t) is termed a re-detect-
ed fire pixel. Let E(x¢) denote the event corresponding to x¢. Because
E(x¢) was detected before t, it is obviously an ongoing event at time t.

After the efd-events have been identified in the inspection frame,
the algorithm performs steps 4 and 5 below to designate each event
as a new event, or as an ongoing event. In Fig. 11 exemplifying these
steps, re-detected pixels are light grey and other pixels are dark grey.
The label inside each pixel denotes the event to which the pixel will
be assigned by steps 4 and 5.

4, Connected components with no re-detected pixels become new
events (Fig. 11a).

5. For connected components that do include re-detected pixels (Fig.
11b-h), the event assignment requires additional analysis:

a) First, each re-detected pixel-member (x, t) is assigned to its corre-
sponding ongoing event E(X¢) matched by step 3 (i.e. all light-grey
pixels in Fig. 11b-h are labeled with an ongoing efd-event ID's).

b) Next, pixel-members that are not re-detected pixels (dark pixels
in Fig. 11) are assigned depending on the set of events to which
re-detected pixel-members (light grey pixels) of this c.c. have
been assigned by rule a) above. Specifically,
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Fig. 10. A concept illustration for the GOES-EFD Event Tracker. The Event Tracker morphologically analyzes recent detection history to decide whether a fire pixel is a new event (a
previously undetected possible ignition) or an ongoing event. New events are the primary output of GOES-EFD. See text in Section 2.7 for details.

i. if all re-detected pixel-members of this c.c. are assigned to the
same event, then so are all other pixel-members of this c.c. (i.e.
dark pixels of the connected components shown in Fig. 11d-f
are labeled with the same label as the neighboring light-grey
pixels);

ii. otherwise, all pixel-members of this c.c. that are not re-detected
pixels (dark pixels) are assigned to new events, one event per
pixel (as illustrated in Fig. 11g and h).

The GOES-EFD 0.4 Event Tracker algorithm was initially described by
Koltunov et al. (2012a).

New events located inside invalid objects flagged by IADC (Section
2.5) are rejected. Sometimes, due to difficulty in cloud detection, resid-
ual misalignment between basis frames and the inspection frame, sen-
sor noise, and for other reasons, a large number of false positive new
events may appear in a single inspection frame. Therefore, based on em-
pirical experimentation and given high temporal frequency of input
GOES imagery, GOES-EFD 0.4 sets an upper bound for the number of
new events in a single frame (one per 10,000 land pixels per 15 min)
and rejects all new events when the bound is exceeded. In general,
the upper bound should reflect prior information about the expected
frequency of wildfire ignitions and history of detections in the scene.
More optimal implementation of this idea requires further research.

(a) Enew Enew

Connected components with no re-detected pixels:

> same new event E,q,

Connected components with re-detected pixels:

|:] re-detected
- not re-detected

) E1 | E1 | E5 | (©)| E1 | E1
E1 | =
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Q)| E1 E2 | (| E1 _ : _
E2 | E2

Fig. 11. Illustration of GOES-EFD Event Tracker module rules for assignment of individual fire pixels (light grey and dark grey square patches) to ongoing events (E1, E2, ...) or new events
(Enew» Enew1, Enewa, -..), depending on the pixel spatial connectivity and proximity to recent historic GOES-EFD fire pixels. The text inside each square denotes the event to which this pixel

is being assigned by steps 4 and 5 described in Section 2.7.
Reproduced from Koltunov et al. (2012a).
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Fig. 12. Test Scene 1 in central California used for initial experiments (see text in Section 3
for details).

3. Wildfire detection timeliness and reliability assessment using
California 2006 fire season data

3.1. Study Scene 1 in California and GOES image data

Our test scene that we called Scene 1 earlier in the paper includes
central and southern California and western Nevada and occupies near-
ly 700,000 km? (Fig. 12). This scene includes a range of ecosystems:
from semiarid shrublands, conifer dominated forests, annual grasslands,
and intensive agriculture to wetland ecosystems. This diversity leads to
different fire regimes and dynamics. Furthermore, our test scene is a
densely populated and well-monitored region, generally making it
very challenging for satellite detection to come before conventional
fire identification.

The GOES image time series available for this test spans the period
from June to October 2006. The Training mode (Section 2.2) of the
GOES-EFD algorithm used 640 frames acquired in June-August 2. The
static basis images included 29 basis images with <5% cloud cover
from July 15-August 2 and represented the 24-hour diurnal cycle at
48-min step, on average. Cloud cover in the selected basis images was
mapped in a fully automated way by the RCD algorithm, without the op-
tional interactive fine-tuning allowed in the Training mode. The Detec-
tion stage of operation was applied to 2852 frames acquired during
August 3-October 1 at variable time steps (~20 min on average). The
Detection stage image time series had two significant temporal gaps
due to failure of data ingest infrastructure: 8/23 10:30 through 8/28
13:00 Pacific Standard Time (PST); and 9/08 20:30 through 9/25
14:00 PST. The period August 3-October 1, excluding the data gaps,
will be referred to as the Detection period.

The initial validation experiments and analyses described in this sec-
tion were aimed at the following objectives:

1. Assess detection timeliness by GOES-EFD, with respect to conven-
tional reporting mechanisms and determine baseline false positive
rates. The timeliness and reliability of fire detection were evaluated
using the following metrics of performance:

a. relative detection latency of incidents with respect to their initial
report times from conventional sources,

b. estimated lower bound on the number of correctly detected wild-
fire incidents, and

c. estimated lower and upper bounds on the number of events that
are not wildfire incidents.

2. Compare GOES-EFD and temporally filtered WF-ABBA with respect
to detection timeliness and reliability under identical conditions of
application.

A meaningful comparison of an optimized operational algorithm
WEF-ABBA with an initial prototype version of GOES-EFD is not an entire-
ly trivial task not only due to different stages of their development and
intended users, but also due to a significant mismatch between the con-
ditions under which these methods were applied. Particularly, during
the test period, WF-ABBA was only applied to GOES imagery acquired
every 30 min, which contributes to delays in detection and reduces
false positives, while GOES-EFD is designed to process all available
frames. Therefore to accomplish both objectives, we applied GOES-
EFD algorithm at the Detection stage in two modes:

— “GOES-EFD Regular”, which is a normal operation mode that proc-
essed all 2852 available GOES inspection images; and

- “GOES-EFD 30 min” that processed images at half-hourly step as
WEF-ABBA (1494 images) and was thus suitable for comparing re-
sults across algorithms.

Furthermore, to facilitate a comparison with respect to incidents
(not pixels), WF-ABBA fire pixels were grouped into events using the
GOES-EFD Event Tracking algorithm described (Section 2.7) with the
control parameters that previously resulted in the best estimated per-
formance of WF-ABBA (Koltunov et al., 2012a). Finally, we ignored
low confidence detections of each algorithm. These included WE-
ABBA with a confidence flag of 5 (“low possibility fire”) and detections
of GOES-EFD with anomaly confidence -y < 3.5 (as defined by Eq. (6)).

3.2. Validation methodology and datasets

As we mentioned in Section 1.1, a methodology that is appropriate
for validation with respect to incident detection timeliness and reliabil-
ity is substantially different from the approach commonly used for ac-
tive fire product validation with coincident higher-resolution imagery
(e.g. Schroeder et al., 2008a, 2008b). This methodology combines
geospatial fire records from operational agencies and multitemporal
Landsat image analysis to identify new burn scars. The methodology
and the datasets we used are discussed in detail elsewhere (Koltunov
et al,, 2012a) and briefly summarized below.

We have preprocessed, cross-checked, and merged two wildfire
geodatabases for year 2006: a true fire perimeter polygon database
compiled by the California Department of Forestry and Fire Protection
(CAL FIRE) and point and polygon databases created by the Geospatial
Multi-Agency Coordination (GeoMAC) group. Both databases are
based on the incident report data from multiple U.S. state and federal
agencies, including CAL FIRE, USDA Forest Service, Bureau of Land Man-
agement, National Park Service, and other federal and local agencies and
departments. The fire incident records in the databases included, in par-
ticular, fire final size, initial report and final containment dates, and for
some incidents - the initial report hour. After excluding 18 co-occurring
(i.e. overlapping in space and time) incidents to avoid optimistic bias in
detection timeliness assessment (see Koltunov et al., 2012a), the test
sample included 25 fires that started during the Detection period and
burned >5 acres (2 ha) over the entire fire lifetime. The initial report
hour was recorded for 13 of these 25 incidents.

A fire incident was considered active at time t, if it was reported ear-
lier than t 4+ 3 h and was contained later than t — 48 h. In this way, we
attempted to account for possible delays in fire initial reporting and also
for the possibility of residual burning after the fire was deemed
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contained. Fires with unavailable initial report hour information were
assumed active starting 12 am the day they were reported.

Denote py the bounding box of the perimeter polygon for a recorded
true fire fy. To match pixels and events to true fires, we defined the
spatio-temporal correspondence rules in as follows:

« Adetected fire pixel candidate (x, t) centered at a spatial location x de-
tected in a frame acquired at detection time t matches fire fy, if and
only if fic is active at time t, and at least one of the following conditions
holds:

o x is within a buffer distance b, from the final fire perimeter polygon
Pk;

o x is within a buffer distance b, from the final fire perimeter polygon
Dk and fire fi is the closest active fire to the fire pixel (x, t).

« An event E matches fire fi, if at least one pixel assigned to E matches fi,
where b; = 5.6 km, which is an average linear size of a GOES 3.9-um
band pixel in north-south direction in the study area; and b, =
11.2 km. This two-buffer rule responds to the uncertainty or limited
accuracy of the information about fire actual start and end times. Be-
cause of this uncertainty, when a detected fire pixel coincides in
time and is spatially close to more than one actual incident, it is diffi-
cult to determine which one has been detected. In this case, using the
above two-buffer matching rule in addition to excluding co-occurring
incidents from the sample prevents mistaking detection of an older
active fire for early detection of a newer ignition.

The timeliness of detection for a given fire was evaluated using de-
tection latency that is offset by the time of initial report from conven-
tional sources. The relative latency is defined as difference between
the times of the first alarm by GOES-EFD and the recorded initial report
time. The latency did not account for GOES data delivery (under a min-
ute) and processing time (under 3 min). All 25 available fires were used
to estimate the fraction of eventually detected incidents. To estimate de-
tection latency down to hours and minutes we used 13 wildfires with
recorded report hour. Other fires that were active during the detection
period but started before that period were used to avoid mislabeling
pixels as false positives. These positives were considered neither useful
nor harmful with respect to the objectives of early fire detection (Table
1) and therefore they did not count toward EFD performance metrics.

Some of the unmatched and therefore deemed false positive events
may actually represent wildfires omitted in the incident report
geodatabase we used. Thus, the fraction of unmatched events repre-
sents an upper bound on the false alarms. To estimate a lower bound
on false alarms, the unmatched events were additionally cross-checked
against new burn scars in Landsat imagery. The methods and datasets
used to detect new burns are further described in Koltunov et al.
(2012a). The unmatched events for which no new burns were found
were considered confirmed false positives. However, because the
geodatabases we used include only wildland fires, these confirmed
false positives may include agricultural, residential, and industrial fires
of significant intensity. If a new wildfire burn scar appeared in Landsat
image following the unmatched geostationary detection, then the
event was considered as a possible wildfire omission in the database,
i.e. a possible true positive. Subtracting the estimated number of possi-
ble true positives from the number of unmatched events provides a
lower bound for the number of false alarms (Koltunov et al., 2012a).

3.3. Results

Fig. 13 shows the empirical cumulative distribution functions (c.d.f.)
of detection latency for GOES-EFD Regular, GOES-EFD 30 min, and the
temporally filtered WF-ABBA. By definition, the c.d.f. value for a relative
latency AT represents the percent of fires for which the time difference

between the first satellite detection and the recorded initial report is
less than AT minutes.

Also, for presentation purposes, we defined four non-exclusive
groups of detected fire incidents, based on detection timeliness:

1. Eventually detected fires.

. Detected in <1 h after the initial report.
. Detected in <30 min after the initial report.
. Detected before the initial report.

AW N

The statistics for these groups are presented in Table 2, which also
includes interval estimates for false positive new incidents for each
algorithm.

As seen from these data, in the GOES-EFD Regular mode, in which all
available GOES images were processed, the algorithm eventually detect-
ed 60% of 25 fires. Nearly 77% of the 13 fires with recorded report hour
were detected within the first hour, 61% in 30 min, and 31% before they
were reported by the conventional sources, with the total of 142 min re-
duction of fire incident latency for these incidents (11 min, on average).
Based on the wildfire records and Google Earth images, the group of 10
undetected fires consisted of 5 grass/pasture fires, 3 understory fires, 1
overstory fire in a sparse forest-shrub mixture on a steep north-facing
slope, and 1 undetermined. Five of these omitted fires were very small
incidents that burned under 6 ha and five were contained the day
they started.

Furthermore, a comparison with WF-ABBA using Fig. 13 and Table 2
demonstrates the potential for GOES-EFD to improve timeliness of the
initial detection with respect to existing capabilities. Indeed, when
both GOES-EFD and WF-ABBA were applied at 30-min step, the number
of new ignition commission errors (bottom row of Table 2) by GOES-
EFD was about 25% fewer, on average. In addition, GOES-EFD tends to
initially identify wildfires earlier, as apparent from the difference in
the corresponding latency c.d.f. curves in Fig. 13, and from comparing
the corresponding rows in Table 2. For example, GOES-EFD detects
28% more incidents within the first hour and more than twice as
many - within first 30 min. When the false positive new ignitions are
nearly the same (cf. columns 2 and 4 in Table 2), GOES-EFD provides
more than triple reduction of total latency time. The 12 fires missed
by GOES-EFD when run at 30 min step were also missed by WF-ABBA;
11 fires were detected by both algorithms, 2 by GOES-EFD only (these
fires were contained within 24 h), and 0 solely by WF-ABBA.
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Fig. 13. A comparison of wildfire detection timeliness for two variants of GOES-EFD
version 0.4 and temporally filtered WF-ABBA version 6.1 using a cumulative distribution
function (c.d.f.) of detection latency relative to documented times of initial reports from
conventional sources for 13 California wildfires occurred during August 3-October 1,
2006. Incident report times were compiled from interagency wildfire data provided by
California Department of Forestry and Fire Protection (CAL FIRE) and US Geological
Survey (USGS) GeoMac program.



450 A. Koltunov et al. / Remote Sensing of Environment 184 (2016) 436-453

Table 2

Summary of performance with respect to new ignition detection for two variants of GOES-
EFD version 0.4 and temporally filtered WF-ABBA version 6.1 for 25 California Scene 1
(Section 3, Fig. 12) wildfires occurred during August 3-October 1, 2006. The timeliness
statistics are based on the incident report times compiled from interagency wildfire re-
cords provided by California Department of Forestry and Fire Protection (CAL FIRE) and
US Geological Survey (USGS) GeoMac program. The false positive intervals in the bottom
row were derived by combining wildfire records and bi-temporal Landsat image analysis
(Section 3.2). The false positive events (last row) may include agricultural, residential, and
industrial fires.

Detected wildfire incidents EFD EFD30 WF-ABBA
regular  min 30 min

Eventually 15/25 13/25 11/25

In<1h 10/13 9/13 7/13

In <30 min 8/13 5/13 2/13

Before reported 4/13 3/13 2/13

Total latency reduction for 13 wildfires with 142 min 75 min 45 min

recorded report hour

False (non-wildfire) new events 38to61 28to41 39to55

4. Discussion and concluding remarks

First responders and fire managers have long requested a low-cost
and reliable operational capability to detect wildfire ignitions soon
after start. Although GOES satellites have been operationally monitoring
active fires for over a decade and provided useful input to the wildfire
management community, hot spot detections from GOES have not sig-
nificantly contributed to reducing wildfire latency before the initial
identification in North America, except in remote areas. This could
lead one to conclude that GOES, with its large pixel footprint, is not use-
ful for early warning. Yet the capabilities of satellites and sensors are not
the only determining factors for detecting ignitions — algorithms are
also essential. The only NOAA operational wildfire algorithm for geosta-
tionary satellites, WF-ABBA, was designed and optimized for the task of
monitoring and characterizing active fires. This type of wildfire remote
sensing is most appropriate for user questions and applications for
which timeliness of initial detection is a low priority. Earliest possible
identification of new ignitions represents a different type of wildfire re-
mote sensing. It has different target objects and performance metrics,
and thus can be better accomplished by a specialized algorithm focusing
on subtle anomalies and first signs of change from “no-fire” to “fire”
class.

Toward this goal, we have presented a prototype version of the GOES
Early Fire Detection system algorithm (Version 0.4), which is a part of
our ongoing effort toward developing a low-cost and reliable operation-
al capability for systematic rapid detection and initial confirmation of
new wildfire ignitions. The GOES-EFD algorithm is focusing on detecting
subtle changes, using recently developed multitemporal and contextual
tests. The multitemporal tests are based on the Dynamic Detection
Model approach that compensates the observed background signal for
changes caused by dynamic environment. This approach is truly generic
and sensor-independent (Koltunov et al., 2009). For example, in addi-
tion to the current GOES, it has been effective at detecting thermal
anomalies in MODIS data (Koltunov and Ustin, 2007) and subtle ecosys-
tem disturbances in Landsat image time series with the Ecosystem Dis-
turbance and Recovery Tracker (eDaRT, Koltunov and Ramirez, 2012,
2014; Koltunov et al.,, 2015). Thus, we expect the method to be highly
portable and, with modest modifications, applicable not only to the up-
coming GOES-R ABI imagery, but also to other current and future Earth-
observing satellite sensors.

Algorithms developed for near real-time operations should not be
prohibitively expensive computationally. The current sub-optimal, re-
search-mode, and serial MATLAB code implementing GOES-EFD proc-
essed Scene 1 in Fig. 12 at an average rate of 2.5 min per frame on a
modest desktop computer (2.9 GHz dual-core CPU; 8 GB RAM). With
the proposed system designed to process large areas by independent
parts (scenes), and given the growing operational availability of

governmental and private distributed computing infrastructures, we
project that available computational power will not be a major opera-
tional limitation but leave room for developing significantly more com-
puter-intensive versions of the algorithm. Furthermore, because GOES-
EFD is not focused or required to provide consistent global coverage, like
WEF-ABBA, it can be deployed only where operationally necessary, e.g.
where societal risks associated with unnoticed ignitions are significant.

Although more research is needed to comprehensively quantify the
differences in detection between the algorithms, in our initial experi-
ments GOES-EFD detected new ignitions significantly earlier than WF-
ABBA and with fewer false alarms. This indicates that GOES-EFD has
the potential to enhance the geostationary information about ignitions
and complement WF-ABBA monitoring capabilities during initial
phase of burning. Much of this improvement stems from GOES-EFD
using the scene temporal change analysis as the core approach. Al-
though in our experiment WF-ABBA did not detect any fires that were
not detected by GOES-EFD, there are situations in which WF-ABBA
may be able to detect fires missed by our algorithm. For example, igni-
tions followed by undetected clouds can result in a lack of detections
in two consecutive images and thus will be rejected by GOES-EFD tem-
poral filter that currently requires detection in two consecutive images;
however this is not a problem for WF-ABBA that uses a different defini-
tion of temporal consistency in the filtered product. Also, we anticipate
that in highly cloudy conditions the multitemporal detectors relying on
registration, which in turn relies on cloud detection, may not be effec-
tive, and therefore a more stable contextual technique can result in ear-
lier detection. To have a better insight into relative strengths and
weaknesses of the two geostationary wildfire algorithms, new experi-
ments need to be performed in the future, including more advanced
versions of GOES-EFD and more advanced versions of WF-ABBA, such
as version 6.5.

Our first tests of the GOES-EFD have provided experimental evi-
dence that even in the era of mobile communication and in densely
populated areas of the U.S., such as the State of California, geostationary
surveillance could still be a valuable early warning tool - despite the low
spatial resolution of GOES Imager and other factors complicating satel-
lite detection. Besides occasionally providing the first alarm, thus reduc-
ing the risk of out-of-control fire growth, most incidents can be detected
by the GOES-EFD system within the first half-hour, which could be a
valuable contribution to tactical situational awareness and operation
decision making, leading to more optimal resource allocation. These re-
sults also indicate that the earliest alarms by GOES-EFD could become
routine in less monitored areas. Omitted fires in our experiment were
predominantly short-lived grassland or small-scale understory fires
that burned up to 5 ha.

Presently, GOES-EFD is a conceptual research prototype algorithm
that uses only two thermal channels and should be viewed as a starting
point for a more systematic and greater-scale development, optimiza-
tion, and validation work. Nearly every module of the algorithm has
the need and plenty of room for improvement, as we often noted
above in the sections describing specific modules. Below, we briefly
mention some additional research themes and potential limitations
that need to be addressed:

- Optimal partition of a GOES full scan area into GOES-EFD scenes.

- Detection sensitivity in radiance space versus brightness tempera-
ture space.

- The GOES-EFD design in which the Training and Detection stages are
separated in time allows for these stages to have different degrees of
automation. The Detection stage algorithms are fully automatic,
which is the only option compatible with real-time operation. In
contrast, the Training stage for a given scene is performed relatively
rarely (e.g. once a year), thus making it feasible to conduct brief in-
teractive quality control (QC) procedures as an acceptable trade-off
between detection performance and complete automation of train-
ing. In the presented experiment, one person invested several
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hours reviewing the static basis mage candidates and replaced a few,
based on cloud detection and image registration quality. Examples of
other quality vs. automation choices include: review and correct er-
rors in cloud detection or registration for the chosen basis frames; or
use a fully automatic algorithm to select optimal basis images
(Koltunov and Ustin, 2007), thus potentially simplifying QC; or both.

- The GOES-EFD algorithm is not aware of potential active fires in the
static basis images, and therefore the algorithm performance in
these pixels can be low. A way to address this issue is to use existing
operational active fire products from MODIS, VIIRS, and or GOES to
mask out confidently detected past fires.

- Regions with frequent high cloud cover represent a significant chal-
lenge to GOES-EFD. For example, to start processing an inspection
image GOES-EFD needs the entire scene to be available, which can
be a limitation in high cloud cover conditions where a pixelwise
method, like WF-ABBA is fully applicable. Also in these conditions,
the most effective, multitemporal cloud detection method loses ac-
curacy directly, i.e. due to an insufficient number of clear pixels for
background estimation, and indirectly, due to less accurate image
registration.

- Currently, fire detection near water bodies is limited by combined
effect of the more aggressive cloud detection over water pixels and
more stringent requirements from a near-cloud anomaly to be
flagged as fire.

- While the false positive rates were evaluated in a relatively large
sample in our validation experiment (40 days, 2852 images), only
a limited number of incidents started during the test period and
were suitable for assessing detection timeliness (13 fires) and true
positive rates (25 fires). Hence, many factors influencing the system
performance cannot be evaluated by this paper. It is reasonable to
assume that system performance will vary depending on geograph-
ical area and season. Obviously, the algorithm needs to be tested
over larger areas and more extended periods to help better under-
stand these factors and guide its further development.

The central focus of ongoing improvements is placed on reducing
false positives. As we discussed in Section 1.1, the EFD target objects (ig-
nitions) are extremely rare, compared to the number of fire pixels - the
target objects for an active fire monitoring system. Therefore, a method
that is reliable at the GOES pixel level (e.g. WF-ABBA) would dramatical-
ly loose relative accuracy if applied to early detect ignitions. Although
improving relative to WF-ABBA, our false positive rates for new igni-
tions are currently far from operationally acceptable rates, especially if
these detections were to trigger critical management decisions auto-
matically, without independent verification and combination with
other available situational evidence. Currently, the major known types
of false positives are due to undetected cloud pixels, imperfect image
registration, especially in high cloud cover conditions, systematic
noise in GOES Images (scan line/cycle shift), among other reasons.
Many of these false detections have distinctive spatial-temporal charac-
teristics in GOES imagery, and thus potentially, they can be identified by
more advanced versions of the algorithm.

Although we believe algorithm improvement is necessary and at-
tainable, we also recognize that with subtle anomalies sought in real
time, omission and commission errors will continue to be an issue, as
with any other satellite remote sensing product at low spatial resolution
and a very low cost. Therefore, we emphasize again that alerts from
GOES should not be reasonably expected to reach the reliability levels
that justify immediately dispatching a standard initial attack team (en-
gines, dozers, crew, airborne assets, etc.). Instead, the roadmap toward
operational capacity should include development of appropriate proto-
cols for operational response to the EFD alerts, including verification,
initiating an initial attack, elevating the response level, planning re-
source allocation, acquiring or awaiting for additional information, etc.
These protocols should be developed in close coordination with end

user partners and take into account their decision making process and
spatial/temporal distributions of the risks associated with the potential
actions and inaction. To this end, it is also important to continue and ex-
pand retrospective validation of the algorithm across different seasons
and geographic regions, so that the product quality assurance informa-
tion will support its informed and sustained use. The combination of
satellite alarms, regular retrospective evaluations, and flexible standard
response protocols will strengthen the proactive, GOES-aided approach
to fire identification over large territories.

4.1. Looking forward to the GOES-R era

In late 2016, a new generation of NOAA geostationary satellites,
GOES-R, is scheduled to be launched, presenting a greater opportuni-
ty for GOES-EFD to contribute to wildfire disaster reduction. Indeed,
compared to the current GOES, the GOES-R Advanced Baseline Imag-
er will provide a three-fold increase in scan speed, four times higher
spatial resolution, additional spectral bands, and more accurate pixel
geolocation. With these improvements, wildfires will produce much
stronger and more frequent signals, thus boosting detection timeli-
ness. In addition, some types of false alarms will be easier to elimi-
nate using the higher temporal resolution, as long as the range of
temporal autocorrelation of the false alarm source signal at a given
pixel is shorter than the time interval between images. For example,
it is easy to show that the probability of a false alarm due to tempo-
rally independent noise reduces exponentially with frame frequen-
cy. However, persistent or “slow-moving” sources of false
detections in GOES (e.g. reflective cloud edges) will tend to be even
more persistent at a GOES-R ABI pixel level. Similarly, in our experi-
ment with current GOES, higher false positive rates were observed
when frequency of observation increased. Thus, early fire detection
from GOES-R will likely require some algorithm adjustment and
optimization.

Another potential difficulty with early fire detection from GOES-R is
that, as we mentioned in Section 2.3.1, the ABI images will be distribut-
ed to users in real time only after data remapping into a fixed coordinate
system. Because the remapping process involves spatial interpolation,
the fire signal can sometimes be reduced and smeared across neighbor-
ing pixels, thus effectively increasing their footprint size. Therefore, if
image navigation or registration for a specific scene needs to be addi-
tionally refined (as can be projected onward based on the GOES I-M
and N-P series operation history), this will result in a second interpola-
tion smearing the signal even further. If the original Level-0 data and the
image navigation information were available too, all these losses of in-
formation could be avoided, and the timeliness and accuracy of geosta-
tionary wildfire detection would significantly increase. Unfortunately,
at the start of satellite operations, and potentially forever after, data pro-
cessing algorithms that benefit society by tracking subpixel anomalies,
such as WF-ABBA and GOES-EFD, will not be provided real-time access
to the original, non-interpolated, Level-0 samples.

Even though neither GOES nor GOES-R is optimal for early wildfire
detection, there is no near-future alternative to relying on the NOAA op-
erational geostationary satellites for early wildfire warning in the West-
ern hemisphere. This is because spatial and temporal resolutions of
sensors are not the only factors determining the operational value of
the satellite information technology. The operational long-term conti-
nuity and reliability are also critical. GOES and GOES-R series missions
do provide these advantages, owing to the NOAA open-data policy, de-
cades of excellence in science and engineering support through the
agency Cooperative Institutes and partners, and last but not least, the
global importance of these missions for applications other than wildfire
response, e.g. weather monitoring and other critical mandates. All of
that reduces cost of operational wildfire detection. These advantages,
however, can be readily complemented by narrower-focus, incidental,
or specially tasked missions. Looking forward, we envisage early wild-
fire warning routinely provided using data from a constellation of
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satellites that have different combinations of sensitivity, imaging fre-
quency, detection reliability, long-term and short term data availability,
and operational redundancy. This multi-satellite data source ensemble
will augment other means of wildfire identification, including tradition-
al ground and airborne observations.

4.2. Conclusion

Every year catastrophic wildfires in the United States make news
headlines by taking lives, endangering public safety and health, con-
suming natural resources, and incurring increasingly unsustainable so-
cietal costs, only a small fraction of which are the billions of dollars
annually spent on suppression. Not every incident can be detected
early from GOES. Not every early detected incident can be contained.
Yet it is also beyond argument, that every minute of lead time provided
by earlier detection reduces the risks due to latent/unconfirmed igni-
tions and untimely/uninformed decision making by the first responders
and other operational authorities. Over time, these risks tend to trans-
late into losses that are potentially preventable by GOES-EFD, a low-
cost systematic fire discovery tool, the initial development of which
was discussed in this paper.

These points and initial results we presented argue for a continuing
effort to further develop and comprehensively test the GOES Early Fire
Detection system within the operational framework of fire manage-
ment agencies. The resulting regionally optimized ignition products
from GOES-EFD will complement the existing fire identification
methods and the global monitoring-characterization capabilities pro-
vided by the suite of active fire remote sensing algorithms from differ-
ent platforms.
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