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On the Shrinkage and
Stiffening of a Cellulose
Sponge Upon Drying
Everyone can observe the peculiar effect of water on a sponge: upon drying, a sponge
shrinks and stiffens; it swells and softens upon wetting. In this work, we aim to explain
and model this behavior by using the Biot–Coussy poromechanical framework. We
measure the volume and the bulk modulus of sponges at different water contents. Upon
drying, the volume of the sponge decreases by more than half and its bulk modulus
increases by almost two orders of magnitude. We develop a partially saturated micropor-
omechanical model of the sponge undergoing finite transformations. The model compares
well with the experimental data. We show that about half of the stiffening of the sponge
upon drying is due to geometrical nonlinearities induced by a closing of the pores under
the action of capillary pressure. The other half of the stiffening can be explained by the
nonlinear elastic properties of the cellulose material itself. [DOI: 10.1115/1.4007906]

1 Introduction

A kitchen sponge is a common object of daily use. Neverthe-
less, its behavior can be surprising: a wet sponge left overnight
beside the sink will be shrunken and hard in the morning. When
immersed in water, the same sponge will swell back and soften
tremendously. Such a peculiar response to an intake of water is
also observed for other natural or man-made materials: soil, con-
crete, bread, etc.

Most kitchen sponges are made of cellulose. Cellulose is the
most abundant organic compound on Earth [1]. It is a naturally
occurring polymer, which is the main constituent of plants. In
industry, cellulose is mostly used to produce paper or paperboard.

Cellulose is a polysaccharide composed of b-D-glucopyranose
units linked by glycosidic bonds [2]. The degree of polymeriza-
tion of cellulose found in nature can be greater than ten thousand
[3]. Despite decades of intensive research, the exact structure of
cellulose still remains unresolved. Cellulose can exist in more or
less crystalline forms and at least six different polymorphs of its
crystalline structure have already been identified [1]. Due to the
presence of hydroxyl groups and oxygen atoms, there exists a
significant amount of hydrogen bonds within a cellulose chain,
and between neighboring chains: those hydrogen bonds play a
significant role in the structure and on the mechanical properties
of cellulosic materials [4–7].

When immersed in water, cellulose swells [8]. This swelling
depends on the chemistry of the surrounding fluid [9–11]. The sur-
rounding liquid also has an effect on the mechanical properties of
the cellulose [12]. In the presence of moisture, the intake of water
depends on the structure of the hydrogen bonds [13]. Moisture has
an effect on the mechanical properties of cellulose [14–16].

At the structural level, sponge is a porous material. In a manner
similar to any porous material, upon drying, water will leave the
pores and the material will become partially saturated. For surface
energy reasons (for an in-depth explanation, see, for instance,
Ref. [17]), at equilibrium at a given relative humidity, the larger
pores will be empty (full of air), while the smaller pores will still
be saturated with liquid water. The lower the relative humidity,
the smaller the critical radius below which pores remain saturated.
Liquid water can be in thermodynamic equilibrium with air with a

relative humidity below 100% only if the pressure in the liquid
water drops below that of the surrounding air. The drier the air,
the greater the drop in the pressure of the liquid water. This
depressed water will pull on the saturated pores and, thus, lead to
a global shrinkage of the material. The same mechanism contrib-
utes, for instance, to the drying shrinkage of concrete [18]. In this
work, we aim to determine whether the same mechanism can
explain why a sponge shrinks and stiffens upon drying. In other
words, can the mechanical behavior of a cellulose sponge upon
drying be explained and modeled by considering it as a regular
partially saturated porous solid?

Our study begins with an experimental campaign of measure-
ments of the shrinkage and stiffening of a cellulose sponge at
several stages of the drying process. We then develop a partially
saturated poromechanical model of a sponge in finite transforma-
tions. In a later section, the developed model is compared with the
experimental data and the results are discussed.

2 Experimental Study of the Effect of Water on the

Volume and on the Elastic Properties of a Sponge

In this section, we present the experimental study we performed
in order to characterize the effect of drying on the volume and the
elastic properties of a cellulose sponge.

2.1 Materials and Methods. The experimental study was
performed on four parallelepipedic Nicols heavy-duty sponges.
Their dry mass, measured after oven drying, was 23:7g 6 5:6%.
Their volume upon full wetting was 744cm3 6 2:3%. The small
coefficients of variation suggest that the four sponges were similar.

We performed measurements of the volume and elastic proper-
ties at various drying stages. The sponges were first completely
wet. After each measurement, we dried them with a hairdryer. We
then hermetically wrapped them with silver foil and waited half a
day so that the remaining water diffused and was uniformly dis-
tributed in the sponge.

At each stage of the drying process, the mass of the sponges
was measured with a balance with an accuracy of 0.01 g. Upon
drying, the sponges remained reasonably parallelepipedic: their
dimensions, and thus their volume, were measured with a caliper.
Then the bulk modulus of the sponges was measured. In order
to do so, we performed compression tests in each of the three
principal directions of the sponge with an MTS tensile/compres-
sion machine. A ramp displacement was applied at a velocity of

1Corresponding author.
Manuscript received December 24, 2010; final manuscript received April 11,

2012; accepted manuscript posted October 25, 2012; published online February 6,
2013. Assoc. Editor: Younane Abousleiman.

Journal of Applied Mechanics MARCH 2013, Vol. 80 / 020908-1Copyright VC 2013 by ASME

Downloaded From: http://energyresources.asmedigitalcollection.asme.org/ on 07/16/2014 Terms of Use: http://asme.org/terms



5 mm.min�1. The force was measured with an accuracy of 0.01 N.
The acquisition rate was 10 Hz. Each compression test provided
the Young’s modulus Ei in the ith principal direction of the
sponge. The bulk modulus K of the sponge was then calculated by
using

K�1 ¼ ð1� 2�Þ
X

E�1
i (1)

where � is the Poisson’s ratio and where we assumed �¼ 0.25.
This assumed value for � was checked a posteriori (see Sec. 4.2).

2.2 Results. Upon drying, the sponge lost water and its mass
decreased. We display in Fig. 1 the volume V of the sponge versus
its mass M. As is intuitively expected, the drier the sponge was,
the more it shrank. From a totally wet state to an asymptotically
dry state, the volume of the sponge decreased by more than 50%.

Different stages can clearly be distinguished. At high
water contents (M> 70 g), the volume of the sponge was mostly
insensitive to the water content. At medium water contents
(30 g<M< 70 g), the volume started decreasing more and more
significantly with a loss of water. At the lowest water contents
(M< 30 g), the volume decreased very significantly with addi-
tional drying and the volume of the sponge scaled almost linearly
with its mass.

We display in Figs. 2 and 3 the bulk modulus K of the sponge
versus its mass M and its volume V, respectively. From the softest
state to the stiffest state, the bulk modulus of the sponge increased
by about one and a half orders of magnitude. Surprisingly, at high
water contents (M> 70 g), the sponge became softer upon drying.
This somewhat counterintuitive result might be an experimental
artifact: at such high saturations, some water might be squeezed
out of the sponge during the compression test. It might be that,
because of the duration of this consolidation process, the compres-
sion experiments were not performed in fully drained conditions;
thus providing higher apparent elastic properties. At medium
water contents (30 g<M< 70 g), the bulk modulus increased
slightly upon drying. At the lowest water contents (M< 30 g), the
bulk modulus increased more significantly with additional drying.

3 Derivation of a Poromechanical Model for a Sponge

We aim to develop a model that captures the response (the vari-
ation of the volume and the bulk modulus) of the cellulose sponge
to an intake or to a loss of water. Since a sponge is porous, we
propose to develop the model in the Biot–Coussy poromechanical
framework [17,19]. To capture the fact that some pores are satu-
rated with liquid water while others are full of air, the model will
be partially saturated. Since the deformations induced by drying

can be tremendous, the model will be derived in finite transforma-
tions. We will assume, however, that the solid matrix of the
sponge (the cellulose material itself) behaves in a linear elastic
manner.

3.1 Basic Poroelastic Equations. The development of the
model starts from the usual partially saturated poroelastic state
equations [17]

dr ¼ Kde� bLdpL � bGdpG (2)

duL ¼ bLdeþ dpL

NLL
þ dpG

NLG
(3)

duG ¼ bGdeþ dpL

NLG
þ dpG

NGG
(4)

where r is the confining stress, e is the volumetric strain, pL is the
pressure of the liquid phase (water), pG is the pressure of the gas
phase (air), patm is the reference atmospheric pressure, uL is the
variation of the porosity occupied by the liquid phase, uG is the
variation of the porosity occupied by the gas phase, bL and bG are
the Biot coefficients, and NLL, NLG, and NGG are the Biot moduli.
The state of reference is when the pore space is at atmospheric
pressure. In the preceding state equations, all variables are
Lagrangian variables, i.e., are defined with respect to the state
of reference. There exist classical relations on the poroelastic
parameters [17]

Fig. 1 Volume V of the sponge versus its mass M. Different
symbols represent different sponges. Fig. 2 Bulk modulus K of the sponge versus its mass M.

Different symbols represent different sponges.

Fig. 3 Bulk modulus K of the sponge versus its volume V.
Different symbols represent different sponges.
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bL þ bG ¼ 1� K

KS
(5)

1

NLL
þ 1

NLG
¼ bL � /L

KS
(6)

1

NGG
þ 1

NLG
¼ bG � /G

KS
(7)

where KS is the bulk modulus of the solid matrix of the sponge
(the cellulose material itself). Here, KS is assumed to be constant
and /L and /G are the liquid and gas porosities, respectively.
Those porosities are Eulerian variables, i.e., variables which are
defined with respect to the actual state. We can also introduce
a total Eulerian porosity /. Starting from the definition of the
Eulerian porosity / ¼ VP=V (where VP is the actual porous vol-
ume) and differentiating it, one can link the Eulerian porosity to
the Lagrangian one

d/ ¼ du� /de (8)

The preceding formula not only holds for the Eulerian total
porosity /, but also for the Eulerian gas porosity /G and for the
Eulerian liquid porosity /L.

Upon drying, the larger pores will empty first. At a given stage
of the drying process, the larger pores will be full of gas, while
the smaller pores will be full of liquid. In order to characterize the
saturation, we introduce a Lagrangian liquid saturation SL, defined
as the pore volume fraction which the saturated pores were occu-
pying in the undeformed state of reference.

We assume that there exists a mesoscopic scale made up of the
pores full of liquid and of the solid matrix (see Fig. 4). The meso-
scopic bulk and shear moduli at this mesoscopic scale are KM and
GM, respectively. The sponge is a double-porosity medium and, if
we impose a zero pore pressure in the pores full of liquid (pL¼ 0
in the state equations (2)–(4), we should retrieve regular poroelas-
ticity, from which we obtain the following mesoscopic relations

bG ¼ 1� K

KM
(9)

1

NGG
¼ bG � /G

KM
(10)

3.2 Shrinkage Properties. We consider a drying sponge
subjected to no external stress (r¼ 0). Upon drying, the capillary
pressure pc ¼ pG � pL will increase. We aim to calculate how the
sponge shrinks.

Since the gas pressure remains constant and equal to the atmos-
pheric one, the state equations (2)–(4) can be rewritten as

0 ¼ Kdeþ bLdpc (11)

duL ¼ bLde� dpc

NLL
(12)

duG ¼ bGde� dpc

NLG
(13)

As expected, a buildup of capillary pressure leads to a shrinkage
of the sponge.

We aim to compute how the mass and volume are linked. We
increase the capillary pressure pc ¼ pG � pL at a given Lagrangian
liquid saturation SL (and, therefore, at a given Lagrangian gas sat-
uration SG ¼ 1� SL). Equation (8), applied to the gas porosity
and combined with Eqs. (11) and (13), yields

d/G ¼ duG � /Gde ¼ bGde� 1

NLG
dpc � /Gde (14)

¼ �bG �
K

NLGbL
þ /G

� �
bL

K
dpc (15)

which, with the help of the poroelastic relations (5), (7), (9), and
(10), can be rewritten as

d/G ¼ 0 (16)

In the absence of any capillary pressure, the sponge is in its
reference state and /G ¼ /G0 ¼ /0ð1� SLÞ. Therefore, an inte-
gration of the preceding equation yields

/G ¼ /G0 ¼ /0ð1� SLÞ (17)

Independently of the capillary pressure, if the Lagrangian liquid
saturation remains constant, the Eulerian gas porosity remains
constant.

In contrast, Eq. (8), applied to the liquid porosity and combined
with Eqs. (11) and (12), yields how the Eulerian liquid porosity
varies upon drying

d/L ¼ duL � /Lde ¼ � b2
L

K
� bL/L

K
þ 1

NLL

� �
dpc (18)

¼ � bL � /L

KM
þ 1

KM
� 1

KS

� �
ðbG � /GÞ

� �
dpc (19)

¼ � 1� /L � /G

KM
� 1� /G

KS

� �
dpc (20)

We use classical micromechanical relations adapted to porous
materials with spherical voids (the Mori–Tanaka scheme) to link
the mesoscopic bulk modulus with the microporosity and the solid
matrix elastic properties [20]. Noting that the liquid porosity, with
respect to the mesoscopic volume, is /L=ð1� /GÞ, we find [20]

KM ¼ KS
4GSð1� /L=ð1� /GÞÞ

3KSð/L=ð1� /GÞÞ þ 4GS
(21)

¼ 4GS

3

1� /L � /G

/L þ 4GSð1� /GÞ=3KS
(22)

so that, eventually, Eq. (20) can be rewritten as

d/L ¼ �
3/L

4GS
dpc (23)

which can readily be integrated

/L ¼ SL/0e�3pc=4GS (24)Fig. 4 Two-scale porosity model for a sponge
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The volume strain can be expressed from Eq. (11)

de ¼ � bL

K
dpc ¼

4GS

3/L

bL

K
d/L (25)

¼ 1þ 4GS

3KS

� �
d/L

1� /G � /L

(26)

Recalling that /G is constant (see Eq. (17)), the previous equa-
tion can readily be integrated

V ¼ V0

1� /0ð1� SLÞ � /L

1� /0

� �� 1þ4GS=3KSð Þ
(27)

where V0 is the volume of the sponge in the reference (wet) state,
or, equivalently

/L ¼ 1� /0ð1� SLÞ � ð1� /0Þ
V

V0

� ��ð1=ð1þ4GS=3KSÞÞ
(28)

Finally, we can explicitly link the volume V of the sponge to its
mass M. The mass of the sponge is the sum of its solid mass MS

and of the mass of water it contains

M ¼ MS þ qwV/L ¼ MS þ qwð1� /0ð1� SLÞÞ V � cVa½ � (29)

where

c ¼ 1� /0

1� /0ð1� SLÞ
V

1=ð1þ4GS=3KSÞ
0 (30)

a ¼ 1

1þ 3KS=4GS
(31)

3.3 Stiffening Properties. We now aim to calculate how the
sponge stiffens upon drying. In order to do so, we will use micro-
mechanical relations which enable us to link the macroscopic
moduli (Kmac, Gmac) to the microscopic ones (Kmic, Gmic) through
the porosity ~/ of the medium in the case of spherical pores (the
Mori–Tanaka scheme) [20]

Kmac ¼ Kmic 4ð1� ~/ÞGmic

3 ~/Kmic þ 4Gmic
(32)

Gmac ¼ Gmic ð1� ~/Þð9Kmic þ 8GmicÞ

9Kmic 1þ 2 ~/
3

 !
þ 8Gmic 1þ 3 ~/

2

 ! (33)

The homogenization of the mechanical properties of the sponge
is performed in two steps. First, the mesoscopic moduli KM

and GM are linked to the solid matrix properties KS and GS by
considering Kmac ¼ KM, Gmac ¼ GM, Kmic ¼ KS, Gmic ¼ GS and
~/ ¼ /L=ð1� /GÞ in Eqs. (32) and (33)

KM ¼ KS
4ð1� /G0 � /LÞGS

3/LKS þ 4ð1� /G0ÞGS
(34)

GM ¼ GS
ð1� /G0 � /LÞð9KS þ 8GSÞ

9KSð1� /G0 þ 2/L=3Þ þ 8GSð1� /G0 þ 3/L=2Þ
(35)

The macroscopic bulk modulus K of the sponge is then
calculated by considering Kmac¼K, Kmic¼KM, Gmic¼GM, and
/¼/G in Eq. (32)

K ¼ ð1� /G0ÞKM

1þ 3/G0KM=4GM
(36)

where

KM

GM
¼ 4KS

9KS þ 8GS

9KS 1� /G0 þ
2/L

3

� �
þ 8GS 1� /G0 þ

3/L

2

� �
3/LKS þ 4ð1� /G0ÞGS

(37)

By knowing the elastic properties of the solid matrix, the gas
porosity (from Eq. (17)), and the liquid porosity (from Eq. (28)),
the preceding equations enable us to calculate the macroscopic
bulk modulus K of the sponge.

4 Validation of the Poromechanical Model With the

Experimental Results

We now aim to validate the poromechanical model developed
in Sec. 3 with the experimental results obtained in Sec. 2. The val-
idation is performed in two steps. First, the poromechanical model
is calibrated on the shrinkage data (see Fig. 1). Then the calibrated
poromechanical model is compared with the stiffening data (see
Fig. 2).

4.1 Shrinkage Properties. The poromechanical model gives
us access to the shrinkage behavior of the sponge. Equation (27)
shows that the mass M of the sponge depends on its dry mass MS,
on its volume V, on its wet volume V0, on the mass density qw of
water, on the Lagrangian liquid saturation SL, and on an elastic
property KS/GS. The dry mass of the sponge is known
(MS¼ 23.7 g; see Sec. 2), as are also known its wet volume
(V0 ¼ 744 cm3; see Sec. 2) and the mass density of water
(qw¼ 1000 kg/m3). Physics tells us that the Lagrangian liquid
saturation depends on the capillary pressure [17] or, equivalently,
on the volume of the sponge.

Equation (29) was fitted to the experimental data. The best fit is
displayed in Fig. 5. This best fit was obtained for /0 ¼ 98:2%, for
a diverging elastic property KS=GS ! þ1, and for a given func-
tion SLðVÞ. The fact that /0 was nearly equal to unity shows that a
sponge is mostly made of voids, which explains why a sponge can
suck up so much water. The fact that KS/GS diverged means that
the solid matrix of the sponge can be considered as incompressi-
ble. In such a case, Eqs. (27) and (29) simplify to

V ¼ ð1� /0ÞV0

1� /0ð1� SLÞ � /L

(38)

Fig. 5 Volume V of the sponge versus its dimensionless mass
M/MS

020908-4 / Vol. 80, MARCH 2013 Transactions of the ASME

Downloaded From: http://energyresources.asmedigitalcollection.asme.org/ on 07/16/2014 Terms of Use: http://asme.org/terms



M ¼ MS þ qw ð1� /0ð1� SLÞÞV � ð1� /0ÞV0½ � (39)

Since the volume V of the sponge depends on the liquid poros-
ity /L, and since this liquid porosity depends on a dimensionless
capillary pressure pc=GS (see Eq. (24)), the Lagrangian liquid
saturation SL(V) obtained from the fitting of the shrinkage data
can also be expressed as a function of this dimensionless capillary
pressure just introduced. This function SLðpc=GSÞ, known as the
retention curve of the sponge, is displayed in Fig. 6.

Upon drying, the Lagrangian liquid saturation decreased from
unity. The retention curve displayed in Fig. 6 shows that, as long
as SL > 5%, the capillary pressure remained negligible with
respect to the elastic properties of the solid, which explains why
the sponge did not shrink. When drying further (SL < 5%), the
capillary pressure became significant and shrinkage was observed.
Interestingly, for the greater capillary pressures (pc=GS > 0:5),
the Lagrangian liquid saturation remained constant. Coming
back to the very definition of Lagrangian saturation, such an
observation means that pores that were still saturated at low water
contents remained saturated even when they further lost water. In
other words, in the smallest pores, a loss of water translated into a
reduction of pore volume, but did not translate into a desaturation.

4.2 Stiffening Properties. Having identified that the solid
matrix of the sponge is mostly incompressible (KS=GS � 1), the
micromechanical relations derived in Sec. 3.3 simplify to

KM ¼ GS
4ð1� /G0 � /LÞ

3/L

(40)

GM ¼ GS
1� /G0 � /L

1� /G0 þ 2/L=3
(41)

K ¼ GS
4ð1� /G0Þð1� /G0 � /LÞ

3/L þ 3/G0ð1� /G0 þ 2/L=3Þ (42)

G ¼ GM
ð1� /G0Þð8þ 9KM=GMÞ

8ð1þ 3/G0=2Þ þ 9ð1þ 2/G0=3ÞKM=GM
(43)

A calculation of Poisson’s ratio � ¼ ð3K � 2GÞ=2ð3K þ GÞ
with the calibrated poroelastic parameters yields that, upon dry-
ing, Poisson’s ratio varies between 0.24 and 0.31, thus validating
the assumption � ¼ 0:25 made in Sec. 2.1.

We infer from Eq. (43) that K ¼ GS
~Kð/G0;/LÞ, where all

parameters of the dimensionless bulk modulus ~K are accessible
from the calibration performed in Sec. 4.1. Therefore, based on

the calibrated poromechanical model, the bulk modulus of the
sponge must be known, close to a proportionality factor (the shear
modulus GS of the solid matrix).

Equation (43), for GS¼ 0.85 MPa, is displayed in Fig. 7,
together with the experimental data of stiffening upon drying. We
observe that the poromechanical model developed here can only
partially explain the stiffening induced by drying. Indeed, upon
drying, the bulk modulus of the sponge increased by about 1.5
orders of magnitude, while our poromechanical model only
explains about half of this increase. Therefore, the stiffening of
the cellulose sponge upon drying is partly explained by the
closing of the pores under the action of capillary pressure.

The poromechanical model we developed is based on the
assumption that the solid matrix is linear elastic. However, it may
be that the solid matrix behaves nonlinearly. In such a case, the
elastic moduli would depend on the effective stress. For a drying
sponge, the effective stress at the mesoscopic scale is equal to the
capillary pressure pc. By introducing material nonlinearities of the
solid matrix, it is possible to fully capture the stiffening behavior
of the sponge, as can be observed in Fig. 7. The nonlinear elastic
behavior of the solid matrix that enables us to capture the stiffen-
ing of the sponge for the whole range of water contents is dis-
played in Fig. 8 by using a ‘material stiffening factor,’ defined
as GSðpcÞ=GSðpc ¼ 0Þ. This material stiffening of the cellulose
matrix itself could be due to the creation of additional hydrogen
bonds between neighboring chains of cellulose. Such a stiffening
could also be due to the microporous nature of the cellulose

Fig. 6 Retention curve of the sponge: the dimensionless capil-
lary pressure pc/GS versus the Lagrangian liquid saturation SL

Fig. 7 Bulk modulus K of the sponge versus its dimensionless
mass M/MS

Fig. 8 Material stiffening of the sponge. The material stiffening
coefficient is defined as GS(pc)/GS(pc 5 0).
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matrix, since we know that the adsorption of fluid in microporous
solids can induce apparent mechanical nonlinearities [21].

5 Conclusions

In this work, we measured and modeled how a sponge
shrinks and stiffens upon drying. In order to explain the experi-
mental observations, we developed a partially-saturated porome-
chanical model based on the Biot–Coussy framework in finite
transformations.

The poromechanical model enabled us to capture the shrinkage
of the sponge, experimentally observed for the whole range of
water contents. The retention curve of the sponge was back-
calculated. At the highest capillary pressures, pores that were satu-
rated remained saturated, even when further drying was applied:
in the smallest pores a loss of water translated into a reduction of
the pore volume, but did not translate into further desaturation.

The poromechanical model could partially capture the stiffen-
ing of the sponge experimentally observed upon drying. Part of
this stiffening could be explained by the closing of the pores under
the action of capillary pressure. The model nevertheless underesti-
mated the observed stiffening: the cellulose matrix of the sponge
may behave nonlinearly because of the creation of additional
hydrogen bonds between neighboring cellulose chains or because
of its microporous nature.
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Nomenclature

bG ¼ Biot coefficient of the sponge associated to the gas phase
bL ¼ Biot coefficient of the sponge associated to the liquid

phase
Ei ¼ Young’s modulus of the sponge in the ith direction
G ¼ shear modulus of the sponge

GM ¼ mesoscopic shear modulus
GS ¼ shear modulus of the solid matrix of the sponge
K ¼ bulk modulus of the sponge

KM ¼ mesoscopic bulk modulus
KS ¼ bulk modulus of the solid matrix of the sponge
M ¼ mass of the sponge

NGG ¼ first Biot modulus of the sponge
NLG ¼ second Biot modulus of the sponge
NLL ¼ third Biot modulus of the sponge

pc ¼ capillary pressure
pG ¼ pressure of the gas phase
pL ¼ pressure of the liquid phase
SG ¼ Lagrangian gas saturation
SL ¼ Lagrangian liquid saturation
V ¼ volume of the sponge

VP ¼ porous volume of the sponge

e ¼ volumetric strain
� ¼ Poisson’s ratio of the sponge

qw ¼ mass density of water
r ¼ volumetric part of the confining stress
/ ¼ Eulerian total porosity

/G ¼ Eulerian gas porosity
/G0 ¼ gas porosity in the state of reference
/L ¼ Eulerian liquid porosity

/L0 ¼ liquid porosity in the state of reference
/0 ¼ total porosity in the state of reference
u ¼ variation of the porosity

uG ¼ variation of the porosity occupied by the gas phase
uL ¼ variation of the porosity occupied by the liquid phase
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