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HOMOGENEITY ANALYSIS USING ABSOLUTE DEVIATIONS

GEORGE MICHAILIDIS AND JAN DE LEEUW

ABSTRACT. Homogeneity analysis is a technique for making graphical representations of categor-
ical multivariate data sets. Such data sets can also be represented by the adjacency matrix of a
bipartite graph. Homogeneity analysis optimizes a weighted least squares criterion and the optimal
graph drawing is computed by an alternating least squares algorithm. Heiser (1987) looked at homo-
geneity analysis under a weighted least absolute deviations criterion. In this paper, we take a closer
look at the mathematical structure of this problem and show that the graph drawings are created
by reciprocal computation of multivariate medians. Several algorithms for computing the solution
are investigated and applications to actual data suggest that the resulting�-dimensional drawings�����are degenerate, in the sense that all object points are clustered in���locations. We also
examine some variations of the criterion used and conclude that the generate solutions observed are
a consequence of the normalization constraint employed in this class of problems.

1. INTRODUCTION

Homogeneity Analysis (also known as Multiple Correspondence Analysis (MCA)) is awell-
known technique to make graphical representations of categorical multivariate data [7]. It can also
be presented as a technique to produce informative layouts of bipartite graphs [14, 2].

The setting is as follows: data have been collected for�objects on�categorical variables
with 	
 categories per variable. Let��
�
��	
be the total number of categories in the data set.
Then, a graph�with nodes (vertices) corresponding to the�objects and the�categories and
with edges linking the object nodes to the category nodes, and thus reflecting which objects belong
to which categories, contains the same information as the original data set. The latter information
is usually represented in matrix form through a binary (0-1)matrix�����
�� ����...�������...���. It can be easily shown that the matrix

���� ��� �
 

corresponds to theadjacency matrix of our graph. The above definedmultivariate data graph �
with vertex set!and edge set"has a special structure, namely that the�nodes corresponding
to the objects are not connected between themselves and similarly for the�category nodes. This
can also be seen by the two zero submatrices in the adjacency matrix

�
of�. Thus, we are dealing

with a bipartite graph.

A drawing of the graph�is a mapping of its vertex set!into#-dimensional space. Adjacent
points in the graph are connected by lines in the drawing. This goes in the direction of making a
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FIGURE 1. Left panel: Guttman-Bell graph drawing, with�denoting the object
points and�the category points. Right panel: Sleeping bags graph drawing. Both
examples illustrate quite clearly the centroid principle.

picture of the data, and when things work out well, a picture is worth a lot of numbers, especially
when these numbers are just zeros and ones as several examples in the literature have shown [7, 14].

The quality of the drawing is measured by the loss function

��������	
��

���

�

���
�����������
�(1.1)

where the��’s contain the coordinates of the�objects and the�� the coordinates of the�cate-
gories of all the variables in the�-dimensional space, and

�
denotes the Euclidean distance. The

objective is to arrange the vertices (objects and categories) of the graph in such a way, so that the
loss would be small. Thus points which are connected by linesshould be close, i.e. the lines in the
drawing should be short.

If we design algorithms to minimize��������	
, then we must make sure that the perfect, but
trivial, solution

��	��
is excluded. This is done by imposingnormalization constraints. For

example, in MCA drawings are normalized by requiring that
�����

. Under this normalization
the solution to problem (1.1) is characterized by thecentroid principle [7], namely that the category
points are located in the center of gravity of the objects they belong to. An additional advantage of
this normalization is that the optimal solution is given by an eigenvalue problem [7]. The���-
dimensional solution for the Guttman-Bell and sleeping bags data sets (for their description see
Section 4) that illustrate the centroid principle are givenin Figure 1.
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However, MCA has a few drawbacks; the major ones are: (i) the influence of objects with
‘rare’ profiles that tend to dominate the solution [14], as can be seen on the left part of the picture
for the Guttman-Bell drawing and (ii) the presence ofhorseshoes [1].

One possible solution to these is to use a more ‘robust’ loss function, such as

�����������
��
���
	�

��
��

�����
�
(1.2)

i.e. it is the same loss function as (1.1), but without squaring the distance. The same normalization
is used as before, requiring that

�����. This is a special case of a very general framework
introduced in [15], where the square of the distance in the definition of the loss function (1.1) is
replaced by a general function��
�. Robust estimation has a very long history in statistics [10].
The case (1.2) was discussed earlier in [9] in the context of correspondence analysis (graphical
representation of a two-way table) who gave an algorithm andan example that corresponded to our
framework. The example showed clustering, in the sense thatmany of the objects and categories
in the optimal drawing on the plane were collapsed into single points, and only very few distinct
points were left. Heiser [9, page 349] made the following comments regarding this clustering
phenomenon.

How should we appreciate this result ? There are perhaps two views. One is that
in the process of mapping the original table into a spatial configuration too much
of the fine detail is lost, and that the approach leads to a deadend. The other
is that it appears to be possible to devise a class of clustering techniques that is
smoothly related to a more continuous representation, and that seems to avoid the
usual combinatorial complications.

In Figure 2, the optimal graph drawings of the Guttman-Bell and sleeping bags data sets under
loss function (1.2) are shown. In both cases a very strong clustering pattern emerges for the object
points; i.e. all of occupy only three locations. On the otherhand, the category points still seem to
obey some form of the centroid principle for the Guttman-Bell example.

Experience with many other categorical data sets with varying numbers of objects, vari-
ables and categories per variable confirm the above empirical finding; namely, that the optimal
2-dimensional layout consists of three object nodes [16]. Analogously, the 3-dimensional layouts
consist of four object nodes. Finally, for#��the result also holds, namely that the optimal
solution consists of two points only, and isrigorously proven in [4]. Obviously, such solutions
become totallyuninteresting from a data analysis point of view, since they are unable to uncover
interesting patterns in the data. Hence, it is of great interest to gain insight into the origins of this
phenomenon and examine possible alternatives that overcome the problem.

The paper is organized as follows: Section 2 discusses the structure of the loss function (1.2)
and presents several optimization algorithms for computing the optimal solution. In Section 3, the
structure of the optimal solution is investigated and in Section 4 the performance of the various
algorithms is examined. Finally, in Section 5 we look into other loss functions and present some
potential solutions to the strong clustering problem observed.
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FIGURE 2. Left panel: Guttman-Bell graph drawing under loss function (1.2);
Right panel: sleeping bags graph drawing.

2. THE LOSSFUNCTION AND ITS OPTIMIZATION

Our objective is to minimize loss function (1.2) over all���matrices
�

satisfying
�����

and over all���matrices Y. The���matrix
�������is the off-diagonal part of the

adjacency matrix�of the bipartite multivariate data graph�.

For purposes of regularization, to avoid problems with differentiability and division by zero,
we actually define

���������

��������
�������
	
�

throughout, where
is small, and we minimize

��������

���	
� �


���
�

���
�����������
�

In the remainder of the paper we will omit the subscripts in����, because we will be dealing
exclusively with��������
.

2.1. A Matrix Expression for the Loss Function. If we use unit matrices��� ������, where
�� ���
are column vectors with a one in the�

������

position and zeros everywhere else, we can

write
��������
�������
�������
���������	��	����	���������	�(2.1)
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and thus

���������� �����
��

��

��


������
�

�����"��������"

�������"�
���	�
(2.2)

In matrix notation we can write

(2.3a) ����������
�����������������
�����������������������	��������

with

�������� �����
��

��

��


������
�"��� �����"��

��

��

��


������
�(2.3b)


������� �����
��

��

��


������
�"

�

��

��"



 �����
��



������
�(2.3c)

�������� �����
��

��

��


������
�"�

(2.3d)

and

�������� �����
��

��

��


������
�(2.3e)

Observe that
�������and


������are both diagonal and contain the row and column sums of��respectively.

2.2. Influence of the smoothing parameter.We briefly examine the influence of the smoothing
parameter�, next. Let

�������
������������� ��������������

and denote by

����and
����its minimizers.

Proposition 2.1. 1. The objective function�������is increasing in the parameter �.
2. ���������������������.

Proof. The first part follows by differentiating the objective function with respect to�
��������

�� �� �����
��

��

��


���������
�����

��
which implies that it is increasing with larger values of�.

For the second part it suffices to examine a single term. It is easy then to see that for the
�����th

term we have that��������������������and the result follows.

Experience has shown that for values of����� its effect on the loss function is truly marginal.
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2.3. Optimization Algorithms. The minimization problem of the����function has the special
property that there are two blocks of variables

�
and
�

, which are treated in an asymmetric way.
We normalize

�
by
�����and we leave

�
free. This makes it natural to use optimization

methods, which take this block structure into account [3].

We briefly present one approach that sheds light into the structure of the problem under con-
sideration and then introduce another algorithm which proves very attractive from aprogramming
point of view. Finally, we present a third algorithm that avoids the computationally expensive
eigenvalue decompositions present in the second algorithm.

The first approach is based onblock relaxation, which alternates minimization over the vari-
ables in block

�
, while keeping

�
fixed, and minimization over

�
, with block

�
fixed. We alter-

nate minimization of���������over
�

with
�

fixed at its current value and over
�

satisfying�����with
�

fixed. More precisely, we start with
����

. Then we alternate, for	�����



�����argmin����������������

�������argmin�������������������

The first subproblem, updating

�
, due to the Euclidean distance function used, amounts to solving�separate Weber problems [19]. To find the coordinates in��of category point�
we minimize

������
�� �����
��

������
�


The solution to this problem corresponds to determining in#-dimensional space the coordinates
of a multivariate median. An enormous body of literature has emerged over the years for solving
the Weber problem, also known in the optimization literature as the problem of minimizing a sum
of Euclidean norms [12]. The classical algorithm is the one by Weiszfeld [22], which is a linearly
convergent majorization method [19, 21]. The second subproblem, updating

�
for fixed

�
, is

considerably more complicated because of the normalization constraint
�����, which defines

a Stiefel manifold. The general methodology of optimizing functions over the Stiefel manifold
proposed by Edelman et al. [6] could then be used.

A second approach can be based on the concept of majorization[13, 3]. By the Arithmetic
Mean/Geometric Mean inequality we have that�
	�����
�
	�������
��

�
��
	�����
��
	�������
���

and thus

�����
��

�
�
�������
�

�
	�����
��
	�������
��

This implies

����������
�
�������������������������������

where
���������������
��������������������
�������������������������
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The last expression further implies that we can construct a convergent algorithm by using the cur-
rent best solution for

�������and finding the next best solution by minimizing���������������.
The solution

�������for the latter problem is given by
���
��� ��������������������

where
��

solves the eigenvalue problem
����������������(2.4)

with
���������
��������������������
��� �����������������

and with
�

a diagonal matrix containing the#smallest eigenvalues of the matrix
���������. It is

worth noting that the smallest eigenvalue is
�
, since both the rows and the columns of

���������
add up to zero as a weighted sum of matrices of the form

�����
������
��.
It follows that at the optimal solution (in fact, at any stationary point of the algorithm)���������

is equal to the sum of the#smallest eigenvalues of
�������, while

�
is the corresponding set of

eigenvectors. The matrix
�

contains the weighted centroid

��� ��������������, which means

that at the same time the�
s solve the corresponding Weber problems, previously discussed.

Observe that this also implies that we cannot use the normalization
��������#. By the

argument above, all columns of
�

would be equal to the eigenvector corresponding to the smallest
eigenvalue of

�������, which gives an interesting solution only if the smallest eigenvalue has
multiplicity of at least#.

In order to avoid solving a sequence of eigenvalue problems we can resort to a second level
of majorization. This can be done by a second majorization, this time of���������������. Write�����������

. Then

���������������������������������
�����������������������������������

������������������������

Suppose�

�������is the largest diagonal element of
���������. Also, let

����� �
�
�������!�

��������

where!��������
�����������������������. Then, the second term above can be written (using
the definition of

�
) as

���������!���������
�

�
�������

��!���������!���������
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and the third term as where!��������
�����������������������. Then, the second term above
can be written (using the definition of

�
) as

���������!���������
�

�
�������

��!���������!���������
and the third term as�

�
�������	!

�����������������!���������
�

�
�������

���������������!��������

Collecting terms, using the definition of�

�������and some algebra show that

���������������������������������
�
��������������������� �

�
�������

���!���������!���������

Minimizing this second majorization over

�
is the same as minimizing

�������������
,

which is a so-calledorthogonal procrustes problem, whose solution is classical. If
������

is the singular value decomposition of
�

, then the solution is
������. This is the algorithm

proposed by [9], compare also [11].

3. PERFORMANCEASSESSMENT OF THEALGORITHMS THROUGHREAL EXAMPLES

3.1. Guttman-Bell dataset. This small dataset dealing with attitudes of social groups (also ana-
lyzed in [8] and in [7]) consists of 7 objects and 5 variables with a total of����categories.
In figure 3 the homogeneity analysis solution under the������

loss function superimposed the
corresponding solution under�����are given. The mapping of the object points to one of the
3 locations is completely determined by the solution of the�Weber problems, as shown in the
next Section. In the following table the correspondence between the 17 category points and the 3
object points in the solution is given. It can be seen that allthe objects belonging to category A1
are mapped to the same location. On the other hand the two objects belonging to category B2 are
mapped to two different locations, while one of the objects in category E2 is mapped to the first
point and the remaining 3 objects to the second point. The boxed entries indicate where, according
to Witzgall’s majority theorem (see Section 4), the category point should be located. Notice that
all the contributions to the loss function come from categories whose objects are not mapped to a
single location.

3.2. Sleeping Bags.This data set is taken from [2] and describes 21 sleeping bagsin terms of
three variables (price, filling and quality) with a total of 8categories. Thus, its structure is different
that the Guttman-Bell data set, since there are more objectsthan categories. In figure 4 the ho-
mogeneity analysis solution under (1.1) together with the one under absolute deviations are given.
The multiple lines that originate from the points of the firstsolution is due to the fact that several
objects, exhibiting identical patterns, have been mapped to the same location (a well known prop-
erty of that solution; see [14]). In the following table the decomposition of the total loss for the
optimal solution is given, along with the correspondence between the 8 category points and the 3
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FIGURE 3. The homogeneity analysis solution for the Guttman-Bell data set under
(1.1) (red * points) and the solution under (1.2) (blue diamond-shape points) and
the correspondence between the two solutions

Categories Point 1 Point 2 Point 3 Loss
A1 2 0 0 0
A2 0 2 0 0
A3 0 1 0 0
A4 0 0 2 0
B1 2 0 0 0
B2 0 1 1 0.91
B3 0 2 0 0
B4 0 0 1 0
C1 1 0 0 0
C2 1 1 0 0.91
C3 0 2 0 0
C4 0 0 2 0
D1 1 1 0 0.91
D2 1 2 2 2.61
E1 1 0 0 0
E2 1 3 0 0.91
E3 0 0 2 0
Total 10 15 10 6.26

TABLE 3.1. Decomposition of the total loss for the Guttman-Bell data set.
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FIGURE 4. The homogeneity analysis solution for the sleeping bags data set un-
der (1.1) (red * points) and the corresponding absolute deviations solution (blue
diamond-shape points) and the correspondence between the two solutions

Categories Point 1 Point 2 Point 3 Loss
A1 4 1 0 1.03
A2 11 0 1 1.03
A3 4 0 0 0
B1 7 0 1 1.03
B2 12 1 0 1.03
C1 10 0 0 0
C2 6 0 1 1.03
C3 3 1 0 1.03
Total 57 3 3 6.16

TABLE 3.2. Decomposition of the total loss for the sleeping bags data set.

object points. It can be seen again that losses occur when allthe objects belonging to a particular
category are not mapped to the same location.

3.3. Performance Assessment of the Optimization Algorithms.In this Section we briefly ex-
amine the performance of the three algorithms presented in Section 2; namely the block relaxation
algorithm (A1), the majorization algorithm (A2) and the double majorization algorithm (A3). The
final configuration of the object and category points and the value of the loss function were cal-
culated for 99 random starts of the object points (kept fixed for the three algorithms) and for the
solution provided by the��

���solution. In the following Table the number of times the various
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Data Set A1 A2 A3
Guttman-Bell 72 88 84
Sleeping Bags 86 96 94

algorithms found the minimal configuration is shown. It is worth noting that for the sleeping bags
data set all three algorithms did not converge to the minimalsolution when the starting point was
the homogeneity analysis solution, a finding that has been observed with other data sets as well.
The results indicate that the majorization algorithm outperforms its competitors. However, its
down side is that for large problems a somewhat expensive eigenvalue problem needs to be solved
a fairly large number of times.

4. THE STRUCTURE OF THEOPTIMAL SOLUTION

The block relaxation algorithms has provided insight into the structure of the optimal solution
with respect to the category points. Since the�
s must correspond to multivariate medians, their
position in the optimal graph layout is completely determined by this requirement.

Moreover, on the basis of extensive numerical experience (see previous Section and also [16])
we make the following conjecture.

Conjecture 4.1. The #-dimensional optimal solution
�

that minimizes the ���������function
subject to the normalization constraint

�����, has exactly#��distinct points.

Knowledge of the location of the#��points in
�

makes it simple to determine the location
of the points in

�
due to the following result.

Proposition 4.1(Destination Optimality). Suppose ��minimizes��������
������
������, where
the ��are distinct. Then �����if and only if

���������
�������
�������

�

Proof. See [12], Theorem 4.2.

A useful corollary that explains the decomposition of the total loss presented in the Tables of
Section 3 is

Corollary 4.2 (Witzgall’s Majority Theorem). If���
������ then �����.
Proof.

��
����
�������
�������

���
����
��������
�������

�������
��
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Assuming that the conjecture is true and given the above results, there is an alternative algo-
rithm worth mentioning. Suppose�is anassignment matrix, i.e. an���#���binary indicator
matrix, which assigns each object�to one of the#��points. The column sums of�are theoc-
cupancies of the points, and the occupancies together with the normalization constraint

�����
determine the location of the points up to a rotation. Then wecan fit in the

�
points by solving

the corresponding Weber problem. It follows that the solution is completely determined by the
assignment�, and thus we can consider our loss function���� to be a function of assignments
only. Optimizing over assignments obviously is a combinatorial optimization problem. For data
sets with a large number of categories per variable we can establish the following result.

Corollary 4.3. If the#��points conjecture holds and	
�������


��, that is the frequencies
for all categories of all the variables are larger than 3, then the minimum loss is given by

���� ������������
����
��	

��������(4.1)

where
�

is the number of��
 ���corresponding to the points located at �
 ����.
Proof. Given the conjecture, without loss of generality the last���#���points can be collapsed
to point��. The Witzgall’s Majority Theorem together with the assumption regarding the category
frequencies show that�
���for all �. Hence,


�����
��
�������for ����


�#��and given
that points�	�


�����have

�
nonzero��
’s, the result follows.

5. DISCUSSION: OTHER LOSSFUNCTIONS AND POTENTIAL SOLUTIONS

The����������function used so far is a special case of the more general class of functions
defined by

�����������
��
���
	�

��
��

�����
�����	���

(5.1)

This is a family of convex functions with growth rates slowerthan the quadratic. The class contains
as extreme cases both the����	and and the�����functions. An application of Young’s inequality
shows that we can construct a majorization algorithm to minimize members of this class under the�����minimization constraint. Specifically we have that


�����
���
���� 
�������
���

�
�
�������
�	��


�����
�	�(5.2)

which implies that we can construct aquadratic majorizing function and thus in one iteration we
solve an eigenvalue problem similar to the one given in (2.4). The resulting graph layouts for
the sleeping bags data for values of���
���
���
�and 1.8 are shown in Figures 5 and 6 . It
can be seen that for values of�around 1.4 there seems to occur a ‘phase transition’, since for
larger values the result is essentially identical to the oneobtained in homogeneity analysis, while
for smaller values identical to those from the�����loss function. For data sets involving a larger
number of objects and categories experience indicates thatthe ‘critical’ value for the parameter�
is around 1.5.
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FIGURE 5. Left Panel:�����; Right panel:�����
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FIGURE 6. Left Panel:���	
; Right panel:���	�

We have also examined a variety of other loss functions that employ the logarithm of the
distances, or the logarithm of the squared distances, or thelogistic function of the distances, or
Huber’s and biweight functions [20] with analogous results. It should be noted that a similar
algorithm as above, based on the concept of majorization works for these other loss functions.
The results emphasize the very special nature of the�
���function, which in conjunction with the�����normalization, is the only one that produces interesting from a data analysis point of
view results.
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For loss functions that attempt to robustify the distances involved, the normalization constraint
becomes highly problematic. The message of our investigations is that different types of normal-
ization constraints must be found that are more suitable to these other loss functions.

An interesting alternative is provided by the Tutte normalization [18] that requires fixing be-
fore hand the locations of a number of points (e.g. the category points of one or even all the
variables) and then in the case of a�����-like loss function find the the locations of the remaining
points by calculating their multivariate medians (by solving the corresponding Weber problems).
This goes towards the direction of facility location problems [5], which may provide interesting
alternatives in visualizing categorical multivariate data. The resulting graph layout of the sleeping
bags data set with the category points located on a square andthe object points corresponding to
the multivariate medians (Weber points) of the categories they belong to is shown in Figure 7 (left
panel). It should be noted that the arrangement of the category points

�
on the square is such that

it gives the minimum�����loss over all
����

possible arrangements. It is also interesting to note
that unlike the homogeneity analysis solution under the����	loss function, but with the category
points normalized (i.e.

��
diag
��������) shown in the right panel of Figure 7, the patterns in

the data are such that they give rise to aplanar layout (edges do not intersect).
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FIGURE 7. Left panel: graph layout of the sleeping bag data set underTutte nor-
malization on the categories; Right panel: graph layout of sleeping bag data set
under the (1.1) loss function and with the category points normalized.
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