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HOMOGENEITY ANALYSIS USING ABSOLUTE DEVIATIONS

GEORGE MICHAILIDIS AND JAN DE LEEUW

ABSTRACT. Homogeneity analysis is a technique for making graphigatesentations of categor-
ical multivariate data sets. Such data sets can also beseqssl by the adjacency matrix of a
bipartite graph. Homogeneity analysis optimizes a weigjfidast squares criterion and the optimal
graph drawing is computed by an alternating least squagesitim. Heiser (1987) looked at homo-
geneity analysis under a weighted least absolute deviagdterion. In this paper, we take a closer
look at the mathematical structure of this problem and sHwat the graph drawings are created
by reciprocal computation of multivariate medians. Selvalgorithms for computing the solution
are investigated and applications to actual data suggatthh resultingp-dimensional drawings
(p > 2) are degenerate, in the sense that all object points arerdasinp + 1 locations. We also
examine some variations of the criterion used and conchalethhe generate solutions observed are
a consequence of the normalization constraint employeuisrctass of problems.

1. INTRODUCTION

Homogeneity Analysis (also known as Multiple Correspondence Analysis (MCA)) isell-
known technique to make graphical representations of odated multivariate data [7]. It can also
be presented as a technique to produce informative layblipartite graphs [14, 2].

The setting is as follows: data have been collected¥aobjects on J categorical variables
with k; categories per variable. L&f = Z;.Izl k; be the total number of categories in the data set.
Then, a graplg with nodes (vertices) corresponding to tNeobjects and thé( categories and
with edges linking the object nodes to the category nodeabthars reflecting which objects belong
to which categories, contains the same information as tiggnat data set. The latter information
is usually represented in matrix form through a binary (@rBtrix W = {w;;|, i =1,..,N, j =
1,.., K}. It can be easily shown that the matrix

0 W
A=l 0]
corresponds to thadjacency matrix of our graph. The above definedlltivariate data graph G
with vertex sefl” and edge sek has a special structure, namely that fienodes corresponding
to the objects are not connected between themselves arldrbjfor the K category nodes. This
can also be seen by the two zero submatrices in the adjaceatax th of G. Thus, we are dealing
with a bipartite graph.

A drawing of the graphg is a mapping of its vertex séf into p-dimensional space. Adjacent

points in the graph are connected by lines in the drawings §bes in the direction of making a
1
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FIGURE 1. Left panel: Guttman-Bell graph drawing, withdenoting the object
points ande the category points. Right panel: Sleeping bags graph dgavBoth
examples illustrate quite clearly the centroid principle.

picture of the data, and when things work out well, a pictsreorth a lot of numbers, especially
when these numbers are just zeros and ones as several examtpkeliterature have shown [7, 14].

The quality of the drawing is measured by the loss function

(1.1) pull,(X,Y) = Z Zwu (i, ;)

i=1 j=K

where thez;’s contain the coordinates of th€ objects and thg, the coordinates of th& cate-
gories of all the variables in thedimensional space, antldenotes the Euclidean distance. The
objective is to arrange the vertices (objects and categjooiethe graph in such a way, so that the
loss would be small. Thus points which are connected by bhesild be close, i.e. the lines in the
drawing should be short.

If we design algorithms to minimizpull, (X, Y'), then we must make sure that the perfect, but
trivial, solution X =Y = 0 is excluded. This is done by imposingrmalization constraints. For
example, in MCA drawings are normalized by requiring tKaX = 7. Under this normalization
the solution to problem (1.1) is characterized bydésroid principle [7], namely that the category
points are located in the center of gravity of the objecty thedong to. An additional advantage of
this normalization is that the optimal solution is given loyeagenvalue problem [7]. The = 2-
dimensional solution for the Guttman-Bell and sleepingsbdgta sets (for their description see
Section 4) that illustrate the centroid principle are giuefigure 1.
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However, MCA has a few drawbacks; the major ones are: (i) tflaence of objects with
‘rare’ profiles that tend to dominate the solution [14], as ba seen on the left part of the picture
for the Guttman-Bell drawing and (ii) the presencéiofseshoes[1].

One possible solution to these is to use a more ‘robust’ lmsstion, such as

N K
(1.2) pull,(X,Y) =) > wid(z;, y)).

i=1 j=1

i.e. itis the same loss function as (1.1), but without squatine distance. The same normalization
is used as before, requiring thA&t X = I. This is a special case of a very general framework
introduced in [15], where the square of the distance in thHmitien of the loss function (1.1) is
replaced by a general functiaf{d). Robust estimation has a very long history in statisticg.[10
The case (1.2) was discussed earlier in [9] in the contexbakspondence analysis (graphical
representation of a two-way table) who gave an algorithmeemelkample that corresponded to our
framework. The example showed clustering, in the sensenthay of the objects and categories
in the optimal drawing on the plane were collapsed into siqglints, and only very few distinct
points were left. Heiser [9, page 349] made the following owents regarding this clustering
phenomenon.

How should we appreciate this result ? There are perhaps ievwesy One is that

in the process of mapping the original table into a spatiafigaration too much

of the fine detail is lost, and that the approach leads to a dedd The other

Is that it appears to be possible to devise a class of clagtéeichniques that is
smoothly related to a more continuous representation, latdseems to avoid the
usual combinatorial complications.

In Figure 2, the optimal graph drawings of the Guttman-Betl aleeping bags data sets under
loss function (1.2) are shown. In both cases a very strorgjeriing pattern emerges for the object
points; i.e. all of occupy only three locations. On the othand, the category points still seem to
obey some form of the centroid principle for the GuttmantBgample.

Experience with many other categorical data sets with wgryiumbers of objects, vari-
ables and categories per variable confirm the above empiinchng; namely, that the optimal
2-dimensional layout consists of three object nodes [16jalégously, the 3-dimensional layouts
consist of four object nodes. Finally, fpr = 1 the result also holds, namely that the optimal
solution consists of two points only, andriggorously proven in [4]. Obviously, such solutions
become totallyuninteresting from a data analysis point of view, since they are unable tover
interesting patterns in the data. Hence, it is of great @stieto gain insight into the origins of this
phenomenon and examine possible alternatives that overttwarproblem.

The paper is organized as follows: Section 2 discussesitheste of the loss function (1.2)
and presents several optimization algorithms for comgutie optimal solution. In Section 3, the
structure of the optimal solution is investigated and inteac4 the performance of the various
algorithms is examined. Finally, in Section 5 we look intbetloss functions and present some
potential solutions to the strong clustering problem obeser
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FIGURE 2. Left panel: Guttman-Bell graph drawing under loss fumet(1.2);
Right panel: sleeping bags graph drawing.

2. THE LOSSFUNCTION AND ITS OPTIMIZATION

Our objective is to minimize loss function (1.2) over Allx p matricesX satisfyingX'X = I
and over allK x p matrices Y. TheN x K matrix W = {w;;} is the off-diagonal part of the
adjacency matri¥4 of the bipartite multivariate data grajgh

For purposes of regularization, to avoid problems withedtdhtiability and division by zero,
we actually define

A
2 (23, y5) = (@i — y5) (2 — ;) + €
throughout, where is small, and we minimize

n m

pull(l €) X Y Z Z wzgd (11,'@, yJ

i=1 j=1

In the remainder of the paper we will omit the subscriptepinll, because we will be dealing
exclusively withpull ; .

2.1. A Matrix Expression for the Loss Function. If we use unit matricess;; = eleJ, where
e; (e;) are column vectors with a one in ti#é (j*) position and zeros everywhere else, we can

write

(21) d2(Zi, yJ) = (iL‘Z — ’yj)l(ﬂ?i — yJ) =tr XIEuX + tr YIE]'J'Y — 2tr XIEZ']'Y,
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and thus

(2.2)  pull(X,Y) Z Z d B {tr X'E;X +tr Y'E;;Y — 2tr X'E;;Y + €2},
i=1 j=1 Y
In matrix notation we can write
(2.3a) pull(X,Y) =
tr X'A(X,Y)X +tr Y'B/(X,Y)Y — 2tr X'C.(X,Y)Y + *7.(X,Y),

with

(2.3b) J(X,Y) sz G E”_ZE“Zd )
i=1 j=1 e\Zi, Y =1 j=1 v I

(2.3c) (X,Y) z;z;de Cod Z Zd )
=1 3=

(2.3d) ZZ d

and

(2.3€) Z Z i,

Observe thatd (X,Y) and B.(X,Y") are both diagonal and contain the row and column sums of
C. respectively.

2.2. Influence of the smoothing parameter.We briefly examine the influence of the smoothing
parametek, next. Let

pull(e ) = ergnl min pull; ,(X,Y).
and denote by (¢) andY (e) its minimizers.

Proposition 2.1. 1. The objective function pull(e) isincreasing in the parameter e.
2. lim,_,o pull(¢) = pull(0).

Proof. The first part follows by differentiating the objective fuimn with respect te

0pull e) wz
ZZ de(zi(e : (€)) =0,

=1 j=1

which implies that it is increasing with larger valuescof

For the second part it suffices to examine a single term. #sy éhen to see that for thig j)th
term we have thdpull(e) — pull(0)| = /e and the result follows. O

Experience has shown that for valuesaf 1075 its effect on the loss function is truly marginal.
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2.3. Optimization Algorithms. The minimization problem of theull function has the special
property that there are two blocks of variablésandY’, which are treated in an asymmetric way.
We normalizeX by X’'X = I and we leavel” free. This makes it natural to use optimization
methods, which take this block structure into account [3].

We briefly present one approach that sheds light into thetstrel of the problem under con-
sideration and then introduce another algorithm which @soxery attractive from grogramming
point of view. Finally, we present a third algorithm that &l®the computationally expensive
eigenvalue decompositions present in the second algarithm

The first approach is based block relaxation, which alternates minimization over the vari-
ables in blockX, while keepingY” fixed, and minimization oveY’, with block X fixed. We alter-
nate minimization opull(X,Y’) overY with X fixed at its current value and ovéf satisfying
X'X = I with Y fixed. More precisely, we start witk (), Then we alternate, fot = 0, 1,. ..

Y® = argmin, (pull(X*®, 7)),
X®) = argming x—; (pull(X, Y®)).

The first subproblem, updatinig, due to the Euclidean distance function used, amounts ¥spl
K separate Weber problems [19]. To find the coordinat@*if category poiny; we minimize

puu(yJ) = Zwijde(wiayj)'
i=1

The solution to this problem corresponds to determining-dimensional space the coordinates
of amultivariate median. An enormous body of literature has emerged over the yeasofeing
the Weber problem, also known in the optimization literatas the problem of minimizing a sum
of Euclidean norms [12]. The classical algorithm is the op&\eiszfeld [22], which is a linearly
convergent majorization method [19, 21]. The second suideno, updatingX for fixed Y, is
considerably more complicated because of the normalizatimstraintX’X = I, which defines

a Stiefel manifold. The general methodology of optimizimgpdtions over the Stiefel manifold
proposed by Edelman et al. [6] could then be used.

A second approach can be based on the concept of majoriZaBoi3]. By the Arithmetic
Mean/Geometric Mean inequality we have that

. 1 .
V@) P (@ 55) < S (w0 w,) + (@, 5)},

and thus
1

d(zi,y;) < = Ad* (2, y;) + d*(Z, 7))}

(015) < 055y 0 o) + (30 3))
This implies

1 -~ "~
pull(X,Y) < §{pull(X, Y)+pull(X,Y|X,Y)},

where

pull(X,Y|X,V) 2 tr X'A(X,V)X + tr Y'B(X, V)Y — 2tr X'C.(X,V)Y.
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The last expression further implies that we can construonzergent algorithm by using the cur-
rent best solution fo(X,Y") and finding the next best solution by minimizipall(X,Y|X,Y).
The solution( X, Y) for the latter problem is given by

¥ = BTY(X,V)C/(X,T)X,

whereX solves the eigenvalue problem
(2.4) D.(X,Y)X = XA,
with
D.(X, V)2 A(X,V) - C.(X,V)B. Y(X,V)C!(X,Y)
and with A a diagonal matrix containing thesmallest eigenvalues of the matan(X’, Y). ltis

worth noting that the smallest eigenvaluéjssince both the rows and the columnsif(X,Y")
add up to zero as a weighted sum of matrices of the f@gm- e;)(e; — ;).

It follows that at the optimal solution (in fact, at any stettary point of the algorithmpull(X,Y")
is equal to the sum of thesmallest eigenvalues @.(X,Y"), while X is the corresponding set of
eigenvectors. The matriX contains the weighted centrofg (X, Y)C!(X,Y )X, which means
that at the same time thgs solve the corresponding Weber problems, previously dgsmii

Observe that this also implies that we cannot use the naat@ntr(X'X) = p. By the
argument above, all columns &f would be equal to the eigenvector corresponding to the sstall
eigenvalue ofD.(X,Y’), which gives an interesting solution only if the smallegfezivalue has
multiplicity of at leastp.

In order to avoid solving a sequence of eigenvalue problemsan resort to a second level
of majorization. This can be done by a second majorizatiuis,time ofpull(X,Y|X,Y). Write
X=X+ (X—-X). Then

pull(X,Y|X,Y) = pull(X,Y|X,Y) +
2tr (X — X){A(X,Y)Y — C(X,YV)X} +
tr (X — X)A(X,Y)(X — X).

Supposex(X,Y) is the largest diagonal element 4f(X,Y). Also, let

a(X,Y)
whereV,(X,¥V) 2 A(X,Y)Y — C.(X,¥)X. Then, the second term above can be written (using
the definition ofX) as
2

a(X,Y)

2tr(X — X)'V(X,Y) — trV! (X, Y)V(X,Y),
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and the third term as whel§(X,Y) £ A.(X,Y)Y — C.(X,¥)X. Then, the second term above
can be written (using the definition &f) as

_ - . ) - . - .
2tr(X — X)'Vu(X,Y) — —————trV/(X,Y)V.(X,Y),
"X -V - SE VDV T)
and the third term as
1 ~ o~ ~ o~ ~ o~ 2 — ~ o~ ~ o~
— VX, V)AX,Y)V(X,Y) - ——— —X)A(X, Y)V(X,Y
TP E VAT DV T) - — o (X - D AE VX T)

Collecting terms, using the definition a{ X, Y") and some algebra show that

pull(X,Y|X,Y) < pull(X,Y|X,Y) +
- _ _ 1 -~ -
a(X,Y)tr (X — X) (X — X) — ———te{V/(X, V)V, (X,Y)}.
a(X,Y)

Minimizing this second majorization oveX is the same as minimizintr (X — X)'(X — X),
which is a so-calledrthogonal procrustes problem, whose solution is classical. Xf = KT'L’
is the singular value decomposition &f, then the solution isX = KL'. This is the algorithm
proposed by [9], compare also [11].

3. PERFORMANCEASSESSMENT OF THEALGORITHMS THROUGHREAL EXAMPLES

3.1. Guttman-Bell dataset. This small dataset dealing with attitudes of social grogso(ana-
lyzed in [8] and in [7]) consists of 7 objects and 5 variablethva total of K = 17 categories.

In figure 3 the homogeneity analysis solution undergpladl — 2 loss function superimposed the
corresponding solution underull, are given. The mapping of the object points to one of the
3 locations is completely determined by the solution of h&Veber problems, as shown in the
next Section. In the following table the correspondencevbeh the 17 category points and the 3
object points in the solution is given. It can be seen thatha&llobjects belonging to category Al
are mapped to the same location. On the other hand the twotslyelonging to category B2 are
mapped to two different locations, while one of the objentsategory E2 is mapped to the first
point and the remaining 3 objects to the second point. Thedbexrtries indicate where, according
to Witzgall’'s majority theorem (see Section 4), the catggaint should be located. Notice that
all the contributions to the loss function come from categgwhose objects are not mapped to a
single location.

3.2. Sleeping Bags.This data set is taken from [2] and describes 21 sleeping imatggms of
three variables (price, filling and quality) with a total of&tegories. Thus, its structure is different
that the Guttman-Bell data set, since there are more obijeats categories. In figure 4 the ho-
mogeneity analysis solution under (1.1) together with the ender absolute deviations are given.
The multiple lines that originate from the points of the fgstution is due to the fact that several
objects, exhibiting identical patterns, have been mappéae same location (a well known prop-
erty of that solution; see [14]). In the following table thecdmposition of the total loss for the
optimal solution is given, along with the correspondendsvben the 8 category points and the 3
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FIGURE 3. The homogeneity analysis solution for the Guttman-Batadet under
(1.1) (red * points) and the solution under (1.2) (blue diackshape points) and
the correspondence between the two solutions

Categories Point1 Point2 Point 3Loss
Al 0 0| 0
A2 0 0| 0
A3 0 0| 0
A4 0 0 0
B1 0 o] o
B2 0 0.91
B3 0 0/ 0
B4 0 0 0
C1 [1] 0 o] o
C2 1] 00.91
C3 0 2] 0/ 0
C4 0 0 0
D1 1] 00.91
D2 1 2] 2.61
El 0 0| 0
E2 1 00.91
E3 0 0 0
Total 10 15 10 6.26

TABLE 3.1. Decomposition of the total loss for the Guttman-Betbdzet.
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FIGURE 4. The homogeneity analysis solution for the sleeping baga set un-
der (1.1) (red * points) and the corresponding absoluteadiewvis solution (blue
diamond-shape points) and the correspondence betweendrs®lutions

Categories Point1 Point2 Point 3Loss
Al 4 1 0| 1.03
A2 [11] 0 1]1.03
A3 4] 0 0| o
B1 7] 0 1]1.03
B2 12 1 0| 1.03
C1 10 0 0| 0
C2 6] 0 1|1.03
C3 3] 1 0| 1.03
Totall 57 3 3/ 6.16

TABLE 3.2. Decomposition of the total loss for the sleeping baga set.

object points. It can be seen again that losses occur whémeatdibjects belonging to a particular
category are not mapped to the same location.

3.3. Performance Assessment of the Optimization Algorithms.In this Section we briefly ex-

amine the performance of the three algorithms presentedatidh 2; namely the block relaxation
algorithm (A1), the majorization algorithm (A2) and the dddeimajorization algorithm (A3). The

final configuration of the object and category points and thleesof the loss function were cal-
culated for 99 random starts of the object points (kept fadlie three algorithms) and for the
solution provided by theull, solution. In the following Table the number of times the vas
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Data Set Al | A2 | A3
Guttman-Bell | 72 | 88 | 84
Sleeping Bags 86 | 96 | 94

algorithms found the minimal configuration is shown. It isrthonoting that for the sleeping bags
data set all three algorithms did not converge to the mingoaltion when the starting point was
the homogeneity analysis solution, a finding that has beserebd with other data sets as well.
The results indicate that the majorization algorithm otfgrens its competitors. However, its

down side is that for large problems a somewhat expensiwneadue problem needs to be solved
a fairly large number of times.

4, THE STRUCTURE OF THEOPTIMAL SOLUTION

The block relaxation algorithms has provided insight ife $tructure of the optimal solution
with respect to the category points. Since the must correspond to multivariate medians, their
position in the optimal graph layout is completely deteradiroy this requirement.

Moreover, on the basis of extensive numerical experiereegsevious Section and also [16])
we make the following conjecture.

Conjecture 4.1. The p-dimensional optimal solution X that minimizes the pull(X,Y") function
subject to the normalization constraint X’ X = I, hasexactly p + 1 distinct points.

Knowledge of the location of the + 1 points inX makes it simple to determine the location
of the points inY” due to the following result.

Proposition 4.1(Destination Optimality) Supposeg minimizespull(y) = >, w;d(z;,y), where
the z; aredistinct Then gy = xz if and only if

— X
wy, > ||§ :w, ]
d(z;, zx)

i#£k

Proof. See [12], Theorem 4.2. O

A useful corollary that explains the decomposition of thialttoss presented in the Tables of
Section 3 is

Corollary 4.2 (Witzgall's Majority Theorem) If wy, > Z#k w; then g = xy.

Proof.

I | S 2 gy a1 = 2

ik iy
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Assuming that the conjecture is true and given the abovdtsesioere is an alternative algo-
rithm worth mentioning. Supposgis anassignment matrix, i.e. amn x (p + 1) binary indicator
matrix, which assigns each objedb one of thep + 1 points. The column sums & are theoc-
cupancies of the points, and the occupancies together with the nopat#din constrain’X = I
determine the location of the points up to a rotation. Thercarfit in theY points by solving
the corresponding Weber problem. It follows that the soluis completely determined by the
assignmentS, and thus we can consider our loss functimull to be a function of assignments
only. Optimizing over assignments obviously is a combinat@mptimization problem. For data
sets with a large number of categories per variable we cabledt the following result.

Corollary 4.3. Ifthep+1 pointsconjectureholdsand k; > 3, j =1, ..., J, that isthe frequencies
for all categories of all the variables are larger than 3, then the minimum loss is given by
p+l

(4.1) min pull, (X, Y) LZd T, ;)

where L is the number of w;; # 0 corresponding to the points located at z; # ;.

Proof. Given the conjecture, without loss of generality the Bist (p 4 1) points can be collapsed
to pointz;. The Witzgall's Majority Theorem together with the assuioptegarding the category
frequencies show that = z; for all j. Henced(z;,y;) = d(z1, ;) fori =2,...,p + 1 and given
that pointses, ..., x,+1 haveL nonzerow;;’s, the result follows. l

5. DIscUSSION OTHER LOSSFUNCTIONS AND POTENTIAL SOLUTIONS

Thepull, (X,Y") function used so far is a special case of the more genera ofdsnctions
defined by

(5.1) pull,(X,Y) ZZw”d zi,9;)%, B €1,2].
i=1 j=1

This is a family of convex functions with growth rates slowran the quadratic. The class contains
as extreme cases both thall, and and theull, functions. An application of Young’s inequality
shows that we can construct a majorization algorithm to mieé members of this class under the
X'X = I minimization constraint. Specifically we have that

2 — 2
(5.2) d(zi, y;)° < Tﬁd(ii,ﬂj)ﬂ‘i‘ Wd($i,yj)2,
which implies that we can construciggadratic majorizing function and thus in one iteration we
solve an eigenvalue problem similar to the one given in (2:B)e resulting graph layouts for
the sleeping bags data for values®t= 1.2,1.4,1.6 and 1.8 are shown in Figures 5 and 6 . It
can be seen that for values @faround 1.4 there seems to occur a ‘phase transition’, siorce f
larger values the result is essentially identical to the @t@ined in homogeneity analysis, while
for smaller values identical to those from tpall, loss function. For data sets involving a larger
number of objects and categories experience indicatesh@atritical’ value for the parametet
is around 1.5.
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FIGURE 5. Left Panel:s = 1.2; Right panel:3 =1.4
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FIGURE 6. Left Panel:;s = 1.6; Right panel:3 = 1.8

We have also examined a variety of other loss functions thadl@y the logarithm of the
distances, or the logarithm of the squared distances, diotlistic function of the distances, or
Huber's and biweight functions [20] with analogous results should be noted that a similar
algorithm as above, based on the concept of majorizatiorkksvimr these other loss functions.
The results emphasize the very special nature opté, function, which in conjunction with the
X'X = I normalization, is the only one that produces interestimgnfia data analysis point of
view results.
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For loss functions that attempt to robustify the distanoeslved, the normalization constraint
becomes highly problematic. The message of our investigais that different types of normal-
ization constraints must be found that are more suitabledsd other loss functions.

An interesting alternative is provided by the Tutte normediion [18] that requires fixing be-
fore hand the locations of a number of points (e.g. the cayegoints of one or even all the
variables) and then in the case gpall,-like loss function find the the locations of the remaining
points by calculating their multivariate medians (by sotythe corresponding Weber problems).
This goes towards the direction of facility location prabke[5], which may provide interesting
alternatives in visualizing categorical multivariatealathe resulting graph layout of the sleeping
bags data set with the category points located on a squartharabject points corresponding to
the multivariate medians (Weber points) of the categoheyg belong to is shown in Figure 7 (left
panel). It should be noted that the arrangement of the cgtgguantsY on the square is such that
it gives the minimumpull, loss over all(8!) possible arrangements. It is also interesting to note
that unlike the homogeneity analysis solution underghd, loss function, but with the category
points normalized (i.eY’diag(G'G)Y = I) shown in the right panel of Figure 7, the patterns in
the data are such that they give rise faanar layout (edges do not intersect).
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FIGURE 7. Left panel: graph layout of the sleeping bag data set uhdte nor-
malization on the categories; Right panel: graph layoutleém@ng bag data set
under the (1.1) loss function and with the category pointsnatized.
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