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Abstract

Temporal Data Models via Stochastic Processes

by

Rui Meng

Temporal data modeling plays a vital role in various research including finance,

environmental science and neuroscience. Understanding and interpreting the evo-

lutionary system behind temporal data is of interest. This work mainly emphasizes

efficient statistical models on temporal data via stochastic processes. In particu-

lar, we focus on statistical modeling via two flexible random processes: Markov

processes and Gaussian processes.

The first stage of the research involves a novel hidden Markov model based on

Markov jump processes for cervical cancer screening test data. This model is able

to model the heterogeneity of both individual and time. We provide an efficient

and scalable expectation maximization based inference approach. To the best of

our knowledge, our model is the first statistical model that is able to scale to a

population-level dataset.

Next, we consider an alternative stochastic process that is widely applied in

temporal data modeling, the Gaussian process. Motivated by the kernel per-

spective of inducing-point based sparse Gaussian processes, we propose a general

regularization framework of sparse Gaussian processes and extend it into latent

variable models. We specifically consider variational inference under our regu-

larization framework in various settings. We theoretically demonstrate that the

variational inference under our regularization can be treated by maximizing a

log likelihood lower bound on a corresponding empirical Bayesian model. Our

framework is illustrated in various settings throughout both synthetic and real

datasets.

xii



Building on our proposed regularization framework, we develop a hierarchical

sparse latent Gaussian process model specifically for categorical data and then we

extend our model to temporal data via dynamical priors. In particular, we propose

efficient variational inference to make it applicable to large datasets. Moreover,

our model provides a visualization way to summarize the dynamics of categorical

data into a low-dimension manifold.

The fourth project is motivated by electronic health record data and spatially

varying coefficient linear coregionalization model. We propose a novel nonstation-

ary multivariate Gaussian process model that allows it to model time dependent

smoothness, scale and correlation across different dimensions. One special case of

our model is emphasized due to its computational efficiency. It allows an efficient

inference via Kronecker algebra. Moreover, we provide both Hamiltonian Monte

Carlo inference as a fully Bayesian inference and Maximum a Posteriori based

inference as an approximate Bayesian inference. Our posterior inference provides

a promising way to understand the relation between cross-correlation of clinical

variables and health status, which contributes to early disease detection.
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Chapter 1

Introduction

In this chapter, we discuss motivations in Section 1.1. It includes what kind of

data we are interested in, how data look like, how those data inspire our method-

ologies, and which methodologies we focus on. We display objectives and con-

tributions in Section 1.2. This section contains the overview of the structure of

the rest of this dissertation, and summarizes both objectives and contributions for

each section.

1.1 Motivations

Modeling the temporal data is of interest in a wide range of applications,

from finance and economics to environmental science and neuroscience. Temporal

modeling plays a critical role in a variety of research fields. This dissertation

mainly focuses on statistical modeling for temporal data.

In the age of big data, large multivariate temporal datasets are readily avail-

able in various fields of science. Healthcare, in particular, is becoming increasing

crucial since it would help doctors to decide how to best treat patients and make

the development of new medicines, procedures and tools possible. Interpretable

1



statistical modeling in healthcare research is in high demand. Motivated by the

importance of healthcare problems, this dissertation would involve two types of

healthcare data. One is screening data and the other one is electronic health

records. Interpretability in our models is a key feature.

We discuss the screening data in Section 1.1.1 and electronic health records in

Section 1.1.2, which directly motivates the novel models in Chapter 2 and Chap-

ter 5 separately. In this dissertation, we are also motivated by the limitation of

current models, specifically inducing-point based sparse Gaussian process models.

The corresponding motivations discussed in Section 1.1.3 motivate us to propose

a regularization structure and extend it to different flexible and efficient models

in Chapter 3 and Chapter 4.

1.1.1 Screening Data

The screening data we focus on is a cervical cancer screening test dataset from

the Cancer Registry of Norway. The Cancer Registry of Norway has run a national

cervical cancer screening program since October 1991, collecting all screening and

diagnostic results. Though screening guidelines exist (e.g. a pap smear every three

years from age 25 to 69), screening is at the discretion of the individual woman. As

a result, the number of screening records and the time between screenings vary

considerably between women. Three types of exams are used in the screening

program: cytology, histology and human papillomavirus (HPV).

Several features of the dataset make it unique. First, it is because of the

size of the dataset. Norway’s cervical cancer screening program records cervical

exams from the entire target population. Thus the dataset is a true population-

level dataset, containing over 1.7 million women with more than 10 million exams

recorded from 1992 until the end of 2015. In the current dataset all women above

2



16 years of age with more than one exam have been included. The maximum

number of exams observed was 53 while the median number of exams was 6.

Second, the data have been de-identified and slightly obscured for additional

anonymization, the details of which can be found in Ursin et al. (2017). One

modification made through this process is that all exam dates are coarsened to

the month level. Thus we do not have access to the ordering or timing of multi-

ple screening screening exams occurring within the same calendar month. As a

consequence, any model for such data must be able to deal with multiple tests,

in both type and quantity, performed at each observation. Though this feature of

the dataset is introduced artificially, multiple simultaneous tests are common in

medical practice and should be incorporated into any robust model of biomedical

diagnostics and/or screening.

Finally, because the data come from a population-level screening program and

cancer is a relative rare disease, the resulting dataset is highly skewed towards

disease-free observations. As a result, certain exam results are particularly rare.

While this can be a common problem in biomedical data, particularly in oncology,

the problem is compounded by the stated goal of building more personalized

predictive models.

1.1.2 Electronic Health Records

The large-scale collection of electronic health records (EHRs) offers the promise

of accelerating clinical research for understanding disease progression and improv-

ing predictive modeling of patient clinical outcomes (Cheng et al., 2017; Jung and

Shah, 2015). Typically, EHR data consist of rich patient information, including

but not limited to, demographic information, vital signs, laboratory results, di-

agnosis codes, prescriptions and treatments. However, it is extremely challenging

3



to develop models for EHR data. Contributing to these challenges are data qual-

ity, data heterogeneity, complex dependencies across multiple time series, irreg-

ular sampling rates, systematically missing data, and statistical nonstationarity

(Cheng et al., 2017; Ghassemi et al., 2015; Futoma et al., 2017a).

Despite these challenges, the promise of leveraging EHR data to improve pa-

tient outcomes has resulted in an explosive growth of research in the past decade.

While the existing literature addresses many of the challenges in modeling EHR

data, such as irregular sampling rates (Cheng et al., 2017; Li and Marlin, 2016;

Futoma et al., 2017a), missing data (Ghassemi et al., 2015) and the modeling of

complex dependencies across multiple streams of clinical data (Cheng et al., 2017;

Ghassemi et al., 2015), the inability of stationary models to fits EHR data (Jung

and Shah, 2015) has received less attention. In this paper, we propose a novel

statistical framework based on multivariate Gaussian processes (GPs) to model

both time-dependent smoothness, scale and correlation across different clinical

variables in EHR data. We explore both model predictive performance as well

as inferred nonstationary correlation patterns across different clinical variables.

We considered fully Bayesian inference as well as efficient approximate Bayesian

inference. Both inferences provide uncertainty quantification on predictions, such

as time-varying length scale parameters and correlations across clinical variables.

While biomedical processes can be both multivariate and nonstationary, mod-

els which handle both features have not been explored in the context of EHR

data, to the best of our knowledge. Sepsis is a prime example of a disease in

which correlated multivariate output and nonstationarity may be critical for early

identification. Sepsis has been shown to exhibit highly nonstationary variations in

the vitals of patients (Cao et al., 2004) while the cross-correlation of these vitals

has been shown to be predictive of early onset (Fairchild et al., 2016). While
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both multivariate and nonstationary models have been proposed for EHR data,

to the best of our knowledge ours is the first model for EHR data which is both

nonstationary and multivariate.

We demonstrate our proposed framework by modeling a large EHR dataset

composed of emergency department (ED) hospitalization episodes from Kaiser

Permanente (KP). The patients were suspected to have an infection and, in a

subset of cases, met the clinical criteria for sepsis (Fohner et al., 2019; Seymour

et al., 2016). Sepsis is a life-threatening organ dysfunction arising from a dysreg-

ulated host response to infection, affecting at least 30 million patients worldwide

and resulting in 5 million deaths each year (Fohner et al., 2019; Klompas and

Rhee, 2016).

We apply our proposed approach to jointly model systolic pressure, diastolic

pressure, heart rate, pulse pressure and oxygen saturation levels. We demonstrate

improved model prediction performance and uncertainty quantification over the

state-of-art. Since changes in cross-correlations across vital signs is often an in-

dicator of onset of sepsis (Fairchild et al., 2016), we also explore the inferred

cross-correlations across the vitals and their relationship with the hourly LAPS2

scores (LAPS2 is a KP specific measure of acute disease burden and is an indicator

of the risk state of a patient) (Escobar et al., 2013).

Gaussian processes have a long history in both spatio-temporal statistical mod-

eling (Luttinen and Ilin, 2009) and in machine learning (Rasmussen and Williams,

2005). With the increasing use of EHR data to improve patient health outcomes,

there has been an increased application of Gaussian processes to modeling EHR

data. Our use of Gaussian processes is motivated by their flexibility in handling

nonstationary and correlated multivariate data, which have been extensively ap-

plied to spatio-temporal statistical modeling (Cressie and Wikle, 2011). In this
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section we briefly overview the recent literature on the use of Gaussian processes

in EHR modeling and point out the main contributions of this paper.

EHR data consist of multiple correlated measurements taken over time. As

such, multi-output or multi-task Gaussian processes (MTGPs) have been proposed

as appropriate models for EHR data. A MTGP framework for modeling the

correlation across multiple physiological time series was first proposed in Dürichen

et al. (2014). In Ghassemi et al. (2015) the inferred hyper-parameters from a

MTGP model were used as compact latent representations used to predict severity

of illness in ICU patients. Online patient state prediction (Cheng et al., 2017) and

online patient risk assessment (Alaa et al., 2018) were both proposed via a MTGP

framework based on large-scale EHR data sets. Personalized treatment effects

were predicted via MTGPs in Alaa and van der Schaar (2017). Online MTGPs

were combined with RNN classifiers for early sepsis prediction in hospital patients

in Futoma et al. (2017b,a). While each of the above approaches are able to learn

a correlation structure both within and between clinical time series, all models

are both stationary and homoscedastic.

Because hospitalized patients can go through drastic physiological changes in

short periods of time, nonstationary models are needed for EHR data (Cao et al.,

2004; Jung and Shah, 2015; Hripcsak et al., 2015). One effect of the biological

nonstationarity is highly irregular sampling rates for EHR data. This is due

to attending healthcare providers adjusting the sampling rates in response to

observable changes in patient state. Nonstationary Gaussian processes have been

proposed as means of correcting for these highly irregular sampling rates via time

warping in Lasko (2015). While this model does directly model nonstationarity

in the clinical time series, it does not directly model correlated multivariate data.

Other than directly modeling EHR data, Gaussian processes have been utilized
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in a variety of ways with EHR data. They have been used to smooth and regularize

data for blackbox optimizers (Li and Marlin, 2016; Futoma et al., 2017b,a; Lasko

et al., 2013), as priors for latent hazard functions in modulated point processes

(Lasko, 2014), and as components of hierarchical generative models (Schulam

et al., 2015).

The flexibility and expressiveness of Gaussian processes clearly offer a powerful

framework for modeling complex EHR data. And while Gaussian process models

have been proposed to handle either nonstationarity or correlated multivariate

EHR data, to the best of our knowledge there has been no attempt to model both

nonstationarity and correlated multivariate EHR data.

1.1.3 Sparse Gaussian process

On the other hand, to deal with large datasets in applications, scalable model

and computational efficient models are becoming increasingly in high demand.

One class of computational efficient models is relevant to sparse Gaussian

process. Sparse Gaussian processes play a big role in both machine learning

and statistics research, because of their flexibility and computational efficiency.

Most sparse Gaussian processes are based on a low rank approximation, involving

inducing points.

With respect to inducing-point based sparse Gaussian process, how to select

the inducing points is an open question. Motivated from the kernel representation,

we propose a regularization framework for all inducing-point based sparse Gaus-

sian process models which is allowable to balance the maximizing likelihood of

our model and minimizing the distributions between inducing points and inputs.

This regularization framework contributes to better model prediction, especially

in latent variable models where the inputs are unknown.
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Based on the regularization, we also propose a novel statistical model for

multivariate categorical temporal data, which is able to model the relation across

time and across dimensions. Moreover, it is able the visualize the latent dynamics

on a low dimensional manifold.

1.2 Objectives and Contributions

In this dissertation, we explore various aspects of temporal data modeling

techniques via stochastic processes including Gaussian processes and Markov jump

processes. The main innovative contributions of this dissertation are contained in

Chapter 2, 3, 4 and 5, all of which include fundamental literature review.

In Chapter 2, we propose a hierarchical statistical model for cervical cancer

screening test data. This model is able to explain both individual heterogene-

ity and time heterogeneity via a mixture latent model and piece-wise constant

intensity matrix processes. Efficient inference procedures are proposed based on

Expectation Maximization. Model performance is illustrated by comparing it

with recurrent neural network models and naive continuous-time inhomogenu-

ous Markov jump process model on both synthetic data and real cervical cancer

screening test data.

In Chapter 3, we propose a regularization framework for different inducing-

point based sparse Gaussian process models and extend it into latent variable

models. We study the variational inference under our regularization framework

and prove it can be treated as maximizing a lower bound of log likelihood in a cor-

responding empirical Bayesian model. Finally, we discuss our model performance

in different hyper-parameter settings and in different datasets.

Chapter 4 inherits the regularization approach in Chapter 3. It proposes a

hierarchical statistical model for multivariate categorical data and extends it to
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temporal data via dynamical priors. Gaussian processes are introduced to model

the correlation across dimensions and time (temporal modeling) and inducing

inputs are induced for computation efficiency. We illustrate our model on both

synthetic data and a real stock index dataset.

In Chapter 5, motivated by the inherent characteristics of electronic health

records, modeling the varying smoothness, scale and correlation of the clinical

variables across time is of interested. We propose a flexible nonstationary multi-

variate Gaussian processes (NMGP) as well as a computationally efficient separa-

ble model, which a special case of NMGP. Two inference approaches are proposed

including Hamilton Monte Carlo as a fully Bayesian inference and Maximum a

Posteriori as an approximate Bayesian inference. Our model is illustrated on both

synthetic data and electronic health records provided from Kaiser Permanente.
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Chapter 2

Hierarchical Hidden Markov

Model

In this chapter, we propose a novel hierarchical hidden Markov model moti-

vated by a large cervical screening test dataset provided by the Cancer Registry

of Norway. Generally, our model can apply for any temporal dataset. Our ap-

proach models both individual heterogeneity and time heterogeneity and keep the

principle of parsimony to make it possible for large datasets. We evaluate model

performance by comparing it with other state=-of-the-art models and illustrate

that our model has better fitting and prediction results on both synthetic data

and real cervical cancer screening test data.

The structure of this chapter is as follows. First, we provide the literature

review that is relevant to hidden Markov models and statistical models for lon-

gitudinal observation data in Section 2.1. Then we summarize the literature of

Markov jump processes including relevant models and corresponding inference in

Section 2.2. In Section 2.3, we propose a hierarchical statistical model which

is allowable to model both individual heterogeneity and time heterogeneity. The

corresponding inference is provided in Section 2.4. Section 2.6 shows experimental
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results of both synthetic experiments and a cervical cancer screening test experi-

ment.

2.1 Introduction

Population-based screening programs for identifying undiagnosed individuals

have a long history in improving public health. Examples include screening pro-

grams for cancer (e.g., cervical, breast, colon), tuberculosis and fetal abnormal-

ities. While the primary objective of such programs is to identify and treat un-

diagnosed individuals, these cancer screening programs and the population-level,

longitudinal datasets associated with them, present many opportunities for the

data-driven, computational sciences. In conjunction with modern analytic and

computational techniques, such data have the potential to yield novel insights

into the natural history of diseases as well as improving the effectiveness of the

screening programs.

Hidden Markov Models (HMM) are a standard choice for disease progression

modeling for at least three reasons. First, the underlying disease is represented as

an unobserved, latent Markov process. Second, noisy measurements of the disease

states are efficiently incorporated as conditional probability distributions in the

emission mechanism. Third, any modeling assumptions for a particular applica-

tion are easily incorporated into the transition probability matrix and emission

mechanism. However, existing HMMs have several key drawbacks that limit their

applicability to real-world datasets, and we propose to address several of those

issues herein.

Standard HMMs assume that measurements are regularly sampled at discrete

intervals which is often not the case in disease screening programs. Measurements

are often irregularly sampled because patients come in for screenings at irregular
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intervals, even if regular screening tests are recommended. To deal with irregular

sampling, Continuous-Time Hidden Markov Models (CTHMM) are often used

since they easily handle samples taken at arbitrary time intervals. CTHMMs have

been proposed in many applications such as networks (Wei et al., 2002), medicine

(Bureau et al., 2003), seismology (Lu, 2017) and finance (Krishnamurthy et al.,

2018).

Health status are of interest in the screening test research. It is crucial to

consider a latent model for health status. The HMM is the state of the art ap-

proach. Most HMM variants consider only discrete time (Subakan et al., 2014,

e.g.,). Continuous time HMMs can handle data at any time stamp and there-

fore are suitable for irregularly-sampled longitudinal data (Liu et al., 2013; Wang

et al., 2014). Liu et al. (2015a) summarize and discuss learning approaches for

continuous time HMMs and proposes efficient EM-based learning approaches.

A modified transition matrix is generally modeled by letting the transition

distribution depend on a set of observed covariates or exogenous time-series via a

multinomial logistic function (Hughes et al., 1999; Paroli and Spezia, 2008). It is

an alternative way to model the varying transition matrix. In the continuous-time

Markov process transition distribution is derived from the jump Markov process

using the Kolmogorov equations. While the parallelization of EM algorithms

for hidden Markov models has been studied (Li et al., 2008), to the best of our

knowledge, there is no literature on efficient inference for continuous-time, time-

inhomogeneous HMMs. In this paper, we propose a scalable EM algorithm for

the efficient inference of such models, which is much more efficient than a naïve

implementation of a standard EM algorithm.

Because the natural history of many diseases depends heavily on the age of the

individual, the time-homogeneous assumption is not valid. For this reason, time-
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inhomogeneous HMMs are more appropriate. Although such models have many

appealing theoretical properties according to the Kolmogorov equations (Zeifman

and Isaacson, 1994), parameter inference is intractable in most non-trivial cases.

For this reason, many inference studies of continuous-time, time-inhomogeneous

HMMs (CTIHMMs) in the medical domain depend on inefficient microsimulations

(Sonnenberg and Robert, 1993; Canfell et al., 2004).

Because of the computational issues, many previous HMM models of dis-

ease progression assume that the observations come from a homogeneous pop-

ulation. In large populations, this will typically not be the case. For example, in

population-level screening data a large proportion of individuals have benign test

results while only a small proportion have abnormal test results. Frailty models

are proposed as a common methodology in epidemiological modeling (Yen et al.,

2010).

To deal with these difficulties we introduce piece-wise constant transition inten-

sity functions, which allow for tractable parameter inference yet are considerably

more flexible in terms of time-inhomogeneity. We then propose a latent structure

(i.e., frailty model) to capture unobserved population heterogeneity in terms of

disease exposure and susceptibility. Specifically, we propose a new hierarchical

hidden Markov model for disease progression in which patients are categorized

into classes based on risk levels. Due to the cost of the standard EM algorithm

inference, we propose an efficient and scalable EM algorithm combining both soft

and hard assignment in the E-step and an auto-differentiation based Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization method in

the M-step.

An alternative reason why we prefer the inhomogeneous model is that the ho-

mogeneuous continuous-time Markov process assume that arrival time follows an
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exponential distribution, which may be too limited and does not match biolog-

ical processes. Doerr et al. (2013) utilize lognormal distributions to model the

inter-arrival time, Mdzinarishvili and Sherman (2010) utilize a non-homogenous

Poisson process in the Armitage-Doll model for cancer, where the waiting time

follows a Weibull distribution. We aware that semi-Markov model is a gener-

alization of Markov model, which relaxes the Markov assumption by assuming

that future states do not only depend on the present but also the past through

the time since entry in the present state (Foucher et al., 2005). Specifically, in

the continuous time Markov process, the distribution of sojourn time depends

on the elapsed time from initial entrance while in the semi-Markov process, that

depends on the elapsed time from the previous entrance. When the sojourn time

in semi-Markov process are exponentially distributed, this process becomes a ho-

mogeneous continuous-time Markov process. Although semi-Markov process is

feasible, it is difficult to interpret the biology process. Therefore, we select the

inhomogeneous continuous-time Markov model for the screening test data.

Our work is motivated by cervical cancer screening data from the Cancer

Registry of Norway, but our model is broadly applicable for longitudinal data

(panel data) such as clinical data, survey data, and electronic health record data.

2.2 Markov Jump Processes Models

This section reviews the literature related to Markov jump processes. We first

define Markov jump process in Section 2.2.1. Then we discuss its modeling in

the homogeneous case and inhomogeneous case in Section 2.2.2 and Section 2.2.3

separately. Next, we treat states are not observable or hidden and model them via

Markov jump processes. Then models in the homogeneous case and inhomogenous

case are discussed in Section 2.2.4 and Section 2.2.5 respectively.
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2.2.1 Markov Jump Process

In order to define the Markov jump process, we give a definition of a continuous-

time stochastic process.

Definition 2.2.1 (Continuous-time stochastic process). A continuous-time stochas-

tic process, (X(t))t≥0 with state space S is a collection of random variables X(t)

with values in S.

With an at most countable state space S, the distribution of the stochastic

process (X(t)t≥0) is determined by the probability

P (X(tn) = sn, ∀n = 1, . . . N)

for 0 ≤ t1 < t2 < . . . < tN , s1, s2, . . . , sN ∈ S and N ∈ N. We consider countable

state space S in the rest of this section.

Due to the complexity of the joint distribution, the continuous-time Markov

process is introduced and defined as follow.

Definition 2.2.2 (Continuous-time Markov process). A continuous-time stochas-

tic process (X(t))T≥0 is a continuous-time Markov process if for all 0 = t0 < t1 <

. . . < tN , s0, s1, . . . sN ∈ S,N ∈ N,

P (X(0) = s0, X(t1) = s1, . . . , X(tN) = sN) = p0(s0)
N∏
n=1

psn−1,sn(tn−1, tn) (2.1)

where p0(s0) = P (X0 = s0) denotes the initial state probability and psn−1,sn(tn−1, tn) =

P (X(tn) = sn|X(tn−1) = sn−1) denotes the conditional probability that X changes

from state sn−1 at time tn−1 to state sn at time tn.

The conditional probability pi,j(s, t) has three properties:
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• pi,j(t, t) =


0 i 6= j

1 i = j

.

• 0 ≤ pi,j(s, t) ≤ 1.

• ∑j∈S pi,j(s, t) = 1.

The homogeneous continuous Markov process assumes the homogeneity in the

Markov process. Specifically, it assumes that transition probability pi,j(tn−1, tn)

only depends on the length of time interval (tn−1, tn). Therefore we denote that

pi,j(tn−1, tn) = pi,j(tn − tn−1) . (2.2)

Definition (2.2.2) does not define the behavior of stochastic process. It means

that the process may change all the time in any small time interval. To deal with

this issue, jump processes and regular jump processes are defined.

Definition 2.2.3 (Jump process/regular jump process). A stochastic process

(X(t))t≥0 on an at most countable state space is a jump process if the process

X(t) has discrete movements. It is a regular jump process if it is a jump process

and it only has finite jumps in any time interval with finite length.

For a Markov process (X(t))t≥0 with state space S the sequence of transition

times (t′n)n∈N are the times when X(t) jumps i.e.

t′n = inf(t ≥ t′n−1 : X(t) 6= X(t′n−1)) (with t′0 = 0 and inf ∅ =∞) .

The time between transition time t′n+1− t′n is called the holding time or inter-
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arrival time. And the embedding process is given by X0 = X(0) and

Xn =


X(t′n) if t′n <∞

4 if t′n =∞
, n ∈ N (2.3)

where 4 is an arbitrary element not in S.

In the context of a continuous-time Markov process, the Kolmogorov equations,

including Kolmogorov forward equations and Kolmogorov backward equations,

are a pair of systems of differential equations that describe the time-evolution of

transition probability pi,j(s, t), where i, j ∈ S and s < t are initial and final time

respectively.

According to the Markov property in (2.1), we are going to introduce the

Chapman-Kolmogorov equations. It conforms

pi,j(s, t) = P (X(t) = j|X(s) = i)

=
∑
k∈S

P (X(t) = j,X(u) = k|X(s) = i)

=
∑
k∈S

P (X(t) = j|X(u) = k)p(X(u) = k|X(s) = i)

=
∑
k∈S

pi,k(s, u)pk,j(u, t) (2.4)

where s ≤ u ≤ t. Then Chapman-Kolmogorov equations can also be seen as a

definition of Markov process.

Taking the derivative of Chapman-Kolmogorov equations leads to the Kol-

mogorov forward equation and Kolmogorov backward equation. Let h be an

infinitesimally short time, Then given (2.4),

pi,j(s, t+ h) =
∑
k∈S

pi,k(s, t)pk,j(t, t+ h)
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Therefore the derivative of pi,j(s, t) with respect to t is

∂pi,j
∂t

(s, t) = lim
h→0

pi,j(s, t+ h)− pi,j(s, t)
h

= lim
h→0+

∑
k∈S pi,k(s, t)pk,j(t, t+ h)− pi,j(s, t)

h

= lim
h→0+

∑
k 6=j pi,k(s, t)pk,j(t, t+ h) + pi,j(s, t)(pj,j(t, t+ h)− 1)

h

=
∑
k 6=j

pi,k(s, t) lim
h→0+

pk,j(t, t+ h)
h

+ pi,j(s, t) lim
h→0+

pj,j(t, t+ h)− 1
h

.

(2.5)

According to the properties of p in (2.2.1), i.e. pk,j(t, t) = 0 for k 6= j and

pk,j(t, t) = 1 for k = j, we define the transition rate from state k to state j at

time t

qk,j(t) = ∂pk,j(t, u)
∂u

|u=t = lim
h→0

pk,j(t, t+ h)− pk,j(t, t)
h

lim
h→0

pk,j(t,t+h)
h

k 6= j

lim
h→0

pk,j(t,t+h)−1
h

k = j

. (2.6)

Inheriting the property of pi,j(s, t) in (2.2.1), transition rates have two prop-

erties:

• qi,j(t) ≥ 0 for i 6= j.

• ∑j∈S qij(t) = 0.

Plugging (2.6) into (2.5), we achieve Kolmogorov forward equations.

Definition 2.2.4 (Kolmogorov Forward Equations).

∂pi,j
∂t

(s, t) =
∑
k∈S

pi,k(s, t)qk,j(t) .
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On the other hand, taking the derivative of pi,j(s, t) with respect to s, we have

∂pi,j
∂s

(s, t) = lim
h→0

pi,j(s+ h, t)− pi,j(s, t)
h

= lim
h→0−

pi,j(s+ h, t)− pi,j(s, t)
h

= lim
h→0+

pi,j(s, t)− pi,j(s− h, t)
h

= lim
h→0+

pi,j(s, t)−
∑
k∈S pi,k(s− h, s)pk,j(s, t)

h

=
∑
k 6=i

pk,j(s, t) lim
h→0

pi,k(s− h, s)
h

+ pi,j(s, t) lim
h→0

1− pi,i(s− h, s)
h

= −
∑
k 6=i

pk,j(s, t)
∂pi,k(u, s)

∂u
|u=s − pi,j(s, t)

∂pi,j(u, s)
∂u

|u=s

= −
∑
k∈S

(
∂pi,k(u, s)

∂u
|u=s

)
pk,j(s, t) . (2.7)

Because of the continuity of transition rate, we have lim
h→0

pi,j(t,t+h)
h

= lim
h→0

pi,j(t+h,t)
h

,

which causes the equivalence between ∂pi,j(t,u)
∂u
|u=t and ∂pi,j(u,t)

∂u
|u=t.

Therefore, plugging the equivalent expression to (2.7), we derive the Kol-

mogorov backward equations.

Definition 2.2.5 (Kolmogorov Backward Equations).

∂pi,j
∂s

(s, t) = −
∑
k∈S

qi,k(s)pk,j(s, t) .

With matrix representation, we rewrite the Kolmogorov forward equations as

∂P

∂t
(s, t) = P (s, t)Q(t) (2.8)

and the Kolmogorov backward equations as

∂P

∂s
(s, t) = −Q(s)P (s, t) . (2.9)
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From the generative perspective, the transition mechanism is described via

transition rate qij(t).

P (X(t+ h) = j|x(t) = i) = qij(t)h+ o(h) i 6= j .

It assumes transition can only happen at most one time within one infinitesi-

mally short time (t, t+ h). Then the mechanism is described by

P (X(t+ h) = i|x(t) = i) = 1−
∑
i 6=j

qij(t)h+ o(h) = 1 + qii(t)h+ o(h) . (2.10)

Transition rate qii(t) = −∑i 6=j qij(t) is derived from (2.10) and it verifies the

property of transition rates ∑k∈S qik(t) = 0.

By solving the Kolmogorov forward equation (2.8), we derive the generative

equations

P (s, t) = P (s, s) exp(
∫ t

s
Q(u)du) = exp(

∫ t

s
Q(u)du)

for any 0 < s < t. Solving the Kolmogorov backward equation (2.9) can get the

same solution as

P (s, t) = exp(
∫ t

s
Q(u)du)P (t, t) = exp(

∫ t

s
Q(u)du) .

Let Si,s be a random variable describing the sojourn time or waiting time of

X(t) in state i starting at time s. Let us define the distribution of Si,s via Gi,s(t):

Gi,s(t) = P (Si,s ≥ t) . (2.11)
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Then by the Markov property,

Gi,s(t+ h) = P (Si,s ≥ t, Si,s+t ≥ h)

= Gi,s(t)Gi,s+t(h) .

On the other hand, according to the definition of G (2.11) and the properties

of Q (2.10),

Gi,s+t(h) = P (Si,s+t > h)

= P (X(s+ t+ h) = i|X(s+ t) = i)

= 1 + qii(s+ t)h+ o(h) .

Then the derivative of Gi,s(t) is

G′i,s(t) = lim
h→0

Gi,s(t+ h)−Gi,s(t)
h

= qii(s+ t)Gi,s(t) .

The distribution of Gi,s(t) is

Gi,s(t) = exp
(∫ t

0
qii(s+ u)du

)
Gi,s(0)

= exp
(∫ s+t

s
qii(u)du

)
. (2.12)

Therefore, the density of Si,s is

fSi,s(t) = d(1−Gi,s(t))
dt

= − exp
(∫ s+t

s
qii(u)du

)
qii(s+ t) . (2.13)
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The homogeneous Markov process assumes constant transition rate, Q(t) ≡ Q

and it has some good properties. In the such case, the distribution of Si,s(t) is

independent of starting time s so we denote it as Si(t). We have

P (Si > t) = exp(qiit) (2.14)

which implies Si ∼ Exp(−qii).

Given the properties of Q (2.10), the instant transition probability is

lim
h→0

p(X(t+ h) = j|X(t) = i,X(t+ h) 6= i) = p(X(t+ h) = j|X(t) = i)∑
j 6=i p(X(t+ h) = j|X(t) = i)

= lim
h→0

qijh+ o(h)∑
k 6=i qik + o(h)

= qij∑
k 6=i qik

(2.15)

for all j 6= i.

A poisson process can be treated as a special case of Markov jump processes,

in which it has countable infinite states S = (0, 1, . . .) and the transition rates are

defined as

qij =



λ j = i+ 1

−λ j = i

0 otherwise .

(2.16)

Moreover, the birth and death process is another special case of Markov jump

processes, in which it has countable infinite state S = (0, 1, . . .) and the transition
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rates are defined as

qij =



λ j = i+ 1

µ j = i− 1

−λ− µ j = i

0 otherwise .

(2.17)

Next, we introduce the homogeneous Markov model and then introduce the

inhomogeneous Markov model. To avoid the complex modeling, we do not model

the initial state and assume that it is known, which means we assume that P (s′0) =

1.

2.2.2 Homogeneous Markov Model

Let t′ = (t′0, t′1, . . . t′T ′) refer to the underlying transition timestamps with cor-

responding state s′0, s′1, . . . , s′T ′ . Let the sojourn time be r′ = (r′0, r′1, . . . , r′T ′−1).

In the homogeneous case, the sojourn time follows an exponential distribution

(2.14) and conditional transition probability is explicit (2.15), then the complete

likelihood (CL) is given by

CL =
T ′−1∏
i=0

(qs′i,s′i+1
/qs′i)qs′i exp(−qs′ir

′
i) (2.18)

where qi = −qi,i = ∑
j 6=i qi,j. In this case, the likelihood depends on all {s′i}i=0,...T ′−1

and {r′i}i=0,...T ′−1.

Considering the finite state cases where |S| < ∞, we rewrite the complete
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likelihood indexed by states, instead of time.

CL =
∏

i 6=j∈S
q
ni,j
i,j

∏
i∈S

exp((−qi4i)) (2.19)

where ni,j is the number of transitions from state i to state j and 4i is the

total sojourn time (waiting time) at state i. Due to the new representation,

the likelihood information is summarized by summary statistics {ni,j}i∈S,j∈S and

{4i}i∈S. Then (2.19) is more concise than (2.18).

In practice, underlying transition timestamps t′ and corresponding states s′

are unknown. Only the irregular sampling timestamp t = (t0, t1, . . . , tT ) and

corresponding states s = (s0, s1, . . . , sT ) are observable. We let the sojourn time

be r = (r0, r1, . . . , rT−1).

EM algorithm is proposed for this homogeneous Markov model in Metzner

et al. (2007). The expected complete log likelihood (ECLL) is

ECLL =
∑
i 6=j∈S

E[ni,j|Q̂, s] log(qi,j)− E[4i|Q̂, s]qi . (2.20)

According to the Markov property, the ECLL can be decomposed as

ECLL =
∑
i 6=j∈S

T−1∑
k=0

E[ni,j|Q̂, sk, sk+1] log(qi,j)− E[4i|Q̂, sk, sk+1]qi .

Then in the E-step, we compute the conditional expectation of the num-

ber of transitions between state i and state j in each time interval [tk, tk+1)],

E[ni,j|Q̂, sk, sk+1] and the conditional expectation of the waiting time at state

u for each time interval [tk, tk+1)], E[4i|Q̂, sk, sk+1]. Then in the M-step, the
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transition rate is optimized

q̂i,j = E[ni,j|Q̂, s]
E[4i|Q̂, s]

for i 6= j by maximizing the ECLL.

Therefore, the two conditional expectations E[ni,j|Q,X(0) = a,X(T ) = b] and

E[4i|Q,X(0) = a,X(T ) = b] are of interest. They are derived in Guttorp and

Minin (2018); Hobolth and Jensen (2005); Smyth Gordon (2004).

• Time spent in state i:

E[4i|Q,X(0) = a,X(T ) = b]

= E[4i1b(X(T ))|Q,X(0) = a]/P (X(T ) = b|X(0) = a)

= E[
∫ T

0
4′i(t)dt1b(X(T ))|Q,X(0) = a]/pa,b(0, T )

=
∫ T

0
E[lim

h→0

4i(t, t+ h)
h

1b(X(T ))|Q,X(0) = a]dt/pa,b(0, T )

=
∫ T

0
lim
h→0

1
h
E[4i(t, t+ h)1b(X(T ))|Q,X(0) = a]dt/pa,b(0, T )

=
∫ T

0
lim
h→0

1
h
h(1− qih+ o(h)) ∗ pa,i(0, t)pi,b(t+ h, T )dt/pa,b(0, T )

=
∫ T

0
pa,i(0, t)pi,b(t, T )dt/pa,b(0, T ) . (2.21)
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• Number of transitions between state i and state j:

E[ni,j|Q,X(0) = a,X(T ) = b]

= E[ni,j1b(X(T ))|Q,X(0) = a]/P (X(T ) = b|X(0) = a)

= E[
∫ T

0
n′i,j(t)dt1b(X(T ))|Q,X(0) = a]/pa,b(0, T )

=
∫ T

0
E[lim

h→0

ni,j(t, t+ h)
h

1b(X(T ))|Q,X(0) = a]dt/pa,b(0, T )

=
∫ T

0
lim
h→0

1
h
E[ni,j(t, t+ h)1b(X(T ))|Q,X(0) = a]dt/pa,b(0, T )

=
∫ T

0
lim
h→0

1
h

(qijh+ o(h))pa,i(0, t)pj,b(t+ h, T )dt/pa,b(0, T )

= qi,j

∫ T

0
pa,i(0, t)pj,b(t, T )dt/pa,b(0, T ) . (2.22)

In the literature, there exist three approaches to compute the conditional ex-

pectations above. Metzner et al. (2007) considers a eigen-decomposition of the

transition intensity matrix Q and the matrix exponential P (0, t) = eQt can be sim-

plified. Hobolth and Jensen (2011) introduces a uniformization method in Jenson

(1953). Let u = maxi(−qi,i) then we define a transition matrix R = Q/µ + I. It

means that Q = (R − I)µ. Using the reparameterization and Taylor expansion,

the transition matrix exp(Qt) can be rewritten as

exp(Qt) = exp(ut(R− I))

=
∞∑
n=0

(ut)n
n! exp(−ut)Rn

=
∞∑
n=0

RnPoi(n;ut) . (2.23)

The continuous-time Markov model can also be treated as a discrete-time

Markov model with transition matrix R subordinated to a Poisson process with

intensity u. Any transition probability from state i to state j with time t is
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approximated by

pi,j(0, t) = exp(Qt)i,j

=
∞∑
n=0

Rn
i,jPoi(n;ut)

=
K∑
n=0

Rn
i,jPoi(n;ut)

where K is a truncation level.

Using this similar idea, the conditional expectations are expressed by directly

inserting the exp(Qt) series in to the integral.

E[4i1b(X(t))|Q,X(0) = a] =
∞∑
n=0

t

n+ 1

n∑
m=0

(Rm)a,i(Rn−m))i,bPoi(n;ut)

E[ni,j1b(X(t))|Q,X(0) = a] = Ri,j

∞∑
n=1

t

n+ 1

n∑
m=0

(Rm)a,i(Rn−m))j,bPoi(n;ut) .

For large values of ut, we have Poi(n;ut) ≈ N (n;ut, ut) and then the tail of

Poisson distribution can be bounded by a cumulative normal distribution. Given

this approximation, Tataru and Hobolth (2011) gives a suggested truncation level

K = [4 + 6
√
ut+ ut].

The third approach comes from Liu et al. (2015b). They leverage a clas-

sic method of Van Loan Van Loan (1978). In Van Loan (1978), it shows that∫ t
0 exp(Qx)B exp(Q(t − x))dt = exp(At)(1:n),(n+1):(2n) where n is the dimension of

Q and A is constructed as A =

Q B

0 Q

. By setting B = I(i, j), where I(i, j)

is the matrix with a 1 in the (i,j)th entry and 0 elsewhere, it is easy to derive

E[4i|Q,X(0) = a,X(T ) = b] and E[ni,j|Q,X(0) = a,X(T ) = b].

An alternative approach to compute the conditional expectation is to solve an

ordinary differential equation (ODE) system in Bladt and Sørensen (2005). They
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define the auxiliary functions

M i
a,b(t) = E[4i1b(X(t))|Q,X(0) = a]

F i,j
a,b(t) = E[ni,j1b(X(t))|Q,X(0) = a]

which satisfy systems of ODE. Considering any pair of indexes i, j ∈ S, the vectors

M i
a(t) = (M i

a,1(t), . . . ,M i
a,s(t)) and F i,j

a (t) = (F i,j
a,1(t), . . . , F i,j

a,s(t)) satisfy the two

systems of ODEs

d

dt
M i

a(t) = M i
a(t)Q+ pa,i(0, t)ei , M i

a(0) = 0
d

dt
F i,j
a (t) = F i,j

a (t)Q+ qi,jpa,i(0, t)ej , F i,j
a (0) = 0

where ei and ej are the ith and jth unit vectors.

Instead of modeling the underlying process, directly modeling the irregular

sampling data leads to the likelihood as

L =
T−1∏
i=0

psi,si+1(ti, ti+1)

=
T−1∏
i=0

exp(Qri)si,si+1 .

Next, we introduce the expression of complete likelihood in the inhomogeneous

case.

2.2.3 Inhomogeneous Markov Model

Due to the density of sojourn time Si,s (2.13), we have

CL =
T ′−1∏
i=0

(qs′i,s′i+1
(t′i+1)/qs′i(t

′
i+1))fSs′

i
,t′
i

(ri) (2.24)
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where fSs′
i
,t′
i

(r′i) = − exp
(∫ t′i+r′i

t′i
qs′i,s′i(u)du

)
qs′i,s′i(t

′
i + r′i).

It is obvious that when all transition rates are constant function qi,j(t) = qi,j,

(2.24) is equivalent to (2.18) or (2.19).

Through rewriting the complete likelihood indexed by state, we have

CL =
∏

i 6=j∈S

∏
t∈Ai,j

(qi,j(t))
(∏
i∈S

exp
(
−
∫
t∈Bi

qi(t)dt
))

(2.25)

where Ai,j is a set of change points from state i to state j and B is a collection of

intervals where process stays in state i. In (2.25), the information of the underlying

process is summarized in the change-point collectionA and sojourn time collection

B.

Given the observations s on irregular sampling timestamps t, we directly model

the observable data. The likelihood of data in the inhomogeneous case is

L =
T−1∏
i=0

psi,si+1(ti, ti+1)

=
T−1∏
i=0

exp
(∫ ti+1

ti
Q(u)du

)
si,si+1

. (2.26)

To infer the transition intensity process, we need to model it first. We proposed

a concise way to model the intensity by modeling qij(t) via a piece-wise constant

function. We partition time into I disjoint intervals covering the range of observ-

able time. Then we have a set of disjoint partitions A = {Ai}Ii=1. Each transition

intensity function qij for i 6= j is a piece-wise constant function via the defined

partition A, denoted by qij(t) = ∑I
k=1 qijk1Ak(t), where 1(·) is an indicator func-

tion and qijk ≥ 0. In this case, the inhomogeneous Markov process is treated as a

combination of several continuous-time homogeneous Markov processes, and the

transition probability matrix Q is computed as a product of transition probability
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matrices with respect to their corresponding partitions.

There are two ways to infer the transition intensities. One is inference based

on the underlying process using (2.25) and the other is inference based on obser-

vations using (2.26). We prefer the second one because of the concise expression.

Considering the piece-wise constant modeling for the transition intensity, the

exponential matrix function in the likelihood (2.26) allows decomposition via par-

titions, suggesting for any time interval (s, t), without loss of generality, assuming

s ∈ Ai = [ai, ai+1) and t ∈ Aj = [aj, aj+1) where i ≤ j, we have

exp(
∫ t

s
Q(u)du) = exp

(ai+1 − s)Qi +
j−1∑
k=i+1

(ak+1 − ak)Qk + (t− aj)Qj

 .

(2.27)

After discussing Markov jump process models, we would consider the Hidden

Markov jump process models where states are not observable. In other words,

Markov jump processes are utilized to model the latent states. Let observable

time be t = (t0, t1, . . . , tT ) with corresponding observations y = (y0, y1, . . . yT )

and latent states s = (s0, s1, . . . , sT ). We discuss its relevant models in both

the homogeneous case and the inhomogeneous case throughout the following two

sections.

2.2.4 Homogeneous Hidden Markov Model

We first introduce the homogeneous case. Assume the underlying transition

times are t′ = (t′0, t′1, . . . , t′T ′) with corresponding latent states s′ = (s′0, s′1, . . . , s′T ′).

Let t′T ′+1 =∞. The underlying transition times partition the whole time into T ′+1

intervals {(ti, ti+1]}i=0,...T ′ . Denote sojourn time as r′i = t′i+1 − t′i for t = 0, 1, . . ..

Assume we have the T + 1 irregular observations y = (y0, y1, . . . , yT ) with latent

30



states s = (s0, s1, . . . , sT ) at time t = (t0, t1, . . . , tT ). Each observed time tj would

be allocated in one of the intervals. Without loss of generality, we assume that

tj ∈ [t′[j], t′[j]+1). It means that at time tj, the corresponding state sj should be

consistent with the underlying process such that sj = s′[j]. Therefore, the complete

likelihood is

CL =
T ′−1∏
i=0

(qs′i,s′i+1
/qs′i)qs′i exp(−qs′ir

′
i)

T∏
j=0

P (yj|sj)1s′[j](sj) . (2.28)

Because we are interested in the strict positive likelihood, we set sj = s′[j], im-

plying that only the underlying transition information {s′i}i=0,...,T ′ and {t′i}i=0,...,T ′

is inferred.

Using the same reordering tricks in (2.18) and (2.19), the complete likelihood

(2.28) is rewritten as

CL =
∏

i 6=j∈S
(qi,j)ni,j

∏
i∈S

exp(−qi4i)
T∏
k=0

P (yk|sk) (2.29)

where ni,j is the number of transitions from state i to state j and 4i is the total

waiting time at state i.

Given a current estimate of parameter Q̂, the expected complete log-likelihood

follows the form

ECLL =
∑
i 6=j∈S

E[ni,j|Q̂,y] log(qi,j)−
∑
i∈S

E[4i|Q̂,y]qi +
T∑
k=0

E[logP (yk|sk)|Q̂,y] .

(2.30)

Given the ECLL, in the M-step of EM algorithm, the intensity matrix Q is

computed by taking the derivative with respect Q and letting it to 0, then it
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derives

q̂ij = E[ni,j|Q̂,y]
E[4i|Q̂,y]

for i 6= j ∈ S and q̂i,i = −q̂i = −∑j 6=i q̂i,j.

Conditional expectations would be computed by marginalizing the latent states

as follows:

E[ni,j|Q̂,y] =
∑
s

p(s|Q̂, Y )E[ni,j|Q̂, s]

=
∑
s

p(s|Q̂,y)
T−1∑
k=0

E[ni,j|Q̂, sk, sk+1]

=
T−1∑
k=0

∑
sk,sk+1

p(sk, sk+1|Q̂,y)E[ni,j|Q̂, sk, sk+1]

E[4i|Q̂,y] =
∑
s

p(s|Q̂,y)E[4i|Q̂, s]

=
∑
s

p(s|Q̂,y)
T−1∑
k=0

E[4i|Q̂, sk, sk+1]

=
T−1∑
k=0

∑
sk,sk+1

p(sk, sk+1|Q̂,y)E[4i|Q̂, sk, sk+1]

(2.31)

where the posterior probability of state p(sk, sk+1|Q̂,y) is available by the forward

backward algorithm as a Soft method (Rabiner, 1989) or is approximated by the

Viterbi algorithm as a Hard method.

Since conditional expectations E[ni,j|Q̂, sk, sk+1] and E[4i|Q̂, sk, sk+1] have

already been studied in the homogeneous Markov model, we can succeed to get

the estimate of qij in M-step.
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2.2.5 Inhomogeneous Hidden Markov Model

Modeling the underlying process in the inhomogeneous case is complicated,

because it does not have concise summary statistics like the homogeneous case.

Therefore, we directly model the observations and then the likelihood is

L =
T−1∏
i=0

psi,si+1(ti, ti+1)
T∏
i=0

p(yi|si) . (2.32)

To infer the likelihood 2.32, we utilize the EM algorithm. Treating the la-

tent states s as latent variables, given estimates of transition intensities Q̂ =

{Q̂i}i=1,2,...,I , the expected conditional log likelihood is

ECLL = E[log(p(s))|Q̂,y] + E[log p(y|s)|Q̂,y] .

(2.33)

In the E-step, to compute the two posterior expectations above, we need to

compute the posterior distribution of p(s|Q̂,y). There exist two approaches, one

is to compute the posterior using the forward-backward method (Rabiner, 1989)

and the other is to approximate the posteriors via using the MAP of states via

Viterbi algorithm.

With the forward-backward method, considering the homogeneous discrete

Markov model, the EM algorithm is called the Baum-Welch algorithm (Bishop,

2006), which has a closed expression with respect to Q.

2.3 Model

We propose a hierarchical inhomogeneous HMM (HIHMM) to model disease

progression. The hierarchical graphical representation is illustrated in Figure 2.1.
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Figure 2.1: Graphical representation for hierarchical inhomgeneous hidden
Markov models.

In our real world case study, we assume all patients come from two risk categories:

high disease exposure risk and low disease exposure risk. Each category has its

own Markov transition structure shown in Figure 2.2 but shares the same emission

mechanism. Details are discussed in Section 2.6. This hierarchical structure of the

HIHMM allows for an arbitrary number of latent frailty states, provided relevant

Markov models can be ascribed to the disease progression associated with each.

2.3.1 Variables

Suppose there are N individuals in the screening population. Let individual n

have Tn screening visits at ages a1, . . . , aTn . We assume Z categories are considered
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in the hierarchical frailty structure and introduce the following variables:

Frailty State (hidden): zn ∈ {1, . . . , Z} ,

Disease States (hidden): Snt ∈ {1, . . . ,Mzn} ,

Number of screening tests (observable): Entk ∈ N ,

Screening test results (observable): Gntk ∈ NLk .

The underlying disease state of individual n is assumed to evolve according

to a continuous-time, time-inhomogeneous Markov process assigned by its latent

frailty class indicator zn, where only screening results at specific time stamps

with corresponding ages a1, . . . aTn are observable. On the tth screening visit of

individual n, Snt refers to the latent disease state and the visit includes Entk

tests of the kth test type. In the screening dataset, Entk may be greater than

1, because a screening visit is recorded only monthly for patient confidentiality.

Corresponding results Gntk is a Lk dimensional vector and the value on the lth

dimension refers to the number of the lth grade results.

2.3.2 Model of Disease Progression

As for the zth underlying Markovian disease process, it is parameterized by

an Mz ×Mz transition intensity matrix Qz. For the simplicity of notation, we

ignore the subscript z in the remainder of this section. The element qij in the

matrix Q satisfies qij ≥ 0 for i 6= j and qii = −∑i 6=j qij. The time spent in

state i is exponentially distributed with rate −qii. Given that a transition occurs

from state i, the probability of transitioning to state j is qij
qi

where qi = ∑
i 6=j qij.

When Q is invariant for time t the model is homogeneous, otherwise the model is

inhomegeneous.
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Homogeneous Markov Model

For a homogeneous Markov process, assume the initial state at t1 is known,
p(S(t1)) = 1. We let t′1 = t1 and t′ = (t′1, . . . , t′T ′) refer to the underlying transition
timestamps and letO = (O1, . . . , OT ) denote observations at time t = (t1, . . . , tT ).
Then the complete likelihood (CL) is:

CL=
T ′∏
i=1

(qS(t′
i
),S(t′

i+1)/qS(t′
i
))qS(t′

i
)e
−qS(t′

i
)Mi

T∏
j=1

p(Oj |S(tj))

=
M∏
i=1

(
e−qiτi

∏
j 6=i

q
nij
ij

)
T∏
j=1

p(Oj |S(tj)) ,

where M̃i = t̃i+1 − t̃i and nij denotes the number of times the state changes

from state i to state j during the whole process and τi denotes the duration

that the process stays in state i. Since the underlying transition timestamps t′

are not observable, the marginalized complete likelihood (MCL) is derived by

marginalizing all t′ as

MCL =
T−1∏
i=1

P (Mi)S(ti),S(ti+1)

T∏
j=1

p(Oj|S(tj)) ,

where Mi= ti+1 − ti and P (Mi) = eQMi is the transition probability matrix from

time ti to time ti+1.

Inhomogeneous Markov Model

An inhomogeneous Markov process drops the time invariance assumption of

Q, by allowing it to be a function of t. But it requires three conditions:

qij(t) =



−∑i 6=k qik(t) i = j

qij(t) > 0 i 6= j, i ∼ j

0 i 6= j, i 6∼ j

(2.34)
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where i ∼ j means state i connects to state j while i 6∼ j means state i does not

connect to state j in the transition structure of model. The CL then becomes

intractable, because the time spent in state i no longer follows an exponential

distribution. An alternative approach is to consider the MCL. The only differ-

ence in the expression of MCLs between homogeneity and inhomogeneity is the

computation of the transition matrix P ([ti, ti+1]) from time ti to time ti+1 for

i = 1, . . . , T − 1. For the inhomogeneous model, P ([ti, ti+1]) = exp{
∫ ti+1
ti Q(t)dt}.

The transition intensity function Q(t) can be modeled by any parametric

model, but the computation of the matrix exponential exp{
∫ ti+1
ti Q(t)dt} may be

prohibitively expensive, even taking advantage of numerical computational meth-

ods. To ease this computational burden, we propose a piecewise constant transi-

tion intensity matrix Q. Due to conditions of the model (2.34), we are interested

in modeling qij for i ∼ j as a piecewise positive constant function of time. Specif-

ically, we partition time into I disjoint intervals covering the range of observable

time. We then have a set of disjoint partitions A = {Ai}Ii=1. Each transition

intensity function qij is a piecewise constant function via the defined partition

A, denoted by qij(t) = ∑I
k=1 qijk1Ak(t), where 1(·) is an indicator function and

qijk ≥ 0, for k = 1, . . . , I. In this case, the inhomogeneous Markov process can

be treated as a combination of several continuous-time homogeneous Markov pro-

cesses, and the transition probability matrix Q can be computed as a product of

transition probability matrices with respect to their corresponding partitions.

Treatment Modeling

Treatment information of patients is an important factor in disease progression,

giving information about how many times and when the patients get treatments.

In our case, we model the treatment information as a reset in the transition
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structure. Once a patient is treated at certain time, we assume his or her state

would automatically transit to the Normal state. For instance, we model the

treatment as a dashed line in Figure 2.2.

2.3.3 Hierarchical Model

Due to the significant population heterogeneity related to disease exposure

risk, we propose a hierarchical model as follows. Let ψ = (ψ1, . . . ,ψZ) denote

all model parameters and ψz be parameters for model z. Then the hierarchical

model is given by

On ∼ Mzn(ψzn ,θn) ,

zn ∼ Cat(p) ,

where θn denotes all covariates for individual n. An informative prior of the model

indicator zn is proposed as a categorical distribution with hyper-parameters p,

which is used to provide expert knowledge of the model assignment. This prior

contributes to reasonable model inference, especially when screening data are

highly unbalanced in terms of latent class membership. Figure 2.2 shows the

case where Z = 2 and index zn has a Bernoulli prior with a parameter p, i.e.,

zn ∼ Ber(p).

2.4 Inference

This section gives a scale expectation maximization approach for inference.

We also provide inference procedures for treatment information.
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2.4.1 Scalable Expectation Maximization Approach

Due to the latent characteristics of both model indices and patient states, the

expectation maximization (EM) approach is considered. Our EM algorithm em-

ploys the true conditional posterior for the model index and the pseudo-conditional

posterior for states in the E-step. Both hard-assignment and soft assignment

approaches are studied in the literature but they are not combined. We bal-

ance the advantages of both methods for inference. Specifically, considering the

heterogeneity of our model, we marginalize the latent transition timestamps in

our inference. We decompose the joint posterior distribution as p(zn,Sn|−) =

p(zn|−)p(Sn|zn,−), where − denotes all other parameters and use soft assign-

ment for p(zn|−) and hard assignment for p(Sn|zn,−), Because the computation

of all possible p(Sn|zn,−) is prohibitively expensive. Specifically, the number of

possible results Sn isMTn
zn . Calculating the joint probability of each state sequence

with the observed series event costs O(TnMTn
zn ). When the length of time series

Tn is large, the computation is infeasible. We are aware that the hard assignment

with Viterbi algorithm may affect the algorithm to get a different local mode.

Although some sensitivity of result comes from Viterbi approximation, the largest

source of sensitivity of the local mode comes from the initial point selection. The

sensitivity of the Viterbi approximation is likely to be small relative to the sensi-

tivity to initial point selection. We also note that Monte Carlo approximation is

an alternative way to approximate the p(Sn|zn,−). But considering the high effi-

ciency of our algorithm, we select the hard assignment approach. For simplicity,

we ignore covariates θn in the remainder of this section.

The recursive procedures are given as follows:

• Given previous estimates ψ(t−1), compute the conditional posterior distri-
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bution of zn:

p(zn|On,ψ
(t−1))∝π(zn)p(On|zn,ψ(t−1))

∼Cat(p̃n) , (2.35)

where p̃nk = pkp(On|zn=k,ψ(t−1)
k

)∑Z

z=1 pzp(On|zn=z,ψ(t−1)
z )

for k = 1, . . . , Z and p(On|z,ψz) is acces-

sible through the forward-filter backward-sample algorithm (FFBS), which

is a sequential Monte Carlo approach first proposed in Kitagawa (1987).

• Update the optimal state sequence Sn given corresponding observations On

and model indicator z using the Viterbi algorithm (Forney, 1973):

S(t)
nz = Viterbi(On,ψ

t−1
z ) . (2.36)

• Maximize the expected marginal complete log-likelihood (EMCLL) with re-

spect to ψ by

ψ(t) = argmax
ψ

N∑
n=1

Ezn,Sn(`(ψ|On, zn,Sn)|On,ψ
(t−1))

= argmax
ψ

N∑
n=1

Z∑
z=1

∑
Sn

p(zn=z|On,ψ
(t−1))

q(Sn|zn=z,On,ψ
(t−1))`(ψ|On, z,Sn)

= argmax
ψ

N∑
n=1

Z∑
z=1

p(zn=z|On,ψ
(t−1))

(
log pz+log p(S(t)

nz |z,ψ)+log p(On|S(t)
nz ,ψ)

)
. (2.37)

Moreover, we decompose parameters ψ into two parts, transition parameters

ψtran and emission parameters ψemis. Denote ψtran
z as transition parameters in
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the zth model. Due to (2.37), we can separately estimate ψtran
z and ψemis by

ψ̂tran(t)
z =argmax

N∑
n=1

p(zn=z|On,ψ
(t−1)) log(S(t)

nz |z,ψtran
z )

ψ̂emis(t)
z =argmax

N∑
n=1

p(zn=z|On,ψ
(t−1)) log(On|S(t)

nz ,ψ
emis
z ) . (2.38)

For a simple emission mechanism, the estimate of ψemisz may have a closed-

form expression. But there is no closed-form for transition parameters. Numerical

optimization is necessary in the M-step.

On the other hand, since population screening datasets contain millions of

records, direct inference may be prohibitively expensive and more scalable ap-

proaches are necessary. Since the computation complexity of (2.35), (2.36) and

(2.38) is linear with respect to the number of observationsN , we scale our EM algo-

rithm by parallelizing the inference across observations using Ñ clusters, {Cn}Ñn=1,

in three parts. We first compute the conditional posterior distribution of zn in

each cluster using (2.35). The time complexity for each cluster is O(|Cn|ZM2T ).

We then compute the optimal state sequences in each cluster Cn using (2.36) with

the same time complexity O(|Cn|ZM2T ). Finally, we compute the gradients in

each cluster then reduce all local gradients to global gradients for the optimization

in the M-step.

Automatic differentiation (AD) (Maclaurin, 2016) is utilized to compute the

gradients in each cluster. Summing over all clusters, we get the gradient of the

EMCLL. Using this gradient we adapt the Limited-Memory BFGS (Liu and No-

cedal, 1989) algorithm to estimate ψ. Analytically computing the complexity of

the L-BFGS algorithm for each cluster is intractable, but the parallelized algo-

rithm increases inference speed around Ñ times. We also note that the log scale

transform trick is employed in the L-BFGS when dealing with positive constraint.
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2.4.2 Inference with Treatment Information

When considering the treatment information, the disease process is decom-

posed as several independent disease processes via the treatment timestamps.

The inference has three modifications with respect to FFBS, Viterbi and EMCLL

respectively.

Without loss of generality we suppose one woman has m treatments indexed

by {r1, . . . , rm}. Then the observation sequence O is partitioned as

{O1, . . . ,Or1}, . . . , {Orm , . . .OT ,Oc}.

Throughout the FFBS, the marginal likelihood is decomposed as

p(O|z,ψ) =p(O1, . . . ,Or1|z,ψ)
m−1∏
j=1

p(Orj+1, . . . ,Orj+1 |Srj = 0, z,ψ)

p(Orm+1, . . .OT ,Oc|Srm = 0, z,ψ). (2.39)

Each component of (2.39) is tractable using FFBS (Kitagawa, 1987).

A similar decomposition is implemented in the Viterbi algorithm to find the

most likely sequence of hidden states.

(S1, . . . , Sr1) = Viterbi(O1, . . . ,Or1 ,ψ) ,

(Srj+1, . . . , Srj+1) = Viterbi(Orj+1, . . . ,Orj+1 ,ψ|Srj =0)

j = 1, . . . ,m− 1 ,

(Srm+1, . . . , ST ) = Viterbi(Orm+1, . . . ,OT ,Oc,ψ|Srm =0) .

According to (4), it is sufficient to compute EMCLL by computing p(S|z,ψ).
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Using a similar decomposition we arrive at p(S|z,ψ) = p(S1|z,ψ)∏i∈{rj} p(Si+1|Si =

0)∏i/∈{rj},i 6=1 p(Si+1|Si).

2.5 Convergence of proposed EM algorithm

This section gives a theoretical proof of the convergence of our proposed EM

algorithm. In general, we denote disease states as S, frailty states as z, all model

parameters as θ and data as O. Our iterative EM algorithm can be summarized

as follows:

1 Calculating p(z|θ(t),O)

2 Finding the optimal S(t)
z given z that maximize p(S|z,θ(t),O).

3 Finding the optimal θt+1 that maximize Eq(z,S|θ(t)) log p(θ, z,S,O) where

q(z,S|θt,O) = p(z|θt,O)1
S

(t)
z

(S)

We recursively repeat the step 1 to step 3 until θ converges. Next, we are going

to prove that θ must converge to a fixed point θ∗.

Due to Jensen’s inequality, the likelihood has the lower bound

`(θ) = log p(O|θ) ≥ Eq(z,S) log p(O, z,S,θ)
q(z,S) = `∗(θ) (2.40)

for any distribution q(z,S). We select a structured family of distributions such

that q(z,S) = q(z)q(S|z) = q(z)1S̃(S|z). For any θ, the optimal distribution of

z,S which maximizes (2.40) is q̃(z,S) = p(z|O,θ)1arg max
S

p(S|z,O,θ)(S) based on

the Euler-Lagrange equation.

At the tth iteration, we denote the optimal distribution with respect to θ(t)

as q̃(t)(z,S). Then the best lower bound of log likelihood ˜̀(t) is increasing as the

43



number of iteration t increases.

`∗(θ(t+1)) = Eq̃(t+1)(z,S) log p(O, z,S,θ
(t+1))

q̃(t+1)(z,S)

≥ Eq̃(t)(z,S) log p(O, z,S,θ
(t+1))

q̃(t)(z,S) (2.41)

≥ Eq̃(t)(z,S) log p(O, z,S,θ
(t))

q̃(t)(z,S) = `∗(θ) (2.42)

(2.41) exists because q̃(t+1) is the optimal distribution which maximizes the

lower bound in (2.40) with respect to θ(t+1). and finding the q̃(t+1) is Step 1 and

Step 2 in the (t+1)th iteration. (2.42) exists because of Step 3 in the tth iteration.

Since that ˜̀(θ(t)) is monotonously increasing as t increases and ˜̀(θ(t)) is

bounded by the maximized log likelihood `(θ∗∗) = sup
θ
`(θ), according to the

monotone convergence theorem, {˜̀(θ(t))} would converge as t → ∞, implying

that our algorithm would let {θ(t)} converges to a point θ∗ where ˜̀(θ) achieve a

local mode. We are also aware that `(θ) may not achieve a local mode at θ∗.

2.6 Experiments

We illustrate our model based on both synthetic data and cervical screening

test data.

2.6.1 Synthetic Data

In this section, we generate data from a simple hierarchical inhomogeneous

hidden Markov model on the time interval (0, 10). It contains two different tran-

sition structures A and B on two states. The transition structure of A and B is

summarized by the transition rates, qi, in Table 2.1.

The emission mechanism is modeled by simple categorical distributions: p(O|S1) ∼
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Table 2.1: Synthetic setting for transition parameters.

Structure q1(t < 5) q2(t < 5) q1(t > 5) q2(t > 5)
A 0.1 0.1 1 1
B 1 1 0.1 0.1

Ber(p1 = 0.95) and p(O|S2) ∼ Ber(p2 = 0.05).

We sample 200 time series from structure A and 300 time series from structure

B. All time series are assumed to start at state 1 and have 50 observations

randomly located on the time interval (0, 10).

We assume a non-informative prior of model indicator zn ∼ Ber(0.5) and

set the maximum iteration number of EM, 50. We validate model results by

computing the inference results of model frailty and hidden states in Table 2.2.

Table 2.2: Inference results of model model frailty and hidden states. Infer-
ence metrics for hidden states are summarized with mean and standard deviation
among all time series.

Predictive Accuracy Precision Recall
Model Frailty 0.946 0.9105 0.960
Hidden States 0.979(0.027) 0.940(0.168) 0.937(0.167)

To acquire the estimates and uncertainty of model parameters, we compute the

mean and standard deviation of model parameters with 10 bootstrap resamples.

The transition parameter estimates are summarized in Table 2.3 and emission

parameter estimates p1 and p2 are summarized by mean and standard deviation

0.954(0.003) and 0.040(0.004), respectively.

Table 2.3: Bootstrapping results of transition parameters.

Structure q1(t < 5) q2(t < 5) q1(t > 5) q2(t > 5)
A 0.06(0.01) 0.05(0.02) 1.14(0.11) 1.11(0.11)
B 0.89(0.11) 1.01(0.11) 0.12(0.01) 0.07(0.02)
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For comparison, we use Recurrent neural network models (RNN), which have

been found to perform well with variable-length time series and capture the tem-

poral correlation well because of their flexibility and lack of the Markov property

(Choi et al., 2016). Variants of RNNs have been proposed to better balance mem-

ory needs and new features, including the Long Short-Term Memory (LSTM)

architecture (Cho et al., 2014) and the gated recurrent neural network (GRU)

(Chung et al., 2014). We compare RNN models with our proposed model on the

same prediction task to illustrate that our model outperforms RNNs because of

interpretable modeling of irregular samples and robustness to imbalanced data via

latent clustering (hierarchical structure). We carry out a prediction task on the

observation on the last time given all observations before. We generate 1000 test-

ing time series with length 50, in which 500 of them are generated from structure

A and the other 500 are generated from structure B. For the RNNs, we fit both a

small model with layer size 16 and large model with layer size 64. The prediction

results are shown in Table 2.4. In general, there exists some research on selecting

the optimal number of neurons via Bayesian network, but it is out of the scope of

this project.

Table 2.4: Model prediction for the observation of the last time in terms of Accu-
racy(ACC), Area Under The Curve(AUC), F1, Average Precision (AP), Precision
(P), Recall(R).

Method ACC AUC F1 AP P R
LSTM (small) 0.802 0.854 0.805 0.740 0.794 0.816
LSTM (large) 0.783 0.856 0.786 0.720 0.776 0.796

stacked LSTM (small) 0.820 0.886 0.819 0.765 0.826 0.812
stacked LSTM (large) 0.766 0.858 0.767 0.704 0.765 0.768

GRU (small) 0.814 0.865 0.812 0.759 0.822 0.802
GRU (large) 0.802 0.867 0.803 0.742 0.801 0.804
HIHMM 0.859 0.910 0.858 0.809 0.862 0.853
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2.6.2 Screening Data

We demonstrate the HIHMM on our motivating cervical cancer screening test

dataset from the Cancer Registry of Norway. Data used in the analyses will

be available on request from the Cancer Registry of Norway, given legal basis

according to the GDPR.

Data and Model Explanation

This dataset contains 1.7 million patients’ screening testing records. Each

patient has a censored observation at the last time stamp tc, denoted by Oc,

which indicates whether the woman is dead or alive at time tc. Each patient has

treatment indices to show when and how many treatments occurred, and results

of screening tests for each of cytology, histology and HPV. Cytology and histology

have four levels of outcomes: no risk, low risk, high risk and cancer, while HPV

has two levels: negative and positive. Individual records are irregularly sampled

with time recorded monthly for confidentiality, which implies an observation may

have multiple results for one test at one timestamp.

We set four types of states: Normal, Low grade, High grade and Cancer and

set Z = 2. Model transition structures are displayed in Figure 2.2. Model M0

refers to low-risk patients while Model M1 refers to high-risk patients. In M0,

patient’s state only transits between Normal and Low grade while the latent state

inM1 is available to transition to High grade or Cancer. Due to the mechanism

of disease progression, any state may only transit to its consecutive state and the

Cancer state cannot transit back to High grade. All states are available to transit

to Death.

Since the cancer progression strongly depends on age, for model z, the initial

state is modeled as Sz1|a1 ∼ Cat(πz(A, a1)) and πzi ∼ Dir(αzi), where a1 denotes
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the age at the first screening test and A is a disjoint partition of observable ages,

πz(A, a) = πzi if and only if a ∈ Ai, and αzi ∈ R+Mz for i = 1, . . . , I.

Normal Low grade

Death

Normal Low grade

Death

High grade Cancer

Figure 2.2: Transition structure of model M0 and M1. Solid lines denote the
intensity transition while dashed lines denote that any state comes back to the
normal state once treatment is completed.

The observations O have two levels: the number of screening tests E and

the results of screening tests G. Omitting the subscripts n and t, given state s,

observations are modeled as

Ek|s ∼ Poisson(ηsk) ,

Gk|Ek, s ∼ Multinomial(Ek, π̃sk) ,

π̃sk ∼ Dir(α̃sk) ,

where α̃sk ∈ R+Lk are hyper-parameters for observation model. The censored

observations (dead/alive) are modeled by

p(Oc|ST ) =


P (tT , tc)ST ,death if Oc = death ,

1− P (tT , tc)ST ,death if Oc 6= death .

The age partition is usually chosen in one of two ways. One is to divide age

by quantiles of data to guarantee each segment has enough data for training.

The other approach is to set the knots through expert knowledge. We decide the

segmentation based on HPV information and choose the age partition as A as
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[0, 23), [23, 30), [30, 60) and [60,∞).

Specifically, since HPV status is one of most important indicators for cervical

censor, we segment the age interval based on the empirical density of ages at

which patients are found positive for HPV. The empirical density is estimated

based on 100000 patients randomly sampled from the pool using gaussian kernel

estimation. Then we fit the density of ages using a discontinuous piece-wise linear

function with different numbers of intervals.

Fitting information is summarized in Table 2.5. We plot optimal sum of square

errors under different N in Figure 2.3. From the figure, it visually shows that

N = 4 is the optimal number of segmentation based on elbow criteria. Then

combining the expert’s opinion, we set the corresponding cutting points as 23, 30

and 60.

Table 2.5: Discontinuous piece-wise linear fitting under different numbers of
intervals N . Optimal sum of square errors (SSE) and cutting points (CPs) are
given.

N SSE CPs
2 3.88e-3 24.8
3 1.78e-3 24.7, 54.7
4 1.23e-3 25.2, 35.6, 60.6
5 0.93e-3 24.5, 26.2, 30.7, 67.2
6 0.78e-3 24.1, 25.2, 32.8, 56.9, 64.4

In the proposed learning approach, we set the number of EM iterations at

NEM = 100, and in the Limited-memory BFGS (L-BFGS) approach we set the

number of optimization iterations as NL−BFGS = 8. Automatic differentiation is

implemented using the autograd package (Maclaurin, 2016) in Python.
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Figure 2.3: Sum of square errors under different number of segmentation N .

Table 2.6: Model prediction for the status of the last visit in terms of Accuracy
(ACC), Area Under The Curve(AUC), F1, Average Precision (AP), Precision (P),
Recall (R).

Method ACC AUC F1 AP P R training time (h)
LSTM (small) 0.9905 0.4939 0.0000 0.0095 0.0000 0.0000 1.11
LSTM (large) 0.9925 0.8563 0.4275 0.2359 0.7778 0.2947 3.38

stacked LSTM (small) 0.9914 0.8561 0.2773 0.1273 0.6875 0.1737 2.26
stacked LSTM (large) 0.9926 0.8573 0.4335 0.2409 0.7808 0.3000 7.5

GRU (small) 0.9920 0.8379 0.4089 0.2083 0.6962 0.2895 0.79
GRU (large) 0.9921 0.8678 0.4207 0.2178 0.7037 0.3000 2.30
CTIHMM 0.9910 0.9128 0.3466 0.1465 0.5517 0.2526 3.61
HIHMM 0.9914 0.9190 0.5210 0.2774 0.5589 0.4895 6.97

HIHMM (fast) 0.9912 0.9268 0.5014 0.2583 0.5466 0.4632 0.90

Model Comparison

We randomly select 80,000 patients’ records for training and select another

20,000 records for testing. We compare different models by evaluating prediction

on the status at the last visit. If a patient has at least one result whose level is

greater than 1, then the status is defined as high risk denoted as 1. Otherwise,

the status is defined as low risk denoted as 0, making it a binary classification

problem.

The prediction procedure of our model is derived by Bayes rules. After model

training, let the model parameter estimates be ψ̂. Given new patient histori-
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cal records O∗, compute the predictive distribution of model index p(z∗|O∗, ψ̂).

Next, given model index z, the predictive distribution of the state at the second to

last visit is p(S∗T−1|z,O∗, ψ̂) derived from FFBS. Then the predictive distribution

of the state of the last visit is p(S∗T |O∗, ψ̂) = ∑
s,z p(z∗ = z|O∗, ψ̂)p(S∗T |S∗T−1 =

s, z, ψ̂)p(S∗T−1 = s|z,O∗, ψ̂) and given the number of screening tests at the last

visit E∗T , the predictive distribution of screening test results is p(G∗T |O∗,E∗T , ψ̂) =∑
s p(S∗T = s|O∗, ψ̂)p(G∗T |S∗T = s,E∗T , ψ̂). Finally, the predictive distribution of

the last status isG∗ ∼ Ber (p∗), where p∗ = p
(∑1

i=0
∑3
j=2G

∗
T [i, j] ≥= 1|O∗,E∗T , ψ̂

)
,

and it is estimated by Ĝ∗ = 1 if p∗ ≥ 0.5 and 0 otherwise. Similar procedures are

available for the CTIHMM.

We also compare our model to RNNs, where each patient’s record is modeled

as one time-series and the features at each visit include patient age, screening

result and treatment indicator. The screening result of patient n at the tth visit is
~Gn,t. The treatment indicator is equal to 1 if and only if the patient has accepted

treatment. We again compare to LSTM, stacked LSTM, and GRU with the same

small and large layer sizes as in the synthetic experiment. For stacked LSTM, two

LSTMs are stacked. For the HIHMM, through cross validation, the model prior

is set as p = 0.001 and we set 100 iterations in the EM algorithm. In addition,

we try a fast variant of EM using only 10 iterations. For the CTIHMM, we also

set 100 iterations in the EM algorithm. We summarize both prediction results

and training time in Table 2.6. It shows our model outperforms state of the art

methods overall on the set of criteria: Area Under the Curve (AUC), F1 value

(F1), Average Precision (AP) and Recall (R). Those metrics related to recall score

are important in clinic diagnosis, it is better to mis-classify low-risk patients rather

than high-risk patients. We also show our model has competitive running time

compared with neural network models.
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2.6.3 Model Validation

Based on epidemiological studies, the incidence rate of cervical cancer can

provide us with guidance on how to choose priors for the frailty rate of a given

population (Bray et al., 2018). An informative prior is indeed preferable here,

so we set a conservative model index prior p = 0.2. We note that there is al-

ways a trade off between precision and recall, and p = 0.2 provides a reasonable

balance based on model comparison results. We present two types of results on

population-level data. First we present the MLEs for all model parameters along

with bootstrapped standard deviations. Second we perform model validation us-

ing Kaplan-Meier estimators as suggested in Titman and Sharples (2008) and

predictive accuracy via proposed average posterior predictive probability.

We randomly divide all data into clusters such that each cluster has 100 in-

dividual observation sequences. Using a bootstrap technique, we randomly select

2400 clusters with replacement for model inference. We independently repeat the

same inference on different selections 5 times. Inference results are discussed as

follows:

After EM converges, according to (2.35) in the paper, we summarized the

quantiles of estimated posterior probability of Model 1 in Table 2.7. It shows that

more than 75% of women have a posterior probability of belonging to the high-risk

modelM1 that is less than the prior probability p = 0.2. This suggests that more

than 75% are likely to be in the low-risk disease exposure category according

to their screening test results. Moreover, it also justifies the expert knowledge

that around 20% belong to the high-risk disease exposure category. Whereas,

the 90% credible interval of the posterior hyper-parameter p̃ is (0.1825, 0.2358),

which is still close to the prior hyper-parameter p = 0.2. This implies that the

observations do not affect the posterior of the model indexes significantly and
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choosing a reasonable prior is important. This is likely an artifact of the dataset,

which is highly skewed towards normal test results. More balanced datasets may

exhibit less sensitivity to prior specification.

Estimates related to the emission mechanism are summarized in Table 2.8 and

Table 2.9. Table 2.8 shows the estimates of diagnostic test result probabilities

conditional on hidden state. The estimates of diagnostic test results match the

definition of states. The more advanced a patient’s disease state, the more likely

she is to get an abnormal screening result. And the small standard deviations

suggest that our data are sufficient to get precise estimates of the emission pa-

rameters. Table 2.9 shows the number of screening tests for women in different

states. Due to the fact that the expectation of a Poisson distribution is exactly

the Poisson intensity parameter, the Poisson intensities show that individuals at

normal state are more likely to be assigned to a cytology screening test. Indi-

viduals in abnormal disease states (low-grade, high-grade and cancer) are more

likely to be given histology and HPV tests. This result matches what is expected

in clinical practice in that women will be assigned more precise screening tests as

they present more severe symptoms.

The initial state’s information is summarized in Table 2.10 which shows the

initial information of the population categorized by the specified age partition for

modelM0 and modelM1. From a model specification perspective, women in the

low-risk model,M0, are assumed to be more likely to stay at a normal state than

women in the high-risk model M1, regardless of their ages. On the other hand,

in the high-risk model,M1, women in the age interval (23, 30) are most likely to

belong to a high risk state at the initial screening test.

Finally, Table 2.11 displays the estimates of transition intensities in the two

models. It shows patients are more likely to transition from the low grade state
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to the normal state, whether or not they are in modelM0 or modelM1. On the

other hand, λ34 has significantly higher standard deviations than other intensity

parameters because of the scarcity of data for individuals with cancer who died

during the period in which the data was collected.

Table 2.7: Quantiles of maximum likelihood estimates of posterior probability
of Model 1.

quantiles 0.05 0.25 0.5 0.75 0.95
p̃ 0.1825(0.0004) 0.1936(0.0001) 0.1966(0.0002) 0.1988(0.0001) 0.2358(0.0049)

Table 2.8: Maximum likelihood estimates of diagnostic test result probabilities
conditioned on hidden state.

cytology
state 0 1 2 3
normal 1.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)

low grade 0.0331(0.0011) 0.8021(0.0020) 0.1631(0.0019) 0.0016(0.0001)
high grade 0.0614(0.0068) 0.0054(0.0010) 0.9198(0.0059) 0.0133(0.0012)
cancer 0.0619(0.0125) 0.0567(0.0084) 0.6254(0.0158) 0.2560(0.0097)

histology
state 0 1 2 3
normal 0.9879(0.0004) 0.0108(0.0004) 0.0007(0.0001) 0.0006(0.0001)

low grade 0.2621(0.0023) 0.1561(0.0006) 0.5810(0.0030) 00009(0.0002)
high grade 0.0345(0.0018) 0.0068(0.0015) 0.9573(0.0026) 0.0014(0.0001)
cancer 0.0263(0.0062) 0.0133(0.0015) 0.0796(0.0014) 0.8808(0.0066)

HPV
state - +
normal 0.9966(0.0010) 0.0034(0.0010)

low grade 0.3720(0.0048) 0.6280(0.0048)
high grade 0.0357(0.0054) 0.9643(0.0054)
cancer 0.0194(0.0019) 0.9806(0.0019)

For model validation we randomly select 2400 clusters of data in which each

cluster has 100 individual sequences of observations. We implement both the

HIHMM and the CTIHMM for the same dataset. We follow the method proposed

in Titman and Sharples (2008) that utilizes Kaplan-Meier estimators to validate
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Table 2.9: Maximum likelihood estimates of Poisson intensities for the number
of tests conditioned on true state.

state cytology histology HPV
normal 0.9880(0.0002) 0.0140(0.0001) 0.0053(0.0001)

low grade 0.7912(0.0008) 0.1856(0.0018) 0.1003(0.0016)
high grade 0.4595(0.0024) 0.6493(0.0018) 0.0290(0.0017)
cancer 0.5091(0.0191) 0.8627(0.0322) 0.0278(0.0023)

Table 2.10: Maximum likelihood estimates of the probability of being a partic-
ular state at the time of the first screening.

age range 16-23 23-30 30-60 60-
Model 0

normal 0.9315(0.0010) 0.9415(0.0017) 0.9614(0.0007) 0.9643(0.0009)
low grade 0.0685(0.0010) 0.0585(0.0017) 0.0386(0.0007) 0.0357(0.0009)

Model 1
normal 0.9187(0.0015) 0.9040(0.0011) 0.9287(0.0006) 0.9308(0.0020)

low grade 0.0761(0.0013) 0.0677(0.0022) 0.0438(0.0011) 0.0354(0.0016)
high grade 0.0041(0.0003) 0.0271(0.015) 0.0262(0.0007) 0.0263(0.0018)
cancer 0.0011(0.0001) 0.0013(0.0002) 0.0013(0.0002) 0.0075(0.0006)

continuous-time HMMs. We define failure as the first observation of a high-risk

or cancer test result directly following an initial normal or low-grade test result.

Accurately predicting this time-to-event is of practical importance because clinical

intervention is only possible in the high-grade state. Treating patients at this stage

is critical to preventing precancerous lesions from progressing to cervical cancer.

The empirical Kaplan-Meier estimator is an important criterion because it

measures prediction on the whole process rather than only the last visit, and it is

defined as Ŝ(t) = ∏
i:ti≤t (1− di/ni), where ti is a time when at least one failure

is observed, di is the number of failures that occurred at time ti, and ni is the

number of individuals known to have survived up to time ti. We randomly choose

24,000 records to generate an empirical Kaplan-Meier estimator and to simulate

100 sequences from both the CTIHMM and HIHMM with 100 times repetitions
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Table 2.11: Maximum likelihood estimates for age dependent transition intensi-
ties.

age range 16-23 23-30 30-60 60-
Model 0

λ01 0.1718(0.0061) 0.0809(0.0017) 0.0546(0.0006) 0.0439(0.0015)
λ02 0.0005(0.0000) 0.0018(0.0000) 0.0019(0.0000) 0.0147(0.0001)
λ10 1.7064(0.0327) 1.2637(0.0292) 0.4893(0.0118) 2.2169(0.0641)
λ12 0.0024(0.0002) 0.0021(0.0001) 0.0011(0.0001) 0.0122(0.0013)

Model 1
λ01 0.1938(0.0065) 0.1191(0.0032) 0.0730(0.0011) 0.0536(0.0020)
λ04 0.0014(0.0001) 0.0015(0.0001) 0.0015(0.0001) 0.0121(0.0002)
λ10 1.6854(0.0295) 1.3541(0.0358) 1.6331(0.0131) 2.3063(0.1288)
λ12 0.0815(0.0086) 0.2276(0.0015) 0.1867(0.0030) 0.2395(0.0090)
λ14 0.0058(0.0003) 0.0048(0.0002) 0.0032(0.0003) 0.0150(0.0006)
λ21 0.3585(0.0593) 0.0780(0.0067) 0.0663(0.0052) 0.2245(0.0288)
λ23 0.0720(0.0095) 0.0307(0.0017) 0.1012(0.0060) 0.5166(0.0366)
λ24 0.0150(0.0004) 0.0069(0.0007) 0.0034(0.0003) 0.0166(0.0006)
λ34 1.0366(0.0611) 2.5642(0.5100) 2.6911(0.1251) 1.6805(0.3432)

for credible interval. Simulation details are proposed as follows:

To simulate one Kaplan-Meier curve from a HIHMM, we propose the following

procedures:

1 First, reduce all individuals’ ages at their first screening test to a set A1, and

categorize individuals’ time intervals between two consecutive screening tests

into four sets denoted as Ĩi for i = 1, . . . 4. Label the four screening testing

results, Nornal, Low grade, High grade and Cancer as 1, 2, 3, 4 sequentially as

their score. Then any time interval (a, b) is categorized into Ĩi, if and only if

the largest score of both cytology and histology screening test results at time

a is i. For each set Ĩi, we map elements of Ĩi to their corresponding lengths

and name the new set as Ii. Also, we reduce all posterior probabilities of

model indexes into a set P̃ .

2 Second, we randomly sample an initial age a1 from A1 and randomly sample
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Figure 2.4: Top panel: Empirical Kaplan-Meier curve (black) and simulated
Kaplan-Meier curves, which are summarized using the 95% credible interval
(dashed lines) and the median (solid lines), from the CTIHMM (blue) and HIHMM
(red). Bottom panel: Posterior probabilities of belonging to the frailty class for
each individual from a test set. Risk stratification is possible by thresholding the
probabilities. Threshold probabilities in this example are (0, 0.125, 0.25, 0.75, 1).
Color indicates falling between two probability thresholds.

a posterior probability of model index p̃ from P̃ .

3 Then sample model index z via z ∼ Ber(p̃) and sample an initial state

S1 ∼ Cat(π̂z(A, a1)), where π̂zi = Ê(πzi) = α̂zi∑
α̂zi

.

4 Sequentially sample states until the State ST fails according to the fail-

ure definition of Kaplan-Meier estimator. Specifically, based on current

state St−1 and current age at−1 , sample the screening time interval ∆t−1

from ISt−1 and denote at = at−1 + ∆t−1. Then compute transition matrix

P ([at−1, at]|A, λ̂z) from age at−1 to at. Finally sample the current state St

via St ∼ Cat(P [at−1, at]St−1,:).

5 Compute the failure time by F = ∑T
t=1 ∆t.

6 Repeat [2] to [5] M times. We obtain M failure times and then order them

as a sequence {Fm}Mm=1.

7 Based on the simulated failure times {Fm}Mm=1, the simulated Kaplan-Meier
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curve is obtained through S(t) = 1− 1
M

∑
t≥Fm 1.

Multiple Kaplan-Meier curves are simulated by independently repeating the above

procedures.

Figure 2.4 shows the empirical Kaplan-Meier curve in black, simulated Kaplan-

Meier curves from the CTIHMM in blue, and simulated Kaplan-Meier curves from

the HIHMM in red. Solid lines denote the median simulated curve and dashed

lines denote the 95% credible intervals based on the 100 replications. The results

show that the empirical Kaplan-Meier curve is always near the median and within

the 95% credible intervals generated by the HIHMM. This is not the case with the

CTIHMM. In this sense the HIHMM outperforms the CTIHMM in an important

clinical metric.

The HIHMM has a relatively high Kaplan-Meier estimate at time 0 because

the informative prior p = 0.2 is relatively small, which makes simulated patients

more likely be in the low-risk modelM′ at the initial time. Moreover, these pa-

tients are more likely to stay at the normal state for longer. However, the trend

of the median curve from the HIHMM more closely tracks that of the empiri-

cal Kaplan-Meier curve, compared with the trend of the median curve from the

CTIHMM. This suggests that the HIHMM models disease progression better than

the CTIHMM. The Kaplan-Meier curves simulated from the CTIHMM are always

underestimated.

We also propose average posterior predictive probability for Cytology, Histol-

ogy and HPV at the last visit given the screening tests as a quantitative measure-

ment for model validation. For each patient, the posterior predictive probabilities

are p(O∗T,test|O∗−T , ψ̂, E∗T ) where tests include Cytology, Histology and HPV. We

take 240000 patients for training and 20000 patients for testing and model valida-

tion results for CTIHMM and HIHMM are summarized in Table 2.12. The results
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illustrate that HIHMM outperforms CTIHMM in model prediction, especially for

HPV which has less records for training.

Table 2.12: Average posterior predictive probabilities of Cytology, Histology and
HPV for CTIHMM and HIHMM models

Model Cytology Histology HPV
CTIHMM 0.9563 0.7597 0.6550
HIHMM 0.9571 0.7613 0.7010

2.7 Conclusion and Discussion

One application of the HIHMM in the context of population-based screening

programs is risk stratification of the population. The latent random variable

zn is an indicator of belonging to a frailty class in the population. Given the

fitted model parameters ψ it is possible to compute the posterior probability

of belonging to the frailty class for individual women, i.e., given an observed

sequence of test results On and model parameters ψ, the posterior predictive

distribution p(zn|ψ,On) gives a measure of the likelihood of an individual to be at

risk of developing cervical cancer conditioned on their observed test results. Such

information could be used to more efficiently screen a population by avoiding the

over screening of women at low-risk and the under screening of women at high-risk.

Examples of these posterior probabilities are shown in Fig 2.4. For illustration

purposes, we have chosen risk thresholds of {0.125, 0.25, 0.75} with the following

interpretation.
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0 ≤ p(zn|ψ,On) < 0.125 =⇒ low-risk

0.125 ≤ p(zn|ψ,On) < 0.25 =⇒ unknown risk

0.25 ≤ p(zn|ψ,On) < 0.75 =⇒ medium-risk

0.75 < p(zn|ψ,On) ≤ 1 =⇒ high-risk

Two main clusters are apparent in the data corresponding to unknown risk and

high risk. The unknown risk cluster is those patients close to the prior proba-

bility of 20%. These patients lack sufficient observations to make an informed

decision about their risk profile. This suggests these patients should be followed

up with the standard screening protocol. The high risk cluster is those patients

who are more likely to be in a high-grade state. This suggests these patients may

require immediate follow up. The two smaller clusters of low risk and medium

risk are comprised of patients that may require decreased or increased screening

frequencies, respectively, relative to the standard screening protocol.

In summary, this chapter has made the following contributions:

• We model treatment effects in CTIHMM and make CTIHMM inference

possible for population-level datasets by using piece-wise constant intensity

functions and deriving a scalable EM-based inference algorithm.

• We put a hierarchical structure over CTIHMM to explain population het-

erogeneity in terms of frailty but share the same states and their emission

probability, which makes the model more practical, resulting in our HIHMM.

• We utilize prior distributions in the model to achieve more accurate esti-

mates when dealing with imbalanced data.

• We perform full model inference on a cancer screening dataset and show

that modeling population heterogeneity improves performance in terms of
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Kaplan-Meier estimators and proposed average posterior predictive proba-

bility.

• We illustrate how the model may be used to better inform public health

professionals by providing a risk stratification mechanism.
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Chapter 3

Regularization of Sparse

Gaussian Processes

In this chapter, we propose a regularization framework for inducing-point

based sparse Gaussian process models (SGP) and extend this framework into

latent variable models, balancing the distribution of inducing inputs and embed-

ding inputs, and leading to better model prediction. We theoretically justify the

use of this regularization framework by proving that performing variational infer-

ence (VI) with our regularization term is equivalent to directly performing VI on

a related empirical Bayes model with a prior on its inducing inputs.

The rest of this chapter is organized as follows. We first review existing lit-

erature of Gaussian process and sparse Gaussian process in Section 3.1. In Sec-

tion 3.2, we show the motivation of our regularization framework in SGP. To

take a better Gaussian process approximation and a better model fitting, it is

necessary to consider both marginal likelihood and the distribution of sampling

inputs. We propose two regularizers from non-parametric and parametric aspects

respectively. Then, we extend our regularization framework to latent variable

models and justify it through a related hierarchical empirical Bayesian model in
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Section 3.3. In Section 3.4, we illustrate the importance of our regularization

framework using three different real datasets. Finally, Section 3.5 summarizes our

work and discusses its benefits.

3.1 Preliminaries

A Gaussian process is a distribution over functions f satisfying the assumption

that given any collection of inputs {xn}Nn=1, the distribution of the corresponding

output [f(x1), f(x2), . . . , f(xn)] is a multivariate Gaussian distribution. Gaussian

processes are widely used to model any smooth functions because of the conve-

nience of the Gaussian distribution.

In Section 3.1.1, we explore Gaussian process from both frequentist aspect

and Bayesian aspect. We discuss different types of covariance functions, nugget

effects and latent inputs. Section 3.1.2 discusses different types of sparse Gaussian

process models which are directly based on low rank approximation. Its hyper-

parameter optimization is studied in Section 3.1.3. Full Bayesian inference and

variational inference for sparse Gaussian processes are discussed in Section 3.1.4

and Section 3.1.5 separately. We also carry out multiple experiments for model

comparison in Section 3.1.6.

3.1.1 Gaussian Process

This section introduces the definition and properties of Gaussian processes.

First, Gaussian processes are introduced from a frequentist perspective and their

properties are studied in Section 3.1.1. Then we discuss Gaussian processes from a

Bayesian perspective in Section 3.1.1. Different covariance functions are discussed

in Section 3.1.1. Section 3.1.1 discusses how the GP is used for dimensionality
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reduction via latent variable models.

Gaussian Processes from a Generalization Aspect

Gaussian processes are an extension of the multivariate Gaussian distribution.

It extends the multivariate Gaussian distribution from finite dimensions to infinite

dimensions. For example, we consider a set of random variables f = {fi}i∈X ∼

N (µ, K), where X is a sorted index set. The inference for multivariate Gaussian

distribution is tractable because of two properties of the multivariate Gaussian

distribution.

The first property is that any marginal distribution is a multivariate Gaussian

distribution. Mathematically, considering any two disjoint index sets A and B,

assume the corresponding random variables are fA and fB respectively. For any

index set S, we denote µS and KS,S as the mean and covariance matrix of fS.

For any two index sets S and S∗, KS,S∗ denotes the covariance matrix between

S and S∗. Then the marginal distributions p(fA) and p(fB) have expressions

p(fA) =
∫
p(fA,fB)dfB = N (µA, KAA) , (3.1)

p(fB) =
∫
p(fA,fB)dfA = N (µB, KBB) . (3.2)

The second property is that any conditional distribution is a multivariate Gaus-

sian distribution. Specifically, the conditional distributions are derived as

p(fA|fB) = N (µA +KABK
−1
BB(fB − µB), KAA −KABK

−1
BBKBA) , (3.3)

p(fB|fA) = N (µB +KBAK
−1
AA(fA − µA), KBB −KBAK

−1
AAKAB) . (3.4)

Due to these two properties, any inference for multivariate Gaussian distribu-

tions becomes tractable. Gaussian processes are an extension of the multivariate
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Gaussian distribution. They extend finite dimensions of f to infinite dimensions,

at the same time they also guarantee those two important properties.

A multivariate Gaussian distribution is fully specified by mean µ and variance-

covariance matrix K. A Gaussian process is fully specified by mean function µ(x)

and covariance function kf (x, x′). Therefore, given any set of inputs, the output

can be fully specified as a multivariate Gaussian distribution.

Definition 3.1.1. A Gaussian process is a collection of random variables, any fi-

nite number of which have a joint multivariate Gaussian distribution. It is written

as

f ∼ GP(µ(x), kf (x, x′)) (3.5)

where x and x′ are inputs from the input space.

Generally, the mean function is set to 0 or is modeled as a constant function

or a linear function and the variance-covariance function is modeled via a squared

exponential covariance function, Matérn covariance and so on, according to the

characteristics of the specific dataset. In this dissertation, we assume that µ(x) ≡

0 unless otherwise stated.

For finite inputs x, the prior distribution depends on the variance-covariance

matrix K which is derived from covariance function kf . It is a multivariate Gaus-

sian distribution. Letting Kx,x = kf (x,x) and f = f(x), the distribution is

expressed as

p(f |x) = N (0, Kx,x) . (3.6)

The covariance function kf depends on kernel parameters θ which are dropped

for notation simplification.

In real applications, we assume observations are corrupted with white noise ε.
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Then the observations are modeled by

y = f(x) + ε, ε ∼ N (0, σ2I) , (3.7)

After marginalizing the latent variable f , the marginal distribution is ex-

pressed as

p(y|x) =
∫
p(y|f)p(f |x)df

= N (y|0, Kx,x + σ2I) . (3.8)

Then given observations y and corresponding inputs x, the posterior Gaussian

process is expressed as

f |y,x ∼ GP(µ̃(·), k̃f (·, ·)) (3.9)

where given new inputs x∗, the posterior mean vector is µ̃(x∗) = Kx∗,x(Kx,x +

σ2I)−1y and the posterior variance-covariance matrix is k̃f (x∗,x∗) = Kx∗,x∗ −

Kx∗,x(Kx,x + σ2I)−1Kx,x∗ .

The predictive distribution at new inputs x∗ is derived as

f ∗|y,x,x∗ ∼ N (µ̃(x∗), k̃f (x∗,x∗)) , (3.10)

y∗|y,x,x∗ ∼ N (µ̃(x∗), k̃f (x∗,x∗) + σ2I) . (3.11)

Gaussian Processes from a Kernel Regression Aspect

Assume we have n observations y, and each observation yi matches corre-

sponding covariates xi with dimension s, then a kernel linear regression model
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displays as

yi = φ(xi)Tw + εi ,∀i = 1, . . . , n , (3.12)

where φ(x) is a kernel function of covariates x and it is a mapping from Rs → Rm,

w is a weight vector with dimension m and εi
iid∼ N (0, σ2). From the Bayesian

perspective, we consider a multivariate Gaussian prior for the weight vector w ∼

N (w|0,Σw). Then we marginalize the weight vector w to compute the likelihood

function:

p(y|x) =
∫
N (y|φT (x)w, σ2I)N (w|0,Σw)dw

= N (y|0, σ2I + φT (x)Σwφ(x))m. (3.13)

This is exactly analogous to the marginalization in Gaussian process (3.8).

Kernel regression marginalizes the weight vector while Gaussian process marginal-

izes the latent variables f . Because Σw is a covariance matrix which is positive

definite, it can be decomposed as Σw = LTwLw where Lw is a low triangular

matrix. Then we rewrite φT (x)Σφ(x) = φT (x)LTwLwφ(x) = φ̃T (x)φ̃(x), where

φ̃(x) = Lwφ(x).

Comparing (3.8) and (3.13), when Kx,x = φ̃T (x)φ̃(x), they are exactly equiv-

alent. It illustrates that Kernel regression is a specific Gaussian process when

the corresponding covariance function has a certain kernel function that Kx,x =

φ̃T (x)φ̃(x).

Covariance Functions

Covariance function selection plays an crucial role in Gaussian processes be-

cause it encodes all assumptions about the function which we wish to learn. The
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basic assumption about the covariance function is that for any set of inputs, their

corresponding covariance matrix must be positive definite. Due to this assump-

tion, the positive definite kernel function is defined. The formal definition is shown

as follows.

Before giving the formal definition of covariance function, we introduce kernel

function k. We need to note that this kernel is different from the kernel in kernel

regression. It is a function mapping a pair of inputs x ∈ X and x′ ∈ X to R.

Then we introduce the definition of a semi-positive definite kernel function.

Definition 3.1.2. A kernel function k is a positive semi-definite function if for

any n ∈ N, for all xi ∈ X and ai ∈ R, we have ∑n
i=1

∑n
j=1 aiajk(xi,xj) ≥ 0.

This definition is derived by inducing a random variable T = ∑n
i=1 aiZ(xi)

where Z is a random process with kernel k. Then variance of T is

var(T ) =
n∑
i=1

n∑
j=1

aiajCov(Z(xi), Z(xj)

=
n∑
i=1

n∑
j=1

aiajk(xi,xj) . (3.14)

To guarantee the positivity of variance of random variable T , it is necessary

that kernel function must satisfy ∑n
i=1

∑n
j=1 aiajk(xi,xj) > 0 which means that

kernel function must be semi-positive.

Then covariance function is defined as follow:

Definition 3.1.3. f is a covariance function if and only if f is a positive semidef-

inite kernel function.

Covariance Function properties

Covariance functions have some important properties:

• The sum of two covariance functions is a covariance function.

68



• The product of two covariance functions is a covariance function.

• Direct sum of two covariance functions is a covariance function. If k(x1,x
′
1)

and k(x2,x
′
2) are covariance functions over X1 and X2 separately, k(x,x′) =

k1(x1,x
′
1)+k2(x2,x

′
2) is a covariance function, where x = [x1,x2] ∈ X1×X2

and x′ = [x′1,x′2] ∈ X1 ×X2.

• Tensor product of two covariance functions is a covariance function. It means

that k(x,x′) = k1(x1,x
′
1)k2(x2,x

′
2) is a covariance function.

Stationary Covariance Function and Isotropic Covariance Function

For simplicity of modeling of covariance functions, two classes of covariance

functions are frequently discussed. One is the stationary covariance function and

the other is the isotropic covariance function.

A stationary function is a function of x− x′ which is invariant to translation

in the input space indicating correlation depends on the distance and direction of

two location x and x′. Moreover, a more simplified function is proposed as an

isotropic function which only depends on the distance between two inputs |x−x′|.

Therefore, if a function is stationary and semi-positive definite, it is a stationary

covariance function. And if a function is isotropic and semi-positive definite, it is

an isotropic covariance function.

Bochner gives a sufficient and necessary condition to construct stationary co-

variance function (Folland, 2016). It states that the covariance function of a

stationary process can be represented as the Fourier transform of a positive finite

measure.

Theorem 3.1.1. A complex-valued function k on RD is the covariance function

of a weakly stationary mean square continuous complex valued random process
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on RD if and only if it can be represented as

k(γ) =
∫
RD
e2πisTγdµ(s) (3.15)

where µ is a positive finite measure.

If µ has a density S(s) then S is named as spectral density or power spectrum

corresponding to kernel k. If the spectral density exists, there is a one to one map-

ping from covariance function and spectral density known as Wiener-Khintchine

theorem.

k(γ) =
∫
S(s)e2πisTγds, S(s) =

∫
k(γ)e−2πisTγdγ . (3.16)

If the covariance function is isotropic, that implies it is a function of r = |γ|.

Then spectral density is a function of s = |s|. Then

k(r) = 2π
rD/2−1

∫ ∞
0

S(s)JD/2−1(2πrs)sD/2ds , (3.17)

S(s) = 2π
sD/2−1

∫ ∞
0

k(r)JD/2−1(2πrs)rD/2dr , (3.18)

where JD/2 is a Bessel function of order D/2 − 1. However the spectral density

does not always exist and it depends on D. A necessary condition for the existence

is that
∫
rD−1|k(r)|dr <∞.

Bochner’s theorem is widely used to prove the positive definiteness of many

usual stationary kernels.

• Gaussian kernels are the Fourier transform of itself.

• Matern kernels are the Fourier transforms of 1
(1+w2)p .

• constant function is the Fourier transform of δx,y
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Bochner’s theorem is the foundation of sparse spectrum Gaussian process

(Lázaro-Gredilla et al., 2010). It sparsifies the power spectral density to obtain a

sparse Gaussian process which is used to approximate the full Gaussian process.

Existing models for covariance function

This section would introduce some existing models for covariance function and

their corresponding properties.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function follows the form

kSE(r) = σ2 exp
(
− r2

2`2

)
(3.19)

with parameter σ2 defining the characteristic scale and with parameter ` defining

the characteristic length-scale. σ2 determines the variability of functions from

the mean and ` determines the smoothness of functions. Moreover, as ` increase,

functions become more smooth, close to a linear function while when ` is small,

functions are more like a random walk.

On the other hand, this covariance function is infinitely differentiable, implying

that it has mean square derivatives of all orders. Therefore, it is very smooth. The

smoothness contributes to a better inference under gradient-based optimization

framework.

In the SE covariance function setting, r = |x − x′|. Usually the Euclidean

distance is utilized, suggesting r = ‖x− x′‖2 where ‖ · ‖2 denotes l2 norm. How-

ever, since different components of input may have different contributions to the

output of GP. Weighted Euclidean distance is considered to model the impor-

tance of different components of inputs. Therefore the distribution is redefined as

r = (∑D
d=1wd(xd − x′d)2) 1

2 . This approach is also named as automatic relevance

determination (ARD) (MacKay, 1992; Neal, 1996). The components with large

71



weight are important while the components with small weight are not significantly

important. Therefore, given the weight information, it is allowable to carry out

model selection. A new model can be selected by using the s components of input

with first s largest weights. ARD approach is very popular in machine learning,

especially dealing with high dimensional dataset.

Matérn Class of Covariance function

The Matérn class of covariance functions is given by

kMatérn(r) = 21−ν

Γ(ν)

(√
2νr
`

)ν
Kν

(√
2νr
`

)
, (3.20)

with positive parameters ν and `, where Kν is a modified Bessel function. As

ν →∞, this function degenerates to SE covariance function. In other words, the

SE covariance function belongs to the Matérn class of covariance functions. In

the Matérn class, a process f(x) is k-times MS differentiable if and only if ν > k.

This covariance function is widely used in spatial statistics due to its flexibility

and its robustness for numerical computation.

Periodic Covariance Functions

Periodic covariance functions are considered when observations have a sig-

nificant periodicity. The idea of its construction comes from mapping its one

dimensional input onto a circle on a two-dimensional space and then utilizing

standard covariance function on the circle. Mathematically, we have a polar map-

ping x(t) =

cos(w0t)

sin(w0t)

. Then utilizing SE covariance function (3.19) on x, we
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have that

k(t, t′) = kSE(x(t),x(t′))

= σ2 exp
(
‖x− x′‖2

`

)

= σ2 exp
(
−

2 sin2(w0
t−t′

2 )
`2

)
(3.21)

In the periodic covariance function, w0 fully specifies the periodic information

and the period is equal to 2π
w0
. Since the period information can only specified

on R1, it is necessary to note that periodic covariance function only refers to GP

with one dimensional input.

Nugget effects

Nugget effects initially come from the geo-science. It plays a very impor-

tant role in kriging analysis. Nugget effects are defined as the sum of geological

micro-structure and measurement errors (Haining, 1993). It is equivalent to the

measurement errors in our case. For any covariance function k, the covariance

function with nugget effects is given as

kNE(x,x′) = k(x,x′) + σ2δx,x′ , (3.22)

where δ is a Kronecker delta function. It indicates that all observations are cor-

rupted by a white noise with variance σ2. In general, nugget effects contribute

to solving the over-fitting issue in Gaussian processes and improve the prediction

accuracy.
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Dimensionality Reduction

Gaussian processes are also used for dimensionality reduction and unsupervised

learning, especially for high-dimensional data where the dimension of output D is

greater than the number of data N .

Considering observed data Y ∈ RN×D where N is the number of observations

and D is the dimension of output, those data are associated with latent variables

X ∈ RN×Q. In order to reduce the data dimension, latent variable dimensionQ

should be set to much smaller than original data dimension D.

There exists many approaches to model the relation between X and Y in the

latent variable model literature. Principle component analysis (PCA) is one of

most popular dimensionality reduction methodologies. It maps the original data

from high dimensionality to a lower dimensional sub-space. The principle compo-

nents are recursively selected by the linear combination of observed variables which

has the maximum variability under the complimentary sub-space with respect to

the space generated by previous principle components. On the other hand, factor

analysis is exactly in the opposite direction from PCA. It recursively considers a

shared latent factor which causes the responds each component of observed vari-

ables. PPCA Tipping and Bishop (1999) reestablish the linkage between PCA

and factor analysis and propose a linear embedding method for dimensionality

reduction with a EM inference algorithm. The model is expressed as

y ∼ N (y|Wx+ µ, σ2I) , (3.23)

with a standard Gaussian prior on latent variables x ∼ N (0, I).

After marginalization with respect to x, it has

y ∼ N (y|µ, C) , (3.24)
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where C = WW T + σ2I.

The corresponding log likelihood is

` = −N2 (D ln(eπ) + ln |C|+ tr(C−1S) (3.25)

where

S = 1
N

N∑
n=1

(yn − µ)(yn − µ)T . (3.26)

The maximum-likelihood estimators for parameter mean µ, weight matrix W

and variance estimator σ2 are

µML = 1
N

N∑
n=1
yn (3.27)

WML = UQ(ΛQ − σ2I)1/2R (3.28)

σ2
ML = 1

D −Q

D∑
j=Q+1

λj (3.29)

where UQ is the Q eigenvectors of S with corresponding diagonalized eigenvalues

matrix ΛQ = diag(λ1, . . . , λQ). And R is any Q×Q orthogonal rotation matrix.

To get out of the linear embedding restriction, kernel PCA is proposed by

Schölkopf in Bernhard et al. (1998). It has a nonlinear transformation φ(·) from

the original D-dimensional feature space to a M-dimensional feature space where

M � D, where the transformed features are assumed with zero mean. Then stan-

dard PCA algorithm is applied to the M-dimensional transformed data. Because

of the nonlinear transformation, the embedding function is nonlinear since the em-

bedding variables are expressed as a linear combination of transformed features.

The kernel is expressed as K(xi,xj) = φ(xi)Tφ(xj) and the popular kernels are

enumerated as follows:

• Gaussian K(x1,x2) = exp(−β‖x1 − x2‖2),
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• Polynomial K(x1,x2) = (1 + xT1 x2)p,

• Hyperbolic tangent K(x1,x2) = tanh(xT1 x2 + δ).

However, there is no direct mapping from the embedded space to data-space

which is named the pre-image problem. To reconstruct the original data, approx-

imate methods are proposed for the pre-image problem in Wang (2012).

Other dimensionality reduction methods include multidimensional scaling, den-

sity network, spectral clustering and so on. All above methods focus on different

parametric models between embedding inputs and observed data. The latent

Gaussian process introduces a nonparametric approach to model the relation be-

tween embedding inputs and observed data. It is first mentioned by Lawrence

(2004) and the model is named as GPLVM. It is a variant of probabilistic PCA.

Instead of specifying a prior on latent variables, it specifies a prior distribution,

p(W ) = ∏D
d=1N (wd|0, σ2

wI) where wi is the ith row of the weight matrix W .

Then integrating over W the corresponding log-likelihood is

` = DN

2 ln(2π)− D

2 ln |K| − 1
2tr(K−1Y Y T ) , (3.30)

where K = σ−2
w XXT + σ2I.

The maximum likelihood estimator of X is derived as

XML = UQLV
T , (3.31)

where UQ are Q eigenvectors of Y Y T with corresponding diagonalized eigenvalues

matrix ΛQ = diag(λ1, . . . , λQ) of Y Y T , L is a q × q diagonal matrix with jth

element lj =
(
σ2
wλj
D
− σ2

wσ
2
) 1

2 , and V is arbitraryQ×Q orthogonal rotation matrix.

Log likelihood (3.30) shows that it is a product of D independent Gaussian

processes with kernel function that k(X,X) = σ−2
w XXT +σ2I for each dimension
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of observed data Y .

Therefore, the GPLVM is proposed by a natural extension of the non-linearisation

of the mapping from X to Y through a general covariance function k(·, ·). The

popular RBF kernel based GPLVM is discussed in Lawrence (2004). The paper

also provides a practical algorithm for inference in which it recursively choose

active set using IVM algorithm, update hyper-parameters and update embedding

inputs sequentially.

Variational inference approach is applied to GPLVM in Titsias and Lawrence

(2010). It integrates out the latent variables which appear nonlinearly in the

inverse covariance matrix of GPLVM. Details are available in Section 3.1.6.

3.1.2 Low Rank Approximation based Sparse Gaussian

Processes

In order to reduce the computational burden in (3.11), approximate Gaussian

processes get increasing attention. Sparse Gaussian processes are one class of

approximate Gaussian process models. Under the sparse Gaussian process setting,

we consider all inputs and outputs as scalars for simplicity. Then we introduce

inducing inputs z ∈ RM and inducing variables/output u ∈ RM . Considering

training latent variables f and test latent variables f ∗, the joint Gaussian priors

and likelihood function is given as

p(f ,f ∗) = N


 f
f ∗

 ∣∣∣∣∣0,
Kx,x Kx,x∗

Kx∗,x Kx∗,x∗


 (3.32)

p(y|f) = N (y|f , σ2I) . (3.33)

It shows that the computation in (3.11) comes from the computation in the

joint Gaussian priors. The fundamental approximation is to approximate the joint
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prior by assuming testing variables and training variables are conditionally inde-

pendent given u, proposed in Quiñonero-Candela and Rasmussen (2005), implying

that

p(f ,f ∗) ' q(f ,f ∗) =
∫
q(f |u)q(f ∗|u)p(u)du . (3.34)

The true conditional distributions are

p(f |u) = N (f |Kx,zK−1
z,zu, Kx,x −Kx,zK−1

z,zKz,x) , (3.35)

p(f ∗|u) = N (f ∗|Kx∗,zK−1
z,zu, K∗x,∗x −Kx∗,zK

−1
z,zKz,x∗) . (3.36)

Next, several approximation methods to approximate the conditional distri-

butions are discussed in following sections.

Subset of Regression Approximation

The subset of regression (SoR) approximation considers a deterministic rela-

tion between training latent variables f and inducing variables u and a determin-

istic relation between testing latent variables f ∗ and inducing variables u. The

approximate condition distributions are given by:

fSoR = Kx,zK
−1
z,zu , (3.37)

f ∗SoR = Kx∗,zK
−1
z,zu (3.38)

Because inducing variables have a Gaussian prior u ∼ N (0, Kz,z), plugging

approximate condition distributions (3.38) into Sparse Gaussian distribution as-
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sumptions (3.34). The approximate joint distribution is given by

qSoR(f ,f ∗) = N


 f
f ∗

 ∣∣∣∣∣0,
Qx,x Qx,x∗

Qx∗,x Qx∗,x∗


 (3.39)

where Qx1,x2 = Kx1,zK
−1
z,zKz,x2 . With the approximate joint distribution, the

predictive distribution can be computed as

qSoR(f ∗|y)=N (f ∗|Qx∗,x(Qx,x + σ2I)−1y, Qx∗x∗ −Qx∗,x(Qx,x + σ2I)−1Qx,x′) .(3.40)

This predictive distribution is exactly the full GP predictive distribution (3.11)

but covariance matrices K are replaced by approximate covariance matrices Q.

Due to the Woodbury Matrix Identity, the computational complexity of (Qx,x +

σ2I)−1 is O(NM2). Then we can derive that the computational complexity of the

prediction distribution is O(NM2).

Deterministic Training Condition Approximation

By only considering a deterministic training condition in q(f |u), we achieve the

deterministic training condition (DTC) approximation. Approximate conditional

distributions are:

fDTC = Kx,zK
−1
z,zu , (3.41)

qDTC(f ∗|u) = p(f ∗|u)

= N (f ∗|Kx∗,zK−1
z,zu, Kx∗,x∗ −Qx∗,x∗) . (3.42)

Then training conditional distribution is based on a projection Kx,zK
−1
z,zu

whereKx,zK−1
z,z projects u to the conditional expectation E[f |u]. The conditional
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marginal likelihood approximation is expressed as

p(y|u) ' qDTC(y|u) = N (y|Kx,zK−1
z,zu, σ

2I) (3.43)

This approach is called Projected Latent Variable (PLV) by Seeger et al

(Seeger, 2003). Plugging (3.42) to (3.34), the joint prior is approximated as

qDTC(f ,f ∗) = N


 f
f ∗

 ∣∣∣∣∣0,
Qx,x Qx,x∗

Qx∗,x Kx∗,x∗


 . (3.44)

Then predictive distribution is

qDTC(f ∗|y) = N (f ∗|Qx∗,x(Qx,x + σ2I)−1y, Kx∗x∗ −Qx∗,x(Qx,x + σ2I)−1Qx,x′)(3.45)

Predictive means under SoR and DTC are same but predictive covariance

matrices are different.

Fully Independent (Training) Conditional Approximation

Instead of assuming a determinant relation between f adn u, Fully indepen-

dent training conditional (FITC) approximation method assumes the indepen-

dence among training data. This approach is extended to sparse pseudo-input

Gaussian processes (SPGPs) which is treated as a modified FITC in Snelson and

Ghahramani (2006a).
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As for FITC, approximate condition distributions are given as

qFITC(f |u) =
N∏
n=1

p(fn|u)

= N (f |Kx,zK−1
z,zu, diag(Kx,x −Qx,x)) , (3.46)

qFITC(f ∗|u) = p(f ∗|u)

= N (f ∗|Kx∗,zK−1
z,zu, Kx∗,x∗ −Qx∗,x∗) . (3.47)

Comparing (3.42) and (3.47) with the true conditional distribution (3.36), Both

DTC and FITC ignore the cross-correlation. On the other hand, FITC method

remains the true variances on the diagonal of the covariance matrix while DTC

method does not.

The joint prior is approximated as

qFITC(f ,f ∗) = N


 f
f ∗

 ∣∣∣∣∣0,
Qx,x + diag(Kx,x −Qx,x) Qx,x∗

Qx∗,x Kx∗,x∗


 (3.48)

Letting Q̃x,x = Qx,x + diag(Kx,x −Qx,x), the predictive distribution is

qFITC(f ∗|y) = N (f ∗|Qx∗,x(Q̃x,x + σ2I)−1y, Kx∗x∗ −Qx∗,x(Q̃x,x + σ2I)−1Qx,x∗) .

(3.49)

The posterior mean is rewritten as

µ∗ = K∗,zα (3.50)

which implies that the posterior function can be expressed as a sum of basis

functions K∗,z centering at the inducing inputs z.
If we consider both fully independent training and testing condition, the joint
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prior is approximated as

qFIC(f ,f∗) = N

 f
f∗

∣∣∣∣0,
Qx,x + diag(Kx,x −Qx,x) Qx,x∗

Qx∗,x Qx∗,x∗ + diag(Kx∗,x∗ −Qx∗,x∗)


which is named fully independent conditional (FIC) method.

Partial Independent (Training) Conditional Approximation

Partial independent training conditional approximation (PITC) is a general-

ization of FITC. It assumes the conditional independence among groups of obser-

vations. The approximate conditional distributions are given as

qPITC(f |u) =
S∏
s=1

p(fs|u)

= N (f |Kx,zK−1
z,zu, blockdiag(Kx,x −Qx,x)) , (3.51)

qPITC(f ∗|u) = p(f ∗|u)

= N (f ∗|Kx∗,zK−1
z,zu, Kx∗,x∗ −Qx∗,x∗) . (3.52)

This approach comes from Bayesian Committee Machine (Tresp, 2000) which

assumes the independence among disjoint subsets of observations. It employs the

test inputs as the inducing inputs in sparse Gaussian processes framework. This

idea is relevant to the transduction learning. The joint prior is approximated as

qPITC(f ,f ∗) = N


 f
f ∗

 ∣∣∣∣∣0,
Qx,x + blockdiag(Kx,x −Qx,x) Qx,x∗

Qx∗,x Kx∗,x∗


 .

Letting Q̃x,x = Qx,x + blockdiag(Kx,x −Qx,x), predictive distribution is

qPITC(f ∗|y) = N (f ∗|Qx∗,x(Q̃x,x + σ2I)−1y, Kx∗x∗ −Qx∗,x(Q̃x,x + σ2I)−1Qx,x∗) .

(3.53)
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.

There is no requirement of size for those blocks. For simplicity, suppose we

have the same size B and then the training costs O(N/B ∗B3) = O(NB2).

Since the predictive distribution is written as a weight sum of basis functions

centering at those inducing points, the performance between PITC and FI(T)C is

similar. Snelson and Ghahramani (2007) proposes partial independent conditional

approximation where it assumes that testing input is grouped with training group

such that

q(f ,f ∗|u) = p(fS,f ∗|u)
S−1∏
s=1

p(fs|u) .

In the such way, the predictive mean is rewritten as a weighted sum of basis

functions centered at the M inducing points and at the training inputs in the

corresponding block.

3.1.3 Hyper-parameter Optimization in Sparse Gaussian

Processes

This section introduces a standard way to find the optimal hyper-parameters

for sparse Gaussian processes. The standard way is to maximize the log marginal

likelihood rather than the posterior distribution. Maximizing the posterior distri-

bution as maximum a posteriori (MAP) estimation is likely to cause over-fitting

issue mainly due to that latent inputs are not marginalized (Damianou et al.,

2016).

We summarize the log marginal likelihood for above four methods as follows:
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• SoR, DTC:

log qSoR(y) = log qDTC(y) = log
(
N (y|0, Qx,x + σ2I)

)
(3.54)

• FITC:

log qFITC(y) = log
(
N (y|0, Qx,x + diag(Kx,x −Qx,x) + σ2I)

)
(3.55)

• PITC:

log qPITC(y) = log
(
N (y|0, Qx,x + blockdiag(Kx,x −Qx,x) + σ2I)

)
(3.56)

Therefore, the hyper-parameter optimization suggests maximizing those log

marginal likelihood with respects to all hyper-parameters including noise scale

parameter σ2 and all parameters in the covariance function denoted as θ.

The time complexity of (3.54) and (3.55) is O(NM2) using the Woodbury

matrix formula and the matrix determinant lemma. Generally, as for any diagonal

matrix D, we have

log(N (y|0, Qx,x +D))

= −N2 log(2π)− 1
2 log |Qx,x +D| − 1

2y
T (Qx,x +D)−1y

= −N2 log(2π)− 1
2 log

(
det(Kz,z +Kz,xD

−1Kx,z)det(D)det(K−1
z,z)

)
−1

2y
T
(
D−1 −D−1Kx,z

(
Kz,z +Kz,xD

−1Kx,z
)−1

Kz,xD
−1
)
y (3.57)

whose time complexity is O(NM2).

84



3.1.4 Bayesian Sparse Gaussian Processes

Bayesian inference is initially introduced to sparse Gaussian processes in Baner-

jee et al. (2008) named predictive processes. Then the bias-adjusted predictive

process is proposed in Finley et al. (2009) to complement the biased variances.

This idea is equivalent to that in the SPGP (Snelson and Ghahramani, 2006a).

Then predictive processes are formally introduced to large spatial datasets and

the computational efficiency is studied in Eidsvik et al. (2012). Guhaniyogi et al.

(2011) study the knot selection in predictive processes.

3.1.5 Variational Sparse Gaussian Processes

This section discusses how variational inference is applied to sparse Gaussian

processes. First we introduce general variational inference methodology in Sec-

tion 3.1.5. We introduce two popular approaches for variational inference. The

first variational learning approach for sparse Gaussian process is introduced by

Titsias (Titsias, 2009) and is discussed in Section 3.1.5. Section 3.1.5 discusses

another version of variational learning for sparse Gaussian processes which reduce

the computation complexity from O(NM2) to O(M3).

Variational Inference

This section introduces general variational inference framework. We discuss

the mean-field approximation method for variational distributions and empirical

settings for variational distributions.

Variational Inference Framework

Variational inference is one of approximation methodologies for posterior in-

ference in statistical model. Consider a general setting with observations y =
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(y1, . . . , yn) and latent variables z = (z1, . . . , zm). The joint distribution is

p(y, z) = p(z)p(y|z) .

According to the Bayesian rule, the posterior of latent variables follows

p(z|y) ∝ p(z)p(y|z) .

In practice, it is intractable to find a conjugate prior p(z) such that p(z|y)

has a closed form. Therefore, the variational inference is proposed. It proposes

a variational distribution q(z) depending on parameters θ. Throughout mini-

mizing the Kullback-Leibler divergence between variational distributions and true

posterior distributions with respect to parameters in variational distribution, the

parameters in variational distributions are estimated by

θ̂ = arg min
θ

KL(q(z)||p(z|y)) . (3.58)

This approach is equivalent to maximizing the evidence lower boundary (ELBO).

The ELBO is a lower boundary of log likelihood derived by Jensen’s inequality.

log(p(y)) = log
∫
p(y|z)p(z)dz

= log
∫
p(y|z)p(z)

q(z)q(z)dz

≥
∫

log
(
p(y|z)p(z)

q(z)

)
q(z)dz (3.59)
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There are two common expressions for the ELBO as

ELBO =
∫

log(p(y|z))q(z)dz −KL(q(z)||p(z)) (3.60)

= log(p(y))−KL(q(z)||p(z|y)) (3.61)

Because p(y) does not depend on θ, according to (3.61), maximizing ELBO is

equivalent to minimizing KL(q(z)||p(z|y)).

In practice, in order to have a concise expression of EBLO, the expression

(3.60) is always adapted in variational inference.

Mean-Field Approximation

The last section introduced the variational inference framework. This section

introduces one approach to construct the variational distributions, Mean-Field

approximation.

Mean-Field approximation assumes all latent variables are independent in vari-

ational distributions, mathematically implying q(z) = ∏m
j=1 q(zj). Under this as-

sumption, the optimal variational distributions are accessible by maximizing the

ELBO, which is expressed as

ELBO =
∫

log
(

p(y, z)∏m
j=1 q(zj)

)
m∏
j=1

q(zj)dz .

Then to get the optimal q(z) is equivalent to solving an optimization problem

such that

max
q(z)

ELBO

subject to
∫
q(zj)dzj = 1,∀j = 1, . . .m .
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The corresponding Lagrange equation is

L = ELBO −
m∑
j=1

λj(
∫
q(zj)dzj − 1) (3.62)

We decompose (3.62) into to components, one with function q(zk) and the

other without q(zk). Then

L =
∫ (

Eq−k log(p(y, z))q(zk)− log(q(zk))q(zk)− λkq(zk)
)
dzk +B(3.63)

where q−k denotes all functions {q(zj)} except q(zk) and B denotes other terms

which do not include q(zk).

Let the functional derivative ∂
∂q(zk)L = 0. According to the Euler-Lagrange

equation, we have

∂

∂q(zk)
(
Eq−k log(p(y, z))q(zk)dzk − log(q(zk))q(zk)− λkq(zk)

)
= Eq−k log(p(y, z))− log(q(zk))− 1− λk = 0 .

Then it suggests that q(zk) ∝ exp(Eq−k log(p(y, z))). This mean-field approx-

imate can not guarantee the closed-form expression for variational distribution

q(zk).

Empirical Setting

For the ease of computation, we usually employ the empirical setting for varia-

tional distributions. Under the ELBO expression (3.60), two computational issues

exist. The first one refers to the computation of the integration of
∫

log(p(y|z))q(z)dz.

This term is the marginal log likelihood with respect to variational distribution

q(z). In the aspect of machine learning, it is called the reconstruction term de-

scribing the log likelihood under q(z). The other is the KL divergence between

88



the prior and the variational distributions KL(q(z)||p(z)). It is called the regu-

larization term which makes q(z) close to its prior.

As for the reconstruction term, usually it is computationally intractable. Some-

times Monte Carlo computation is required when the model structure is not conju-

gate. But as for the regularization term, to simplify the computation, the empirical

setting assumes that q(z) have the same class of distribution of q(z). Under this

assumption, the KL divergence usually has a closed form expression.

In general, we take five classes of distributions for instance:

• KL divergence of inverse Gamma distributions: Assume p ∼ IG(α, β) and

q ∼ IG(α̃, β̃). Then KL divergence between p and q is expressed as:

KL[p||q] =
∫ ∞

0
p(x) log p(x)

q(x)dx

= (α− α̃)Ψ(α) + β̃(α
β

)− α + log β
α̃+1Γ(α̃)
ββ̃α̃Γ(α)

.

• KL divergence of Dirichlet distributions: Assume p ∼ Dir(c) and q ∼ Dir(c̃).
Then KL divergence between p and q is expressed as:

KL[p||q] = log Γ(c0)−
n∑
i=1

log Γ(ci)− log Γ(c̃0) +
n∑
i=1

log Γ(c̃i) +
n∑
i=1

(ci − c̃i)(Ψ(ci)−Ψ(c0)) .

• KL divergence of Gaussian distributions: Assume p ∼ N (µ, σ2) and q ∼

N (µ̃, σ̃2). Then KL divergence between p and q is expressed as:

KL[p||q] = log σ̃
σ

+ σ2 + (µ− µ̃)2

2σ̃2 − 1
2 .

• KL divergence of multivariate Gaussian distributions with D dimension:

Assume p ∼ N (µ,Σ) and q ∼ N (µ̃, Σ̃). Then KL divergence between p and

89



q is expressed as:

KL[p||q] = 1
2

(
log |Σ̃|
|Σ| −D + tr(Σ̃−1Σ) + (µ̃− µ)T Σ̃−1(µ̃− µ)

)
. (3.64)

• KL divergence of categorical distributions: Assume p ∼ Cat(π) and q ∼

Cat(π̃). Then KL divergence between p and q is expressed as:

KL[p||q] =
n∑
i=1

πi log πi
π̃i
.

Inference based on Marginalization

This section introduces one variational learning approach for sparse Gaussian

process proposed by Titsias (Titsias, 2009), named as SGPR. Consider observa-

tions y with latent variables f and covariates x and consider inducing inputs z

and latent inducing variables fm. The joint variational distribution of both f and

fm are proposed as follows:

q(f ,fm) = p(f |fm)q(fm) .
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The log likelihood has such a ELBO that

log p(y) = log
∫
p(y,f ,fm)dfdfm

= log
∫ p(y,f ,fm)

q(f ,fm) q(f ,fm)dfdfm

≥
∫

log
(
p(y,f ,fm)
q(f ,fm)

)
q(f ,fm)dfdfm

=
∫

log
(
p(y|f)p(f |fm)p(fm)

p(f |fm)q(fm)

)
q(f ,fm)dfdfm

=
∫

log
(
p(y|f)p(fm)

q(fm)

)
q(f ,fm)dfdfm (3.65)

=
∫

log(p(y|f))q(f ,fm)dfdfm −KL(q(fm)||p(fm)) (3.66)

To get the optimal variational distribution q(fm), given (3.65), it is equivalent

to solve the constrained optimization problem that

max
q(fm)

∫
log

(
p(y|f)p(fm)

q(fm)

)
q(f ,fm)dfdfm

subject to
∫
q(fm)dfm = 1 .

The corresponding Lagrange equation is

L =
∫

log
(
p(y|f)p(fm)

q(fm)

)
q(f ,fm)dfdfm − λ

(∫
q(fm)dfm − 1

)

=
∫ (∫

log p(y|f)p(f |fm)df + log
(
p(fm)
q(fm)

)
− λ

)
q(fm)dfm + λ .

Letting ∂L
∂q(fm) = 0, the Euler-Lagrange equation shows that

∫
log p(y|f)p(f |fm)df + log

(
p(fm)
q(fm)

)
− λ− 1 = 0

91



which implies

q(fm) ∝ p(fm) exp(
∫

log p(y|f)p(f |fm)df) , (3.67)

where p(f |fm) = N (µ̃, K̃), µ̃ = Kx,zK
−1
z,zfm, K̃ = Kx,x −Kx,zK−1

z,zKz,x.

On the other hand,

∫
log p(y|f)p(f |fm)df = Ep(f |fm) logN (y|f , σ2I)

= Ep(f |fm)

(
−n2 log(2πσ2)− 1

2σ2 (yTy − 2fTy + fTf)
)

= −n2 log(2πσ2)− 1
2σ2 tr

(
yyT − 2yµ̃T + µ̃µ̃T + K̃

)
= logN (y|µ̃, σ2I)− 1

2σ2 tr(K̃) . (3.68)

Because µ̃ depends on fm but Qx,x does not depend on fm, we derive

q(fm) ∝ p(fm)N (y|µ̃, σ2I)⇒ q(fm)

= p(fm)N (y|µ̃, σ2I)∫
p(fm)N (y|µ̃, σ2I)dfm

= N (µ, A) (3.69)

where µ = σ−2Kz,zΣKz,xy, A = Kz,zΣKz,z and Σ = (Kz,z + σ−2Kz,xKx,z)−1 as

derived in Titsias (2009). Plugging (3.69) into (3.66), the ELBO is expressed as

ELBO =
∫

log
(
N (y|µ̃, σ2I)p(fm)

q(fm)

)
q(fm)dfm −

1
2σ2 tr(K̃)

= log
∫
N (y|µ̃, σ2I)p(fm)dfm −

1
2σ2 tr(K̃)

= logN (y|0, Qx,x + σ2I)− 1
2σ2 tr(K̃) . (3.70)

Comparing (3.70) with (3.54), (3.70) has one more term − 1
2σ2 tr(K̃). It illus-
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trates this variational approach is different from SoR and DTC.

Next we derive the approximate posterior predictive distribution. As for new

inputs x∗, the posterior predictive distribution f ∗ is

q(f ∗) =
∫
q(f ∗,fm)dfm

= p(f ∗|fm)q(fm)dfm

=
∫
N (f ∗|Kx∗,zK−1

z,zfm, Kx∗,x∗ −Kx∗,zK−1
z,zKz,x∗)N (fm|µ, A)dfm

= N (f ∗|Kx∗,zK−1
z,zµ, Kx∗,x∗ −Kx∗,zK−1

z,zKz,x∗ +Kx∗,zBKz,x∗) (3.71)

where B = K−1
z,zAK

−1
z,z.

Inference based on Variational Distribution

This section discusses an alternative variational learning approach named

SVGP proposed in Hensman et al. (2013), which does not need to compute the

optimal variational distribution in (3.69). It directly assumes that variational dis-

tribution follows a multivariate normal distribution q(fm) = N (fm|m, S). Then

under this assumption, given (3.66) and (3.68), the EBLO is derived as

ELBO =
∫

log(p(y|f))q(f ,fm)dfdfm −KL(q(fm)||p(fm))

=
∫ (

logN (y|µ̃, σ2I)− 1
2σ2 tr(K̃)

)
q(fm)dfm −KL(q(fm)||p(fm))

= Eq(fm)
(
log

(
N (y|Kx,zK−1

z,zfm, σ
2I)
))
− 1

2σ2 tr(K̃)−KL(q(fm)||p(fm))

=
n∑
i=1

(
log

(
N (yi|Kx,zK−1

z,zm, σ2)
)
− 1

2σ2SK
−1
z,zkik

T
i K

−1
z,z −

1
2K̃i,i

)
−KL(q(fm)||p(fm)) (3.72)

The computation is decomposed for each observation yi, where the stochastic

variational inference is feasible. And the computational complexity for each ob-
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servation is O(M3). As for the KL term, because of (3.64), the computational

complexity is O(M3). Therefore, the total computational complexity can be scaled

as O(M3).

The predictive distribution for a new input x∗ is

q(f ∗) =
∫
q(f ∗,fm)dfm

= N (f ∗|Kx∗,zK−1
z,zm, Kx∗,x∗ −Kx∗,zK−1

z,zKz,x∗ +Kx∗,zK
−1
z,zSK

−1
z,zKz,x∗) .

(3.73)

.

Considering the previous variational learning approach, the computational

complexity of ELBO in (3.65) is O(NM2). Therefore, this approach is much

computationally cheaper than the last one, especially when the number of obser-

vations is large.

3.1.6 Experiments

This section applies different Gaussian processes models on a synthetic dataset

and compares their inference results.

Synthetic data

We generate our data from a function such as

y = f(t) + 0.5ε = sin(2πt)
2πt + 0.5ε , (3.74)

where ε ∼ N (0, 1).

We take 2000 inputs from a standard normalN (0, 1) denoted as t = (t1, . . . , t2000)

and generate corresponding observations y = (y1, . . . , y2000) according to the gen-

94



erator (3.74). And we randomly select 100 testing inputs from a standarad nor-

mal N (0, 1) denoted as t̃ = (t̃1, . . . , t̃100) with latent testing variables denoted as

f̃ = (f̃1, . . . , f̃100).

Different Gaussian process models are considered for inference. First we use a

full Gaussian process model. Then we consider sparse Gaussian processes from a

frequentist, Bayesian, and variational Bayesian perspectives respectively.

Frequentist Inference

From a frequentist perspective, we consider SoR, DTC, FITC three models

with RFB covariance function. We choose 10 inducing inputs and the initial in-

ducing inputs are assume evenly distributed on the interval (−2, 2). After hyper-

parameter optimization discussed in section 3.1.3. We estimate the optimal in-

ducing inputs and hyper-parameters in covariance function. In order to compare

the computation time, we use the same L-BFGS in optimization and set the max-

imum number of iterations as 10. With those estimates, we plot the posterior

predictive processes in Figure 3.1. Using the posterior mean as predictive esti-

mates, we compute the mean of square errors (MSE) and the mean of absolute

differences (MAD) as two predictive criteria for testing variables f̃ . All results

are shown in Table 3.1.

Figure 3.1: Posterior predictive processes for four models. From left to right,
they are fully GP, SoR, DTC and FITC models. The blue line denotes the pre-
dictive mean. The red dashed lines denote the 95% credible intervals. The blue
circles denote initial inducing points and the blue crosses denote optimized induc-
ing inputs.
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Table 3.1: Hyper-parameter optimization time and predictive accuracy for four
different models: GP, SoR, DTC and FITC. Mean of square errors (MSE) and
mean of absolute difference (MAD) are summarized for 100 testing data.

Model GP SoR DTC FITC
Time 17.04s 6.08s 6.46s 6.91s
MSE 0.060 0.062 0.062 0.064
MAD 0.244 0.248 0.248 0.250

Table 3.1 shows that SoR, DTC and FITC are much faster than a full Gaussian

process model and have very competitive predictive results. And Figure 3.1 shows

that FITC has the most similar uncertainty as the fully Gaussian processes model

compared with SoR and DTC.

Bayesian Inference

As for Bayesian inference, we consider both predictive processes (PP) (Baner-

jee et al., 2008) and adjusted-bias predictive processes (APP) (Finley et al., 2009).

We set 10 inducing inputs Z = (Z1, . . . , Z10) uniformly sampled on (−2, 2) and

set 2000 sampling iterations.

We set priors for hyper-parameters as

σ2 ∼ IG(2, 1)

l ∼ IG(2, 1)

σ2
error ∼ IG(2, 1) (3.75)

where σ2, l are variance parameter and length-scale parameter in the RFB covari-

ance function and σ2
noise is the variance parameter of measure errors.

Before proceeding to the MCMC procedure, we compute the maximum like-

lihood estimate of θ = (log σ2, log l, log σ2
error) denoted as θ̂ and compute the

observed fisher information matrix with respect to θ by computing the negative
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inverse Hessian matrix of log-likelihood at θ̂. Then θ̂ is utilized as initial starting

points and the observed fisher information matrix is treated as the covariance ma-

trix in transition kernel in the Metropolis Hasting approach. The details about

advanced MCMC algorithm can be found in appendix A.1.

We record the time for the Metropolis Hasting algorithm. We compute pre-

dictive estimates using posterior means. The mean of square errors (MSE) and

the mean of absolute differences (MAD) are calculated as two predictive criteria

for testing variables f̃ . All results are shown in Table 3.2.

Table 3.2: Metropolis Hasting time and predictive accuracy for four different
models: PP and APP. Mean of square errors (MSE) and mean of absolute differ-
ence (MAD) are summarized for 100 testing data.

Model PP APP
Time 186.15s 182.39s
MSE 0.061 0.062
MAD 0.246 0.247

Comparing Bayesian inference with Frequentist inference, Bayesian inference

can provide sensitivity analysis for hyper-parameters but Frequnetist inference can

not. The posterior distributions are provided in Figures 3.2. However, Bayesian in-

ference is much more expensive than Frequentist inference. Next section discusses

two variational inferences which directly approximates the posterior distribution

of inducing variables by a variational distribution.

Variational Inference

This section discusses two variational approaches for the synthetic data. One

is the SGPR model and the other is the SVGP model.

As for the SGPR model, through maximizing the ELBO, we optimize all hyper-

parameters. We record this training time for 10 iterations in the L-BFGS algo-

rithm. Then according to (3.71), we get the approximate posterior predictive
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Figure 3.2: Posterior distribution of hyperparameters on log scale log σ2, log l
and log σ2

error for PP (upper) and APP (bottom) model separately.

process shown in Figure 3.3. The same two criteria, MSE and MAD, are calcu-

lated in Table 3.3.

As for the SVGP model, we set 2000 iterations in the stochastic gradient

descent optimization. The training time and two criteria of predictive accuracy

are summarized in Table 3.3. Although the SVGP result is little worse than the

SGPR, it is much faster for each iteration in optimization.

Figure 3.3: Posterior predictive processes for two models: SGPR model (left)
and SVGP model (right). The blue line denotes predictive mean. The red dashed
lines denote 95% credible interval. The blue circles denote initial inducing points
and the blue crosses denote optimized inducing inputs.
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Table 3.3: Training time and predictive accuracy for two different models: SGPR
and SVGP. Mean of square errors (MSE) and mean of absolute difference (MAD)
are summarized for 100 testing data.

Model SGPR SVGP
Time 6.89s 32.69s
MSE 0.056 0.059
MAD 0.214 0.242

Conclusion

Sparse Gaussian process approaches: SoR, DTC, FITC and SGPR have sim-

ilar running time and prediction performance. Bayesian methods cost more time

because of the requirement of sampling. And the SVGP approach is faster but it

is not robust and strongly depends on the starting points.

3.2 Regularization for Sparse Gaussian Processes

In this section, we first discuss the motivation of our regularization approach in

inducing-point based sparse GP models. Then we propose a non-parametric regu-

larizer and a parametric regularizer respectively, and illustrate our regularization

performance on 1D synthetic data.

We consider an naive regression model for illustration. Suppose we have obser-

vations y = (y1, y2, . . . , yN) with predictors x = (x1, x2, . . . , xN). A full Gaussian

process model is

yn = fn + εn , εn
iid∼ N (εn|0, σ2

err) , fn = f(xn) ∀n = 1, 2, . . . , N ,

f ∼ GP(0, C(θ)) , (3.76)

where f is given a GP prior with a covariance function C(θ). A sparse Gaus-

sian process introduces inducing points, which includes inducing inputs z =
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(z1, z2, . . . , zM) and inducing variables u = (u1, u2, . . . , uM) with relation such

that um = f(zm) for m = 1, 2, . . . ,M .

We summarize a bunch of state-of-the-art inducing-point based approaches in

a unified view. Those approaches include subset of regression (SoR) (Quiñonero-

Candela and Rasmussen, 2005), deterministic training conditional approximation

(DTC) (Seeger, 2003), fully independent training conditional approaximation

(FITC) (Snelson and Ghahramani, 2006b), sparse Gaussian process regression

(SGPR) (Titsias, 2009) and stochastic variational inference for sparse Gaussian

process (SVGP) (Hensman et al., 2013). We denote the covariance matrix be-

tween inputs u and inputs v as Ku,v. We also denote Qx,x = Kx,zK
−1
x,xKz,x,

K̃ = Kx,x − Qx,x and ki = (Kx,z)i,:. As for the SVGP approach, the varia-

tional distribution of inducing variables is modeled as a Gaussian distribution

u ∼ N (u|m, S). All sparse Gaussian process approaches attempt to maximize

their objective function L1 in the training procedure. Objective functions of dif-

ferent models are summarized in Table 3.4.

Table 3.4: The objective function in the training step for different models.

MODEL L1
SoR/DTC log (N (y|0, Qx,x + σ2I))

FITC log (N (y|0, Qx,x + diag(Kx,x −Qx,x) + σ2I))
SGPR logN (y|0, Qx,x + σ2I)− 1

2σ2 tr(K̃)
SVGP ∑n

i=1

(
log

(
N (yi|Kx,zK−1

z,zm, σ2)
)
− 1

2σ2SK
−1
z,zkik

T
i K

−1
z,z − 1

2K̃i,i

)
−KL(q(u)||p(u))

Expressions of the predictive mean of those approaches can be written as a

weighted sum of kernels centered at the inducing inputs. Mathematically, given a

new input x∗, the predictive mean at x∗ is

µ∗(x∗) =
M∑
i=1

ciKx∗,zi = Kx∗,zc . (3.77)

The weights c in (3.77) are summarized in Table 3.5. In a full Gaussian
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process with zero mean, the predictive mean is µ∗(x∗) = Kx∗,xK
−1
x,xy, which is also

a weighted sum of kernels. But it has N kernels centering at inputs x. To get a

better approximation of the full Gaussian process, it is necessary to enforce the

space spanned by K·,z to be similar to the space spanned by K·,x. Therefore, we

prefer to minimize the difference of the distributions of the inducing inputs z and

the inputs x.

Table 3.5: Posterior mean of different sparse Gaussian process models.

methods c
SoR/DTC K−1

z,zKz,x(Qx,x + σ2I)−1y

FI(T)C K−1
z,zKz,x(Qx,x + diag(Kx,x −Qx,x) + σ2I)−1y

SGPR K−1
z,zσ

−2(Kz,z + σ−2Kz,xKx,z)−1Kz,xy

SVGP K−1
z,zm

Directly optimizing the inducing inputs in those models with objective func-

tions in Table 3.4 is difficult, because of the non-convexity of those functions.

Motivated by approximating the predictive mean from a kernel perspective, we

propose a regularization framework, which is feasible for all methods above and

contributes to a better approximation. In general, the regularization framework

is as follows:

L2
4= L1 + λD(x, z) (3.78)

where λ is a regularization weight and D is a measurement between the distribu-

tions of training inputs x and inducing inputs z. We propose two approaches for

D. The first approach is a non-parametric method, proposed as

D1(x, z) = min
s

N∑
n=1
‖xn − zs(n)‖ (3.79)

where s is an assignment function, which assigns the closest inducing input to

each input. D1 describes the total distance between inputs x and inducing inputs
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z under the optimal assignment. The smaller D1 is, the more similar the two

distributions are.

The second approach is a parametric method, proposed as

D2(x, z) = KL(q̂(x)||q̂(z)) (3.80)

where q is a similar type of distribution family. For computational convenience,

we suppose q belongs to a Gaussian distribution. In such case, the estimate

of q for data is summarized by its sample mean and sample variance and the

Kullback-Leibler divergence measures the similarity between the two estimated

distributions of inputs x and inducing inputs z. One drawback of the parametric

approach is that the variational distribution may not be flexible enough to model

inputs or inducing inputs. But this method is more compelling in latent variable

models, where the inputs are latent and are reasonably modeled using Gaussian

distributions.

For both proposed methods, selecting an optimal regularization weight is im-

portant, because it balances the information from the model likelihood and the

sampling information. The general method for selection of the regularization

weight is through cross validation. In particular, we propose a regularization can-

didate pool {λi} and select the optimal λi with the best prediction accuracy on

the validation data. In general, the selection of λ depends on the choice of your

measurement D. As for D1, λ does not depend on data size N , while as for D2,

λ should be proportional to data size N . This is because in general L1 is propor-

tional to data size N , suggesting it is necessary to let λD be proportional to data

size N .

We illustrate our regularization approach on 1-D synthetic data, where we

uniformly generate 100 inputs x on the unit interval [0, 1] and corresponding
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observations are generated from the specified model

y|f ∼ N (y|f, 0.12)

f = sin(2x) + 0.2 cos(22x) .

We take another 100 evenly spaced inputs as testing inputs xtest on [0, 1] with

corresponding outputs ftest without noise as their ground-truth for testing. After

we generate data, we set a Matern kernel with ν = 3
2 for C(θ) and set M = 10.

Then we evaluate our regularization through three models.

The first framework M1 fixes inducing inputs as evenly spaced inputs on [0, 1]

and optimizes hyper-parameters through maximizing L1. The second framework

M2 optimizes both inducing points and hyper-parameters through maximizing L2

and the last framework M3 optimizes both inducing points and hyper-parameters

through maximizing L2 with regularization term D1, and λ is selected by 5 fold

cross-validation under the regularization candidate pool [0, 1, . . . , 9]. The last

modelM3 is the generalized version ofM1 andM2, whereM1 fixes z andM2 fixes

λ = 0.

We evaluate our regularization approach under different frameworks using the

mean square error of prediction on the testing data, shown in Table 3.6. We

also compare them with a fully GP model. It illustrates that our regularization

approach, M3, consistently contributes to better prediction.

Model M1 M2 M3
SoR/DTC 0.052 0.051 0.042

FITC 0.049 0.083 0.056
SGPR 0.052 0.046 0.046
SVGP 0.051 0.042 0.042

fully GP 0.045

Table 3.6: Predictive root mean square error under different models.
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Moreover, we quantify the uncertainty of prediction using two measures. One is

the coverage rate and the other is the average length of the 95% credible intervals.

As for the coverage rate, the more close to 95% the coverage rate is, the better

prediction performance it has. As for the average length, the small the value is,

the better prediction performance it has. We summarize uncertainty prediction

measures under the same three frameworks M1,M2 and M3 for SoR, DTC, FITC,

SGPR and SVGP methods in Table 3.7. We also compare it with a fully Gaussian

process.

Model Coverage rate Average length of 95% credible intervals
M1 M2 M3 M1 M2 M3

SoR 0.81 0.75 0.86 0.131 0.106 0.129
DTC 0.97 0.94 0.99 0.342 1.001 0.359
FITC 0.98 0.97 0.96 0.268 0.501 0.346
SGPR 0.97 0.97 0.98 0.317 0.505 0.444
SVGP 0.94 0.92 0.99 0.211 0.211 0.213

fully GP 0.95 0.171

Table 3.7: Coverage rate and average length of 95% credible intervals for three
frameworks under different models

We next extend our regularization into latent variable models and focus on

variational inference, and also show the equivalence between our regularized in-

ference and a variational inference on a related hierarchical empirical Bayesian

model. In the latent variable models, the model is not identifiable, our model

would focus on the learning the manifold of data instead of uncertainty quantifi-

cation.
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3.3 Regularization for Latent Sparse Gaussian

Processes

The Gaussian process latent variable model (GPLVM) is a powerful dimen-

sionality reduction approach (Lawrence, 2004; Ek et al., 2007) and it is a base

model for many sophisticated models (Lawrence and Moore, 2007; Urtasun and

Darrell, 2007; Lawrence and Quiñonero Candela, 2006; Damianou et al., 2016).

However, this model has two shortcomings. One is that the model is difficult to

scale and the other is that the model fitting is sensitive to the initialization for

both inducing inputs and embedding inputs. In practice, the principal component

analysis (PCA) initialization for embedding inputs and K-means initialization for

inducing inputs are standard procedures.

We extend the regularization of sparse Gaussian process into latent variable

models to archive a better approximation by maintaining the similarity between

the distribution of inducing inputs and embedding inputs while maximizing the

marginal likelihood lower bound.

3.3.1 A Unified View of Sparse Latent Gaussian Processes

Suppose Y ∈ RN×D are observations with latent variables F ∈ RN×D, where

N is the number of observations and D is the dimension size. Let X ∈ RN×Q be

latent variables for F , where Q is the dimension size of the latent space. Assuming

all features are conditional independent on X, the GPLVM model is

ynd|fnd ∼ N (ynd|fnd, σ2 = β−1) ,

fnd = Fd(xn) ,

Fd
iid∼ GP(0, C(θ)) for d = 1, 2, . . . , D , (3.81)
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with Gaussian priors for the latent variables X, p(X) = ∏N
n=1N (xn|µX ,ΣX)

where xn is the nth row of X. Specifically, we set µX = 0 and ΣX = IQ. Titsias

(2009); Titsias and Lawrence (2010) propose a variational sparse GP formulation

by introducing D separate sets of M inducing variables U ∈ RM×D evaluated at a

set of inducing inputs Z ∈ RM×Q. And Titsias and Lawrence (2010) and Hensman

et al. (2013) propose the same tractable variational structure:

q(F,U,X) =
D∏
d=1

(p(fd|ud, X)q(ud)) q(X) , (3.82)

where fd is the dth column of F and ud is the dth column of U . To take the

advantage of conjugacy, all variational distributions are set as the same family

as their prior distribution. Specifically, q(X) = ∏N
n=1N (xn|µn,Σn). Then the

evidence lower bound (ELBO) is

ELBO =
D∑
d=1

Eq(F,U,X) log p(yd|fd)−KL(q(U)||p(U))−KL(q(X)||p(X)) .

Titsias and Lawrence (2010) derives the variational bound by marginalizing

the optimal q(U) based on the SGPR in Titsias (2009). After marginalization,

the ELBO is derived as

ELBO1 =
D∑
d=1

Eq(X)
(

logN (yd|0,KNMK
−1
MMKMN + β−1I)− β

2 tr(Q)
)
−KL(q(X)||p(X))

where Q = KNN−KNMK
−1
MMKMN . The optimal lower bound can also be derived

by reverse Jensens’ inequality in Titsias and Lawrence (2010).

On the other hand, by directly employing variational distributions q(U) =∏D
d=1N (ud|md, Sd), we extend the univariate latent Gaussian process in Hensman

et al. (2013) to multivariate latent Gaussian processes where data on different

dimensions share the same embedding inputs. We denote the variational lower
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bound as ELBO2 with the expectation term derived as:

Eq(F,U,X) log p(yd|fd) = Eq(X)
(

logN (yd|KNMK
−1
MMmd, β

−1I)− β

2 tr(Q)− β

2 tr(SdΛ)
)

where Λ = K−1
MMKMNKNMK

−1
MM . With sufficient statistics ψ0 = tr〈KNN〉q(X),

Ψ1 = 〈KNM〉q(X) and Ψ2 = 〈KMNKNM〉q(X), the expectation term becomes

tractable. Model fitting and model prediction are easy to derive, just as in Titsias

and Lawrence (2010).

Comparing ELBO1 with ELBO2, ELBO2 is scalable for large datasets via in-

troducing the parametric distribution q(U) and employing stochastic variational

inference, while it is more difficult to optimize because more parameters are re-

quired to optimize.

However, for large and complicated datasets, variational inference may fail to

capture the distribution of the embedding inputs via inducing inputs and result in

poor model fitting and prediction. We will illustrate the benefits of regularization

with different latent dimension settings and different ELBOs on two real datasets

in the experiments section. To address this concern, we next propose an innovative

regularization approach. We illustrate that inference using our modified lower

bound is equivalent to inference on a lower bound in a related empirical Bayesian

model under certain conditions.

3.3.2 Regularization in Latent Variable Models

With the same motivation as in the Sparse Gaussian process, we extend reg-

ularization into latent variable models by ensuring the inducing inputs capture

the distribution of the embedding inputs. Therefore, we borrow the proposed

regularizers to quantify the difference between the distribution of the inducing

inputs and the distribution of the embedding inputs rather than the distribution
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of deterministic inputs, and penalize the difference in the objective function.

Generally, we define an objective function called modified evidence lower bound

as

MELBO = ELBO− λR (3.83)

where λ is a regularization weight and R is a regularization term which measures

the difference between the distribution of the embedding inputs X and the dis-

tribution of the inducing inputs Z. As λ increases, the optimization emphasizes

more similarity in the two distributions.

We choose the parametric regularizer D2 in (3.80) for R rather than the non-

parametric regularizer D1 in (3.79), because both inducing inputs and embedding

inputs are random and need to be optimized, so it is more practical to use a para-

metric distribution to approximate them. Given the cheap computation of the

parametric approach, we choose it as the proposed regularizer in latent variable

models.

Specifically, in the variational inference framework, to approximate the distri-

bution of inducing inputs and embedding inputs, we build a global model for the

variational mean of X such that every µn has an independent identical Gaussian

distribution pX(µn) = N (µn|µµ,Σµ), and build another global model for the

inducing points Z such that every zm has an independent identical distribution

pZ(zm) = N (zm|µZ ,ΣZ). Then given µ and Z, we derive the maximum likelihood

estimates µ̂µ, Σ̂µ, µ̂Z and Σ̂Z using the mean and covariance matrix of {µn} and

{zm}. Therefore, we have estimated the distribution qX = N (µ̂µ, Σ̂µ) to sum-

marize the global distribution of the embedding inputs and qZ = N (µ̂Z , Σ̂Z) to

summarize the global distribution of the inducing inputs Z.
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According to the definition of D2 with respect to qX and qZ , we define

R = KL(qZ ||qX) . (3.84)

In (3.83), λ can be chosen by cross validation or be set as the number of in-

ducing points as a rule of thumb. In practice, because the log likelihood in a

standard ELBO is proportional to the number of data points N while the reg-

ularization term R does not depend on N , it implies the optimal value of reg-

ularization should depend on the data size. On the other hand, if we choose

ELBO = ELBO2, stochastic variational inference is available by updating local

parameters with respect to data indexes and global parameters in each batch.

Specifically, the modified lower bound can be written as

MELBO =
N∑
n=1

[
D∑
d=1

Eq(xn) logN (ynd|knMK−1
MMmd, β

−1)

− Eq(xn)
β

2Qnn − Eq(xn)
β

2 tr(SdΛn)− λ

N
KL(qZ ||qX)

]
(3.85)

where Λn = K−1
MMkMnknMK

−1
MM .

3.3.3 Regularization Theory

This section discusses the underlying relationship between regularization in a

sparse GPLVM and a related empirical Bayesian model. First, we display the

related empirical Bayesian model with a prior on its inducing inputs Z and derive

its variational lower bound. Then we illustrate that when regularization weight

is equal to the number of inducing points, λ = M , maximizing the MELBO is

equivalent to maximizing the variational lower bound in the empirical Bayesian

model under a mild condition.
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The related empirical Bayesian model is extended from (3.81) and (3.82). We

put an informative prior on the inducing inputs and propose a variational distri-

bution on them as

zm ∼ N (zm|µ̂µ, Σ̂µ)

q(zm) = N (zm|νm,Υm)

where µ̂µ, Σ̂µ are estimates using sample mean and sample covariance matrix of

{µn}.

The empirical Bayesian model is displayed using a graphical representation

in Figure 3.4. The prior of inducing points borrow the information from the

variational mean of embedding inputs µ.

Figure 3.4: Graphical representation for the empirical Bayesian model.

The variational joint distribution is structurally decomposed and defined as

q(F,U,X,Z) = q(Z)q(X)q(U)p(F |Z,X,U). Then the variational lower bound is

derived as

log p(Y ) ≥ Eq(F,U,X,Z) log p(Y |F )−KL(q(Z)||p(Z))−KL(q(X)||p(X))−KL(q(U)||p(U))
4= ELBOEB (3.86)
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We define µ̂ν and Σ̂ν as sample mean and sample covariance matrix of {νm}

and define a distribution family for q(Z) such that Υm = εI for m = 1, . . . ,M .

We justify that under the assumption that there exist K > 0 such that |Σ̂ν | < K,

we have following three lemmas and one theorem.

Lemma 1. Assume q(zm) = N (νm, εI). As ε→ 0, zm
p→ νm.

Proof. Since ∀ε0 > 0,

lim
ε→0

p(|zm − νm| > ε0) = lim
ε→0

p(|zm − νm
ε

| > ε0
ε

)

= 2 lim
ε→0

(1− Φ(ε0
ε

))Q

= 0 ,

we conclude that zm
p→ νm.

Lemma 2. In the variational lower bound (3.86),

KL(q(Z)||p(Z)) ≤ A−B − C (3.87)

where

A = M

2 (log |Σ̂µ|+ log |Σ̂ν |+Q)

+ 1
2

(
M∑
m=1

(νm − µ̂µ)T Σ̂−1
µ (νm − µ̂µ)

)
,

B = M

2 (Q log ε− logK),

C = 2ε
Mtr(Σ̂−1

µ )
.
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Proof.

KL(q(Z)||p(Z)) = A− M

2 (Q log ε− log |Σ̂ν |)− C

≤ A−B − C

because of the finite variance assumption that |Σ̂ν | < K.

Lemma 3.

MKL(qZ ||qX) = M

2 (log |Σ̂µ|+ log |Σ̂z|+Q) + 1
2

(
M∑
m=1

(zm − µ̂µ)T Σ̂−1
µ (zm − µ̂µ)

)
.

Proof.

KL(qZ ||qX) =
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+ tr(Σ̂−1
µ Σ̂Z) + (µ̂µ − µ̂Z)T Σ̂−1

µ (µ̂µ − µ̂Z)
]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+ tr
(
Σ̂−1
µ ((µ̂µ − µ̂Z)(µ̂µ − µ̂Z)T + Σ̂Z)

)]
=

1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (M(µ̂µ − µ̂Z)(µ̂µ − µ̂Z)T +

M∑
m=1

(um − µ̂Z)(um − µ̂Z)T
)]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (Mµ̂µµ̂Tµ −Mµ̂µµ̂TZ −Mµ̂Z µ̂

T
µ +Mµ̂Z µ̂

T
Z

+
M∑
m=1

umu
T
m − (

M∑
m=1

zm)µ̂TZ − µ̂Z(
M∑
m=1

zm)T +Mµ̂Z µ̂
T
Z

)]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (

M∑
m=1

zmz
T
m −Mµ̂µµ̂TZ −Mµ̂Z µ̂

T
µ +Mµ̂X µ̂

T
µ)
)]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (

M∑
m=1

zmz
T
m − µ̂µ(

M∑
m=1

zm)T − (
M∑
m=1

zm)µ̂Tµ +Mµ̂µµ̂
T
µ)
)]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (

M∑
m=1

zmz
T
m − µ̂µ(

M∑
m=1

um)T − (
M∑
m=1

zm)µ̂Tµ +Mµ̂µµ̂
T
µ)
)]

=
1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
µ (

M∑
m=1

(zm − µ̂µ)(zm − µ̂µ)T )
)]

=
1
M

M∑
m=1

1
2

[
log
|Σ̂µ|
|Σ̂Z |

−Q+ (zm − µ̂µ)T Σ̂−1
µ (zm − µ̂µ)

]
.
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Therefore,

MKL(qZ ||qX) =
1
2

M∑
m=1

[
log
|Σ̂µ|
|Σ̂Z |

−Q+ (zm − µ̂µ)T Σ̂−1
µ (zm − µ̂µ)

]

=
M

2
(log |Σ̂µ|+ log |Σ̂z |+Q) +

1
2

(
M∑
m=1

(zm − µ̂µ)T Σ̂−1
µ (zm − µ̂µ)

)
.

Theorem 3.3.1. Given Lemma 1, Lemma 2 and Lemma 3, as ε → 0, maxi-

mizing the variational lower bound in empirical Bayesian model is equivalent to

maximizing the MELBO in the sparse GPLVM with respect to Z, q(X) and q(U).

Proof. In the empirical Bayesian model, denote all parameters as Θ = [µ,Σ,m, s,ν,h]. h

denote all hyper-parameters in GP kernels.

Because of Lemma 1,

lim
ε→0

Eq(F,U,X,Z) log p(Y |F ) = Eq(F,U,X) log p(Y |F,Z = ν) .

And lim
ε→0

C = 2
Mtr(Σ̂−1

µ ) lim
ε→0

ε = 0. Because of Lemma 2, we have a loose lower bound such that

ELBOEB ≥ ELBOEB+KL(q(Z)||p(Z))−A+B+C 4= LELBOEB. Instead of directly maximizing

ELBOEB, we are maximizing the loose low bound LELBOEB and the optimal estimates are

Θ̂ = arg max
Θ

lim
ε→0

LELBOEB

= arg max
Θ

lim
ε→0

Eq(F,U,X,Z) log p(Y |F )−KL(q(X)||p(X))−KL(q(U)||p(U))−A+B + C

= arg max
Θ

lim
ε→0

Eq(F,U,X,Z) log p(Y |F )−KL(q(X)||p(X))−KL(q(U)||p(U))−A

= arg max
Θ

Eq(F,U,X) log p(Y |F,Z = ν)−KL(q(X)||p(X))−KL(q(U)||p(U))−A

Due to Lemma 3, this optimization is equivalent to maximizing ELBO−MKL(qZ ||qX) which is

exactly the MELBO defined in (3.83). Finally, due to Lemma 1, the q(Z) in empirical Bayesian

model converges to the same optimized Z as in the regularized sparse GPLVM.
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3.4 Experiments

We illustrate our regularization framework on three datasets. First, we show

that regularization is necessary for sparse GP in latent variable models for a

moderate dataset. Taking the Anuran Calls dataset for instance, we explore the

regularization for two different lower bounds and also explore the regularization

approach for different latent dimension sizes. Second, we illustrate the regular-

ization approach for a large dataset with different numbers of inducing points,

using the Flight dataset. Finally, we take the Driver Face dataset as an example

of an application for high dimensional datasets. All optimizations employ the

Limited-memory BFGS approach with maximum iteration number 1000.

3.4.1 Anuran Calls Example

We show that regularization improves inference on the Anuran Call dataset.

This dataset is available from the UCI repository at https://archive.ics.uci.

edu/ml/datasets/Anuran+Calls+(MFCCs), where there are 7195 instances, and

each instance has 22 attributes. We model all instances using a sparse latent

Gaussian process and perform inference with and without regularization.

Specifically, we set the latent dimension size Q = 5 and use M = 20 inducing

points in the multivariate latent Gaussian process model. We choose independent

standard Gaussian distributions as the prior distributions of the inducing points.

We employ the PCA approach for initialization of the embedding inputs and

employ the K-means algorithm for initialization of the inducing inputs.

Regularization with ELBO1

This section considers the optimal variational distribution of inducing vari-

ables, exploring three models with respect to the inducing inputs. The first model
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is to fix the inducing inputs as the initial K-means’ centroids. The second model

is to treat the inducing inputs as trainable parameters in optimization. And the

last model is to consider our proposed regularization approach, where λ is selected

in [1, 10, 100, 1000] through 5-fold cross-validation. After model training, we es-

timate embedding inputs as their variational mean X̂ = µ̂ and reconstruct all

observations by their mean given the estimated embedding inputs. Then we com-

pare the root mean square errors (RMSE) for the fitting results. We also compare

the similarity of distributions between embedding inputs X and inducing inputs

Z by introducing averaged symmetric KL divergence criteria (ASKL). It is de-

fined as ASKL = 1
Q

∑Q
q=1(0.5KL(p̂(X̂q)|p̂(Ẑq) + 0.5KL(p̂(Ẑq)|p̂(X̂q)), where p̂(X)

is a Gaussian distribution fitted by X. Both RMSE and ASKL are summarized

in Table 3.8 and the empirical distributions of estimated embedding inputs and

inducing inputs for each dimension are shown in Figure 3.5. It demonstrates that

our regularization approach is significantly better on both model fitting and latent

input deployment.

M1 M2 M3
RMSE 0.0575 0.0438 0.0434
ASKL 2.5330 0.4213 0.0111

Table 3.8: Root mean square errors (RMSE) and averaged symmetric KL diver-
gence (ASKL) for three different models with respect to inducing inputs under
ELBO1 setting. (Anuran Calls Example)

Regularization with ELBO2

This section considers the parameterized variational distribution of inducing

variables. Using the same model evaluation rules in the last section, we show

RMSEs and ASKLs in Table 3.9 and the empirical distributions of estimated

embedding inputs and inducing inputs for each dimension are shown in Figure 3.6.
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Figure 3.5: Empirical distributions of estimated embedding inputs and inducing
inputs under ELBO2 setting. Models 1 to 3 are shown by row and latent dimension
1 to Q are shown by column. (Anuran Calls Example)

It is obvious that our regularization approach achieves the best model fitting and

the best latent input deployment. Also, it is clear to see that Model 2 using ELBO2

has a significantly larger ASKL compared with using ELBO1. This is because

without marginalization, the non-convex objective function ELBO2 involves more

parameters and thus it is more difficult to optimize. However, with our proposed

regularization, this model gets a comparable model fitting result with respect to

that under the ELBO1 setting.

M1 M2 M3
RMSE 0.0690 0.0521 0.0453
ASKL 2.6125 31.9826 0.0766

Table 3.9: Root mean square errors (RMSE) and averaged symmetric KL diver-
gence (ASKL) for three different models with respect to inducing inputs under
ELBO2 setting. (Anuran Calls Example)

Regularization with different latent dimension sizes

We explore the benefits of regularization with respect to different latent di-

mension sizes under ELBO2. Specifically, because of output dimension size D =
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Figure 3.6: Empirical distributions of estimated embedding inputs and inducing
inputs under ELBO2 setting. Model 1 to 3 are shown by row and latent dimension
1 to Q are shown by column. (Anuran Calls Example)

22, we consider Q = 2, 5, 10 and set λ = 1000. The RMSEs and ASKLs are

displayed in Table 3.10. The relative ratio of RMSEs, defined by (RMSE(N)-

RMSE(R))/RMSE(N) as model improvement statistics, forQ = 2, 5, 10 are 18.7%,

7.1% and 9.9%. It shows that regularization is always contributing to better model

fitting, especially when the latent dimension size is significantly smaller then the

output dimension size.

Q = 2 Q = 5 Q = 10
RMSE(N) 0.0851 0.0492 0.0354
RMSE(R) 0.0692 0.0457 0.0319
ASKL(N) 1022.5650 38.8489 162.4201
ASKL(R) 1.2367 0.1403 0.0147

Table 3.10: Root mean square errors (RMSE) and averaged symmetric KL
divergence (ASKL) for model with regularization (R) and without regularization
(N) under different latent dimension sizes Q = 2, 5, 10. (Anuran Calls Example)
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3.4.2 Flight Example

We illustrate regularization for large datasets using the Flight data, which

consists of every commercial flight in the USA from January to April 2008, in-

formation on 2 million flights. We choose to include into our model the same

8 variables as in Hensman et al. (2013). Instead of predicting the delay time

using the 8 features, we focus on reconstructing noisy features. Specifically, we

randomly choose 70k flights for training and another 10k flights to add noise for

testing. In detail, we normalize all data with respect to each feature and randomly

choose one feature to add white noise for each flight in those 10k flights. Our task

is to reconstruct the features for those 10k flights and compare the reconstructed

features with true features.

We choose the baseline model with variational lower bound ELBO2 and set

λ = 1000 for the regularization approach. We use batch gradient descent for infer-

ence. Root mean square errors for both 70k training data and 10k reconstruction

data are displayed in Table 3.11. It illustrates that our regularization approach

performs better for both model fitting and noisy data reconstruction. We also

report the training time for both models. Our baseline model and regularization

approach have the same time complexity O(M3). As M increases, the training

time should have cubic growth if the number of training iterations is the same. In

practice, for large datasets, we can use stochastic variational inference but that is

beyond the scope of this work.

3.4.3 Driver Face Example

This section illustrates regularized sparse latent Gaussian processes for high

dimensional data such as image data. We show our regularization framework on

a Driver Face dataset, which is available from the UCI repository at https://
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M = 10 M = 20 M = 50
RMSE (TB) 0.77 0.66 0.66
RMSE (TR) 0.65 0.64 0.61
RMSE (RB) 0.82 0.67 0.68
RMSE (RR) 0.67 0.66 0.63

T (B) 2 min 15 min 55 min
T (R) 2 min 14 min 72 min

Table 3.11: Root mean square errors (RMSE) of training data/reconstruction
data (T/R) for baseline model/regularized model (B/R). Training time (T) are
available for both models. (Flight Example)

archive.ics.uci.edu/ml/datasets/DrivFace. It includes 606 samples of 80×

80 pixels each, acquired over different days from 4 drivers (2 women and 2 men)

with several facial features like glasses and beard. Each individual has around 150

images. Each pixel’s value is in the unit interval [0, 1]. We use 2× 2 max-pooling

to reduce the original image size 80× 80 to 40× 40 as pre-processing.

Model Fitting

We employ a sparse latent Gaussian process with ELBO2 as a baseline model

and set latent dimension size Q = 5. We consider different inducing point sizes

M = 10, 20, 50, 100 and different regularization weights λ = 10, 100, 1000, 10000.

To compare model fitting with and without regularization, we employ RMSEs for

the model evaluation and ASKLs to show the balance between inducing inputs

and embedding inputs. Results are shown in Figure 3.7. As λ increases, the

inducing inputs capture embedding points better. More importantly, with proper

regularization, our model fitting results are always better than the baseline model

for all cases of M .
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Figure 3.7: Root mean square errors and averaged symmetric KL divergence
for the Driver Face dataset with different number of inducing points M =
10, 20, 50, 100 and with different regularization weights λ = 10, 100, 1000, 10000.
Baseline model results are also provided. (Driver Face Example)

Image Denoising

In the section, we randomly select N images denoted as {yi}Ni=1 and add noises

on them denoted as {ỹi}Ni=1. We also denote other images as {zi}Mi=1. Assuming

we do not know which images are blurred, we train both images with noise {ỹi}Ni=1

and other images {zi}Mi=1 together in our regularized latent sparse Gaussian pro-

cess model unsupervisedly to obtain trained model as well as their corresponding

latent variables on the low dimensional manifold. As images are projected to a

low dimensional manifold, the key features would be kept while the noise features

would be discarded. Then based on the estimated latent variables of the images

with noise, we reconstruct their images through back transferring the correspond-

ing latent variables via our trained regularized latent Gaussian process model.

We apply our regularized latent sparse Gaussian process for the image de-

noising task in this section. First, we randomly select six images, in which we

randomly select 50 pixels to add white noise and clip them into a unit interval

[0, 1]. Six images of them with and without noise are displayed in Figure 3.8.

We train the whole dataset under different settings with respect to the number
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Figure 3.8: Six real images are shown in the first row. Corresponding noisy
images and reconstructed images are displayed in the second row and the third
row separately. (Driver Face Example)

of inducing points M = 10, 20, 50, 100. The regularization weight is optimally

selected in the set (10, 100, 1000, 10000). After our model is trained, we reconstruct

the six noisy images and compare them with their true images. The RMSEs for

the six noisy images are displayed in Table 3.12. It shows that our regularized

model performs better than the corresponding baseline model for model prediction

in all cases of M = 10, 20, 50, 100. We displayed the best results from our models

in Figure 3.8.

M 10 20 50 100
Baseline model 0.1221 0.1085 0.1033 0.0982

Regularized model 0.1195 0.1079 0.1024 0.0976

Table 3.12: Root mean square errors for the six noisy images under different
number of inducing points Ms. (Driver Face Example)

We also considered the image denoising task on more blurred figures. Specif-

ically, we randomly select six images and randomly select a 20 by 20 block re-

gion to add which noise and clip them in a unit interval. Then we consider

the different setting of our model M = 10, 20 and regularization weights λ =

121



10, 100, 1000, 10000. We displayed the best results from our models as well as

both real and noised figures in Figure 3.9.

Figure 3.9: Six real images are shown in the first row. Corresponding noisy
images and reconstructed images are displayed in the second row and the third
row separately. (Driver Face Example)

Moreover, we are interested in how is the model performance under different

levels of noises. In detail, we randomly select six images and add six different

levels of Gaussian noises with scale 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5. Then we clip

them in a unit interval. We consider the number of inducing points M = 10 and

regularization weights λ = 10, 100, 1000, 10000. We select the best reconstruction

results shown in Figure 3.10 and Figure 3.11. To compare them with original and

training images, we also shown them in the same figure.

Figure 3.10 and Figure 3.11 show that the regularized latent Gaussian pro-

cesses model is robust to noises while for the image with little noise, the recon-

struction may make it more blurred.
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Figure 3.10: Six real images are shown in the first row. Corresponding noisy
images and reconstructed images are displayed in the next two rows iteratively
for three different scales σ = 0.01, 0.02 and 0.05. (Driver Face Example)

3.5 Conclusion

Regularization is necessary for sparse Gaussian processes especially in latent

variable models. Our regularization approach improves global optimization in

model fitting and achieves better model prediction. In the case of latent vari-
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Figure 3.11: Six real images are shown in the first row. Corresponding noisy
images and reconstructed images are displayed in the next two rows iteratively
for three different scales σ = 0.1, 0.2 and 0.5. (Driver Face Example)

able models, the use of regularization is also justified by proving that performing

VI on a sparse latent Gaussian process with this regularization is equivalent to

performing VI on a related empirical Bayes model. Generally, the regulariza-

tion weight λ is selected via cross validation and the weight scale depends on
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data size. When cross validation is not available, we give a rule of thumb for

the selection of regularization by setting λ = M as a corresponding empirical

Bayes model. We illustrate that our regularized model performs better model

fitting under both ELBO1 and ELBO2 settings using the Anuran Calls dataset.

We demonstrate the better model fitting under different latent dimension sizes

Q. Moreover, we demonstrate the necessity of regularization for large datasets

in noisy feature reconstruction tasks, using the Flight data. Finally, we illustrate

that our regularized model also has good performance for high dimensional data

such as image data. We take the Driver Face dataset for example, in which our

model has better model fitting results and better reconstruction results for noisy

images.
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Chapter 4

Temporal Categorical Latent

Gaussian Processes

This chapter proposes a novel approach to model multivariate categorical data

via sparse Gaussian processes. Then we extend this approach to temporal data.

We summarize the literature of latent Gaussian process models and categori-

cal data models in Section 4.1. It includes literature for various models as well as

inference. We propose a categorical latent Gaussian process model with two reg-

ularization approaches and then we discuss its relation with priors from Beyesian

perspective in Section 4.2. Moreover, we extend our model to temporal categorical

latent Gaussian process model in Section 4.3 where the latent inputs are modeled

by another Gaussian processes. Finally, in Section 4.4 experimental results of

both synthetic data and stock index data are discussed.
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4.1 Latent Gaussian Process Modeling and Cat-

egorical Data Models

In this section, we would review the literature of latent Gaussian process and

categorical data models. First, we summarize the literature related to latent

Gaussian process and its extensions in Section 4.1.1 and discuss categorical latent

Gaussian model in Section 4.1.2. We also review the categorical latent Gaussian

process model in Section 4.1.3.

4.1.1 Latent Gaussian Process Models

This section reviews the Gaussian process latent variable model (GPLVM)

proposed in Lawrence (2004). It is a non-linear generalization of Probabilis-

tic PCA. Under this framework, Y = (y1, . . . ,yN)T ∈ RN×D denotes N D-

dimensional observations andX = (x1, . . . ,xN)T ∈ RN×Q denotes N correspond-

ing Q-dimensional latent inputs.

Then GPLVM is capable to express as D independent functions from the same

Gaussian process. It shows that for each dimension d, the model is

Y:,d ∼ N (fd, σ2I) ,

fd = fd(X) ,

fd(·) i.i.d.∼ GP (0, kf (x,x′)) ,

where fd ∈ RN is the latent vector for the dth dimension.

Because latent variables F = (f1, . . . ,fD) are not of interest, they should be

marginalized before inference. Therefore after marginalizing all latent variables,
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the log marginal likelihood is given as

` = (−D2 ) log det(2πK̃)− 1
2tr(Y T K̃−1Y ) (4.1)

where K̃ = K + σ2I and K is the covariance matrix with respect to the latent

inputs X.

Taking the derivative with respect to the matrix K̃ on both sides of (4.1), the

gradients have a closed form as

∂

∂K̃
` = −D2 K̃

−1 + 1
2K̃

−1Y Y T K̃−1 .

The definition of matrix gradient is described in Appendix A.2. Moreover,

gradients of latent inputsX and gradients of hyper-parameters θ in the covariance

function are easy to derive using the chain rule.

Lawrence (2004) proposes a practical algorithm for inference in which they

recursively select a subset of data as the active set using an information vector

machine and then optimize the log likelihood of the active set and the log likelihood

of the inactive set given the active set until all parameters converge.

In Lawrence (2004), training inference is carried out by maximizing the log

marginal likelihood (4.1). In general, if we assume a prior on X, p(X) ∼

p(X|ΦX), then training inference is the maximum a posteriori estimation (Ek

et al., 2007).

The joint distribution of X and Y is given as

p(X,Y ) =
D∏
d=1
N (Y:,d|0, K̃)p(X|ΦX) . (4.2)

Latent variables X and hyper-parameters ΦX in the covariance function are
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estimated by maximizing the joint distribution:

(X̂, Φ̂X) = arg max
X,ΦX

p(X,Y ) .

On the other hand, because of p(X|Y ) ∝ p(X,Y ), it is equivalent to maxi-

mizing the posterior distribution of X given observations Y , suggesting:

(X̂, Φ̂X) = arg max
X,ΦX

p(X|Y ) .

It also implies that the training inference is equivalent to the maximum a

posteriori estimation.

Different priors of latent inputs X lead to different models. Moreover, X

can be modeled with unknown parameters rather than known priors. Next, we

introduce some models with respect to the latent inputs X.

Naive Model

The first model is the naive model. It considers a fully factorized normal prior

as

p(X) =
N∏
n=1
N (xn|0, IQ)

suggesting that each entry of latent inputs should have a identity independent

standard normal distribution (Gal et al., 2015). It is widely utilized because of

the computational simplicity.
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Back Constraints Model

The second model is back constraints model proposed in Lawrence and Quiñonero

Candela (2006). It puts constraints on latent variables X by modeling them as a

smooth function of corresponding observations, meaning:

xnq = gq(yn;w) ,

where w is unknown parameters in this model.

This model utilizes a smooth mapping gq(·) from yn to xn which guarantees the

local distance preservation property. The local distance preservation means that if

two latent inputs are close with each other, then their corresponding observations

should be close too. It is motivated by the idea that similar observations should

have similar latent inputs.

There exists numerous of mapping g(·). One popular mapping is based on the

RBF kernel k(·, ·) and it expresses as:

gq(yn) =
N∑
j=1

αqjk(yn,yj) ,

where α are weight parameters. The smoothness of function g(·) is determined

by length-scale parameters in the kernel, as we discussed in (3.19). Therefore, to

guarantee the sufficient smoothness of g(·), the length scale parameters are set as

small as 10−6.

On the other hand, the joint distribution (4.2) is maximized with respect to

parameters w rather than latent inputs X because X is fully specified using w.
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Temporal Model

Temporal model is allowable to model the temporal relation across time by

putting dynamical prior on latent processes. In Wang et al. (2006) and Wang

et al. (2008), they utilize an auto-regressive model for the latent process, written

as:

xt = f(xt−1;A) + ε , (4.3)

where f is a linear combination of basis functions f(x;A) = ∑
i aiφi(x) and ε ∼

N (0, σ2
aI).

Lawrence and Moore (2007) utilize Gaussian processes to independently model

each dimension of latent inputs across time. They also describe it as a special case

of hierarchical GPLVM. As for each dimension q, the model for the latent process

can be expressed as

X:,q = gq(t)

gq(·) ∼ GP (0, kx(t, t′)) ,

which suggests P (X|t) = ∏Q
q=1N (X:,q|0, Kt).

4.1.2 Categorical Latent Gaussian Model

This section mainly focuses on one of the categorical data models proposed in

Khan et al. (2012), which utilizes latent Gaussian model for categorical data.

As for N observations Y ∈ RN×D (patients for example) each observation has

D dimensions (different possible examinations). The dth dimension of the nth

observation ynd is a categorical variable with total Kd categories. For simplicity,
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we assume all dimensions have the same number of levels, meaning Kd ≡ K for

all dimensions d = 1, . . . , D.

There are different approaches to model the categorical distribution p(Ynd|fnd)

where fnd = (fnd1, . . . , fndK). We will discuss those approaches later.

On the other hand, this model assumes the latent variables f are a linear func-

tion of latent inputs X ∈ RN×Q and those inputs are modeled as N independent

identically multivariate Gaussian distributions:

p(xn|θ) = N (xn|µ,Σ)

fnd = Wdxn +w0,d

ynd ∼ p(ynd|fnd) .

There are two approaches to model a categorical distribution. One is multi-

nomial logit model and the other is multinomial probit model. Both models can

be expressed in a same latent variable framework such that

undk = fndk + εndk ∀k = 1, . . . , K ,

where u is treated as latent variables and then the probability that the dth category

of the nth observation belongs to category k is expressed as

pnd(k) = p(undk > undj, j 6= k) . (4.4)

Error ε is modeled by difference distribution. Different distributions refers to

different models of categorical distribution. Two models are of interest in the

section: multinomial logit model (MLM) and multinomial probit model (MPM).
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Multinomial Logit Model

Multinomial logit model assumes that εndk follow independent identically log

Weibull distribution εndk ∼ EV1(0, 1). After deviation, the categorical distribution

is given as

pnd(k) = efndk∑K
j=1 e

fndj
. (4.5)

This form (4.5) is also named the softmax formula in machine learning field.

Multinomial Probit Model

Multinomial probit model avoids the independent identically assumption and

assumes that εnd ∼ N (0, I). More generally it assumes εnd ∼ N (0,Σ). Given

(4.4), the probability for nth observation’s dth category to choose category k is

written as:

pnd(k) =
∫
Rk

p(u−k)du−k

whereRk is the region where uk > uj, ∀k 6= j and u−k = (u1, . . . , uk−1, uk+1, uK).

Stick Breaking Model

Khan et al. (2012) introduce a stick breaking model as an extension of trun-

cated stick breaking processes to generate a categorical distribution. It claims
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that the distribution of the nth observation and the dth category is modeled as

pnd(0) = σ(fnd0)

pnd(k) =
∏

j≤k−1
(1− σ(fndj))σ(fndk), 0 < k < K

pnd(K) =
K−1∏
j=1

(1− σ(fndj))

where σ(·) is a logit function such that σ(x) = 1
1+e−x . Compared with the tra-

ditional stick breaking processes for Dirichlet processes DP(α,G), it replaces the

generator variable rk ∼ Beta(1, α) by σ(fndk).

4.1.3 Categorical Latent Gaussian Process Model

An alternative approach to model categorical data is categorical latent Gaus-

sian process (CLGP) model (Gal et al., 2015). It extends the linear transition

between latent inputs X and latent variables F to a nonlinear transition using

Gaussian processes. Moreover, M inducing inputs Z ∈ RM×Q with corresponding

variables U ∈ RM×D×K are introduced for sparse Gaussian processes approxima-

tion.

CLGP Model

The CLGP model is expressed as

xnq ∼ N (0, σ2
x) ,

Fdk(·) iid∼ GP(0, Cd(θd)) ,

fndk = Fdk(xn) ,

ynd ∼ Cat(Softmax(fnd)) , (4.6)
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where Cd(·) denotes a covariance function for the dth dimension of observations

with hyper-parameters θd.

All latent inputs X are assumed to follow independent identically standard

normal distribution priors across different index n and different dimension q. For

each dimension d and level k, fndk is proposed to describe the relation among

observations and this relation is modeled by a Gaussian process GP(Cd(θd)) in

which the corresponding hyper-parameters only depend on the category d rather

than the level k for simplicity. Then observation ynd is a categorical distribution

modeled by a multinomial logit model. Given (4.5), the corresponding parameters

come from a softmax function of fnd.

Under the model 4.6, there are DK independent fdk and D independent Gaus-

sian processes. The inference computation is O(DKN3) which is much expensive

especially whenN is large. Therefore, as for Gaussian processes {GP(0, Cd(θd))}Dd=1,

Gal et al. (2015) introducesM inducing inputs Z. For each dimension d and each

level k, Gaussian process has its own inducing variable corresponding toZ denoted

as Udk, suggesting that

umdk = Fdk(zm)

for d = 1, . . . , D and k = 1, . . . , K.
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CLGP Inference

With the sparse of regression approximation (3.38), the joint marginal distri-

bution distribution is displayed as

p(Y ,X,U) =
∫
p(Y |F )p(F |X,U)p(X)p(U)dF

=
N∏
n=1

D∏
d=1

Cat(ynd|Softmax(fnd))p(X)p(U) ,

where fdk = Kd;x,zK
−1
d;z,zudk.

Then latent inputsX,Z,U and hyper-parameters θ are estimated using max-

imum a posteriori estimation as

(X̂, Ẑ, Û , θ̂) = arg max
X,Z,U ,θ

p(Y ,X,U) .

However, the maximum a posteriori estimation only gives a point estimate

rather than a posterior distribution. We introduce a variational inference of CLGP

in the next section.

CLGP Variational Inference

The fully factorized variation distribution of (X,U ,F ) is

q(X,U ,F ) = q(X)q(U)q(F ) .

However, the computation is expensive when we maximize the correspond-

ing ELBO. Therefore, another variational distribution of (X,U ,F ) is proposed

to generate a tractable lower bound (Damianou et al., 2016). This variational
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distribution is decomposed as

q(X,U ,F ) = q(X)q(U)p(F |X,U) . (4.7)

Model inference is based on maximizing this tractable evidence lower bound

(ELBO). It is given as

log p(Y ) ≥ lelbo =
∫
q(X)q(U)p(F |X,U) log p(X)p(U)p(F |X,U)p(Y |F )

q(X)q(U)p(F |X,U) dXUF

= lelbo =
∫
q(X)q(U)p(F |X,U) log p(X)p(U)p(Y |F )

q(X)q(U) dXUF

= −KL(q(X)||p(X))−KL(q(U)||p(U))

+
∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF . (4.8)

The variational distributions of U and X are constructed using independent

normal distributions, as the same as in Titsias and Lawrence (2010).

q(U) =
D∏
d=1

K∏
k=1
N (udk|µdk,Σd) .

q(X) =
N∏
n=1

Q∏
q=1
N (xnq|mnq, s

2
nq) .

Since both q(X) and p(X) belong to the multivariate Gaussian distribution,

their KL divergence has a closed-form expression as discussed in the empirical

setting under Section 3.1.5, which means

KL(q(X)||p(X)) =
N∑
n=1

Q∑
q=1

KL(q(xnq)||p(xnq))

=
N∑
n=1

Q∑
q=1

(
log σx

snq
+
s2
nq +m2

nq

2σ2
x

− 1
2

)
.
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The same is for the KL divergence between q(U) and p(U),

KL (q(U)||p(U)) =
D∑
d=1

K∑
k=1

KL(q(udk)||p(udk))

=
D∑
d=1

K∑
k=1

1
2

(
log
|Cd(Z;θd)|
|Σd|

−m+ tr(Cd(Z;θd)−1Σd) + µTdkCd(Z;θd)−1µdk

)
.

Here, Cd(Z;θd) denotes the covariance matrix under the dth Gaussian process

with respect to inputs Z and Cd(Z,Z∗;θd) denotes the covariance matrix under

the dth Gaussian process with respect to inputs Z and Z∗.

In the machine learning literature, especially in the auto-encoder literature,

KL(q(X)||p(X) and KL(q(U)||p(U) are called regularization terms. They are

used to minimize the distance between the variational distribution of latent vari-

ables and their prior distributions.
∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF is

called the reconstruction term. It is used to describe the likelihood to recon-

struct the observations. Therefore, maximizing the ELBO means maximizing the

reconstruction term and at the same time minimizing the distance between the

variational distribution and prior distribution of latent variables.

As for the reconstruction term, directly computing the expectation is in-

tractable. Therefore, we approximate the expectation term using Monte Carlo

integration method (Gal et al., 2015). Mathematically, the integration is approx-

imated as

∫
q(X)q(U )p(F |X,U ) log p(Y |F )dXUF = 1

T

T∑
t=1

log p(Y |F (t)),

where T denotes the number of samples in Monte Carlo integration, and F (t) is

sampled from p(F |X(t),U (t)) where both X(t) and U (t) are sampled from q(X)

and q(U) respectively. Because q(X), q(U ) and p(F |X,U) are all normal distri-

butions, generating sample F is tractable.
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Moreover, p(F |X,U) = ∏D
d=1

∏K
k=1 p(fdk|X,udk). However, it is still expen-

sive to compute p(fdk|X,udk) because it costs O(nm2). Gal et al. (2015) implicitly

assumes that fdk are independent conditional on inducing variables udk in training

processes which is the same as the assumption in (3.47). It means

p(F |X,U) =
D∏
d=1

K∏
k=1

N∏
n=1

p(fndk|xn,udk)

=
D∏
d=1

K∏
k=1

N∏
n=1
N (fndk|andk, b2

ndk) . (4.9)

where andk = vTndΣ−1
Zdµdk and b2

ndk = σ2
n − vTndΣ−1

Zdvnd and ΣZd = C(Z;θd),vnd =

C(Z,xn;θd), σ2
n = C(xn,θd).

A linear transformation trick (Kingma and Welling, 2013) is introduced for

sampling to improve the inference efficiency. It re-parameterizes a random vari-

ables as a function of hyper-parameters and a random variable which does not

depend on hyper-parameters. Therefore, it is tractable to compute the deriva-

tive of the random variable with respect to its corresponding hyper-parameters.

A general re-parameterization for the multivariate Gaussian distribution is dis-

cussed which is needed to compute the ELBO.

If random variables x follow a multivariate Gaussian distribution x ∼ N (µ,Σ),

since the covariance matrix Σ is positive definite, it can be decomposed as Σ =

LLT where L is a lower triangular matrix. Then it can be rewritten as x = µ+Lε,
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where ε ∼ N (0, I). The corresponding derivatives are derived as

∂xi
∂µj

=


1 i = j

0 i 6= j

,

∂xi
∂ljk

=


εk i = j

0 i 6= j

i ≥ j .

CLGP Prediction

This section discusses CLGP prediction. In this model, hyper-parameters are

θ,Z and variational parameters are µ,Σ,m, s. After we get those estimates, we

sequentially discuss CLGP prediction for training data, testing data and incom-

plete testing data.

As for training prediction, we choose the variational mean of embedding inputs

m as the embedding input estimates X̂ and we choose the variational mean of

inducing output µ as inducing output estimates Û .

Then embedding outputs F are estimated using F̂ = E(p(F |X̂, Û)). Given

the decomposition expression (4.9), we obtain f̂ndk = ândk, where ândk = v̂TndΣ−1
Zdûdk

and v̂nd = C(Z, x̂n;θd). Then the training predictive log likelihood is

`training = log p(Y |F̂ )

=
N∑
n=1

D∑
d=1

log(Softmax(f̂nd)[ynd])

and the training predictive log perplexity is

ptraining = 1
ND

N∑
n=1

D∑
d=1

log(Softmax(f̂nd)[ynd]) .
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For testing prediction, assume we have Ñ testing observations Ỹ = (ỹ1, . . . , ỹÑ),

given the inducing input Z and the inducing output estimates Û , the testing em-

bedding inputs X̃ are estimated by maximizing the testing log likelihood where

F̃ is estimated by E(F̃ ).

ˆ̃X = arg max
X̃

`testing

= arg max
X̃

Ñ∑
n=1

D∑
d=1

log(Softmax(ˆ̃fnd))[ỹnd]

= arg max
X̃

Ñ∑
n=1

D∑
d=1

log(Softmax(E(f̃nd)))[ỹnd]

= arg max
X̃

Ñ∑
n=1

D∑
d=1

log(Softmax(ãnd))[ỹnd],

where ãndk = ṽTndΣ−1
Zdµdk and ṽnd = C(Z, x̃n;θd).

Then given the testing embedding input estimates ˆ̃X, the testing predictive

log perplexity is

ptesting = log p(Ỹ | ˆ̃F )

= 1
ÑD

Ñ∑
n=1

D∑
d=1

log(Softmax(ˆ̃fnd)[ỹnd]) .

We also discuss the situation in which testing observations are incomplete.

Assume for the nth observation ỹn, only Dn observations are available. They

are denoted as ỹnind for d = 1, . . . , Dn, where ind is a categorical index for the

nth observation and the dth observable category. We also denote all categorical

indexes for the n the observations as In = {ind}. Under this scenario, the testing

log likelihood is

`testing =
Ñ∑
n=1

∑
d∈In

log(Softmax(ˆ̃fnd)[ỹnd])
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and the testing log perplexity is

ptesting = 1∑Ñ
n=1 |In|

Ñ∑
n=1

∑
d∈In

log(Softmax(ˆ̃fnd)[ỹnd]) .

We define the predictive testing log likelihood and predictive testing log per-

plexity as

˜̀
testing =

Ñ∑
n=1

∑
d/∈In

log(Softmax(ˆ̃fnd)[ỹnd]) ,

p̃testing = 1∑Ñ
n=1 |Icn|

Ñ∑
n=1

∑
d/∈In

log(Softmax(ˆ̃fnd)[ỹnd]) .

We define the testing predictive accuracy as

1∑Ñ
n=1 |Icn|

Ñ∑
n=1

∑
d/∈In

1arg max(ˆ̃fnd)(ỹnd)

where 1(·) is an indicator function.

CLGP Framework

This section discusses how to train and predict CLGP model under stochas-

tic gradient descent (SGD) framework. The popular stochastic gradient descent

methods include Adam, Adagrad and RSM methods. The framework is developed
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as follows:
for i← 1 to Ntraining do

Update model parameters θ,Z,µ,Σ given fixed embedding inputs

related parameters m, s by maximizing the ELBO;

Update embedding inputs related parameters m, s given fixed model

parameters θ,Z,µ,Σ by maximizing the ELBO;

Compute the training log perplexity given X̂, Û ,θ,Z;

end

for j ← 1 to Ntesting do
Update testing embedding inputs X̃ given model parameters

θ,Z,µ,Σ by maximizing testing log likelihood;

Compute predictive testing log perplexity given X̃, Û ,θ,Z;

end
Algorithm 1: Training and testing framework

where Ntraining denotes the number of epochs for training model and Ntesting

denotes the number of epochs for training the testing embedding inputs given the

trained model.

In the testing framework, because of the multimodal distribution of the testing

log likelihood with respect to embedding inputs, X̃ could be bad if the initial

starting points are not ideal. Therefore, to get rid of the multimodal optimization

issue, we propose a random-sample search approach.

In random-sample search approach, we randomly sample the initial starting

points for testing embedding inputs from a standard normal distribution, which

means X̃nq ∼ N (0, 1),∀n, q. Then we use the stochastic gradient decent method

to estimate the optimal embedding inputs. Finally, we choose the embedding

inputs which lead to the maximum predictive testing log perplexity, as the testing

embedding input estimates.
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4.2 Regularization on Categorical Latent Gaus-

sian Process

As for the regularization for categorical latent Gaussian process model, two reg-

ularization approaches are proposed for inducing inputs. One is to put a penalty

term for the dissimilarity between the distribution of inducing points and the

distribution of embedding inputs. Another is to randomly sample M embedding

inputs and treat them as inducing points. Empirical experiments show that the

first approach is much better than the second approach.

4.2.1 Regularization using KL divergence

CLGP model introduces inducing inputs to simplify the computation in Gaus-

sian process. Inducing inputs are optimized by maximizing the ELBO. However,

in practice, especially when embedding inputs are unknown, inducing inputs are

much closer to original point than embedding points, as can be seen in Figure 4.1.

This is because KL(q(X)||p(X)) forces q(X) closer to prior which is centered

at 0 while Z cannot learn enough from maximizing ELBO. From another as-

pect, CLGP does not guarantee the local distribution preservation mentioned in

Lawrence and Moore (2007). It is difficult for Z to allocate the important embed-

ding locations and then the information of Z becomes useless. Therefore, after

optimization, there is a significant difference between the distribution of Z and

the distribution q(X). It indicates that inducing inputs cannot provide enough

information for the posterior of Gaussian process. In other word, it is difficult to

assign suitable positions for inducing inputs in Gaussian process throughout the

maximization of the ELBO.

Therefore, we introduce a regularization term in our inference to motivate
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similar distributions between inducing inputs and embedding inputs. Hence it

guides the assignment for inducing inputs and makes more efficient inference on

embedding inputs. The regularization term is proposed as

KL(q̃(Z)||q̃(X),

where q̃(·) denotes variational empirical distribution of (·) . We utilize the Gaus-

sian distribution class for the variational distribution q̃.

They are naturally estimated via the sample mean and sample covariance

matrix as follow:

q̃(Z) = N (µ̂Z , Σ̂Z) ,

q̃(X) = N (µ̂X , Σ̂X) ,

where µ̂Z = Z̄ = 1
M

∑M
m=1 Zm, Σ̂Z = 1

M

∑M
m=1(Zm − Z̄)2, µ̂X = m̄ = 1

N

∑N
n=1mn·

and Σ̂X = 1
N

∑N
n=1(mn· − m̄)2.

The modified ELBO is proposed as

l̃elbo = lelbo − λKL(q̃(Z)||q̃(X)

where λ is a regularization weight. Usually, λ is set to be equal to the number

of inducing points. Under this setting, the modified ELBO can be treated as an

equivalent empirical Bayesian approach with a prior on inducing inputs. This

detail is discussed in the next section.
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4.2.2 Regularization using sub-sampling

Another approach to get rid of the significant different between the distri-

bution of inducing inputs and the distribution embedding inputs is using sub-

sampling approach. In detail, we randomly sample M observations and then we

let Z = Eq(X)[XM ] = mX whereXM represents embedding inputs corresponding

to the M observations andmX represents to their corresponding mean. Since in-

ducing inputs are randomly sampled from the mean of variational distribution of

embedding inputs, it will somehow shorten the distance between the distribution

of inducing inputs and the distribution of embedding inputs.

4.2.3 Regularization Bayesian Theory

This section explores the underlying relation between the modified ELBO and

inducing inputs’ prior. Specifically, we first discuss an empirical Bayesian model

with a prior for inducing points Z. Then we illustrate that maximizing the mod-

ified ELBO is equivalent to maximizing a lower bound of an empirical Bayesian

model.

Empirical Bayesian model with a prior of inducing inputs

Since predictive accuracy in sparse Gaussian processes strongly depends on

optimal locations of inducing inputs. Reinforcing the distributions of inducing

inputs and embedding inputs on a same scale is necessary. Therefore, we put an

empirical prior for inducing inputs Z. For the ease of computation, we assume the

prior as a normal distribution and utilize the sample mean and sample covariance

matrix of embedding inputs X as the estimates of the prior. Mathematically, it
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suggests that

zm ∼ N (zm|µ̂X , Σ̂X) ,

q(zm) ∼ N (zm|νm,Υm) ,

where the empirical prior depends on the variational distribution q(X). Moreover

the empirical distribution is a normal approximation for the distribution of the

mean of embedding inputs’ variational distribution m. In order to guarantee

a finite variation on inducing points Z, we put a constraint on u that |Σ̂Z | =

|
∑M

m=1(νm−ν̄)2

M
| < K.

Under this setting, the corresponding ELBO is

log p(Y ) ≥ `eblo =
∫
q(Z)q(X)q(U)p(F |Z,X,U) log p(Z)p(X)p(U)p(Y |F )

q(Z)q(X)q(U) dZXUF

= −KL(q(Z)||p(Z))−KL(q(X)||p(X))−KL(q(U)||p(U))

+
∫
q(Z)q(X)q(U)p(F |Z,X,U) log p(Y |F )dZXUF .

Moreover, the KL(q(Z)||p(Z)) can be rewritten as

KL(q(Z)||p(Z)) =
M∑
m=1

KL(q(zm)||p(zm))

=
M∑
m=1

1
2

[
log |Σ̂X |
|Υm|

−Q+ tr(Σ̂−1
X Υm) + (µ̂X − νm)T Σ̂−1

X (µ̂X − νm)
]
.

(4.10)

Relation between modified ELBO and empirical Bayesian model

Under the original CLGP model (4.6), for the ease of notation, we rewrite

zm by νm for all m = 1, . . . ,M . Then, we have µ̂Z =
∑M

m=1 νm
M

and Σ̂Z =
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∑M

m=1(νm−µ̂Z)(um−µ̂Z)T

M
. Then to show that maximizing the modified ELBO is

equivalent to maximizing the ELBO under empirical Bayesian model, we intro-

duce two lemmas and one theorem. Lemma 1 discusses a specific family of prior of

inducing inputs under fully Bayesian approach. Lemma 2 computes the regular-

ization term. Then based on Lemma 1 and Lemma 2, we prove that maximizing

the modified ELBO in original model when λ = M is equivalent to maximizing a

lower bound of the empirical Bayesian model.

Lemma 4. Under an empirical Bayesian model with a prior of inducing points,

considering a specific family of variation distributions where Υm = εI for all

m = 1, . . .M , log marginal likelihood satisfies the inequality:

log p(Y ) ≥ `0 = MQ

2 log(ε)− 2
Mtr(Σ̂−1

X )
ε− M logK

2 +R

−
(
M

2 log |Σ̂X | −
M

2 log |Σ̂Z | −
MQ

2 + 1
2A

)
−KL(q(X)||p(X))−KL(q(U)||p(U )) (4.11)

where R =
∫
q(Z)q(X)q(U)p(F |Z,X,U) log p(Y |F )dZXUF and A = ∑M

m=1(νm−

µ̂X)T Σ̂−1
X (νm − µ̂X).

Proof.

log p(Y ) ≥ `eblo = −KL(q(Z)||p(Z))−KL(q(X)||p(X))−KL(q(U)||p(U)) +R

= MQ

2 log(ε)− 2
Mtr(Σ̂−1

X )
ε− M

2 log |Σ̂Z |+R

−
(
M

2 log |Σ̂X | −
M

2 log |Σ̂Z | −
MQ

2 + 1
2A
)
−KL(q(X)||p(X))−KL(q(U)||p(U))

≥ MQ

2 log(ε)− 2
Mtr(Σ̂−1

X )
ε− M logK

2 +R

−
(
M

2 log |Σ̂X | −
M

2 log |Σ̂Z | −
MQ

2 + 1
2A
)
−KL(q(X)||p(X))−KL(q(U)||p(U))
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where R =
∫
q(Z)q(X)q(U)p(F |Z,X,U) log p(Y |F )dZXUF and A =

∑M
m=1(νm −

µ̂X)T Σ̂−1
X (νm − µ̂X).

Lemma 5. MKL(q̃(Z)||q̃(X)) = M
2 log |Σ̂X | − M

2 log |Σ̂Z | − MQ
2 + 1

2
∑M
m=1(νm −

µ̂X)T Σ̂−1
X (νm − µ̂X).

Proof.

KL(q̃(Z)||q̃(X)) =
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+ tr(Σ̂−1
X Σ̂Z) + (µ̂X − µ̂Z)T Σ̂−1

X (µ̂X − µ̂Z)
]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+ tr
(
Σ̂−1
X ((µ̂X − µ̂Z)(µ̂X − µ̂Z)T + Σ̂Z)

)]
=

1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (M(µ̂X − µ̂Z)(µ̂X − µ̂Z)T

+
M∑
m=1

(um − µ̂Z)(um − µ̂Z)T
)]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (Mµ̂X µ̂TX −Mµ̂X µ̂

T
Z −Mµ̂Z µ̂

T
X +Mµ̂Z µ̂

T
Z

+
M∑
m=1

umu
T
m − (

M∑
m=1

νm)µ̂TZ − µ̂Z(
M∑
m=1

νm)T +Mµ̂Z µ̂
T
Z

)]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (

M∑
m=1

νmν
T
m −Mµ̂X µ̂TZ −Mµ̂Z µ̂

T
X +Mµ̂X µ̂

T
X)
)]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (

M∑
m=1

νmν
T
m − µ̂X(

M∑
m=1

νm)T − (
M∑
m=1

νm)µ̂TX

+Mµ̂X µ̂TX)
)]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (

M∑
m=1

νmν
T
m − µ̂X(

M∑
m=1

um)T − (
M∑
m=1

νm)µ̂TX

+Mµ̂X µ̂TX)
)]

=
1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+
1
M

tr
(

Σ̂−1
X (

M∑
m=1

(νm − µ̂X)(νm − µ̂X)T )
)]

=
1
M

M∑
m=1

1
2

[
log
|Σ̂X |
|Σ̂Z |

−Q+ (νm − µ̂X)T Σ̂−1
X (νm − µ̂X)

]
.

Therefore, MKL(q̃(Z)||q̃(X)) =
∑M
m=1

1
2

[
log |Σ̂X ||Σ̂Z |

−Q+ (νm − µ̂X)T Σ̂−1
X (νm − µ̂X)

]
=

M
2 log |Σ̂X | − M

2 log |Σ̂Z | − MQ
2 + 1

2
∑M
m=1(νm − µ̂X)T Σ̂−1

X (νm − µ̂X).
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Theorem 4.2.1. Under an empirical Bayesian model with a prior of inducing

points where Υm = εI for allm = 1, . . .M , as ε→ 0, maximizing its corresponding

lower bound `0 is equivalent to maximizing the modified ELBO ˜̀under the original

CLGP model (4.6) when λ = M .

Proof. As for both bound `0 and ˜̀
elbo, parameters include hyper-parameter θ,u

and variational parameters µ,Σ,m, s. We denote all parameters as Θ and then
given lemma 1 we have:

arg max
Θ

`0 = arg max
Θ

MQ

2
log(ε)−

2
Mtr(Σ̂−1

X )
ε−

M logK
2

+R

−
(
M

2
log |Σ̂X | −

M

2
log |Σ̂Z | −

MQ

2
+

1
2
A

)
−KL(q(X)||p(X))−KL(q(U)||p(U))

= arg max
Θ
−

2
Mtr(Σ̂−1

X )
ε+R

−
(
M

2
log |Σ̂X | −

M

2
log |Σ̂Z | −

MQ

2
+

1
2
A

)
−KL(q(X)||p(X))−KL(q(U)||p(U)) .

As ε goes to 0, 2
Mtr(Σ̂−1

X )ε converges to 0 and R would degenerated to

R = lim
ε−>0

∫
q(Z)q(X)q(U )p(F |Z,X,U) log p(Y |F )dZXUF

=
∫
q(X)q(U)p(F |Z = u,X,U) log p(Y |F )dXUF .
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Therefore,

arg max
Θ

lim
ε→0

`0 = lim
ε→0

arg max
Θ

`0

= arg max
Θ

∫
q(X)q(U)p(F |Z = u,X,U ) log p(Y |F )dXUF

−
(
M

2 log |Σ̂X | −
M

2 log |Σ̂Z | −
MQ

2 + 1
2A

)
−KL(q(X)||p(X))−KL(q(U)||p(U))

= arg max
Θ

∫
q(X)q(U)p(F |Z = u,X,U ) log p(Y |F )dXUF

−MKL(q̃(Z)||q̃(X)−KL(q(X)||p(X))−KL(q(U)||p(U))

= arg max
Θ

`elbo −MKL(q̃(Z)||q̃(X)) .

4.3 Temporal Categorical Latent Gaussian Pro-

cesses Model

We propose a hierarchical model for temporal multivariate categorical pro-

cesses via Gaussian processes. In Section 4.3.1, we employ latent Gaussian pro-

cesses to model the nonlinear relationship between latent variables and observa-

tions and introduce inducing points to relieve the computation burden. We model

multi-dimensional observations by sharing their latent variables and model the

dynamics of latent process with respect to time via Gaussian processes. Model

properties as well as prior selection are discussed. Section 4.3.2 proposes two vari-

ational inference approaches. It also proposes a fast approach for inference on

our model with hyper-parameter priors. Moreover, a stochastic variational infer-

ence approach is proposed for large datasets. Section 4.3.3 discusses the details

of model prediction.
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4.3.1 Proposed Model

Suppose we have N different time series {yn} with different length T (n), de-

pending on the individual index n. Observations on each time stamp are repre-

sented by a D dimensional categorical vector. yndt represents the dth observation

on the tth time stamp of the nth time series and t̃nt represents the tth time stamp of

the nth time series. Each observation yntd is a categorical data with K(d) classes,

depending on the dimension index d. To simplify the notation, we replace T (n)

as T and replace K(d) as K.

Our temporal categorical latent Gaussian process model includes three levels,

proposed as

yndt ∼ Cat(Softmax(fndt)) ,

fndtk = Fdk(xnt) , Fdk(·) iid∼ GP(0, C(θd)) ,

xnt = fn(t̃nt) , fn(t) = Aυn(t) , υnq(t) iid∼ GP(0, C(φq)) .

To model categorical data yndt, we introduce the softmax function with K

latent variables fndt = (fndt1, fndt2, . . . , fndtK) in the first level of model (4.12).

The identifiability is achievable by fixing all fndt1 = 0 for all n = 1, 2, . . . N ,

d = 1, 2, . . . , D and t = 1, 2, . . . T . Since modeling the correlation across the time

and individuals is of interest, we introduce latent variablesX ∈ RN×T×Q. In other

words, we embed fndtk into xnt on a Q-dimensional latent space via a nonlinear

function Fdk. Within each dimension d, we give an independent identical Gaussian

process prior for Fdk in the second level of model (4.12). This level is also called

latent Gaussian processes because of the latent variables X. Next, to model the

nonlinear mappings between embedding inputsX and time t̃, we utilize the linear

model of coregionalization (Pelletier et al., 2004), indicating that a multivariate
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function is modeled as a linear combination of independent Gaussian processes

υnq. To guarantee the identification, A is specified as a lower triangular matrix

with diagonal entries all positive and the variance parameter in φ needs to be

fixed as 1. If each component in f(t) is assumed to be independent and identical,

then A becomes a positive diagonal matrix. This special case can be written as

fnq(t) iid∼ GP(0, C(φq)), ∀q = 1, . . . Q , (4.12)

where φq include both scale parameter and length-scale parameter. The idea

of introducing additional Gaussian processes to model the latent process is firstly

proposed in the hierarchical Gaussian process latent variable model (Lawrence and

Moore, 2007). In the remaining of the chapter, to avoid over-parameterization,

we consider the simplified modeling in (4.12).

We introduce M inducing points with inducing inputs Z ∈ RM×Q and cor-

responding inducing variables U ∈ RM×D×K for all Gaussian processes Fdk(·) to

accelerate the computational speed of Gaussian processes. This approximation

idea via introducing inducing points is similar to Gal et al. (2015). It implies that

we have additional equations with respect to the inducing points

umdk = Fdk(zm) .

Our model utilizes Gaussian processes for nonlinear mappings between latent

variables F and embedding inputs X and nonlinear mappings between embed-

ding inputs X and time t̃. For computational convenience, we employ a squared

exponential kernel for all covariance functions.

All hyper-parameters of Gaussian processes θ and ψ are optimized via maxi-

mizing the lower bound of log likelihood.
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However, modeling the hyper-parameters is expensive because there is no con-

jugate prior. In our case, we treat both θ and ψ as model parameters. Since we

put the GP priors on the νnq in (4.12) with 0 mean trend, our model is likely to

shrink the scale of latent variables x to 0 and sequentially shrink the scale of co-

variance functions C(φq) to 0. Also, our model may over-estimate the dependence

in C(0,φq). These intrinsic properties may affect the model fitting.

To address thees drawbacks of our model, there are two approaches. One

approach is to give a boundary for ψ to reduce the shrinkage effects and make

latent processes vnq(t) more predictable. The other approach is to put informative

priors on hyper-parameters.

With respect to the first approach, we assume σ2 is bounded in an interval

[0.2, 2] and also assume that the correlation of vnq(t) between any two observable

consecutive time stamps is greater than 0.1 and the correlation of vnq(t) between

any half of whole recording time is smaller than 0.1. Let D0 = max({t̃ni+1 −

t̃ni}n=1,2,...N,i=1,2,...,T−1) and D1 = 1
2 min({t̃nT − t̃n1}n=1,2,...,N). Because we employ

a squared exponential kernel, we have

exp(−(D0)2

2l2 ) > 0.1 ⇒ l > 0.466D0 ,

exp(−(D1)2

2l2 ) < 0.1 ⇒ l < 0.466D1 .

Generally, we prefer the second approach and we put suitable priors for φ.

Specifically, we put priors on the latent process φq. Since we employ the squared

exponential kernels, inverse Gamma priors are chosen on both scale parameters

σ2
φq and length-scale parameters l2φq . It means that σ2

φq ∼ IG(a, b) and l2φq ∼

IG(a, b), where IG refers to inverse Gamma distribution. When a = b = 1, IG(a, b)

distribution has infinite mean, this prior is considered as a weakly non-informative

prior. But based on specific data, the informative priors may be preferred for a
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better model regularization.

4.3.2 Variational Inference with Regularization

First of all, we derive the evidence lower bound (ELBO) of our proposed model

as

log p(Y ) ≥ −KL(q(X)||p(X|t̃))−KL(q(U)||p(U))

+
∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF , (4.13)

where p(X|t̃) is a product of densities of multivariate Gaussian distributions over

all time series.

The variational distributions of U and X are decomposed and constructed

using independent Gaussian distributions such that

q(U) =
D∏
d=1

K∏
k=1
N (udk|µdk,Σd) ,

q(X) =
N∏
n=1

T∏
t=1

Q∏
q=1
N (xntq|mntq, s

2
ntq) .

When hyper-parameter optimization is of interest, we can introduce variational

distributions q(φq) and then the lower bound is redefined as

log p(Y ) ≥ −KL(q(φ)||p(φ)) +
∫
q(φ)q(X) log

(
p(X|φ, t̃)
q(X)

)
dφX

−KL(q(U)||p(U)) +
∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF .

(4.14)

The first integral term in (4.14) be rewritten and then be approximated using
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Monte Carlo integration as

∫
q(φ)q(X) log

(
p(X|φ, t̃)
q(X)

)
dφX = Eq(φ)(−KL(q(X)||p(X|φ, t̃))

= 1
S

S∑
s=1

(−KL(q(X)||p(X|φ(s), t̃))

where S denotes the number of samples in the Monte Carlo integration and the

KL divergence has a closed expression.

On the other hand, the optimal distribution of hyper-parameters q(φ) is up-

dated by

q∗(φ) ∝ p(φ) exp
(
Eq(X) log

(
p(X|φ, t̃)

))
.

Under the independence assumption across all Q latent dimensions, the update

is simplified as

q∗(φq) ∝ p(φq) exp
(

N∑
n=1

Eq(Xn,:,q) log p(Xn,:,q|φq, t̃n)
)

∝ p(φq) exp
(

N∑
n=1

EXn,:,q

(
−1

2 log(2π‖Σnq‖)−
1
2tr(Σ−1

nqXn,:,qX
T
n,:,q)

))

∝ p(φq) exp
(

N∑
n=1

logN (mn,:,q|0,Σnq)−
1
2tr

(
Σ−1
nq diag(s2

n,:,q)
))

(4.15)

A fast approach to update q(φq) is to compute the MAP of φq by maximizing
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(4.15). The procedures are proposed as

for i = 1 to Ntrain do
Update q(X), q(U) and hyper-parameters θ by maximizing (4.13)

given φ;

Update φ by maximizing (4.15) given q(X), q(U) and θ;

end
Algorithm 2: Fast inference approach for the model with hyper-parameter

modeling.
In the lower bound (4.13), KL(q(X)||p(X)) and KL(q(U)||p(U)) are called

regularization terms, minimizing the distance between the variational distribu-

tions and their prior distributions.
∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF is

the reconstruction term, measuring the model fitting. The standard variational

inference is to maximize the ELBO, which means maximizing the reconstruction

term and at the same time minimizing the distance between the variational dis-

tributions and their prior distributions for X and U .

Before discussing the details of computation, we introduce a lemma as follow:

Lemma 6. Assume the dimension size of a multivariate variable is D, and p ∼

N (µ,Σ) and q ∼ N (µ̃, Σ̃). Then the KL divergence between p and q is

KL[p||q] = 1
2

(
log |Σ̃|
|Σ| −D + tr(Σ̃−1Σ) + (µ̃− µ)T Σ̃−1(µ̃− µ)

)
.

With respect to the regularization term, because both q(X) and p(X|t̃) belong

to the multivariate Gaussian distribution. The KL divergence is

KL(q(X)||p(X|t̃)) =
N∑
n=1

Q∑
q=1

KL
(
q(xnq)||p(xnq|t̃n)

)
,

where each KL
(
q(xnq)||p(xnq|t̃n)

)
has a closed-form expression using the results

of KL divergence of multivariate Gaussian distributions in Lemma 6.
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With Lemma 6, the KL divergence between q(U) and p(U) is derived as

KL (q(U)||p(U)) =
D∑
d=1

K∑
k=1

KL(q(udk)||p(udk))

=
D∑
d=1

K∑
k=1

1
2

(
log |C(Z,Z;θd)|

|Σd|
−m+ tr(C(Z,Z;θd)−1Σd) +

µTdkC(Z,Z;θd)−1µdk

)

where C(Z,Z;θd) denotes the covariance matrix under the dth Gaussian process

with respect to inputs Z and C(Z,Z∗;θd) denotes the covariance matrix under

the dth Gaussian process with respect to inputs Z and Z∗.

As for the reconstruction term, directly computing the expectation is in-

tractable. Thus, the expectation term is approximated using a Monte Carlo

integration method (Gal et al., 2015) or using Delta method (Wang and Blei,

2013).

Monte Carlo Method for Reconstruction Term

Mathematically, the integration is approximated by the average of samples

∫
q(X)q(U)p(F |X,U) log p(Y |F )dXUF = 1

S

S∑
s=1

log p(Y |F (s)) (4.16)

where S denotes the number of samples in the Monte Carlo integration. In our

case, we set S = 5. F (s) is sampled from p(F |X(s),U (s)) where both X(s) and

U (s) are sampled from q(X) and q(U) respectively. Because q(X), q(U), and

p(F |X,U) are all Gaussian distributions, generating the sample F is tractable.

Similar to Gal et al. (2015), we decompose the log conditional likelihood

log p(Y |F ) into ∑N
n=1

∑D
d=1

∑T
t=1 log Softmax(fndt)[yndt] and rewrite the recon-
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struction term as

Eq(F ) log(Y |F ) =
N∑
n=1

D∑
d=1

T∑
t=1

Eq(fndt) log Softmax(fndt)[yndt], (4.17)

where q(fndt) = ∏K
k=1 q(fndtk) according to the independent assumption in our

model.

Then we derive the conditional distribution p(fndtk|xnt,udk) as

p(fndtk|xnt,udk) = N (fndtk|andtk, b2
ndtk) , (4.18)

where antdk = vTndtΣ−1
Zdudk and b2

ntdk = σ2
ndt − vTndtΣ−1

Zdvndt, and we specify ΣZd =

C(Z,Z;θd),vndt = C(Z,xnt;θd), σ2
ndt = C(xnt,xnt;θd).

The linear transformation trick in (Kingma and Welling, 2013) is employed for

sampling to improve the inference efficiency. It re-parameterizes a random variable

as a function of two components. The first components are hyper-parameters

and the second component is a random variable with no hyper-parameters. The

re-parameterization makes it tractable to compute the derivative of the random

variable with respect to its corresponding hyper-parameters.

The re-parameterization for multivariate Gaussion distribution is discussed in

lemma 7. It is involved in the computation of the ELBO.

Lemma 7. Suppose a random variable x follows a multivariate Gaussian distri-

bution x ∼ N (µ,Σ). Since the covariance matrix Σ is positive definite, it can be

decomposed as Σ = LLT where L is a lower triangular matrix. Then x can be re-

parameterized as x = µ+ Lε, where ε ∼ N (0, I). The corresponding derivatives
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are derived as

∂xi
∂µj

=


1 i = j

0 i 6= j

,

∂xi
∂ljk

=


εk i = j

0 i 6= j

i ≥ j .

Delta Method for Reconstruction Term

An alternative approach to compute the reconstruction term is via Delta

method. Comparing the Delta method with the Monte Carlo method, the Delta

method does not require sampling and it is more robust but less accurate. To

compute (4.17), it is necessary to approximate the marginal distribution q(fndtk)

by a Gaussian distribution q̃(fndtk). There are two approaches.

The first approach is to approximate it by matching their mean and variance.

Due to (4.18), the mean and variance of q(fndtk) are

Eq(fndtk) = Eq[Ep[fndtk|xnt,udk]]

= Eq[vTndtΣ−1
Zdudk]

= 〈vndt〉Tq(xnt)Σ
−1
Zd〈udk〉q(udk),

and

Varq(fndtk) = Eq[Varp[fndtk|xnt,udk]] + Varq[Ep[fndtk|xnt,udk]]

= Eq[σ2
ndt − vTndtΣ−1

Zdvndt] + Varq[vTndtΣ−1
Zdudk]

= Eq[σ2
ndt − vTndtΣ−1

Zdvndt] + Eq[vTndtΣ−1
Zdudku

T
dkΣ−1

Zdvndt]− E2
q[vTndtΣ−1

Zdudk]

= σ2
ndt − tr(〈vndtvTntd〉q(xnt)Σ

−1
Zd) + tr(〈vndtvTndt〉q(xnt)Σ

−1
Zd〈udku

T
dk〉q(udk)Σ−1

Zd)

−(〈vndt〉Tq(xnt)Σ
−1
Zd〈udk〉q(udk))2 .
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Because of the Gaussian density q(xxt) and q(udk), the computations of them

are tractable via two summary statistics:

〈vndt〉q(xnt) = Ψntd
1 =

∫
C(Z,xnt;θd)N (xnt|mnt, diag(s2

nt))dxnt ,

〈vndtvTndt〉q(xnt) = Ψntd
2 =

∫
C(Z,xnt;θd)C(xnt,Z;θd)N (xnt|mnt, diag(s2

nt))dxnt .

Specifically, considering squared exponential kernels with input size Q, scale

parameters σ2
d and length-scale parameters ld. Let wd = 1/l2d and the two summary

statistics display as

(Ψntd
1 )m = σ2

d

Q∏
q=1

exp
(
−1

2
w(mntq−zmq)2

ws2ntq+1

)
(ws2

ntq + 1) 1
2

,

(Ψntd
2 )mm′ = σ4

d

Q∏
q=1

exp
(
−1

4w(zmq − zm′q)2 − w(mntq− 1
2 (zmq+zm′q))2

2ws2ntq+1

)
(2ws2

ntq + 1) 1
2

.

The second approach is to replace both xnt and udk with their meanmnt and

µdk. Then q̃(fndtk) = p(fndtk|mnt,µdk).

After we get the closed form for q̃(fndtk) = N (fndtk|µ̃fndtk , σ̃2
fndtk

) parametrized

by q(X) and q(U), we use the Delta method for inference. Due to the decom-

position in (4.18) , we need to approximate gndt = Eq̃(fndt) log Softmax(fndt)[yndt].

According to (16) in Wang and Blei (2013), for any variational distribution q(θ) =

N (µ,Σ) and any twice differentiable function f(θ), the objective is approximated

as Eq(θ)[f(θ)] ≈ f(µ) + 1
2tr(O2f(µ)Σ). Therefore, we have

gndt ≈ log(Syndt) + 1
2

 ∑
k 6=yndt

σ̃2
fndtk

SkSyndt −
∑

k=yndt
σ̃2
fndtk

Sk(1− Sk)
 = g̃ndt(4.19)

where S = Softmax(µ̃fndt). Particularly, with the second approach, σ̃2
fndtk

are
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independent with respect to index k. Then (4.19) is simplified as g̃ndt = log(Syndt).

Therefore, we replace all gndt with g̃ndt in the lower bound in (4.13).

In the case of missing data, we use Θ to describe the observable index set and

denote observable Y as Ỹ = {Yndt}(n,d,t)∈Θ with corresponding latent variables

F̃ = {fndt}(n,d,t)∈Θ and the corresponding embedding inputs as X̃. The ELBO in

the missing value case is expressed as

log p(Ỹ ) ≥ −KL(q(X̃)||p(X̃|T̃ ))−KL(q(U)||p(U))

+
∫
q(X̃)q(U)p(F̃ |X̃,U) log

 ∑
(n,d,t)∈Θ

p(yndt|fndt)
 dX̃UF̃ .

We propose a regularized model via maximizing the modified evidence lower

bound (MELBO) which is generally studied in Chapter 3:

MELBO = ELBO− λKL(q̃(Z)||q̃(X))

where λ is a regularization weight.

Stochastic gradient descent (SGD) methods are employed to maximize the

MELBO with respect to all parameters in our model. The details of SGD are

discussed as follows. We set the number of training epochs Ntrain and evenly

divide the whole dataset into Nbatch clusters. Each cluster includes the obser-

vations Yi and their corresponding time stamp data t̃i and their corresponding

hyper-parameters of embedding inputs, mi for the mean and si for the standard

deviation. In the context of the TCLGP, the model parameters include global

parameters θ,φ,Z,µ,Σ and local parameters m, s. Model inputs include both

observable data and time stamps Y , t̃. Considering the robustness of our algo-

rithm, we employ the annealing factor in Bowman et al. (2016) and propose that
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ELBO(g) = gR0 +R1 ,

R0 = −KL(q(X)||p(X|t̃))−KL(q(U)||p(U)) ,

R1 =
∫
q(X)q(U)p(F |X,U) log

(
N∑
n=1

D∑
d=1

T∑
t=1

p(yndt|fndt)
)
dXUF ,

where R0 and R1 are the regularization term and the reconstruction term and

anneal factor g ∈ [0, 1]).

We define MBLBO(g) = ELBO(g) − λR. where R is the regularization term

related to inducing inputs. As g = 1, ELBO(g) = ELBO and MELBO(g) =

MELBO. We define an annealing increase factor by ∆g > 0. Specifically, R =

KL(N (µ̂Z , Σ̂Z)||N (µ̂m, Σ̂m), where all estimates are derived by sample mean or

sample variance with respect to Z and m respectively.

As for large data, our model employs stochastic variational inference in Hoff-

man et al. (2013) via decomposing ELBO(g) into a global term and a sum of local

terms.

ELBO(g) = −gKL(q(U)||p(U)) +
N∑
n=1

Q∑
q=1

(−gKL(q(Xn,:,q)||p(Xn,:,q|t̃n))

+
N∑
n=1

D∑
d=1

T∑
t=1

Eq(fndt)p(yndt|fndt)) .

Considering any index I ∼ Unif(1, 2, . . . , N), we define

ELBOI(g) = −gKL(q(U)||p(U)) +N(−g
Q∑
q=1

KL(q(XI,:,q)||p(XI,:,q|t̃n))

+
D∑
d=1

T∑
t=1

Eq(fIt)p(yIdt|fIdt))
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and

MELBOI(g) = −λR− gKL(q(U)||p(U)) +N(−g
Q∑
q=1

KL(q(XI,:,q)||p(XI,:,d|t̃n))

+
D∑
d=1

T∑
t=1

Eq(fIdt)p(yIdt|fIdt)) . (4.20)

In the regularization term of (4.20), µ̂m and Σ̂m involve local variables mI .

Denote m−I as all parameters of {mi} except mI , and then the two terms are

represented as

µ̂m = 1
NT

(
∑
n6=I

T∑
t=1
mnt +

T∑
t=1
mIt)

Σ̂m = 1
NT

∑
n6=I

T∑
t=1
mntm

T
nt +

T∑
t=1
mItm

T
It

− µ̂mµ̂Tm .

(4.21)

It suggests that for each update of R, we only need two summary statistics

SI1 = ∑
n6=I

∑T
t=1mnt and SI2 = ∑

n 6=I
∑T
t=1mntm

T
nt .

The algorithm is displayed as follows:

Set g = 0;

for i = 1 to Ntrain do

Sample a data index I uniformly from the data set;

Compute two summary statistics SI1 and SI2;

Given local parameters m−I , s2
−I , update all global parameters and

local parameters mI , s
2
I through maximizing the MELBO(g);

g = min(g + ∆g, 1);

end
Algorithm 3: Stochastic variational inference algorithm for large datasets.
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4.3.3 Model Prediction

This section discusses the model prediction based on our variational inference.

Our model has hyper-parameters θ,φ,Z and variational parameters µ,Σ,m, s.

After model training, we get their estimates denoted as Θ̂ = (θ̂, φ̂, Ẑ, µ̂, Σ̂, m̂, ŝ)

We estimate X and U using their corresponding variational means Û =

µ̂, X̂ = m̂, Given new time stamps t̃∗ = {t̃∗n} ∈ R, the corresponding embedding

inputs X̂∗ are estimated through conditional distributions.

As for the nth time series, given the estimates x̂n, the posterior distribution of

the latent variable x∗ at time t∗ is

p(x∗|x̂n) =
Q∏
q=1

p(x∗q|x̂nq)

=
Q∏
q=1
N (C0C

−1
1 x̂nq, C(t∗, t∗; φ̂)− C0C

−1
1 CT

0 ), (4.22)

where C0 = C(t∗, T̃n; φ̂q) and C1 = C(T̃n, T̃n; φ̂q). Then we estimate x∗ using the

posterior mean, x̂∗ = C0C
−1
1 x̂nq.

After estimating the predictive embedding inputs X̂∗, their corresponding

outputs are estimated by the conditional mean as F ∗ by F̂ ∗ = E(F ∗|X̂∗, Û).

Given the similar decomposition expression of (4.18), each f̂ ∗ndtk has a closed-form

expression

f̂ ∗ndtk = â∗ndtk,

where â∗ndtk = v̂∗TndtΣ̂−1
Zdµ̂dk and Σ̂Zd = C(Ẑ, Ẑ; θ̂d), v∗ndt = C(Ẑ, x̂∗nt; θ̂d).

Finally, the predictive distribution is estimated as

p̂(Y ∗|Θ̂, T̃ ∗) = p(Y ∗|F̂ ∗)

=
N∏
n=1

D∏
d=1

T∏
t=1

Softmax(f̂ ∗ndt[yndt]),

165



and the predictive perplexity is derived as

H = log p(Y ∗|F̂ ∗)
|T̃ ∗|

=
∑N
n=1

∑D
d=1

∑T ∗

t=1 log Softmax(f̂ ∗ndt[yndt])
NDT ∗

.

4.4 Experiments

We illustrate our model and inference on both synthetic data and real stock

index data.

4.4.1 Synthetic Data for TCLGP Model

Data Description

We generate data from the TCLGP model itself. We set latent dimension size

Q = 2, time series length T = 20, data dimension D = 2, the number of levels

for the two dimensions K = [2, 3] and the number of time series N = 100. For

simplicity, we assume all time series share the same time stamps and we randomly

generate 17 time stamps from a uniform distribution Unif(0, 1) for testing. We

choose the largest time stamp tmax and generate other 3 equal-space time stamps

[tmax + 0.01, tmax + 0.02, tmax + 0.03] for testing. Embedding variables X on latent

processes are generated from the linear coregionalization model with A = I and

squared exponential kernels for C(φq) where length-scale parameters are l1 =

exp(0), l2 = exp(−1). Then we choose squared exponential automatic relevance

determination (ARD) kernels for C(θd) with scale parameters σ2
1 = σ2

2 = 5 and

weighted length-scale parameters l0 = (exp(0), exp(0)), l1 = (exp(−1), exp(−1)).

Given embedding inputsX, latent variables F and observation Y are sequentially

generated.
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Then under our regularization framework, we study the inference with and

without priors separately.

Model without Priors

We employ M = 20 inducing points and set latent dimension size Q = 2 for

inference. This section considers no prior on hyper-parameters. We implement

both the Monte Carlo (MC) approach and the Delta method (DM) approach with

the second approximation method for q̃(fndtk). We show the prediction accuracy

for n−step forward result, n = 1, 2, 3 under different regularization weights λ =

0, 10, 100. The results are summarized in Table 4.1, Table 4.2 and Table 4.3 and

the embedding variables X are shown in Figure 4.1.

1-step forward 2-step forward 3-step forward
Dimension 1(MC) 0.78 0.71 0.71
Dimension 2(MC) 0.88 0.8 0.79

Predictive Perplexity(MC) 0.828 0.760 0.757
Dimension 1(DM) 0.83 0.76 0.78
Dimension 2(DM) 0.83 0.76 0.72

Predictive Perplexity(DM) 0.777 0.703 0.708

Table 4.1: Inference with λ = 0

1-step forward 2-step forward 3-step forward
Dimension 1(MC) 0.77 0.7 0.71
Dimension 2(MC) 0.84 0.79 0.77

Predictive Perplexity(MC) 0.825 0.752 0.751
Dimension 1(DM) 0.82 0.76 0.77
Dimension 2(DM) 0.83 0.73 0.71

Predictive Perplexity(DM) 0.827 0.753 0.738

Table 4.2: Inference with λ = 10

Table 4.1, Table 4.2 and Table 4.3 demonstrate that with suitable regulariza-

tion, the prediction results are improved. They also show that the Delta method
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1-step forward 2-step forward 3-step forward
Dimension 1(MC) 0.86 0.76 0.77
Dimension 2(MC) 0.87 0.77 0.78

Predictive Perplexity(MC) 0.865 0.765 0.775
Dimension 1(DM) 0.8 0.73 0.74
Dimension 2(DM) 0.84 0.76 0.71

Predictive Perplexity(DM) 0.817 0.732 0.725

Table 4.3: Inference with λ = 100

Figure 4.1: Distribution of latent variables X for different λ = 0, 10, 100.

performs similar with the Monte Carlo method. On the other hand, without pri-

ors on hyper-parameters, our inference is likely to overestimate the dependence in

the latent processes.

Model with Priors

This section considers different priors on φ. As we discussed before and il-

lustrated in Figure 4.1, our model encourages the shrinkage of the scale of latent

variables. Putting priors on φ is one way to resolve this issue. We take different

priors on hyper-parameters, inference model via our proposed fast algorithm 2

and explore those model performances.

168



Figure 4.2: Distributions of latent variablesX via standard variational inference
with different priors IG(1, 1) and IG(10, 10) are shown on the right and middle
panel. Distribution ofX via stochastic variational inference with priors IG(10, 10)
is shown on the left panel.

In the following experiments, we consider the regularization approach with

λ = 100 and take different priors on φ. Specifically, we consider priors IG(1, 1) and

IG(10, 10). The model prediction results are displayed in Table 4.4 and the corre-

sponding latent variables are shown in Figure 4.2. With weakly non-informative

prior IG(1, 1), the scale of the latent processes is likely to shrink to 0. In the con-

trast, with a more informative prior IG(10, 10), it releases the shrinkage effects

and gets better model predictions.

Moreover, we implement stochastic variantional inference in this experiments

in which we consider the informative prior IG(10, 10) and batch size as 10. The

prediction result is shown in Table 4.4 and the embedding inputs are shown in

Figure 4.2.

1-step forward 2-step forward 3-step forward
Dimension 1(IG(1,1)) 0.88 0.81 0.81
Dimension 2(IG(1,1)) 0.83 0.84 0.82

Predictive Perplexity(IG(1,1)) 0.841 0.793 0.790
Dimension 1(IG(10,10)) 0.89 0.81 0.82
Dimension 2(IG(10,10)) 0.85 0.84 0.79

Predictive Perplexity(IG(10,10)) 0.838 0.802 0.793
Dimension 1(SVI, IG(10,10)) 0.94 0.87 0.88
Dimension 2(SVI, IG(10,10)) 0.86 0.8 0.8

Predictive Perplexity(SVI, IG(10,10)) 0.889 0.820 0.805

Table 4.4: Inference on regularized models with different priors.
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4.4.2 Stock Index Analysis

In the real data experiment, we select stock index data for illustration.

Data Description

We apply the TCLGP model to stock indices: SP500, Nikkei225, and DAX

stock indices from 6 January 1965 to 5 December 2012 as the same as in Nicolau

(2014). We utilize monthly stock indices and treat each year as an independent

time series. Therefore, letting ynd be monthly stock values for the nth year’s and

the dth stock indices, we have 48 independent time series and each time series

contains three-dimensional stock indices for 12 months. Moreover, we compute

the return rate for each month and evenly split all of them into 5 categories

using 20%, 40%, 60%, 80% quantiles shown in Table 4.5. Categories 1-5 represent

bear, slight bear, normal, slight bull and bull markets. For each time series, we

randomly select one month in each year as testing data and treat the remaining

data as training data.

Table 4.5: Percentiles of return rate for three stock indices from 1965 to 2012.

0% 20% 40% 60% 80% 100%
SP500 -21.9 -2.5 -0.1 1.8 3.7 16.5

Nikkei225 -19.8 -3.9 -0.5 2.2 4.8 20.1
DAX -23.4 -3.5 -0.4 2.1 5 21.9

Hyper-parameters Analysis

We carry out a bunch of experiments with λ = 100 using different settings of

hyper-parameters and then show their MELBO, training and testing predictive

accuracy and corresponding mean absolute difference.

Predictive accuracy and mean absolute difference are defined for both training
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data and testing data as

TRPA =
∑N
n=1

∑T−1
t=1 1(ytrainn·t = ŷtrainn·t )
N(T − 1) ,

TRMDA =
∑N
n=1

∑D
d=1

∑T−1
t=1 |ytrainndt − ŷtrainndt |
NDT

,

TPA =
∑N
n=1 1(ytestn· = ŷtestn· )

N
,

TMDA =
∑N
n=1

∑D
d=1 |ytestnd − ŷtestnd |
ND

.

On the other hand, we set the same scale parameter φσ2 and the same scale

length parameter φl for all hyper-parameters {φq}. Considering φσ2 = 0.5, 2 and

φl = 0.01, 0.05, 0.1, experiment results are shown in Table 4.6.

Table 4.6 illustrates that choosing appropriate hyper-parameters φ2
σ, φl is im-

portant. When we fix φ2
σ, a smaller φl would cause an over-fitting issue on the

latent processes while a bigger φl would weaken the clusters on the latent space

and make categorical mapping difficult.

Table 4.6: MELBO, predictive accuracy and mean absolute difference for train-
ing data and testing data under different settings of hyper-parameters on latent
Gaussian processes.

φσ2 0.5 2
φl 0.01 0.05 0.1 0.01 0.05 0.1

MELBO -2698.79 -2671.42 -2947.10 -2691.02 -2710.76 -2920.42
TRPA 0.69 0.70 0.71 0.72 0.71 0.71

TRMAD 0.45 0.42 0.49 0.46 0.48 0.50
TPA 0.21 0.24 0.18 0.21 0.21 0.18

TMAD 1.53 1.45 1.65 1.53 1.53 1.65

Latent Processes Visualization

We choose the hyper-parameters φσ2 = 0.5 and φl = 0.05. Denote predictive

categories given a certain latent space xpred as ypred ∈ [0, . . . , 4]3. Next we sum
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Figure 4.3: Categorical plot (left) and predictive posterior latent process (mid-
dle) and estimated latent tracing (right) in 2008 and 2009.

up ypred denoted as ỹpred = ∑
ypred ∈ [0, . . . , 12]. Then we plot a contour using

(xpred, ỹpred) on the latent space shown in Figure 4.3. On the surface, a high value

indicates a bull market while a low value indicates a bear market. Then we show

predictive posterior latent process as well as estimated latent traces in 2008 and

2009 in Figure 4.3. The estimated latent traces show that the estimated latent

trace for 2008 goes through almost all dark colored areas while that for 2009 goes

through almost only light colored areas. The contrast exactly matches the fact

that a financial crisis happened in 2008 leading the US stock market to a bear

market while the US economy returned to normal in 2009.

4.5 Conclusion

This chapter proposes a hierarchical model for multivariate categorical pro-

cesses. We employ latent Gaussian process to model the nonlinear relation be-

tween latent varibles and observations and introduce inducing point to relieve the

computation burden. We model the multi-dimensional data by sharing their la-

tent variables and model the latent processes via other Gaussian processes. For

inference, we propose two variantional inference approaches based on Monte Carlo
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method and Delta method separately. We also provide a fast algorithm for model

inference with hyper-parameter priors and a stochastic vcariational inference for

large datasets. Our model and inferences are illustrated on both synthetic data

and real stock index data.
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Chapter 5

Nonstationary Multivariate

Gaussian Processes

In this chapter, we propose a class of nonstationary multivariate Gaussian

process models for electronic health records (EHR). It is able to jointly model

time varying clinical variables, where the key parameters including length-scales,

standard deviations and the correlations between the observed output, are all time

dependent.

Since we already discussed the existing literature of EHR and relevant models

in Section 1.1.2, we directly discuss our model. Our proposed nonstationary mul-

tivariate Gaussian processes (NMGP) are explored in Section 5.1. In particular,

we propose one computationally efficient model, which is a special case of our

NMGP. The relation between our both models and existing models are explored.

In Section 5.2, we propose inference and prediction approaches for both proposed

models with fully Bayesian approach via Hamiltonian Monte Carlo (HMC) and

an approximate Bayesian approach via maximum a posteriori (MAP). In Sec-

tion 5.3, we validate our model on synthetic data as well as on electronic health

records (EHR) data from Kaiser Permanente (KP). We show that the proposed
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model provides better predictive performance over a stationary model as well as

uncovers interesting latent correlation processes across vitals which potentially

contributes to early clinical detection.

5.1 Nonstationary Multivariate Gaussian Pro-

cesses

Inpatient clinical time series data are composed of measurements of multi-

ple correlated patient clinical variables or vital signs. Furthermore, the statisti-

cal properties of the data may not be constant across time due to physiological

changes from acute disease onset. For these reasons, we propose a nonstation-

ary multivariate Gaussian process (NMGP) to model EHR data. Importantly,

it is the first such multivariate Gaussian process to model both nonstationarity

in the length-scale parameter, signal variances and the correlation matrix across

observed clinical variables.

We briefly review some basic properties of both multivariate Gaussian pro-

cesses in the following sections. We first introduce the background of multivariate

Gaussian process in Section 5.1.1, In Section 5.1.2 we present our novel generalized

nonstationary multivariate Gaussian process model in details.

5.1.1 Background

A Multivariate Gaussian process (MGP) defines a distribution over multivari-

ate functions f(t) = (f1(t), . . . fM(t))T . For any collection of time t = (t1, . . . , tN)T ,

the function values fn = f(tn) follow a multivariate normal distribution

~f ≡ vec([f1, . . . ,fN ]T ) ∼ N (0,Kf ),
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where vec is the vectorization operator and the covariance matrix Kf is nonneg-

ative definite, generated from a covariance function Kf such that for any two

time inputs t, t′ ∈ {t1, ..., tN} and any two dimensions m,m′ ∈ {1, ...,M}, the

covariance between the values f(t)[m] and f(t′)[m′] is given by Kf (t, t′,m,m′)

and covariance between f(t) and f(t′) is given by Kf (t, t′). A MGP is said to be

separable when a decomposition exists such that

Kf (t, t′,m,m′) = Bm,m′K(t, t′), (5.1)

for a covariance matrix B of the dimensions only and a correlation function K of

the time only. In matrix notation this is equivalent to Kf = B ⊗K, where the

covariance matrixB ∈ RM×M summarizes the relations across output dimensions,

the correlation matrix K = K(t, t) summarizes the relations across time inputs,

and ⊗ denotes the Kronecker product. In the past, separable cross-covariance

structures were called intrinsic coregionalization (Helterbrand and Cressie, 1994).

Mardia and Goodall (1993) employ the separability to model spatio-temporal data

and Bhat et al. (2010) utilize it for computer model calibration.

The most common approach to building cross-covariance functions is by com-

bining univariate covariance functions. Three primary options are the linear model

of coregionalization (Bourgault and Marcotte, 1991; Goulard and Voltz, 1992),

various convolution techniques (Ver Hoef and Barry, 1998; Ver Hoef et al., 2004;

Gneiting et al., 2010) and use of latent dimensions (Apanasovich and Genton,

2010).

The most popular construction approach is the linear model of coregionaliza-

tion (LMC) (Bourgault and Marcotte, 1991; Goulard and Voltz, 1992), because

it is easy to interpret. The cross covariance function is a linear combination of R
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independent univariate correlation functions, taking the form

Kf (t, t′) =
R∑
r=1

Kr(t, t′)LrLTr , (5.2)

for an integer 1 ≤ R ≤ M , where Kr(·) are valid correlation functions and Lr is

the rth column of L ∈ RM×R. When R = 1 or when employing the same corelation

function Kr(·, ·) ≡ K(·, ·), the cross covariance function is separable as in (5.1).

The LMC has been extended to the nonstationary setup by considering nonsta-

tionary univariate correlation Kr(·, ·) or allowing the coefficients to be spatially

varying (Gelfand et al., 2004) such that

Kf (t, t′) =
R∑
r=1

Kr(t, t′)Lr(t)LTr (t′) .

Gelfand et al. (2004) indirectly model B(t) = L(t)L(t)T via a matrix-variate

inverse Wishart spatial process. However, this approach is prohibitive for the size

of data we encountered. A simpler option is to model L(t) directly (Guhaniyogi

et al., 2013) using independent Gaussian processes.

5.1.2 Generalized Nonstationary Multivariate Gaussian Pro-

cesses

We now present our Generalized Nonstationary Multivariate Gaussian Pro-

cesses (GNMGP) in detail. The hierarchical representation of the model is as

follows:
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y(t) = L(t)g(t) + ε(t),

ε(t) ∼ N (0, σ2
errI),

gd(t) iid∼ GP(0, K) d = 1, 2, ...,M,

Lij(t) ∼ GP(0, KL) i > j ,

log(Lij)(t) ∼ GP(0, KL) i = j ,

σ2
err ∼ IG(a, b) , (5.3)

where IG denotes the inverse Gamma distribution and ε(t) = (ε1(t), . . . , εM(t))T

are observation noise. Heteroscedasticity of each dimension is modeled by putting

a GP prior on εm(t) in Heinonen et al. (2016), while we model εm(t) via iden-

tical independent Wiener processes with the same variance σ2
err for parsimony

and we focus on the flexible modeling of the underlying multivariate process

f(t) = L(t)g(t). In order to guarantee model identifiability, at any time t, L(t)

is a lower triangular matrix with strictly positive diagonal entries, which models

the varying variance and correlation across the dimensions and K is a correlation

function modeling the smoothness across time inputs. Therefore, we employ inde-

pendent Gaussian processes to model off-diagonal entries Lij(t), i > j and other

independent Gaussian processes to model the on-diagonal entries Lij(t), i = j as

in Guhaniyogi et al. (2013). To model the varying changing rate, we utilize a

Gibbs kernel for the independent GPs gd(t), where nonstationarity is achieved by
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placing a GP prior on the log length-scale process,

K(t, t′) =

√√√√ 2`(t)`′(t)
`(t)2 + `(t′)2 exp

(
− (t− t′)2

`(t)2 + `(t′)2

)

`(t) ∼ logGP(0, K˜̀)

where logGP refers to log Gaussian process. Finally, hyperparameters of the

covariance function K˜̀ can be chosen appropriately for the application.

Because we consider the same correlation function K(t, t′) for all dimension

d, the cross covariance function of the resulting underlying multivariate process

f(t) = L(t)g(t) is given by

Kf (t, t′) = L(t)cov(g(t), g(t′))LT (t′)

= K(t, t′)L(t)LT (t′). (5.4)

The proposed GNMGP model is understood as generalizations of existing GP

models. Comparing with the spatial varying LMC in Gelfand et al. (2004), our

model emphasizes the varying change rate via time-dependent length-scale. Com-

paring with the nonstationary model in Heinonen et al. (2016), our model extends

the univariate kernel to multivariate via the spatial varying linear model of core-

gionalization.

This general model is nonseparable, meaning the covariance function cannot be

decomposed into components that are functions of either time or dimension, but

not both. We also propose a special case of the above model, which is separable

and available to relieve the computational burden via kronecker algebra. We

name it as separable nonstationary multivariate Gaussian processes (SNMGP)

model. The SNMGP is modeled by decomposing L(t) by L(t) = σ(t)L, for some
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positive function σ(t) and constant lower-triangular matrix L with strict positive

number on diagonal. This case is called the separable case, because the cross-

covariance function is separable. In detail, letting B = LLt we see from (5.4),

that the GNMGP kernel function reduces to a separable cross-covariance function,

Kf (t, t′) = σ(t)σ(t′)K(t, t′)B. To finish the specification of this model we assume

log(σ(t)) ∼ GP(0, Kσ̃), Lij ∼ N (0, c) for i > j and log(Lij) ∼ N (0, c) for i =

j. As before, all hyperparameters of the model need to be chosen accordingly

to the specific application. We also note that when we treat L(t) ≡ L and

consider a stationary kernel K(t, t′), this special case is a vanilla linear model

of coregionalization (LMC) (Bourgault and Marcotte, 1991; Goulard and Voltz,

1992), whose cross-covariance function is stationary.

Finally, we note that different correlation functions are available for K(t, t′).

For example, Paciorek and Schervish (2004) proposed a class of nonstationary

kernels for univariate output with a Matérn kernel. In this paper, we employ a

Gibbs kernel for varying smoothness.

5.2 Inference

We propose two inference approaches, maximum a posteriori (MAP) and fully

Bayesian inference. This section discusses the case of complete data, which means

at each location or time stamp t, all observations yt are available. Inference for

incomplete data, where not all yt are available at each t, follows from standard

Gaussian process methods for marginalizing over missing data (Rasmussen and

Williams, 2005). Note that for ease of exposition we introduce the following

notation: ˜̀(t) ≡ log(`(t)) and σ̃(t) ≡ log(σ(t)).
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5.2.1 Maximum A Posteriori (MAP)

This section considers maximum a posteriori inference for both models.

In the separable case, model parameters σ2
err,L,

˜̀, σ̃ are of interest. The

marginal posterior of these parameters are

p(σ2
err,L,

˜̀,σ|y, t) =
∫
p(f , σ2

err,L, g,
˜̀,σ|y, t)dgdf

∝ N (~y|0,Kf + σ2
errI)N (σ̃|0,Kσ̃)N ( ˜̀|µ ˜̀,K ˜̀)IG(σ2

err|a, b)∏
i>j

N (Lij|0, c)
∏
i

N (logLii|0, c)
∣∣∣∣∣d logLii
dLii

∣∣∣∣∣. (5.5)

The most expensive computation comes from N (y|0,Kf +σ2
errI). Since this set-

ting is separable Kf = B ⊗K, methods exploiting Kronecker structure Saatçi

(2012); Wilson (2014) are discussed. Directly computing the likelihood costs

O(M3N3), due to the computation of (B ⊗K + σ2
errI)−1 and log det(B ⊗K +

σ2
errI).

Efficient computation approaches for the two terms are proposed through

eigen-decomposition B = UBDBU
T
B and K = UKDKU

T
K . Then we rewrite

the two terms:

(B ⊗K + σ2
errI)−1 = (UBDBU

T
B ⊗UKDKU

T
K + σ2

errI)−1

= (UDUT + σ2
errI)−1

= U(D + σ2
errI)−1UT ,

where U = UB⊗UK is a unitary matrix andD = DB⊗DK is a diagonal matrix.
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And

log det(B ⊗K + σ2
errI) = log det(U(D + σ2

errI)UT )

= log det(D + σ2
errI) .

Then applying Algorithm 14 in Saatçi (2012), the total computation cost is re-

duced to O(max(MN,M3, N3)) = O(max(M3, N3)).

In the general setting, model parameters σ2
err,L,

˜̀are of interest. Here Lij(t) is

a three dimensional tensor and denote Lij = (Lij(t1), . . . , Lij(tn))T . The marginal

posteriors of these parameters are

p(σ2
err,L,

˜̀,σ|y, t) =
∫
p(f , σ2

err,L, g,
˜̀,σ|y, t)dgdf

∝ N (~y|0,Kf + σ2
errI)

∏
i>j

N (Lij|0, KL)
∏
i

N (logLii|0, KL)

N ( ˜̀|0, K ˜̀)IG(σ2
err|a, b). (5.6)

We employ automatic gradient descent in pytorch to optimize all model pa-

rameters by maximizing the posterior in (5.5) or (5.6). Although our model is

identifiable, the number of parameters is large, causing difficulty in optimization.

Therefore, parameter initialization is critical, especially in (5.6).

We propose an empirical estimation approach for parameter initialization. We

first set a window size w. Then given each time ti, we assume our process f is

locally smooth near any time ti and so we assume that {y(ti−w), . . . ,y(ti+w)} ∼

N (0, S(ti)). Then we first estimate S(ti) by Ŝ(ti) = 1
2w
∑i+w
j=i−w yjy

T
j . Due to

(5.3) and (5.4), we have cov(y(ti),y(ti)) = L(ti)L(ti)T + σ2
errI. As for the initial-

ization, we estimate L(ti) by the cholesky decomposition of the MLE estimate of

Ŝ(ti) without considering variance of error σ2
err. We estimate the the length-scale
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parameters ˜̀(ti) by fitting the variogram of {ym(ti−w), . . . , ym(ti+w)} in each di-

mension m and take the average of those parameter estimates. If any time index

i is out of boundary, [1, . . . , N ], we ignore those data in this procedure.

5.2.2 Model Prediction

For both separable and nonseparable models, given a new time stamp t∗ with

corresponding latent vector f ∗, we first consider the conditional distribution of

(y,f ∗) given `, `∗,L,L∗, σ2
err, which is

 ~y

f ∗

 ∣∣∣∣∣`, `∗,L,L∗, σ2
err ∼ N

0,

Kf + σ2
errI kf

kfT Kf∗


 ,

where Kf = Kf (t, t), K∗ = Kf (t∗, t∗) and kfT = cov(f ∗, ~f + ε) = cov(f ∗, ~f).

Since cov(vec[f1, . . . ,fN ],f ∗) = AfL(t∗)T , where

Af =



k(t∗, t1)L(t1)

k(t∗, t2)L(t2)
...

k(t∗, tN)L(tN)


,

it follows that

kf = cov( ~f ,f ∗)

= cov(P (vec[f1, . . . ,fN ]),f ∗)

= P (cov(vec(f),f ∗)),

where P is a permutation operator such that P (vec([f1, . . . ,fN ])) = vec([f1, . . . ,fN ]T ).

The conditional distribution of f ∗ is indeed a multivariate Gaussian distribution
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such that

p(f ∗|y, `, `∗,L,L∗) = N (f ∗|µ∗,Σ∗),

where the conditional mean is µ∗ = kfT (Kf + σ2
errI)−1~y and conditional covari-

ance matrix is Σ∗ = Kf∗ − kfT (Kf + σ2
errI)−1kf .

On the other hand, the posterior predictive distribution of ∗ can be approxi-

mated with MAP estimates:

p(f ∗|y) =
∫
p(f ∗|y, `, `∗,L,L∗)p(`∗|`)p(L∗|L)p(`,L, σ2

err|y)d(`∗, L∗, `,L, σ2
err)

(5.7)

≈
∫
N (f ∗|µ̂∗, Σ̂∗)p(`∗| ˆ̀)p(L∗|L̂)d(`∗,L∗), (5.8)

where µ̂∗, Σ̂∗ are estimates of µ∗ and Σ∗ by simply replacing `, L, σ2
err with their

MAP estimates. For fully Baysian inference, the posterior predictive of f ∗ can

be sampled using (5.7) while for the MAP inference the posterior predictive of f ∗

can be approximated by sampling under (5.8).

Moreover, the posterior correlation matrix of underlying multivariate process

f at time t∗ is approximated via MAP estimates as

p(R∗|y) = p(diag(K∗)− 1
2K∗diag(K∗)− 1

2 |y)

=
∫
p(diag(K∗)− 1

2K∗diag(K∗)− 1
2 |L)p(L|y)dL

≈ p(diag(K∗)− 1
2K∗diag(K∗)|L̂. (5.9)
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5.2.3 Model Evaluation

We assess model performance by simulating independent replicates from the

posterior prediction distribution at each observed time. It suggests that for each

observed time, ti, we sample replicates y(trep,i) given observations y, based on

the posterior predictive sampling in (5.7) or (5.8). Then we summarize them

using both posterior predictive mean µrep,i and variance Σrep,i. We prefer to use

a loss function which penalizes both departure of predictive means from their

observed values and excessive uncertainty in the predictive data. Therefore, we

use a squared error loss function in Gelfand and Ghosh (1998), where the measures

for these two criteria are evaluated as G = ∑N
i=1 ‖yi − µrep,i‖2, where ‖ · ‖ is the

standard Euclidean norm and P = ∑N
i=1 tr(Σrep,i). The model selection criteria is

the score D = G + P . The lower score indicates the better model. Original G,

P and D are used for model comparison to measure the performance on model

fitting. To measure the model prediction performance, we use the predictive mean

square error (PMSE) ∑N∗

n=1 ‖y∗i −µ∗i ‖2 where we estimate each predictor using the

corresponding posterior predictive mean µ∗i .

5.3 Experiments

We validate our proposed models on synthetic data and Kaiser Permanente’s

Electronic Health Records (EHR) data (Fohner et al., 2019). all models/inference

algorithms are implemented in Python with the open source Pytorch library.

5.3.1 Synthetic Data

In this section, we first show that our inference is capable of recovering latent

processes. Then we illustrate that our proposed models including GNMGP and
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SNMGP have better model fitting and model prediction performance than a naive

LMC. We also discuss which cases our SNMGP is preferred in.

We first uniformly generate 200 timestamps t = (t1, . . . , t200)T on a unit in-

terval (0, 1). Then we generate a bi-variate time series y = (y1, . . . ,y200)T from

the GNMGP model, in which we set deterministic latent processes. They in-

clude a log length-scale process l(t) = 8(t−1)3 , two standard deviation processes

s1(t) = 1+t2 and s2(t) = 2−t2, and a correlation process r(t) between two dimen-

sions r(t) = cos(πt). We assume a small standard deviation of error σerr = 0.001.

Those latent processes are shown in Figure 5.1 as red dashed lines. Based on

the same timestamps t and the same latent processes, we repeatedly generate 100

samples, denoted as {y(r)}100
r=1.

To show our inference is capable to recovery true latent processes, for each

sample y(r), we inference latent processes via our proposed MAP method.

Specifically we select an informative prior for variance of measurement er-

ror such that σ2
err ∼ IG(10−6, 10−6) and a prior of length-scale process ` ∼

logGP(0,RBF(σ = 10, d = 1)). We set the prior of L as Lij(t) ∼ GP(0,RBF(σ =

1, d = 1)) for i 6= j and Lii(t) ∼ logGP(0,RBF(σ = 1, d = 1)). In addition, we

employ our propose empirical estimation approach for initialization. After ob-

taining estimated latent processes for all 100 samples , we carry out functional

Box-plot (Sun and Genton, 2011; Meng et al., 2017) to summarize those esti-

mated processes in Figure 5.1, comparing with their true latent processes. The

dark region corresponds to 50% central region while the grey region refers to the

functional data envelope. The results show that our inference can recover the

true latent processes based on 50% central area and the functional median. We

also note that those estimates depend on their empirical estimates because the

marginal posterior 5.6 is non-convex.

186



(a) (b)

(c) (d)

Figure 5.1: (5.1a) 95% functional boxplot for estimated standard deviation pro-
cess on dimension 1, (5.1b): log length-scale processes, (5.1d): correlation process
across dimensions 1 and 2.

After our proposed inference is illustrated to be capable of recovering latent

processes, we are going to evaluate model fitting and model prediction performance

of our proposed models GNMGP and SNMGP and compare it with a naive LMC

model.

To make three models comparable, we would tune different priors on each

model and select the one which leads to best prediction results. We note that

prior selection is important in our model to avoid overfitting issue.

SNMGP and GNMGP models are initialized based on our proposed empirical

estimation approach. In this experiment, we use the same synthetic data from
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last experiment, but for each sample, we randomly take 33% observations for

testing and take the rest 66% observations for training. We train all models for

a maximum of 2000 epochs (training iterations) using Adam (Kingma and Ba,

2014) with a learning rate of 0.01.

The performance of model fitting is summarized by evaluation metrics G, P

and D we discussed in Section 5.2.3 and the performance of model prediction is

summarized by predictive mean square error (PMSE).

We summarize those metrics of all samples by their mean and standard devia-

tion in Table 5.1. We also summarize the total running time for different models

on cluster using 100 cores in parallel.

The model evaluation results illustrate that our SNMGP and GNMGP outper-

form LMC significantly especially for model fitting. This is because the naive LMC

mis-specify the time varying smoothness and leads to large estimated measure-

ment error while our proposed SNMGP and GNMGP can capture the correct scale

of measurement error. The running time suggests that the inference of SNGMP

is significantly faster than that of GNMGP, even though GNMGP performance is

better than SNMGP.

LMC SNMGP GNMGP
G 101.95(63.47) 10.17(31.12) 6.26(22.01)
P 121.08(63.13) 12.73(37.58)) 7.33(25.11)
D 223.02(125.84) 22.89(68.60) 13.60(47.11)

PMSE 0.94(0.57) 0.76(1.27) 0.56(0.39)
Total running time 2min 9 min 57 min

Table 5.1: Evaluation metrics of model fitting and prediction and running time
on LMC, SNMGP and GNMGP for 100 replications of synthetic data generated
from GNMGP.

Table 5.1 indicates that the model prediction performance of SNMGP is weak,

since the standard deviation of PMSE is significantly larger than both LMC and
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GNMGP. Therefore, we would study the case in which the SNMGP should be

significantly better than LMC.

We state that SNMGP have a more robust prediction performance when L(t)

is allowed to decompose as L(t) = Ls(t) and justify it via a new experiment. In

this experiment, we generate 100 two-dimensional multivariate time series from

SNMGP model itself, where the correlation between dimensions is time invariant.

Particularly, in the SNMGP, we define B = LLT =

1 1

1 4

 , s(t) = 1 + t2, which

suggests that the correlation between two dimension is fixed as 0.5. We also define

the fixed length-scale process y = 8(t − 1)3. And in each sample we randomly

take 33% data for testing and 66% for training. We summarize modeling fitting

by evaluation metrics G, P and D and model prediction by PMSE in Table 5.2.

LMC SNMGP
G 109.44(76.32) 11.75(30.11)
D 122.60(72.72) 15.26(38.55)
P 232.05(146.09) 27.00(68.56)

PMSE 1.06(0.57) 0.64(0.43)

Table 5.2: Evaluation metrics of model prediction on LMC and SNMGP on 100
replications of synthetic data generated from SNMGP.

5.3.2 Kaiser Permanente Electronic Health Records Data

We demonstrate our proposed framework by modeling the time-varying vital

signs such as, systolic blood pressure (BPSYS), diastolic blood pressure (BPDIA),

pulse pressure (PP), heart rate (HRTRT) and oxygen saturation (O2SAT) of

patients admitted to the emergency department (ED) with confirmed or suspected

infection. The Kaiser Permanente (KP) dataset is an anonymized EHR dataset

where a patient’s hospital stay is identified by an episode ID (Fohner et al., 2019;

Seymour et al., 2016).
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We randomly select one patient who has sepsis for illustration. We extract vi-

tals BPSYS, BPDIA, PP, HRTRT and O2SAT and remove the missing data. Then

we get multivariate time series with 138 time stamps. We take 96 time stamps for

training and take the reminder 42 time stamps for testing. We first standardized

data to zero mean and one standard deviation for each vital individually.

The priors of LMC, SNMGP and GNMGP are discussed as follows. We set

an non-informative prior for the variance of measurement error such that σ2
err ∼

IG(1, 1) for all three models. As for the prior of length-scale parameter `, we

set ` ∼ logN(0, 1), where logN refers to log Normal distribution and set ` ∼

logGP(0,RBF(σ = 10, d = 1)) for SNMGP and GNMGP. With respect to the

prior of L, we set Lij ∼ N(0, 1) for LMC, set Lij ∼ N(0, 1) for i 6= j, Lii ∼

logN(0, 1) and s(t) ∼ logGP(0,RBF(σ = 1, d = 1)) for SNMGP and set Lij ∼

GP(0,RBF(σ = 1, d = 1)) for i 6= j and Lii ∼ logGP(0,RBF(σ = 1, d = 1)).

During the inference, the initialization is based on proposed empirical esti-

mation. However, for SNMGP and GNMGP, tuning the starting points for the

length-scale parameters is required since variogram fitting is not robust in the

real data. We do inference with initialization in which we initialize length scale

parameters with different constants and then take the optimal solution.

The model selection is based on G, P, D evaluation metrics shown in Table 5.3.

After we obtained samples based on standardized data, we convert them back

to the original scale and compute the root mean square error (RMSE) and log

predictive density (LPD). Mathematically, assume that we have predictive time

t∗ = (t∗1, . . . , t∗N∗). We denote original observations ỹ∗i = (ỹ∗i,1, . . . , ỹ∗i,M)T at time

t∗i and we have posterior predictive mean µ̃∗i = (µ̃∗i,1, . . . , µ̃∗i,M)T and posterior

predictive standard deviation σ̃∗i = (µ̃∗i,1, . . . , µ̃∗i,M)T on the original scale at time

t∗i . Then root mean square error is defined as RMSE =
√

1
N∗
∑N∗
i=1 ‖ỹ∗i − µ̃∗i ‖2 and
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log predictive density is defined as ∑N∗

i=1
∑M
j=1N (ỹ∗i,j|µ̃∗i,j, σ̃∗2i,j). Those results are

summarized in Table 5.3.

MAP HMC
LMC SNMGP GNMGP LMC SNMGP GNMGP

G 172.27 169.50 156.19 176.93 168.70 161.18
P 264.47 244.90 231.31 280.48 245.81 271.44
D 436.74 414.40 387.51 457.41 414.51 432.62

PMSE 123.72 118.73 111.32 121.02 116.71 110.30
RMSE 7.44 7.18 7.10 7.38 7.12 7.00
LPD -3.23 -3.24 -3.19 -3.23 -3.21 -3.19

Table 5.3: Evaluation metrics of model fitting and assessment for three models
for one patient’s records from KAISER under both standardized scale and original
scale.

Moreover, in order to show the population’s characteristics, we considered

two cohorts. We randomly sampled 1000 patients with sepsis and 1000 patients

with nonsepsis whose number of records is in the interval (50, 500), based on the

empirical age density of the whole population for each cohort. Then we normalized

each records via each dimension and fit a LMC model. We initialize length scale

parameters using an constant function at the length-scale estimate in the LMC

model and we initialize the other parameters based on the empirical estimation

approach. Then we carry out MAP inference for all patients in parallel and sample

100 times from posterior predictive distributions of lengthscale parameters `∗ and

correlation parameters R∗ defined in (5.9) at the same observed time on LAPS2,

t∗ = (t∗1, . . . , t∗N∗), which is an equally-space hourly sequence since the patient

comes to ICU.

Motivated from Fairchild et al. (2016) such that exploration of the cross-

correlation of different vitals would lead to earlier treatment, we define the correla-

tion coefficient indicator CCI(ψ) for interested parameter ψ such as the lengthscale

parameter or any cross correlation coefficient parameter. CCI(ψ) is defined via

191



the empirical Pearson correlation coefficient. Letting ψ = (ψ1, . . . , ψN∗)T , where

ψi = ψ(t∗i ) and LAPS2 observations LAPS2 = (LAPS21, . . . ,LAPS2N∗), where

LAPS2i = LAPS2(t∗i ). Then

CCI(ψ) =
∑N∗

i=1(ψi − ψ)(LAPS2i − LAPS2)√∑N∗
i=1(ψi − ψ)2

√∑N∗
i=1(LAPS2i − LAPS2)2

(5.10)

Due to the fact that LAPS2 is a proposed health indicator by Kaiser Perma-

nente, our summary statistics CCI is used to illustrate the correlation between

smoothness or cross correlation between any pair of vitals and patient health

status.

Based on the posterior samples, we sample the posterior predictive correlation

coefficient indicator CCI(ψ) between LAPS2 and length-scale parameter or any

pair-wise correlation parameter. For each patient, we compute the 95% credible

interval of those posterior predictive CCI and summarize them across patients by

compare the credible intervals CCICI(ψ) with 0. we classify them as negative,

natural and positive relation if CCICI is on the left, include or on the right of 0.

The summarized results for two cohorts are shown in Table 5.4 and Table 5.5.

Both tables show a consist result such that a majority of patients have a

negative correlation between their health condition and smoothness of records. It

indicates that when patients have a non smooth records, it is more likely that

patients are in a bad health condition. Moreover the cross correlation between

BPDIA and BPSYS has a positive correlation with the health condition in a

majority of patients. It probably means that as for healthy patients, it is more

likely that their BPDIA and BPSYS have a positive relation. Comparing the

results in sepsis group with those in nonsepsis group, unfortunately there are

only slight difference for those relations and thus it may not be clinical useful to

distinguish sepsis from nonsepsis based on our model.
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Sepsis Nonepsis
Feature Negative Neutral Positive Negative Neutral Positive

Length scale 0.712 0.005 0.283 0.677 0.002 0.321
BPDIA vs BPSYS 0.399 0.005 0.596 0.389 0.004 0.607
BPDIA vs HRTRT 0.455 0.01 0.535 0.441 0.008 0.551
BPDIA vs O2SAT 0.501 0.009 0.490 0.521 0.006 0.473
BPDIA vs PP 0.476 0.004 0.52 0.482 0.01 0.508

BPSYS vs HRTRT 0.45 0.003 0.547 0.431 0.006 0.563
BPSYS vs O2SAT 0.53 0.007 0.463 0.51 0.007 0.483
BPSYS vs PP 0.554 0.007 0.439 0.575 0.007 0.418

HRTRT vs O2SAT 0.526 0.004 0.47 0.52 0.01 0.47
HRTRT vs PP 0.439 0.009 0.552 0.457 0.007 0.536
O2SAT vs PP 0.509 0.011 0.48 0.514 0.002 0.484

Table 5.4: Coverage rate for different features in Cohort A

Sepsis Nonepsis
Feature Negative Neutral Positive Negative Neutral Positive

Length scale 0.715 0.004 0.281 0.655 0.003 0.342
BPDIA vs BPSYS 0.418 0.004 0.578 0.38 0.004 0.616
BPDIA vs HRTRT 0.449 0.011 0.54 0.468 0.006 0.526
BPDIA vs O2SAT 0.504 0.007 0.489 0.514 0.006 0.48
BPDIA vs PP 0.484 0.007 0.509 0.466 0.008 0.526

BPSYS vs HRTRT 0.43 0.004 0.566 0.476 0.004 0.529
BPSYS vs O2SAT 0.53 0.005 0.465 0.527 0.008 0.465
BPSYS vs PP 0.555 0.005 0.44 0.546 0.008 0.446

HRTRT vs O2SAT 0.53 0.004 0.466 0.527 0.008 0.465
HRTRT vs PP 0.462 0.004 0.534 0.487 0.003 0.51
O2SAT vs PP 0.511 0.007 0.482 0.48 0.001 0.519

Table 5.5: Coverage rate for different features in Cohort B
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Chapter 6

Discussion

6.1 Summary of Contributions

The main contribution of this dissertation is to develop interpretable and flexi-

ble models for temporal data using latent processes such as Markov jump processes

and Gaussian processes. This is elaborated in several parts: First, Chapter 2 pro-

poses a hierarchical model for cervical cancer screening test data, in which het-

erogeneous time continuous Markov jump processes are considered to model the

latent dynamical system of patients’ states. We propose a finite mixture struc-

ture to model the individual heterogeneity and we also incorporate both treatment

information and censored information in our model through graphical structure.

Next, Chapter 3 presents a systematic overview of sparse Gaussian processes and

give a general regularization framework for inducing-point based sparse Gaussian

processes and extend it to latent variable models. Particularly, we explore the

variation inference under our regularization framework and we theoretically prove

that the objective function under our regularization framework is a variational

lower bound in a corresponding empirical Bayesian model. Our regularization

framework is illustrated on different methods, different hyper-parameter settings
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and different datasets. Based on our regularization framework, we propose a hi-

erarchical sparse latent Gaussian processes to model temporal categorical data as

well as corresponding efficient variational inference. Our model is illustrated on

both synthetic data and Stock index data. Finally, Chapter 5 proposes a flexible

class of nonstationary multivariate Gaussian process models which is allowable

to model both time-varying smoothness, time-varying scale and time-varying cor-

relation. Particularly, we focus on the analysis of electronic health records data

to understand the latent correlation across different clinical variables across time.

Our inference is based on both Hamiltonian Monte Carlo as a fully Bayesian in-

ference and Maximum a posteriori as a approximate Bayesian inference due to

its computational benefits. Our model is illustrated on both synthetic data and

electronic health records data from Kaiser Permanente.

6.2 Future Work

Future work for the hidden Markov model can be the use of deep learning

methods as a surrogate model for the computation of the matrix exponential,

which is the most expensive part of the current model. Another potential work

related to this project is to model the recurrence event. One possible way to

deal with it is to add recurrence effect on the intensity functions after a cancer

treatment.

One potential next direction, which I am working on is motivated by the non-

stationary multivariate Gaussian processes (NMGP). Directly modeling the latent

processes in the NMGP via Gaussian processes is expensive especially for massive

data and high dimensional data. It is because that the number of parameters

in the model is proportional to the number of observations. In the extension

work, instead of using Gaussian processes to model latent processes, we model
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those latent processes via B splines, in which we have locally compact functional

bases. The number of interested parameters is only related to the number of

functional bases rather than the number of observations. We would discuss the

difference between our model and other models including process convolution and

Karhunen-Loeve expansion.

Another potential direction is to introduce the sparse Gaussian process and

doubly stochastic variational inference into the nonstationary multivariate Gaus-

sian processes to alleviate the computational burden.

6.3 Conclusion

In the dissertation, we discuss different approaches to model temporal data via

different latent processes. As for the computation for large datasets, we propose

and discuss different efficient inference methods including EM algorithm, Hamil-

tonian Monte Carlo and variational inference approaches. I hope this dissertation

will contribute to our understanding of the strengths and weaknesses of these

different approaches and contribute methodologies to temporal data modeling es-

pecially in the healthcare research field.
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Appendix A

Appendix

A.1 Advanced MCMC

This section, we introduce three advanced MCMC algorithms. First of all, we

introduce a traditional Metropolis Hasting framework.

Sampling θ ∼ p(θ) is of interest. We set the proposal transition distribution

as q(θ′,θ). Then the recursive procedures are displayed as

• Sample new parameters θnew ∼ q(θnew|θ(i)).

• Compute the accept rate r = min
(
p(θnew)q(θ|θnew)
p(θ)q(θnew|θ) , 1

)
.

• Accept θ(i+1) = θnew with probability r, otherwise, keep previous parameters

θ(i+1) = θ(i).

Three algorithms are based on this Metropolis Hasting framework and they

are discussed as follows.
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A.1.1 Langevin Adapted Metropolis Hasting

To utilize the gradient information, the proposal structure in Besag et al.

(1995) is

θnew = θ + ε2

2 g(θ) + εN (0, I)

where g(θ) = O log p(θ).

It suggests the proposal kernel is

q(θnew,θ) = exp
[
− 1

2ε2‖θ − θnew −
ε2

2 g(θnew)‖2
]
.

A.1.2 Hessian Adapted Metropolis Hasting

Qi and Minka (2002) propose the Hessian adaptive Metropolis Hasting ap-

proach which utilizes both the gradient and the Hessian matrix information in its

proposal structure

θnew = θ + εΣ(θ)g(θ) +N (0,Σ(θ)) (A.1)

where Σ(θ) = −
(
OOT log p(θ)

)−1
.

It suggests the proposal kernel is

q(θnew,θ) = N (θnew − θ + εΣ(θ)g(θ),Σ(θ)) (A.2)

A.1.3 Fisher Adapted Metropolis Hasting

One concern of the Hessian adapted Metropolis Hasting approach is the matrix

inverse problem. Numerically the Hessian matrix may not be positive definite.
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The idea of replacing Hessian matrix by the negative fisher information matrix

has been explored. We proposed a simple proposal structure

θnew = θ +N (0,Σ∗)

where Σ∗ = −(OOT (θ∗))−1 is the inverse of the observed fisher information matrix

and θ∗ is the maximum likelihood estimates for log p(θ). Then it is a symmetric

random walk with proposal distribution such that

q(θnew,θ) = N (θnew − θ,Σ∗)

where q(θnew|θ) and q(θ|θnew) cancel out in the computation of accept rate. The

computation of Fisher Adapted Metropolis Hasting is much cheaper than Hes-

sian adapted Metropolis Hasting since it does not need to compute the proposal

transition kernel in each iteration.

A.2 Matrix Gradient

Let aij ∈ R, i = 1, . . . ,m, j = 1, . . . , n. Then the real matrix A is expressed as

A =



a11 a12 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn


.
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Assume f is a mapping from Rm×n to R. Then the gradient of f(A) can be

expressed as

∂

∂A
f(A) = A′ =



∂
∂a11

∂
∂a12

. . . ∂
∂a1n

∂
∂a21

∂
∂a22

. . . ∂
∂a2n

... ... ...
∂

∂am1
∂

∂am2
. . . ∂

∂amn


A .
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