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Abstract 

We show that arbitrary rf phase shifts can be measured precisely using 

the nuclear spins to monitor the phase of the rf field. Other imperfections 

like resonance offset, rf inhomogeneity or symmetric phase transients are 

removed by the action of the autiple -pulse sequence and have little 

influence on the measurements. Phase shifts can be trimmed to the desired 

value with an uncertainty of less than 10 millidegrees in favorable cases. 
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Introduction 

Many important NMR experiments require rf pulses of different phase, 

and phase shifters are now standard equipment on most all commercially 

available spectrometers. Two-dimensional experiments in liquids (1.2) rely 

heavily on orderly phase cycles to select a certain signal while rejecting 

all others. In these experiments, errors in the rf phase shifts result in 

unwanted signal breakthrough and the appearance of artifacts. Composite 

pulses (3-12) can require rapid, accurate phase shifts of arbitrary values 

in order to operate successfully. Multiple-pulse experiments in solids (13-

20) are notoriously sensitive to pulse imperfections, errors in the phase 

shifts included. Finally, multiple-quantum NMR (21-25), in which a phase 

error 64 propagates to nA# for an n-quantum coherence, can prove very 

demanding as n becomes large. 

In this paper we propose a straightforward method to set transmitter rf 

phase shifts to any desired value with high accuracy. The method, a 

generalization of the work of }Iaubenreisser and Schnabel (26), is reasonably 

insensitive to other imperfections such as rf inhomogeneity or resonance 

offset. It performs well in practice as we demonstrate by experiment. Using 

an oscilloscope, simple diagnostic patterns are produced for Urationa lu 

- phase shifts of pw/q for small q, allowing quick trimming of the phase 

shifts to exactly the right values. More generally, Fourier transformation 

of the signal response allows the measurement and setting of arbitrary phase 

shifts. For systems in which the phase shifts are controlled by software, 

we can envision a scenario in which the computer automatically calibrates 

the phase shifts without operator intervention. 
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Symmetric and non-syimnetric versions of the basic sequence are shown in 

Fig. 1; they essentially differ only by the moment at which magnetization is 

sampled. Figure 1 (a) becomes the Haubenreisser-Schnabel sequence when 

- /2, generating a net rotation about the y axis. The non-symmetric 

sequence of Fig. 1 (b) generates an equivalent rotation about the z axis. 

The z rotation can be preferable for the Fourier transform experiment since 

only a single resonance is obtained. However, direct observation of the 

time-domain signal is simpler with the symmetric sequence, because it 

simplifies interaction with the receiver phase. For this reason, and to 

facilitate a comparison with earlier work (26), we concentrate on the 

symmetric version of the experiment. 

Theory 

We consider the symmetric sequence of four 
900 

 pulses applied to an 

ensemble of isolated spins, with the timing diagram shown in Fig. 1 (a). 

The first and last pulses are applied with a reference phase of 0, 'which may 

be considered +x, and the two center pulses are applied with relative phase 

- < # . The sequence may be preceded by a prepulse. For the on-

resonance case, assuming perfectly rectangular pulses and neglecting 

relaxation, the result of the 4-pulse sequence of Fig. 1(a) can be predicted 

exactly using rotation operators: 

R - R(w/2) R() R(w) R() R(ir/2) 

- R.y() R(2ff)  R() 	 [1] 

in which R(a) - exp(-iaI), etc. The operator R(2w) - ± 1 depending on 

whether integer or half-integer spins are involved, so 
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R - ± R(2#). 	 [2] 

Aside from the absolute sign of the operator, which we ignore hereafter, 

Eq. [2] shows that the result of the 4-pulse sequence is a pure rotation of 

14  angle 2# about the -y axis. If the 4-pulse sequence is repeatedly applied 

and a single data point is captured after each segment, then we find for the 

x-component of the magnetization <I(t)>  at integer multiples of rc  

<15 (nr )> - sin(2n) 	 [3] 
x C 

if the spins are initially prepared at thermal equilibrium, and 

<IC(nf )> - cos(2niØ) 	 [4] 
x C 

if they are initially prepared along the x axis of the rotating frame by a 

90; prepulse. Fourier transformation of the cosine component determines 20 

modulo w up to a sign ambiguity, while if both components are available the 

sign of 20 can be determined as well. Since the value of the phase shift is 

usually approximately known beforehand, either component can be used to 

determine 0 . The precision of the measurement depends on the number of data 

points that can be collected before the driven free induction decay is lost 

in the noise. 

Equation [2] is only valid if the rf pulses are ideal, so it is very 

important to assess the likely impact of spectrometer imperfections on the 

phase calibration procedure. Our approach is to concentrate on the exact 

formula for the imperfections and then to recover the average Hamiltonian 

(13) result by expanding the error terms in a perturbation series. In this 

way the connection between the exact expressions and the average Hamiltonian 
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approximation is made clear. One strategy we repeatedly employ is to 

express a product of small error rotations as a power series using the 

Baker - Campbell-Hausdorff formula: 

Tlk exp( . iSk !kP exp(i(Zk6k !ic' + 12 Zk>j&k6J mk  x 	+...)). (5) 

In Eq. [5] the Sk are small rotations about unit axes a k  and the terms in 

the product on the left hand side are understood to be ordered with larger k 

to the left. The errors scancel outN  when the rotation they induce is 

nearly the identity operator. The algebraic conditions 

	

kic !ic - 2 
	

[6] 

Ik>jc3!i2 [7] 

express this cancellation to first and second order in 6 which, rather 

confusingly, is referred to as zeroth or•  first order in the average 

Hamiltonian expansion. The other formula we need is the net rotation angle 

for a small rotation combined with a larger rotation. If U and S are 

arbitrary angles, and 

exp(-i8m3.I) - exp(-iSm2 .I)exp(-iSrn1 I) 	 (8] 

then fi is given by 

8+6 	1. 	 9-6 
cos(/2) - 	(1 + !l!2)cos(  2 	+ 	

(1 - m,.rn)cos( 2 	
[9] 

If 	- ± !2 then p - 8 ± 8, while if !1!2 - 0 and S is small, 8. 	An 

important special case occurs for S - w, when fi - S if - 0 regardless 

Id 

of 8. 
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We consider three sources of error: rf inhomogeneity, resonance offset 

and symmetric phase transients. Of these, rf inhomogeneity has the greatest 

impact for liquid-state spectrometers employing saddle-coil configurations, 

while the symmetric phase transients could be more important for high-power 

applications in solids. Resonance offset is the least important 

imperfection since it is reasonable to assume that the frequency of the rf 

carrier can always be adjusted very near to resonance if a liquid sample 

such as water or acetone is used. 

The rotation operator describing the 4-pulse sequence in the presence 

of rf inhomogeneity, in which each spin experiences a flip angle w/2 + (r) 

depending on its spatial position, can be written, for a single volume 

element - 

R - R(w/2 + E) R () R(w + 2e) R() R(/2 + £) 	[10] 

which can be simplified to 

R - R(2#) R 
	

[II] 

with 

R 
C 	y 	x 
- [R (2#)  R  () R - 
	y 	x 
(2)][R () R (2c) R_ y (#)] R x (). 	 [12] 

The grouping of the terms is meant to emphasize the "toggling frame" 

transformation of the errors under the ideal rotation (13). Since the y-

rotations only act to tilt the axis of the c rotations into the xz plane, 

Eqs. (5] and [8] show that, provided 24 dominates e, R represents a rotation 

by an angle 20 to first order in c. Thus, the error terms are quenched by 

the rotation induced by the phase difference between the pulses. 
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The same conclusion can be reached by using the average Hamfitonian 

method. In this case we select a rational phase shift 0 - pir/q and choose k 

so the 2k is a multiple of 2r. This insures that the sequence is cyclic in 

the average Hamiltonian sense. The exact formula for R ke  over the entire 

sequence becomes 

Rk 	exp(-iel x ) TTTVj-2k-1 exp(_ 2if(Icos(n) +Izsin(n)])exP(.0iI x ). (13) 

Using Eq. [5] we find 

R- exp{-21 [ 	Icos(n) 	I sin(n) + O(e2)J } 
	

(14] 

The x- and z.components can be combined into a single complex version of 

Eq. [6]: 

- 2k-i 

) 	exp(-in) - 0. 	 [15] 

Eq. (15] is satisfied for all 4 0 0, because the sum is invariant to 

multiplication by exp(i#).  In the case of an kirrationalu  phase shift, not 

of the form p/q, the series must be extended to infinity (the sequence is 

never cyclic) but still becomes arbitrarily small. Paradoxically, all phase 

shifts other than zero appear to offer some compensation. 

It should be remembered, however, that a power series offers a local 

description only. Even though all values # o 0 produce an essentially 

parabolic dependence of 24 on c, Eq. (15] gives no hint of the size of the 

second order term, which in fact depends strongly on qS. For 4 ,' 0 we find, 

to second order, 
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expl21 IC 2 1 " z 2k-2 (2k-ln)sin(n) + o( 3 )]} 	(16] 

Eq. [16] shows that values of 4 near w, for which the terms are all small 

and alternate in sign, offer the best compensation. This conclusion should 

a  be geonetricafly obvious, for phase shifts near w cause the formation of 

rotary echoes that are insensitive to variations in the pulse flip angles. 

An inspection of the exact expression, Eq. (12], shows that RE —+ 1 as 

w. Accordingly, all terms in the average Hamiltonian expansion must 

vanish in this limit. 

Eq. (16] makes an important point: aside from the exceptional points 

— 0 and — , the effect of rf iithomogeneity is to increase the magnitude 

of the apparent rotation angle, regardless of the sign of c. Because of 

this effect, 141  will be set to a slightly smaller value than desired. 

To calculate resonance offset effects we use the S-pulse approximation, 

equivalent to neglecting the tilt of the effective field and slight 

lengthening of the ir/2 pulses (27) while still retaining the evolution due 

to free precession in the windows. If we assume a resonance offset Aw and 

let S — owi- then, by the same proàedure used for Eq. [10] we find 

R — R(2#) R5 	 (17] 

where 

—[R(2#) R(5/2) R(2)][R(0+S) R(5) R(*f6)] R(S/2). 	[18] 

Eqs. (5) and [8] again show that the error 5, provided it is small, has no 

effect on the net rotation 20 to first order in S unless # is close to w or 
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an odd multiple thereof. 

These assertions can be confirmed using the average Hamiltonian method. 

Using the same assumptions as before, the rotation operator for the cyclic 

sequence becomes 

1 
P_a- exp(14 I) [ ff n_k exp(-iS(I cos(8+(2n-1)4) + I sin(S+(2n-1)0)]) z 	 x 

x exp(i6[I z 
	 x cos(2(n-1)) + I sin(2(n_1)0)])] exp(_i!  I ). 	[19] 

2z 

The 6 terms in the arguments of the sine and cosine functions do not affect 

the first-order term in S and can be ignored. We then  find 

R.- exp{iS 	I[cos(2(kl)) - cos((2k-1))1 

+I[sin(2(kl)#) - sin((2k-1))1 + O( € 2 )} 	 [20] 

which makes RkS the identity operator to first order in S if 

i-  2k-i 
(1)nexP(in4) - 0. 	 [21] 

n-O 

The sum is invariant to multiplication by exp(21) and hence vanishes for 

all 0 except 0 - or an odd multiple thereof. Higher-order terms with 

respect to resonance offset are irrelevant for the present discussion since 

we assume that S will be almost zero when the experiment is carried out. 

The effect of symmetric phase transients can be modeled by replacing 

each rf pulse by a sandwich of three rotations 

R(w/ 2 ) -  R(fl) R('r/2) R() 	 [22] 

and assuming that a phase shift transforms all three rotations in the same 
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way as for a single pulse. The exact nature of the transients present in 

the experiment depends on the characteristics of the probe and rf circuitry, 

so that Eq. (22] is an oversimplification. Nevertheless, an analysis based 

on Eq. [22] can give some idea of the performance in an actual tuned 

circuit. 

Proceeding exactly as before, we find 

R - R(20) R 
	

[23] 

where 

- Ry(P)[Ry(2) R2(fi) R(2#)](R() R z () R y(2fl) 	R(#)] 

x R 2 (fi) Ry•(fi) (24] 

Once again, Eqs. [5] and [8] show that R is a rotation of angle 20 if 2 

dominates P. The error part for a cyclic sequence is - - 

rrrkl 

- exp1iflL 	I (cos(2n) - cos(2(n+1)4)) 

+ I(si:(2n 	- sin(2(n+1)0)) + 0(2))]1 	[25] 

which vanishes to first order in fi if 

ç k-i 

) 	exp(21n) - exp(21(n-s-1)4) - 0. 	 (26] 

The telescoping sum is an identity for all 0. since exp(21k4) - 1. 

Inspection of the exact expression. Eq. [24], shows that 	1 as 

Symmetric phase transients thus show the same qualitative behavior as rf 

inhomogeneity with regard to 0, except that the compensation is better near 

- 0. 
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In s'iazy, the errors induced by rf inhomogeneity or symmetric phase 

transients are increasingly compensated as 0 approaches x, while the 

tolerance to resonance offset effects is superior as 0 approaches 0. 

Operation on resonance allows all the offending terms to be removed by 

choosing values of 4 near enough to w. 

Phase Calibration Procedure 

The first step in the phase calibration procedure is to balance the 

amplitudes between the channels. For this purpose, the sequence of Fig. 1 

can be used with all four pulses set to the same phase, but with sampling 

after each 900 pulse, the so called flipflop sequence. With the receiver 

reference phase correctly set, the periodically sampred time-domain signal 

gives rise to a pattern of three lines when w, is set to the nominal value. 

A small deviation away from the 900  condition shows as a divergence of the 

central feature. Inhomogeneity of the rf field causes a decay of the 

observed magnetization; if the w  distribution is symmetric about the 

nominal value the central feature can still be nufled at all times, when the 

amplitude is correctly adjusted. In the case of a skewed distribution the 

central feature always shows some divergence and a compromise must be made 

(27). The important point is that all the channels should be adjusted to 

give the same pattern. If the phase and amplitude variables interact when 	* 

the phase or. amplitude of one channel is altered, it may be necessary to 

readjust the amplitudes after the phases have been adjusted, and proceed 

iteratively. Sequences are described in the literature for the measurement 

and characterization of any phase transients that may be present (28-30). 
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It is possible to calibrate rational phase shifts between the channels 

in essentially the same way as the amplitudes, by observing the patterns 

produced for the periodically sampled time-domain signal. A correctly 

adjusted phase shift of pw/q, where q > 2 and p are relatively prime, gives 

a pattern of (q+l)/2 lines if q is odd, and (q+2)/2 lines if q is even, for 

the periodically sampled cosine component of Eq. [4]. The sine component, 

Eq. [3], gives q lines if q is odd, q/2 lines if q is even and not a 

multiple of 4, and (q+2)/2 lines otherwise. Conversely, the observation of 

a k-line pattern for the cosine component limits q to 2k - 1 or 2k - 2. The 

two cases can be distinguished by displaying only the odd-numbered time-

domain data points. If q - 2k - 1 then a k-line pattern results; if 

q - 2k - 2 fewer lines will result, allowing the two cases to be 

distinguished. Confirmation is possible by displaying the sine component, 

and verifying that the correct number of lines is obtained. 

The special case of w12 phase shifts has been discussed by 

Haubenreisser and Schnabel (26). The sequence of Fig. 1(a) is used with 

- ,r/2, without the initial prepulse. In this case it is advantageous to 

sample the magnetization both at the midpoint and end of the 4-pulse 
11 

sequence, giving a three-line pattern. An error in the 900  phase shift 

shows up as a divergence of the central feature. This divergence is easier 

to identify visually than the incipient appearance of a cosine wave on a 

two-line pattern (produced with the prepulse included), since the latter can 

be hard to distinguish from the natural decay of the magnetization at the 

correct phase setting. 

Suppose that 2q phase shifts of it/q are to be systematically calibrated 



-12- 

so that channel p has relative phase p/q. This would be the case in a 

typical multiple-quantum experiment, for example. A phase shift near w, 

S. Si (q-l)w/q, is selected as the basic unit and calibrated between 

channels 0 and q - 1. For example, in the case of a series of 450 
 phase 

shifts, a 135 0 
 phase shift is established between channels 0 and 3 by 

adjusting channel 3 until the correct 3line pattern is obtained. The 

receiver reference phase is adjusted by 1350  (by software) and the process 

repeated between channels 3 and 6. In the general case, each successive 

channel, n(q-l) mod 2q, is then calibrated with respect to the first pair: 

channel 2q - 2 is adjusted until the same pattern is obtained between 

channels q - 1 and 2q - 2, etc. until n(q-1) mod 2q is channel 0 again. If 

this last pair of channels also gives the correct pattern then all the 

phases are correctly set. 

A significant systematic miscalibration shows up as a discrepancy on 

the last pair of channels, allowing a check on the procedure. In the 

example of 450  phase shifts, a series of 3/4 - £ phase shifts results in a 

phase difference of 3w/4 + 71 between the last pair of channels, which 

differs by 8e from the other phase shifts and may be detectable even though 

the individual errors were not. By recording the initial setting of channel 

0 and the setting (--8) required to obtain a response congruent with the 

other pairs of channels, channel 0 can be adjusted by approximately -e. The 

response between channels 0 and 3 is then recorded, taken to represent a 

1350 phase shift and the circuit repeated. The remaining adjustments are 

then very small. It should not take more than one additional circuit to 

bring all the phases into alignment. 

.1 
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This check for self-consistency is of importance when very accurate 

calibration is desired, or if the rf field shows a wide distribution around 

the nominal value. As discussed earlier, the second-order term for rf 

inhoutogeneity results in a slight increase in the apparent nutation 

frequency. A positive phase shift 0 < 0 < w will thus be set to a somewhat 

smaller nominal value - , where f depends on the shape of the 

distribution, and on . As we show in the experimental section, merely 

adjusting the phase shift to give a pattern closely resembling the naive 

prediction for the case of a perfectly homogeneous field keeps f typically 

well below 0.10 if the rf homogeneity is good. In contrast to the flip-flop 

sequence, the quadratic dependence on c expressed by Eq. [161 results in a 

compromise setting even if the rf distribution is symmetric. 

The phase calibration is tedious when many channels are involved. The 

obvious solution is to use software control to trim the pulse amplitudes and 

phases. The procedure described here is repetitive enough that it can be 

programmed easily. All the phases could then be adjusted under computer 

control. 

Experimental 

Multiple-pulse free induction decays were obtained using a home-built 

spectrometer operating at 178.9 Pfl4z for protons. This frequency was 

generated by mixing the output of a PTS 500 synthesizer with a 30 MHz 

intermediate frequency (IF), both of which were derived from the same 10 MHz 

clock. Transmitter phases were selected by apparatus normally used to 

generate quadrature pulses for multiple-pulse work (31,32), acting on the 
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IF. Four independently switched rf channels with mechanical amplitude and 

phase controls modified the 30 IG1z IF prior to the final mixing stage to 

generate the Larmor frequency. 

For these experiments the channels to be compared were first 

approximately aligned at the IF level using a Hewlett Packard model 8405A 

vector voltmeter. Only two channels were required for the experiments shown 

here, but three were generally checked for consistency. Two were kept in 

quadrature and the third was adjusted to the non-quadrature phase being 

investigated. After this preliminary adjustment, final calibration was 

performed by observing the NMR signal, using the familiar flip-flop 

sequence to set the amplitudes, and the new sequence described here to set 

the phases. 

All experiments employed a single sample of heavily doped (0.01K 

Cr(Acac) 3) acetone in a 4 = bulb housed within a sealed 30 mm length of 

8 mm o.d. pyrex tubing. The T1 for the proton resonance was approximately 

200 ma; the field was ahimmed to give a linewidth of less than 40 Hz. No 

field/frequency stabilization of the superconducting magnet was employed. 

The sample was centrally located within a 6 turn selenoid, 30 mm long and 8 

mm in diameter. Flattened copper wire was used to improve the rf 

homogeneity across the sample. The probe coil was series tuned for 

178.9 ?fl4z and matched, with a parallel capacitance, to 50 fl to better than 

10% reflected voltage. The quality factor for the matched resonance circuit 

was Q - 90 at room temperature. 

Radiofrequency power was supplied, by a broadband ENI 5100L amplifier, 
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capable of an output power of -200 W at 178.9 MHz. This proved sufficient 

to generate a field i12w - 71.4 kHz, giving a 900  pulse time of 3.5ps. An 

interpulse delay v - 40 ps provided an acceptable duty cycle while at the 

same time resulting in driven FIDs that decayed appreciably faster than 

would be expected due to relaxation alone. This allowed the predicted 

compensation for rf inhomogeneity to be verified experimentally. The 

relatively rapid decay under the flip-flop sequence could be empirically fit 

quite closely by an ø distribution consisting of a superposition of a 

Lorentzian distribution with a Lorentzian squared, both slightly skewed to 

lower field values. No theoretical significance is attributed to this 

particular functional form: it merely provided a simple means to simulate 

the expected decays for the phase calibration sequences. 

The first trace of Fig. 2 shows the familiar 3-line pattern, 

representing a nominal 90 0  phase shift, obtained with the sequence of 

Haubenreisser and Schnabel (26). Using the sequence of Fig. 1(a) without 

the initial prepulse, sampling of the x-component of the magnetization 

occurs once at the midpoint of each 4-pulse segment and once at the end. A 

total of 384 points are displayed for each multiple-pulse FID, corresponding 

to about 33.4 as. By deliberately misadjusting the pulsewidth to 3.6 As 

(a - 92.6
0
) and 3.7 ps (a - 95.1

0
) the tolerance to rf inhomogeneity can be 

monitored. An incipient slow oscillation on the outer features is evident 

for a - 92.60, and becomes considerably more pronounced for a - 95 . 10 .  

The topmost trace of Fig. 3 shows the 3-line pattern expected for a 

nominal 45 0  phase shift, sampling at the end of each 4-pulse segment. The 

384 points shown correspond to 66.8 as, twice the length of the signals 
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shown in Fig. 2 The small divergence of the central feature results from 

the rf inhomogeneity across the sample. As the 
900 

 pulses are deliberately 

misadjusted, there is an increasingly rapid decay of the time-domain signal 

accompanied by faster oscillations. The oscillations can be slowed by 

inisadjusting the phase shift as well, to a value slightly smaller than 45 0 . 

The exact value depends on how badly the pulses are in error. This behavior 

is in accord with the prediction of Eq. [16]. 

Figure 4 shows the simulated time-domain signals corresponding to the 

experimental data in Fig. 3, including the effects due to the w 

distribution, but neglecting relaxation. Closest agreement is obtained by 

supposing a phase shift - 44.96 0
. Simulations in which 0 varies by as 

little as 0.01 0  from this value give recognizably different behavior. 

Figure 5 demonstrates the superior compensation for rf inhomogeneity 

offered by a nominal 135 °  phase shift. Comparison with Fig. 3 shows that, 

even with the pulses badly misadjusted, long decays, having only very slow 

oscillations, are produced. In addition, with the pulses adjusted to 

a - 900, there is less divergence of the central feature. It is therefore 

easier to make the correct adjustment visually. The simulations shown in 

Fig. 6 indicate a phase shift # - 134.987 0 , and are sensitive to changes as 

small as 0.005 ° . The noticeably larger amplitude near the end of the 

simulated signals is due to the neglect of relaxation in the calculation. 

We conclude this section with a demonstration of the patterns obtained 

for nominal phase shifts - 112.5 °  and - 108
0
, shown in Fig. 7. The 

112.5
0 
 phase shift gives the pattern of 5 lines (p - 5, q - 8) expected for 

'I. 
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the sine component, Eq. (3]. A 108
0 
 phase shift also gives a pattern of 5 

lines (p - 3, q - 5) in this case. The patterns are easily distinguishable 

in the figure, but are somewhat harder to identify from an oscilloscope 

trace alone. The simulations give the best agreement for the values 

- 112.479
0 
 and - 107.98 0 , respectively. The systematic error of about 

0.02 
0

is nearly the same for the two phase shifts because they are so close. 

We have found that 6- and 7-line patterns are very hard to identify on 

an oscilloscope trace, so smaller phase increments place greater demands on 

display resolution and operator patience. For very small increments (large 

q) the number of "lines predicted for the time-domain signal is 

impractically large. In such a case one may resort to computer simulation 

of the aulitiple-pulse FID: as the figures show, once the w 1  distribution 

has been determined, computer simulation of the time-domain signal yields an 

accurate determination of the phase shift. Direct Fourier transformation of 

the signal, possibly using the sequence of Fig. 1 (b), provides an 

alternative way to measure the phase. Increased compensation for rf 

inhomogeneity manifests itself as a narrower resonance and hence reduced 

phase uncertainty, so the precision of the Fourier method should be 

correspondingly high. 

Conclusions 

We have shown that rf phase shifts can be very precisely measured and 

accurately calibrated using the nuclear spins themselves to monitor the 

phase of the rf field. The sequences proposed here successfully eliminate 

the influence of other imperfections to a large extent, so that the behavior 
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of the spins is dominated by a nutation depending only on the relative phase 

of the rf pulses. We expect these sequences to be of practical value in 

aligning transmitter phases, and in devising automated algorithms for phase 

alignment under computer control. 
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Figure Captions 

Figure 1. Multiple-pulse sequences for phase alignment. Fig. 1(a) 

shows a symmetric repetitive sequence that gives a net rotation of 2# about 

the -y  axis. The corresponding non-symmetric sequence of Fig. 1(b) delivers 

a net rotation about the z axis. 

Figure 2. 	Experimental results obtained with the sequence of 

Haubenreisser and Schnabel (26). A nominal 900  phase shift yields a 3-line 

pattern when sampling occurs twice per period. Misadjustxnent of the 900 

pulse lengths induces an oscillation on the outer features. 

Figure 3. Experimental results obtained with the sequence of Fig. 1(a) 

and a nominal 
450 

 phase shift. The time-domain signal decays quickly when 

the 900  pulses are misadju.sted, showing only limited compensation for rf 

inhomogene ity. 

Figure 4. 	Simulated multiple-pulse FIDs corresponding to the 

experimental data shown in Fig. 3. The rf field distribution across the 

test sample has been taken into account in the calculation, but relaxation 

has been neglected. Best agreement is obtained for a phase setting 

4' - 44.96 0 . 

Figure 5. Experimental results obtained with the sequence of Fig. 1(a) 

and a nominal 135
0  phase shift. The time-domain signal is quite insensitive 

to misadjuatment of the 900  pulse lengths, showing excellent compensation 

for rf inhomogeneity. 
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Figure 6. 	Simulated multiple-pulse FIDs corresponding to the 

experimental data shown in Fig. 5. Best agreement is obtained for a phase 

setting # - 134.987
0

, shoving considerably less systematic error than in the 

case of nominal 
450 

 phase shifts. 

Figure 7. Rational fractions of w phase shifts give rise to systematic 

patterns, as shown above. Both 0 - 108 °  (3ir/5) and # 112.5 °  (5w/8) give 

pleasing 5-line patterns. The simulated multiple-pulse FIDs give best 

agreement for - 107.980 and  - 112.4790 respectively, a systematic error 

° of about 0.02. 
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SimuLation 
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