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Why the forcing from carbon dioxide scales as the logarithm of its concentration

David M. Romps∗†

Department of Earth and Planetary Science, University of California, Berkeley, California, USA
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

California, USA

Jacob T. Seeley†
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ABSTRACT

The radiative forcing from carbon dioxide is approximately logarithmic in its concentration, pro-
ducing about four watts per square meter of global-mean forcing for each doubling. Although these
are basic facts of climate science, competing explanations for them have been given in the literature.
Here, the reasons for the logarithmic forcing of carbon dioxide are explored in detail and a simpli-
fied model for the forcing is constructed. An essential component is the particular distribution of
absorption coefficients within the 15-micron band of carbon dioxide. An alternative explanation,
which does not depend on the spectrum of carbon dioxide, but hinges on the tropospheric lapse rate
instead, is shown to be neither necessary nor sufficient to explain the logarithmic forcing of carbon
dioxide and to be generally inapplicable to well-mixed greenhouse gases in Earth’s atmosphere.

1. Introduction

It is well-known that the radiative forcing from carbon dioxide is approximately logarithmic in
its concentration, producing about 4 W m−2 of additional global-mean forcing for every doubling.
There are, however, two different explanations in the literature for this logarithmic dependence.
Given the dominant role that CO2 plays in global warming, this mechanistic uncertainty merits
resolution.

Perhaps the most widely accepted explanation is that the logarithmic behavior stems from the
particular absorption spectrum of CO2 (Pierrehumbert 2010, 2011; Wilson and Gea-Banacloche
2012; Jeevanjee et al. 2021). Many absorption bands of greenhouse gases can be approximated
with an absorption coefficient 𝜅 (m2 mol−1) that decays exponentially from the band center as a
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function of frequency or wavenumber (Edwards and Menard 1964a,b) and the 15-micron band1

of carbon dioxide is a particularly good example of this (Crisp et al. 1986). Heuristic arguments
have been given as to why this would lead to a logarithmic forcing (Pierrehumbert 2010, 2011) and
analytic calculations have even succeeded in reproducing the ≈4 W m−2 of forcing from a doubling
of CO2 (Wilson and Gea-Banacloche 2012; Jeevanjee et al. 2021). Notably, this explanation does
not depend on the value or even existence of a tropospheric lapse rate.

The competing explanation is what we might call the “lapse-rate theory”, which posits that
the forcing stems from the troposphere’s lapse rate (Sloan and Wolfendale 2013; Huang and
Bani Shahabadi 2014; North and Kim 2017). In brief, the “lapse-rate theory” states that the
emission-to-space heights of individual wavenumbers move upward in the troposphere (to lower
temperature) a distance that is proportional to the logarithm of the gas concentration, thereby
generating a forcing that scales as the log of the concentration. Critically, this theory predicts that
the forcing is proportional to the tropospheric lapse rate. Notably, this explanation does not require
the absorption coefficients to be distributed logarithmically or in any other special way. We will
see that the “lapse-rate theory” is neither necessary nor sufficient to explain the logarithmic forcing
of carbon dioxide (see section 9) and that it generally cannot hold for a well-mixed greenhouse gas
in Earth’s atmosphere (see section 10).

The aim of this paper is to set the explanation of Pierrehumbert (2010, see his Figure 4.12) on a
firm foundation by demonstrating the properties that lead to carbon dioxide’s logarithmic forcing,
building a simplified analytic model to showcase the underlying processes, and showing that a
line-by-line radiative transfer model gives a logarithmic forcing for the same reasons. This will
occupy the bulk of paper, from sections 5 to 8. The reader who wants to quickly learn the basic
mechanism may be satisfied with the overview in section 3 and could skip ahead to that section
now.

2. Preliminaries

To reduce the problem to its essential elements, we will focus on the instantaneous top-of-
atmosphere (TOA) forcing in dry atmospheres. These simplifications (TOA and dry) are acceptable
because the logarithmic scaling of the CO2 forcing does not depend on these choices. Figure 1
illustrates this point using radiative-transfer calculations in a three-dimensional snapshot from a
cloud-resolving simulation of a tropical atmosphere2. Figure 1a shows, plotted as circles, the total,
instantaneous, tropopause, longwave forcing from carbon dioxide (averaged over the domain of
this snapshot) as a function of the carbon-dioxide concentration; the best-fit line is overlaid to
emphasize the linearity.

1To be precise, the 15-micron band is actually a collection of vibrational bands and so is sometimes called a “band of bands” or a “band system”.
The strongest bands within the “15-micron band” are generated by transitions between the vibrational ground state and the first mode of bending,
between the first mode of bending and the first mode of symmetric stretching, and between the first and second modes of bending (Kiehl and
Ramanathan 1983).

2The cloud-resolving model used for Figure 1 was Das Atmosphärische Modell (DAM; Romps 2008), which was run to radiative-convective
equilibrium (RCE) over a 300-K ocean. In the snapshot from this simulation, the total cloud cover is 35%: looking down from space, 12% of the
domain is covered by warm cloud tops (>273.15 K) and 23% by cold cloud tops. The simulation used the Rapid Radiative Transfer Model for
General circulation models radiation scheme (RRTMG; Iacono et al. 2008) and a preindustrial CO2 concentration of 280 parts per million by volume
(ppmv). With this CO2 concentration and radiation scheme, the brightness temperature of the top-of-atmosphere (TOA) upwelling longwave varies
spatially from a minimum of 210 K over cumulonimbus anvil clouds to a maximum of 264 K in clear sky (which is far from the surface temperature
due, in large part, to the high precipitable water content of this tropical atmosphere).
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Fig. 1. Total instantaneous forcing 𝐹 tot calculated using RRTMG in a snapshot of a cloud-resolving RCE
simulation plotted as circles for various CO2 concentrations using (a) tropopause all-sky fluxes, (b) TOA all-sky
fluxes, (c) TOA clear-sky fluxes (in which condensates have been zeroed), and (d) TOA dry-sky fluxes (in which
condensates and water vapor have been zeroed). The lines are least-squares fits. The 𝑟2 values exceed 99% in all
cases.

Here and throughout, we will use the variable 𝐹 to denote an instantaneous longwave forcing,
which has dimensions of power per area and whose typically positive values indicate a net down-
welling flux of radiative energy. With the exception of Figure 1a, all forcings discussed in this
paper will be calculated at the top of the atmosphere. We will dress 𝐹 with various subscripts and
superscripts to clarify what type of forcing is being used. For example, 𝐹 tot(𝑞) will be the total
forcing from the presence of a well-mixed greenhouse gas at a volume fraction of 𝑞. In particular,
𝐹 tot(𝑞) is the TOA upwelling longwave flux with the greenhouse gas removed minus the TOA
upwelling longwave flux with the greenhouse gas’s volume fraction set to 𝑞. In later sections,
we will also discuss 𝐹2×(𝑞) ≡ 𝐹 tot(2𝑞) −𝐹 tot(𝑞), which is the forcing from a doubling of the gas
concentration.

From the linearity of the data on the logarithmic axis of Figure 1a, we see that the all-sky
forcing from CO2 at the tropopause is logarithmic in its concentration to good approximation over
a wide range of concentrations (i.e., the ten doublings shown here). The instantaneous tropopause
forcing is considered a better proxy for the stratosphere-adjusted forcing than the instantaneous
top-of-atmosphere forcing (Hansen et al. 1997), but the logarithmic scaling is preserved in the TOA
forcing as shown in Figure 1b. Of the two forcings, the TOA forcing is easier to conceptualize
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because it only involves upwelling fluxes; therefore, the focus of this paper will be on the TOA
forcing. In Figure 1c, the clouds in the snapshot have been made transparent to infrared radiation,
but this does not alter the logarithmic dependence. In Figure 1d, the water vapor in the snapshot is
also made transparent to radiation; again the logarithmic dependence remains. We see, therefore,
that the logarithmic dependence of the CO2 forcing is a phenomenon that does not depend on the
presence of water vapor or clouds, or on whether the forcing is measured at the tropopause or TOA.
Therefore, in the sections that follow, all forcings will be calculated at the top of the atmosphere
and we will work exclusively with dry atmospheres. For an extension to moist atmospheres, see
Jeevanjee et al. (2021).

To probe the mechanism of the logarithmic dependence, we will use a line-by-line radiative
transfer model. Although the logarithmic dependence is robust across radiative transfer models,
a line-by-line model provides spectral fluxes that are straightforward to interpret. The line-by-
line model used here is the Reference Forward Model (RFM; Dudhia 2017), which we use with
the HITRAN2016 spectroscopic database (Gordon et al. 2017) and flags MIX, CHI, and CTM
to implement the line-mixing model of Strow et al. (1994), to apply the line-shape correction 𝜒

factor (Le Doucen et al. 1985; Cousin et al. 1985), and to include the CO2 continuum. Here,
and throughout the paper, air is defined to be 21% oxygen by volume with the remaining fraction
apportioned among nitrogen and carbon dioxide. Nitrogen and oxygen are treated as transparent
to infrared radiation. Since shortwave absorption by CO2 alters its forcing by only about 4%
(Myhre et al. 1998; Etminan et al. 2016), shortwave fluxes are ignored here for simplicity. Unless
otherwise specified, the RFM is used with a vertical spacing of Δ log10(𝑝) = 0.05 and wavenumbers
are sampled at a spacing of 0.01 cm−1.

We focus here on the 15-micron band of CO2 because it is the source of the vast majority of
the forcing from CO2 at modern atmospheric concentrations (Augustsson and Ramanathan 1977;
Zhong and Haigh 2013; Mlynczak et al. 2016), as can be seen by comparing the top and middle
panels of Figure 2. One of the reasons the 15-micron band dominates the forcing is because the
Planck distribution peaks near 15 microns at terrestrial temperatures. The bottom panel of Figure
2 shows the Planck distribution for two different temperatures. The Planck distribution 𝐵 (W m−2

sr−1 cm; emitted radiance per wavenumber interval) is defined as

𝐵(�̃�,𝑇) = 2ℎ�̃�3𝑐2

𝑒ℎ𝑐�̃�/𝑘𝐵𝑇 −1
,

where �̃� is the standard notation for wavenumber (the inverse of wavelength). With this definition,
𝜋𝐵(�̃�,𝑇)𝑑�̃� is the power per area of photons emitted by a black-body surface with wavenumbers
between �̃� and �̃� + 𝑑�̃�.

The middle panel of Figure 2 shows the carbon-dioxide absorption coefficient 𝜅 calculated at a
temperature of 289 K and a total atmospheric pressure of 105 Pa (1 bar). The 15-micron band,
centered at 15 microns (667 cm−1) and defined here to be the wavenumbers between 467 cm−1 and
867 cm−1, is a prominent feature in the absorption spectrum of carbon dioxide, which is another
reason why this band dominates its forcing. At the very center of the band (around 667 cm−1), a
meter of dry surface air with today’s CO2 concentration is virtually opaque; at the wings of the
band, an entire dry atmospheric column is virtually transparent.
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Fig. 2. Functions of wavenumber �̃�: (top) 𝐹2×
�̃�

(�̃�,256 ppmv), the spectral forcing, shown here smoothed by a
2-cm−1 moving window, caused by a doubling of CO2 from 256 to 512 ppmv in IsoStrat, a dry atmosphere with
a troposphere sandwiched between an isothermal 205-K stratosphere (𝑝 < 104 Pa) and a 289-K surface (𝑝 = 105

Pa); (middle) carbon-dioxide absorption coefficient 𝜅 calculated at a temperature of 289 K and a total air pressure
of 1 bar given in units of m2 per mole of carbon-dioxide molecules; and (bottom) the solid-angle-integrated
spectral black-body Planck emission 𝜋𝐵 for two different temperatures (205 and 289 K)

When talking about spectral forcings, we will put a subscript �̃� on the forcing variable (e.g.,
𝐹 tot
�̃�

or 𝐹2×
�̃�

) to denote that it is the forcing per wavenumber interval. In particular, 𝐹2×
�̃�

(�̃�, 𝑞)𝑑�̃�
is the contribution to 𝐹2×(𝑞) from wavenumbers in [�̃�, �̃� + 𝑑�̃�]. The top panel of Figure 2 plots
𝐹2×
�̃�

(�̃�,256 ppmv) for carbon dioxide (calculated with the line-by-line model) in an idealized
atmosphere that we will refer to as IsoStrat because the stratosphere is isothermal. All line-by-line
calculations were performed using concentrations that are a power of two in parts per million by
volume, so 256 ppmv is used here as the closest representative of a preindustrial value of ∼280
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ppmv. The IsoStrat atmosphere has a 289-K, black-body surface overlain by a troposphere whose
temperature drops from 289 K at the 105-Pa surface to 205 K at the 104-Pa tropopause, which is
overlain by a 205-K, isothermal stratosphere (see section 4 for a precise definition of IsoStrat and the
other atmospheres used in this paper). Since this paper focuses on instantaneous forcings, the model
atmospheres used here are static, i.e., they are independent of the greenhouse-gas concentrations.
As seen from Figure 2, 𝐹2× from CO2 at modern concentrations is almost entirely due to changes
in upwelling longwave fluxes in the 15-micron band, so that is where we will focus our attention
in the sections that follow.

3. The basic mechanism

Consider an atmosphere with a single well-mixed longwave absorber with a volume fraction 𝑞

and an absorption coefficient 𝜅 that depends on wavenumber. Ignoring the pressure and temperature
dependence of 𝜅, the optical depth 𝜏 (measured from the top of the atmosphere) at some wavenumber
at some height in the atmosphere is proportional to three quantities: the overlying air mass
(which is proportional to pressure 𝑝), the volume fraction 𝑞 of the longwave absorber, and the
absorption coefficient 𝜅. In other words, 𝜏 ∝ 𝑝𝑞𝜅, where we are using the standard symbol of
∝ for proportionality; i.e., if 𝑦 = 𝑎𝑥 for some 𝑎 ≠ 0, then 𝑦 ∝ 𝑥. Emission to space occurs from
the vicinity of the emission pressure 𝑝em, defined to be the pressure in the atmosphere where 𝜏

equals one. Therefore, in the proportionality 𝜏 ∝ 𝑝𝑞𝜅, we can set 𝜏 to 1 and 𝑝 to 𝑝em, which gives
𝑝em ∝ 1/(𝑞𝜅). Taking the logarithm3 of both sides reveals that log(𝑝em) is linear in log(𝑞𝜅),

log(𝑝em) ∼ − log(𝑞𝜅) . (1)

We will refer to this below as property #3. Here and throughout, we use the symbol ∼ to denote
a linear relationship; i.e., if 𝑦 = 𝑎𝑥 + 𝑏 for some 𝑎 ≠ 0 and 𝑏 ≠ 0, then 𝑦 ̸∝ 𝑥, but 𝑦 ∼ 𝑥. We have
retained a minus sign in relation (1) as a reminder that an increase in log(𝑞𝜅) pushes the unit optical
depth to higher altitudes, leading to a decrease in log(𝑝em). Ignoring the pressure and temperature
dependence of 𝜅, relation (1) is true for any atmosphere with a single well-mixed absorber; we will
see in section 5d that relation (1) also holds to good approximation when those dependencies are
included.

As a visual guide, we will use an analogy to a freight train to describe Earth’s radiation to space
from within the 15-micron band. In this analogy, the train track runs flat along the Earth’s surface
until it slopes upwards through the troposphere and into the stratosphere. The train straddles the
troposphere with its head in or near the stratosphere and its tail on the surface. The cargo carried
by the train are all the wavenumbers of the 15-micron band, with each train car carrying a same-
sized set of those wavenumbers. Furthermore, each car has a spotlight pointing upwards, sending
infrared radiation directly to space with an intensity that depends on temperature: as a train car
climbs upwards to colder parts of the atmosphere, its light dims. All of the spotlights dim with
ascent in the same way, so moving the train forward by one car has a simple effect on the emission
to space: it effectively moves one train car from the warm surface to the cold stratosphere. Finally,
if the train moves forward by, say, one train car every time the CO2 concentration is doubled,
then every doubling of CO2 effectively moves one train car from the surface to the stratosphere,

3Unless given a subscript, all logarithms are natural logarithms, i.e., with base 𝑒.
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dimming its spotlight accordingly; indeed, we will see that the train moves in this way. What makes
this analogy to a freight train particularly apropos is that, like a real freight train, each train car is
the same length (there are no short cars or long cars), each car holds the same amount of stuff (in
this case, equal-sized sets of wavenumbers), and all the cars move with the same speed.

For CO2 in an otherwise transparent Earth-like atmosphere, there are five properties that combine
to make this train analogy work, i.e., that make the forcing from CO2 approximately logarithmic
in its concentration 𝑞 for 𝑞 in the range of 4 to 4096 ppmv. These properties are as follows:

1. For carbon-dioxide concentrations of 4 to 4096 ppmv – a range that encompasses all values
experienced on Earth within the past 300 million years (Berner 2006) as well as any plausible
values for the remainder of the Anthropocene – the forcing from carbon dioxide is dominated
by the 15-micron band; this tells us that focusing on our 15-micron “freight train” is warranted.

2. For a given pressure and temperature, the wavenumbers in the 15-micron band are distributed
approximately uniformly within an interval of log(𝜅); this tells us that the train cars hold
same-sized sets of wavenumbers.

3. Even when accounting for the pressure and temperature dependencies of 𝜅, log(𝑝em) ∼
− log(𝑞𝜅) is valid to good approximation, i.e., equation (1) still holds; this tells us that
the train cars move together (as they should for a train!) and by how much they move for a
given change in the carbon-dioxide concentration.

4. For carbon-dioxide concentrations ranging from 4 to 4096 ppmv, wavenumbers with the lowest
𝜅 in the 15-micron band have an optical depth much less than one at the surface while the
wavenumbers with the highest 𝜅 have an optical depth of one near the tropopause or in the
stratosphere; this tells us that rear of the train is on the surface and the head of the train is in
or near the stratosphere.

5. For tropospheric temperatures, 15 microns is where the temperature dependence of the Planck
distribution is nearly independent of wavenumber; this tells us that the spotlights all dim in
the same way as they ascend.

Figure 3 illustrates how these facts combine to generate the logarithmic forcing of carbon dioxide.
By virtue of property #1, we can focus on the 15-micron band, whose wavenumbers have been
grouped into seven sets, or “train cars”, schematically represented by the black circles. The
wavenumbers could be grouped into many more sets – even an uncountably infinite number –
but seven sets are depicted here for simplicity of illustration4. On the left side of Figure 3, the
wavenumbers are shown as uniformly distributed over an interval of log(𝜅) in accordance with
property #2. By property #3, log(𝑝em) is linear in log(𝜅), so the wavenumbers are also distributed
uniformly over an interval of log(𝑝em). (For wavenumbers that have an optical depth less than
one at the surface, we can still calculate 𝑝em by imagining that we replace the surface with a
hydrostatic, semi-infinite atmospheric layer of the same temperature. This has no effect on the
radiative fluxes from those wavenumbers above the surface, but it has the benefit of allowing us

4Each of these seven sets of wavenumbers, or “train cars”, can be thought of as the set of spectral intervals that have log(𝜅 ) within one of
seven non-overlapping ranges. Section 6 gives a more precise definition, which reveals that a train car has contributions from all wavenumbers, but
primarily from those with similar log(𝜅 ) .
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Fig. 3. Explanation of why the forcing from carbon dioxide is logarithmic in its concentration. Each black
circle denotes an equal-sized set of wavenumbers. (first axis) By property #1, we can focus on the 15-micron
band, which, by property #2, has its wavenumbers uniformly distributed within an interval of log(𝜅). (second
axis) By property #3, this implies that the wavenumbers are uniformly distributed within an interval of log(𝑝em).
Consistent with property #4, the head of the “train” of wavenumbers is in the stratosphere and the rear of the
train is in the surface. (third axis) By property #3, log(𝑝em) is linear in log(𝑞), so multiplying 𝑞 by successive
multiplicative factors (e.g., doublings) moves the train to lower log(𝑝em) by the same amount. Here, a doubling is
illustrated as moving the train up by one car. By property #5, the Planck distribution is approximately a function
of temperature only, so a set of wavenumbers emitting to space from the warm surface temperature (red colors)
has been effectively replaced by an equal-sized set of wavenumbers emitting to space from the cold stratosphere
(blue colors). (fourth axis) Another doubling moves another equal-sized set of wavenumbers from the surface to
the stratosphere. The size of the set of wavenumbers moved from the surface to the stratosphere is proportional
to log(𝑞), so the forcing is proportional to log(𝑞). As a visual aid, the light-grey circles mark where the train
was for 𝑞 = 𝑞0.

to visualize how the emission pressures of those wavenumbers approach the surface.) Consistent
with property #4, the high values of log(𝑝em) are below the surface and the low values of log(𝑝em)
are in the stratosphere. By property #3, log(𝑝em) is also linear in log(𝑞), so each doubling of the
CO2 concentration 𝑞 moves the train of wavenumbers to lower log(𝑝em) by the same amount. This
is depicted in Figure 3 with one doubling moving the train upwards by one car length and two
doublings moving the train upwards by two car lengths.

8



We see, therefore, that an increase in the CO2 concentration has a simple effect: it replaces
some number of train cars in the surface with an equal number of train cars in the stratosphere
(Pierrehumbert 2010, 2011; Wilson and Gea-Banacloche 2012; Jeevanjee et al. 2021). Since these
train cars represent equal-sized sets of wavenumbers emitting to space, this means that a set of
wavenumbers emitting to space at the surface temperature has been effectively replaced with an
equal-sized set of wavenumbers emitting to space from the stratospheric temperature. Then, using
property #5, we can ignore the Planck distribution’s explicit dependence on the wavenumber;
this makes the Planck distribution a function of temperature only, i.e., 𝐵 = 𝐵(𝑇). Therefore,
wavenumbers emitting to space from the surface are sending to space a spectral flux equal to
𝜋𝐵(𝑇surf) and wavenumbers emitting to space from the stratosphere are sending to space a spectral
flux equal to 𝜋𝐵(𝑇strat). If Δ�̃� is the size of the set of wavenumbers effectively moved from the
surface to the stratosphere by a doubling of carbon dioxide, the change in forcing from a doubling
is

𝐹2× = 𝜋 [𝐵(𝑇surf) −𝐵(𝑇strat)]Δ�̃� .
Since every doubling of concentration effectively moves a set of the same size Δ�̃�, we get this
same added forcing from each doubling. Or, for a more general change in concentration, Δ�̃� ∝
Δ log(𝑝em) ∼ Δ log(𝑞), so the total forcing from carbon dioxide is approximately logarithmic in its
concentration, i.e., 𝐹 tot ∼ log(𝑞). This holds for concentrations within roughly 4 to 4096 ppmv.
For concentrations below 4 ppmv, the head of the train is too close to the surface and so property
#4 no longer holds. For concentrations above 4096 ppmv, other bands of CO2 start to generate
substantial forcing (e.g., Zhong and Haigh 2013) and so property #1 no longer holds.

As we have seen, the derivation of logarithmic forcing hinges on the validity of properties #1
through #5. Section 5 will explore these properties in more detail and show that they hold for
carbon dioxide in an Earth-like atmosphere.

4. Model atmospheres

We will describe here the five model atmospheres used throughout the paper. All of the atmo-
spheres are dry, transparent to shortwave radiation, hydrostatically balanced with Earth’s gravita-
tional constant, and have temperature profiles that are piecewise linear in the logarithm of pressure.
The first three atmospheres are IsoAtmo (a cold isothermal atmosphere sitting on top of a warm
surface), IsoStrat (a cold isothermal stratosphere that is separated from the warm surface by a tro-
posphere with an Earth-like lapse rate), and StdAtmo (an atmosphere in which both the troposphere
and stratosphere have Earth-like lapse rates).

Figure 4 plots the temperature profiles of those three atmospheres as black curves. The grey
curve in each of the panels is the global area-weighted mean of atmospheric temperature during
year 2020 in the ERA5 reanalysis (Hersbach et al. 2020), plotted from the surface (at 105 Pa),
through the cold-point tropopause (at 104 Pa), and up to the top of the stratosphere (at 102 Pa).
Noting that the ordinate is the logarithm of pressure, we see that the global-mean temperature can
be approximated as two pieces linear in log(𝑝) that connect a near-surface air temperature of 289
K, to a tropopause temperature of 205 K, and back up to a stratopause temperature of 261 K.

IsoAtmo, shown in the left panel, places a cold isothermal atmosphere directly on top of the warm
surface. Here, as throughout the paper, the surface is represented by a semi-infinite atmospheric
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Fig. 4. (black) The temperature profiles of three model atmospheres: IsoAtmo, IsoStrat, and StdAtmo. (grey)
The area-weighted mean of atmospheric temperature during year 2020 in the ERA5 reanalysis.

layer with the same gas composition as the other layers; this is done purely for the purposes of
visualization and has no impact on the radiative fluxes at pressures below 105 Pa. In reality,
placing a cold isothermal layer directly on top of a warm isothermal layer would induce vigorous
convection, but IsoAtmo is a well-defined atmosphere that will serve an important purpose: it will
demonstrate that the logarithmic forcing persists even without a continuously varying temperature
profile.

IsoStrat, shown in the middle panel, has a troposphere with a realistic lapse rate, but has a
stratosphere that is isothermal. The advantage of this atmosphere is conceptual simplicity: the
surface and stratosphere are isothermal, and so the movement of sets of wavenumbers from the
surface to the stratosphere has a straightforward radiative effect. Fortunately, this simplicity is
largely retained in the real atmosphere because the stratosphere has a mean lapse rate – defined
here as 𝑑𝑇/𝑑 log(𝑝) – whose magnitude is only one third as large as the troposphere’s: 𝑑𝑇/𝑑 log(𝑝)
is 84 K in the troposphere and−28 K in the stratosphere. Therefore, we will find that the logarithmic
nature of the forcing is retained in StdAtmo, which is the atmosphere shown in the right panel of
Figure 4.

These three atmospheres, plus two others, are defined in Figure 5. The HotStrat and DeepTrop
atmospheres are modifications of IsoStrat in which the stratosphere is given the same temperature as
the surface (HotStrat) or the troposphere is made much deeper (DeepTrop). HotStrat and DeepTrop
will be used in sections 9 and 10.

5. The five properties

a. Property #1: Dominance of the 15-micron band

We saw in the top panel of Figure 2 that 𝐹2×(256 ppmv) in IsoStrat is dominated by the 15-
micron band. Figure 6 shows, using the line-by-line model, that the 15-micron band dominates
over a wide range of CO2 concentrations in StdAtmo (the most realistic of the model atmospheres).
The solid curve shows the fraction of 𝐹 tot generated by wavenumbers in the 15-micron band (recall
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Fig. 5. For 𝑥 ≡ log10(𝑝/Pa), the temperature in Kelvin for each atmosphere (columns) within each range of 𝑥
(rows).

that 𝐹 tot is the TOA upwelling flux without the CO2 minus the TOA upwelling flux with the CO2).
The dashed curve shows the fraction of 𝐹2× (change in 𝐹 tot from a doubling of CO2) that is caused
by wavenumbers in the 15-micron band. Since 𝐹2×(𝑞) is defined as the change in forcing from 𝑞

to 2𝑞, the value at 2048 ppmv corresponds to doubling from 2048 to 4096 ppmv. We see that, for
concentrations ranging from 4 to 4096 ppmv, the 15-micron band is responsible for the majority
of the forcing, ranging from 89% to 97% for 𝐹 tot and from 61% to 98% for 𝐹2×. Between 2048
and 4096 ppmv, the bands of CO2 centered at 15, 10, 7.6, 5, and 4.3 𝜇m contribute 61%, 27%,
6%, 5%, and 1% to 𝐹2×, respectively, indicating that bands at shorter wavelengths start to make
substantial contributions to the forcing at these large concentrations (Zhong and Haigh 2013). At
preindustrial and current concentrations, the 15-micron band is responsible for 96% of 𝐹 tot and
82-86% of 𝐹2×.

b. Property #2: Uniform distribution of log(𝜅)
The top-left panel of Figure 7 shows, in the solid curve, the probability distribution function

(PDF) of the log(𝜅) values within the 15-micron band calculated at the surface (1 bar and 289 K)
using the line-by-line model. The dashed curve depicts a uniform distribution for illustration. We
see that the line-by-line PDF approximates a uniform distribution over a remarkable six orders of
magnitude. The bottom-left panel of Figure 7 shows the corresponding cumulative distribution
function (CDF) of the 𝜅 values, i.e., the integral of the PDF. The integral of a uniform distribution,
shown by the dashed curve, is an upward-sloping line with values bounded below and above by
zero and one, respectively. We see that the line-by-line CDF approximates this closely. The right
column plots the PDF and CDF in the stratosphere (0.01 bar and 233 K). Note that the distribution
remains approximately uniform, but has shifted to lower 𝜅 by a factor equal to the ratio of pressures;
this behavior will be explained in section 5c.

The uniform distribution is also apparent when looking at the spectrum as a function of wavenum-
ber. The top-left part of Figure 8 shows the absorption coefficient 𝜅(�̃�) for the 15-micron band
plotted on a log axis and calculated using the line-by-line model at 1 bar and 289 K. Property #2
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Fig. 6. (solid) Fraction of 𝐹 tot in StdAtmo that is generated by the 15-micron band. (dashed) Fraction of 𝐹2× in
StdAtmo that is generated by the 15-micron band.

is apparent from the approximately linear decay of log(𝜅) as a function of wavenumbers from the
center of the band.

Let us now resort those wavenumbers in order of increasing 𝜅, as is done in the k distribution
method (e.g., Stephens 1984), which is a standard technique in radiation parameterization. Let the
function CDF be the cumulative distribution of 𝜅 values within the 15-micron band at this pressure
and temperature, which was shown in the bottom-left panel of Figure 7. In other words, CDF(𝜅)
is the fraction of the 400-cm−1-wide interval of wavenumbers that have an absorption coefficient
less than 𝜅. The inverse of this, CDF−1, maps the interval [0,1] to absorption coefficients in a
monotonically increasing way. We can then define 𝜅′(�̃�) as

𝜅′(�̃�) = CDF−1
(
�̃�− �̃�1
�̃�2 − �̃�1

)
, (2)

where �̃�1 = 467 cm−1 and �̃�2 = 867 cm−1 are the boundaries of the 15-micron band. By construction,
this function is simply a resorting of the original absorption coefficients. It is plotted as the dashed
curve in Figure 8, and it is nothing more than the curve in the bottom panel of Figure 7 with the
axes swapped. Note that log(𝜅′) is nearly linear in wavenumber.

The lower-left part of Figure 8 plots the Planck distribution within the 15-micron band at
temperatures of 205 and 289 K. We see that the difference between the two Planck distributions is
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Fig. 7. (top left) Probability distribution function (PDF) of the values of log10 [𝜅/(m2 mol−1)] within the
15-micron band calculated at 1 bar and 289 K using the line-by-line model. The dashed curve depicts a uniform
distribution for illustration. (bottom left) The corresponding cumulative distribution functions (CDFs). (right
column) Same, but for 0.01 bar and 233 K (the temperature there in StdAtmo).

nearly independent of wavenumber, consistent with property #5. Section 5f will show that this is
sufficient for us to ignore the wavenumber dependence of the Planck distribution for the purposes
of understanding the forcing. Once this approximation is made, the only physical property that
depends on wavenumber is 𝜅. Therefore, we are free to resort the wavenumbers so long as we keep
track of the corresponding 𝜅 values. In particular, we can replace 𝜅 with 𝜅′ in calculations of the
forcing without affecting the answer.

To go a step further, we can approximate the spectrum shown in the left panel of Figure 8 with the
𝜅 shown in the right panel. This represents 𝜅(𝑝0, �̃�) at 𝑝0 = 105 Pa and it is written mathematically
as

𝜅(𝑝0, �̃�) =
{
𝜅0𝑒

𝑏�̃� �̃�1 < �̃� < �̃�2
0 otherwise , (3)

with �̃�1 = 467 cm−1 and �̃�2 = 867 cm−1. Fitting equation (3) to the 𝜅′ in the left panel using least
squares, we find best-fit coefficients of 𝜅0 = 8.4×10−15 m2 mol−1 and 𝑏 = 0.04 cm. Equation (3) is
nearly all of the spectroscopic information that is needed to construct a model of the forcing from
carbon dioxide. The only remaining detail is to specify how 𝜅 varies with pressure.

c. Linearity of 𝜅 in pressure

In section 3, we ignored any pressure or temperature dependence of 𝜅 when we derived relation
(1). We will now show that relation (1) continues to hold even with those dependencies.
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Fig. 8. (top left) Plots of (solid) the absorption coefficient 𝜅(�̃�) of carbon dioxide at 1 bar and 289 K and
(dashed) the resorted 𝜅′ (�̃�) defined in equation (2). (lower left) The Planck distributions at temperatures of 205
and 289 K. (upper right) The simple model’s absorption coefficient 𝜅(�̃�), which is exponential in �̃�. (lower right)
The simple model’s Planck distributions, which have no explicit dependence on wavenumber.

The value of 𝜅 at any particular wavenumber has contributions from spectral lines representing
many different vibrational and rotational transitions of CO2, and each of those lines has a shape
that varies with temperature and pressure. To get an indication of how this sum of contributions
might change with pressure and temperature, we can use the Lorentz line shape. The Lorentz
line shape can be derived from first principles with some approximations (e.g., Van Vleck and
Weisskopf 1945) and is supported empirically within about a hundred line widths of the line center
(Pierrehumbert 2010). Although line-by-line models use a line shape that deviates from this,
especially far from the line center, the Lorentz line shape is adequate for our discussion here.

With a Lorentz line shape, the absorption coefficient due to a single line centered at �̃�𝑐 is

𝜅 =
𝑆(𝑇)
𝜋𝛾

𝛾2

𝛾2 + (�̃�− �̃�𝑐)2 ,

where the line width 𝛾 can be represented by

𝛾 = 𝛾0
𝑝

𝑝0

(
𝑇0
𝑇

)𝑛
14



Fig. 9. (left) Absorption coefficient 𝜅 for a single spectral line with a Lorentz line shape with width 𝛾 = 0.1
cm−1. The absorption coefficient is plotted as a function of distance (in wavenumber) from the line center, and it
is plotted as normalized by the value at line center. (right) The change in log(𝜅) for this spectral line per change
in log(𝑝), keeping temperature constant. Where the value is one, 𝜅 scales linearly with pressure.

with an 𝑛 that varies from line to line but is typically around 0.5 (Pierrehumbert 2010). This line
shape is plotted in the left panel of Figure 9 using 𝛾 = 0.1 cm−1.

Although both the line intensity 𝑆 and line width 𝛾 depend on temperature, it is the dependence
of 𝛾 on pressure that tends to dominate the changes in line shapes as we move up and down in the
atmosphere (Pierrehumbert 2010). Far from the line center (�̃�− �̃�𝑐 ≫ 𝛾), when pressure is varied
isothermally, 𝜅 varies linearly with pressure. The right panel of Figure 9 plots 𝜕 log(𝜅)/𝜕 log(𝑝)
to illustrate this point: everywhere except for the vicinity of the line center, this derivative is unity,
indicating a proportionality with respect to pressure.

To the extent that the prominent spectral lines of CO2 are sufficiently well-spaced, this result tells
us that most of the 15-micron band should scale linearly with pressure. Thus, it might be sufficient
to approximate 𝜅 as linear in pressure throughout the entire band. It is not obvious a priori that this
should work since there are also temperature dependencies of the individual line shapes and line
strengths, but it does work in many cases and it is a common approximation (Pierrehumbert 2010).
To demonstrate the approximate linearity in pressure, Figure 10 plots 𝜅 calculated from the line-
by-line model as a function of pressure level for 4000 equally spaced wavenumbers in each of three
different atmospheres (IsoAtmo, IsoStrat, and StdAtmo). To avoid the figures becoming saturated
with color, the individual curves are plotted using a translucent color. We see that, regardless of
the thermal structure of the atmosphere, the vast majority of the wavenumbers have 𝜅 values that
increase quasi-linearly as we move to higher pressure in the atmosphere. The lower-right panel
quantifies this by plotting three histograms (one for each atmosphere) of the slopes of the best-fit
lines to each of the 4000 curves. Less than 2% (1%, 3%) of the slopes in IsoAtmo (IsoStrat,
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Fig. 10. Translucent plots of 𝜅(�̃�, 𝑝,𝑇 (𝑝)) as a function of 𝑝 for 4000 equally spaced samples of �̃� from 467
to 867 cm−1 for the (upper left) IsoAtmo, (upper right) IsoStrat, and (lower left) StdAtmo atmosphere. The bar
in log10(𝜅) represents an average over log10(𝑝/Pa) from 2 to 5. (lower right) For each case, the histogram of the
best-fit slopes for each of the 4000 wavenumbers.

StdAtmo) case are negative. We see that the slopes are clumped around unity, demonstrating the
quasi-linear dependence of 𝜅 on pressure.
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Since the 𝜅 values are approximately linear in 𝑝, we can generalize equation (3) to give a
simplified model for 𝜅 at any pressure,

𝜅(𝑝, �̃�) =
{ 𝑝

𝑝0
𝜅0𝑒

𝑏�̃� �̃�1 < �̃� < �̃�2
0 otherwise . (4)

This equation, together with the constants given at the end of section 5b, is all of the spectroscopic
information we need about carbon dioxide to understand its forcing for concentrations in the range
of 4 to 4096 ppmv.

d. Property #3: log(𝑝em) ∼ − log(𝑞𝜅)
Now that we have this simple model for 𝜅, it is straightforward to reassess the validity of relation

(1). For a single well-mixed greenhouse gas, the longwave optical depth is defined as

𝜏(𝑝, �̃�, 𝑞) =
∫ 𝑝

0

𝑑𝑝

𝑔𝑚0
𝑓 𝑞𝜅 . (5)

Here, 𝑔 is the gravitational acceleration (9.81 m s−2), 𝑑𝑝/𝑔 is the differential overlying air mass per
area, 𝑞 is the volume fraction of the greenhouse gas (e.g., 256 ppmv), 𝜅 is the absorption coefficient
(i.e., the absorption cross section per molecule), 𝑚0 is the mean mass per molecule of air (29
g/mol), and 𝑓 = 5/3 is the diffusivity factor used to approximate an integration over the hemisphere
of propagation directions (Elsasser 1942). Substituting the expression for 𝜅 from equation (4), this
gives

𝜏(𝑝, �̃�, 𝑞) =
{

𝑓 𝑝2𝑞𝜅0
2𝑔𝑝0𝑚0

𝑒𝑏�̃� �̃�1 < �̃� < �̃�2
0 otherwise

. (6)

As before, we can define the emission pressure 𝑝em as the pressure level where 𝜏 = 1. Setting 𝜏 to
one in equation (6) and solving for pressure, we get

𝑝em(�̃�, 𝑞) =
{√︃

2𝑔𝑝0𝑚0
𝑓 𝑞𝜅0

𝑒−𝑏�̃�/2 �̃�1 < �̃� < �̃�2

∞ otherwise
. (7)

Here, an infinite 𝑝em(�̃�, 𝑞) means that the emission to space at wavenumber �̃� emanates from the
surface regardless of 𝑞; recall that, in this simple model, carbon dioxide has no absorptivity outside
of �̃�1 to �̃�2. Using equation (4), we can write equation (7) as 𝑝em =

√︁
2𝑔𝑝0𝑚0/ 𝑓 𝑞𝜅(𝑝0, �̃�). Taking

the logarithm of this, we find that we recover property #3, which states that log(𝑝em) ∼ − log(𝑞𝜅),
so long as we interpret the “𝜅” in this linear relation as being evaluated at some reference pressure.

e. Property #4: Head in the stratosphere and rear in the surface

With equation (7), we can evaluate whether property #4 is true, i.e., if the head of the wavenumber
train is in or near the stratosphere and if the rear of the wavenumber train is in the surface. Using the
values for 𝑏 and 𝜅0 obtained in section 5b, we can calculate the minimum and maximum emission
pressures from equation (7) as 𝑝em(�̃�2, 𝑞) and 𝑝em(�̃�1, 𝑞), which correspond to the head and rear of
the train, respectively. Figure 11 plots these as functions of 𝑞 from 4 to 4096 ppmv. At all of these
concentrations, the rear is in the surface. At modern concentrations, the head is in the stratosphere.
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Fig. 11. The locations of the train’s head and rear, 𝑝em(�̃�2, 𝑞) and 𝑝em(�̃�1, 𝑞), as functions of the CO2 concentration
𝑞.

At 4 ppmv, the head of the train is in the upper troposphere at 300 mbar, but we will see in section
7 that this is close enough to the tropopause to make 𝐹2× nearly as large (75% as big) as it is when
the head of the train is well-ensconced in the stratosphere.

Only those wavenumbers emitting to space from above the surface contribute to 𝐹 tot. Those are
the wavenumbers whose 𝜅(𝑝0, �̃�) exceeds 2𝑔𝑚0/ 𝑓 𝑞𝑝0. For 𝑞 = 4 (256, 4096) ppmv, these are the
wavenumbers with 𝜅(𝑝0, �̃�) exceeding 0.9 (0.01, 8×10−4) m2 mol−1. The middle panel of Figure
2 can be used to identify the wavenumbers in the original (unsorted) spectral space that contribute
to 𝐹 tot at each of these concentrations.

f. Property #5: Wavenumber independence of the Planck distribution

If we approximate all of a wavenumber’s radiation to space as coming from its emission pressure,
then the spectral forcing from a doubling of concentration is

𝐹2×
�̃� (�̃�, 𝑞) ≈ 𝜋𝐵

[
�̃�,𝑇 (𝑝em(�̃�, 𝑞))

]
− 𝜋𝐵

[
�̃�,𝑇 (𝑝em(�̃�,2𝑞))

]
. (8)

We see that 𝐹2×
�̃�

does not depend on the overall magnitude of 𝐵, but on how much it changes with
respect to temperature. Likewise, 𝐹2×, which is simply an integral of 𝐹2×

�̃�
, depends only on how
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𝐵 changes with temperature and not its overall magnitude. Therefore, if the change in 𝐵 with
temperature is independent of the wavenumber to good approximation, then we can approximate
𝐵 as having no explicit dependence on wavenumber (as was depicted in the right column of Figure
8).

In Earth’s troposphere, the globally averaged temperatures range from 205 K to 289 K. We need
to know, therefore, whether 𝐵(�̃�,289 K) − 𝐵(�̃�,205 K), for the various �̃� within the band, can be
approximated as 𝐵(�̃�0,289 K) − 𝐵(�̃�0,205 K), where �̃�0 is the wavenumber in the middle of the
band. For this to be true, we would need 𝑑𝐵/𝑑𝑇 at the mid-tropospheric temperature of 247 K
(the average of 205 K and 289 K) to be independent of �̃� in the vicinity of �̃� = �̃�0. In other words,
we would need 𝑑2𝐵/𝑑𝑇𝑑�̃� = 0 at 𝑇 = 247 K and �̃� = 1/(15 𝜇m) = 667 cm−1. By differentiation
of the Planck distribution, we find that 𝑑2𝐵/𝑑𝑇𝑑�̃� = 0 when �̃� = 𝑥𝑘𝑇/ℎ𝑐, where 𝑥 is the solution
to 𝑥 = 4(1− 𝑒−𝑥)/(1+ 𝑒−𝑥), which evaluates to 𝑥 ≈ 3.83. For the mid-tropospheric temperature
of 𝑇 = 247 K, this gives �̃� = 658 cm−1 = 1/(15.2 𝜇m), confirming that the the 15-micron band is
ideally situated for property #5 to be valid.

We can also check property #5 numerically. For any particular wavenumber �̃� in the band, the
relative error (RE) caused by ignoring the wavenumber dependence of 𝐵 is

RE =
𝐵(�̃�0,289 K) −𝐵(�̃�0,205 K)
𝐵(�̃� ,289 K) −𝐵(�̃� ,205 K) −1 .

For a band that is 400-cm−1 wide like the 15-micron band of CO2, the root mean square (RMS) of
this relative error across all the wavenumbers in the band is

RMSRE =

√︄
1

400 cm−1

∫ �̃�0+200 cm−1

�̃�0−200 cm−1
𝑑�̃�

[
𝐵(�̃�0,289 K) −𝐵(�̃�0,205 K)
𝐵(�̃� ,289 K) −𝐵(�̃� ,205 K) −1

]2
. (9)

This RMSRE is plotted in Figure 12 as a function of �̃�0. We see that the center of the 15-micron
CO2 band is located almost exactly where the RMSRE is minimized. For the 15-micron band,
replacing �̃� with �̃�0 = 667 cm−1 in the Planck distribution generates a root mean square relative
error of only 7%. Since the purpose of this paper is understanding the origin of carbon dioxide’s
logarithmic forcing, this error is perfectly acceptable. In recognition of property #5, we will
henceforth write the Planck distribution as a function only of temperature, i.e., as 𝐵(𝑇), with the
understanding that it is evaluated at a wavenumber of �̃�0 = 667 cm−1, i.e.,

𝐵 = 𝐵(𝑇) =
2ℎ�̃�3

0𝑐
2

𝑒ℎ𝑐�̃�0/𝑘𝐵𝑇 −1
. (10)

6. The log(𝑝) axis

In order to visualize a greenhouse gas’s radiative forcing, we need to derive the weighting function
for emission to space, but, to do that, we must first choose an appropriate vertical axis. We learned
in section 3 that, by virtue of relation (1) and the particular spectrum of CO2, the wavenumbers in
the 15-micron band are uniformly distributed within an interval of log(𝑝em). This suggests that
the most natural vertical coordinate for understanding the radiative forcing from carbon dioxide is
not pressure 𝑝 or height 𝑧, but the logarithm of pressure log(𝑝). In fact, the case for using log(𝑝)
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Fig. 12. Error (RMSRE from equation 9) produced by ignoring the explicit wavenumber dependence of the
Planck distribution, plotted as a function of the center of a hypothetical 400-cm−1-wide band. The 15-micron
band of carbon dioxide is located close to where this error is minimized.

as the vertical coordinate goes even deeper: not only is it natural to use for CO2, but the log(𝑝)
axis is also a natural vertical axis to use for any generic greenhouse gas with 𝜅 ∝ 𝑝.

To see why, note that the spectral flux to space of infrared radiation can be written as

Spectral flux to space =
∫ ∞

0
𝜋𝐵𝑒−𝜏𝑑𝜏 . (11)

From the expression for 𝜏 in equation (5), we know that 𝜏 ∝ 𝑝2 so long as 𝜅 ∝ 𝑝. This then implies
that 𝑑𝜏 = 2𝜏𝑑 log(𝑝). This relation allows us to transform the expression in equation (11) from an
integral over 𝜏 to an integral over log(𝑝),

Spectral flux to space =
∫ ∞

−∞
𝜋𝐵 2𝑒−𝜏𝜏︸︷︷︸

≡𝜙log(𝑝)

𝑑 log(𝑝) , (12)

where we see that
𝜙log(𝑝) (�̃�, 𝑝, 𝑞) ≡ 2𝑒−𝜏𝜏 (13)

is the spectral weighting function for emission to space on the axis of log(𝑝). In other words,
𝜙log(𝑝) (�̃�, 𝑝, 𝑞)𝑑 log(𝑝) is the fraction of emission to space at wavenumber �̃� that emanates from
between log(𝑝) and log(𝑝) + 𝑑 log(𝑝). Integrating 𝜙log(𝑝) over all log(𝑝) gives one: this can
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Fig. 13. Weighting function 𝜙log(𝑝) (�̃�, 𝑝, 𝑞) of emission to space for any atmosphere with a single well-mixed
greenhouse gas whose absorption coefficients are proportional to pressure. The right-most curve has 𝑞 = 𝑞0 and
so peaks where log(𝑝) = log(𝑝em(�̃�, 𝑞0)). Curves for eight other values of 𝑞 are also plotted with the value of 𝑞
labeled just under the peak of each curve.

be checked by noting that 𝜙log(𝑝)𝑑 log(𝑝) = 𝑒−𝜏𝑑𝜏. Figure 13 plots 𝜙log(𝑝) for several different
concentrations 𝑞 that all differ by factors of two. Note that Figure 13 is not specific to carbon
dioxide: it applies to any atmosphere with a single well-mixed greenhouse gas whose absorption
coefficients are proportional to pressure.

Since 𝜙log(𝑝) is a function only of 𝜏, and since 𝜏 ∝ 𝑞𝑝2, we can conclude that 𝜙log(𝑝) satisfies the
following identity,

𝜙log(𝑝) (�̃�, 𝑝, 𝑞′) = 𝜙log(𝑝) (�̃�, 𝑝
√︁
𝑞′/𝑞, 𝑞) . (14)

When plotted on a log(𝑝) axis, this means that an increase in gas concentration from 𝑞 to 𝑞′

preserves the shape of 𝜙log(𝑝) and simply moves it down the log(𝑝) axis a distance of log(𝑞′/𝑞)/2.
For example, a doubling of the greenhouse-gas concentration moves the emission to space to lower
log(𝑝) by an amount log(2)/2; this behavior is evident in Figure 13. These same properties also
carry over to the broadband weighting function for emission to space 𝜓log(𝑝) , defined as

𝜓log(𝑝) (𝑝, 𝑞) =
∫ ∞

0
𝑑�̃�𝜙log(𝑝) (�̃�, 𝑝, 𝑞) . (15)

This is the “train” of emission to space that was alluded to in section 3, where each
𝜓log(𝑝) (𝑝, 𝑞)𝑑 log(𝑝) (with dimensions of inverse length) can be thought of as a car of that train.
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Since individual wavenumbers emit to space not just from 𝑝em, but from all pressures (with weights
given by 𝜙log(𝑝)), we see now that each train car has contributions from all wavenumbers, although
it is those wavenumbers with 𝑝em near 𝑝 that contribute most to 𝜓log(𝑝) (𝑝, 𝑞)𝑑 log(𝑝).

If we were to use a different vertical coordinate 𝑓 (𝑝) ̸∝ log(𝑝), e.g., 𝑓 (𝑝) = 𝑝, then the spectral
weighting function on the 𝑓 (𝑝) axis 𝜙 𝑓 (𝑝) would be related to 𝜙log(𝑝) by

𝜙 𝑓 (𝑝) (�̃�, 𝑝, 𝑞) =
𝑑 log(𝑝)
𝑑𝑓 (𝑝) 𝜙log(𝑝) (�̃�, 𝑝, 𝑞) .

Since the factor 𝑑 log(𝑝)/𝑑𝑓 (𝑝) is a function of 𝑝 ≠ 𝜏, 𝜙 𝑓 (𝑝) cannot be written as a function solely
of 𝜏, and so it does not obey the identity given in equation (14). Therefore, a change in 𝑞 is not
equivalent to shifting 𝜙 𝑓 (𝑝) down the 𝑓 (𝑝) axis. Thus, log(𝑝) is the natural vertical axis for simple
models of radiative transfer that approximate 𝜅 as either 𝜅 = (𝑝/𝑝0)𝜅(𝑝0, �̃�), as done above, or as
𝜅 = 𝜅(�̃�) 5. Fortunately, since log(𝑝) is approximately proportional to the geometric height 𝑧, this
is also a somewhat intuitive vertical axis. The log(𝑝) axis will be used exclusively throughout the
remainder of this paper, so we will henceforth drop the subscript log(𝑝) from weighting functions
for notational simplicity.

7. Simple model of the forcing

We now have the pieces we need to derive an analytic expression for the forcing from carbon
dioxide. Noting that 𝜏 is proportional to 𝑝2, and that 𝜏 = 1 when 𝑝 = 𝑝em(�̃�, 𝑞), we can write 𝜏 as

𝜏(�̃�, 𝑝, 𝑞) = 𝑝2

𝑝em(�̃�, 𝑞)2 . (16)

As we learned in the previous section, the spectral weighting function 𝜙 is 2𝑒−𝜏𝜏. Therefore,

𝜙(�̃�, 𝑝, 𝑞) = 2exp
(
− 𝑝2

𝑝em(�̃�, 𝑞)2

)
𝑝2

𝑝em(�̃�, 𝑞)2 . (17)

This applies to any atmosphere with a sole greenhouse gas whose 𝜅 scales like 𝑝.
To calculate the broadband weighting function 𝜓, we need to know the details of the function

𝑝em(�̃�, 𝑞). In our simple model of carbon dioxide, 𝑝em(�̃�, 𝑞) takes the form of equation (7),
which encodes the fact that the wavenumbers of carbon dioxide’s 15-micron band have a uniform
distribution on log(𝜅). Using equations (7), (15), and (17) to calculate 𝜓 (see the appendix for
details), we get

𝜓(𝑝, 𝑞) = 2
𝑏

[
𝑒−𝑝

2/𝑝em (�̃�1,𝑞)2 − 𝑒−𝑝
2/𝑝em (�̃�2,𝑞)2

]
. (18)

This is plotted in Figure 14 for 𝑞 = 256 ppmv as the curve labeled by 𝑛 = 2. Note that the magnitude
of 𝜓 is 2/𝑏 = 50 cm−1. Mathematically, equation (18) is closely related to a boxcar function: if
the exponents of 2 are replaced with an integer 𝑛 that is then taken to infinity, we obtain a boxcar
function, i.e.,

lim
𝑛→∞

[
𝑒−𝑝

𝑛/𝑝em (�̃�1,𝑞)𝑛 − 𝑒−𝑝
𝑛/𝑝em (�̃�2,𝑞)𝑛

]
=

{
1 𝑝em(�̃�2, 𝑞) < 𝑝 < 𝑝em(�̃�1, 𝑞)
0 otherwise . (19)

5When 𝜅 is independent of pressure, a change in concentration from 𝑞 to 𝑞′ moves 𝜓 down the log(𝑝) axis by an amount log(𝑞′/𝑞) instead of
log(𝑞′/𝑞)/2.
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Fig. 14. (blue) Plot of 𝜓, the broadband weighting function for emission to space, from equation (18). (grey)
Plots of equation (18) with the exponents of 2 replaced with other positive integers. (black) Plot of equation (18)
with the exponents of 2 replaced with ∞.

The same boxcar function for 𝜓 would be obtained if the factors of 2 in equation (17) for 𝜙 were
replaced with 𝑛 and taken to infinity; in that limit, 𝜙(�̃�, 𝑝, 𝑞) = 𝛿[log(𝑝) − log(𝑝em(�̃�, 𝑞))] and
wavenumbers emit to space exactly from their 𝑝em. As is evident from Figure 14, the 𝑛 =∞ boxcar
limit is a decent approximation for the real 𝑛 = 2 case, at least for the purposes of understanding
the behavior of the forcing and its overall magnitude.

The total forcing 𝐹 tot is the integral of 𝑑 log(𝑝)𝜓(𝑝, 𝑞) times the difference between 𝜋𝐵 at the
surface temperature (which is the spectral flux emitted to space if 𝑞 = 0) and 𝜋𝐵 at the temperature
𝑇 (𝑝). Mathematically, this is

𝐹 tot(𝑞) =
∫ ∞

0
𝑑 log(𝑝)𝜓(𝑝, 𝑞)𝜋

[
𝐵 (𝑇surf) −𝐵 (𝑇 (𝑝))

]
. (20)

If we use the boxcar approximation, this becomes

𝐹 tot(𝑞) ≈ 400 cm−1𝜋𝐵 (𝑇surf) −
2𝜋
𝑏

∫ log[𝑝em (�̃�1,𝑞)]

log[𝑝em (�̃�2,𝑞)]
𝑑 log(𝑝)𝐵 (𝑇 (𝑝)) . (21)

Note that this depends on 𝑞 only through the limits of integration, and a change in log(𝑞) of
𝑑 log(𝑞) changes both limits by −𝑑 log(𝑞)/2 (because 𝑝em ∝ 𝑞−1/2). Therefore,

𝑑𝐹 tot

𝑑 log(𝑞) ≈
𝜋

𝑏

[
𝐵

(
𝑇 (𝑝em(�̃�1, 𝑞))

)
−𝐵

(
𝑇 (𝑝em(�̃�2, 𝑞))

)]
. (22)
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Fig. 15. For (cyan) 256 ppmv to (purple) 2048 ppmv in powers of two using the best-fit values for 𝑏

and 𝜅0 from section 5b, (first panel) the broadband weighting function 𝜓 from equation (18), (second panel)
the temperature profile in the IsoStrat atmosphere, (third panel) the total baric (per logarithm of pressure)
forcing 𝐹 tot

log(𝑝) from equation (25), and (fourth panel) the baric forcing from a doubling of concentration
𝐹2×

log(𝑝) (𝑝, 𝑞) ≡ 𝐹 tot
log(𝑝) (𝑝,2𝑞) −𝐹 tot

log(𝑝) (𝑝, 𝑞).

The change in forcing for a doubling is approximately equal to this derivative times log(2), i.e.,

𝐹2× ≈ 𝜋 log(2)
𝑏

[
𝐵

(
𝑇 (𝑝em(�̃�1, 𝑞))

)
−𝐵

(
𝑇 (𝑝em(�̃�2, 𝑞))

)]
. (23)

If the stratosphere is isothermal and if, as 𝑞 changes, 𝑝em(�̃�2, 𝑞) remains greater than the surface
pressure and 𝑝em(�̃�1, 𝑞) remains within the stratosphere, then the two Planck terms will be constant,
giving

𝐹2× ≈ 𝜋 log(2)
𝑏

[𝐵(𝑇surf) −𝐵(𝑇strat)] ≈ 5 W m−2 . (24)

In this regime, the forcing from a doubling of CO2 is independent of concentration; this is the
well-known logarithmic dependence of forcing on the concentration of CO2.

While the boxcar approximation is appealing for its simplicity, the forcing is also straightforward
to calculate when using the more accurate expression for 𝜓 in equation (18). The first panel of
Figure 15 plots this 𝜓 for CO2 concentrations of 256 ppmv (cyan), 512 ppmv, 1024 ppmv, and
2048 ppmv (purple) using the values of 𝑏 and 𝜅0 found in section 5b. As expected, 𝜓 retains its
shape and moves to lower log(𝑝) by an amount log(2)/2 for each doubling of concentration. The
second panel of Figure 15 plots the temperature profile of the IsoStrat atmosphere.

To visualize where in the atmosphere the forcing is being generated, note that we can write
equation (20) as 𝐹 tot =

∫ ∞
0 𝑑 log(𝑝)𝐹 tot

log(𝑝) (𝑝, 𝑞), where

𝐹 tot
log(𝑝) (𝑝, 𝑞) = 𝜓(𝑝, 𝑞)𝜋 [𝐵 (𝑇surf) −𝐵 (𝑇 (𝑝))] (25)

is what we will refer to as the total baric forcing (“baric” denoting per log(𝑝) interval, just as
“spectral” implies per wavenumber interval). In particular, 𝐹 tot

log(𝑝) (𝑝, 𝑞)𝑑 log(𝑝) is the contribution
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to the total forcing caused by emission to space coming from between log(𝑝) and log(𝑝) +𝑑 log(𝑝)
instead of from the surface. Note that a log(𝑝) interval contributes to the forcing only if there is
emission to space from that interval (i.e., if 𝜓(𝑝, 𝑞) > 0) and if the temperature in that interval
differs from the surface (i.e., if 𝑇 (𝑝) ≠ 𝑇surf). The third panel of Figure 15 plots 𝐹 tot

log(𝑝) (𝑝, 𝑞) and
the fourth panel plots 𝐹2×

log(𝑝) (𝑝, 𝑞) ≡ 𝐹 tot
log(𝑝) (𝑝,2𝑞) −𝐹 tot

log(𝑝) (𝑝, 𝑞). Note that all of the contribution
to 𝐹2×

log(𝑝) is in the stratosphere: the total forcing is increased by the introduction of new sets of
wavenumbers emitting to space from the stratosphere. Note that the shape of the tropospheric
temperature profile does not matter for 𝐹2×: all that matters is the temperature difference between
the train’s head and rear, which are in the stratosphere and surface, respectively.

Equations (7), (18), and (20) form a simple model for the radiative forcing of carbon dioxide
that can be used to estimate the forcing (for concentrations in the range of 4 to 4096 ppmv) in any
atmosphere (in which there are no clouds, aerosols, or other greenhouse gases). The left panel of
Figure 16 shows 𝐹2× calculated from this simple model for various concentrations in the IsoAtmo,
IsoStrat, and StdAtmo atmospheres. The IsoAtmo forcing matches the boxcar prediction of 5 W
m−2 because the head and rear of the wavenumber train are well within regions of the atmosphere
with temperatures of 205 and 289 K, respectively. The IsoStrat and StdAtmo forcings start at a
lower value of 4 W m−2 at 4 ppmv because the head of the train is in the upper troposphere, which
is warmer than the tropopause. The StdAtmo forcing peaks when the head of the train is near the
cold-point tropopause; since temperature rises with height in the StdAtmo stratosphere, further
increases in concentration lead to a decrease in 𝐹2×. For all three cases, however, 𝐹2× remains
around 4–5 W m−2 over ten doublings of concentration6. The right panel of Figure 16 plots 𝐹 tot

relative to a concentration of 4 ppmv to illustrate how similarly logarithmic all three cases are.

8. Behavior of the real case

In the preceding sections, we learned that the simple model’s broadband weighting function 𝜓

has a magnitude of 2/𝑏 and it shifts to lower log 𝑝 by log(2)/2 for every doubling of 𝑞. In other
words,

𝜓(𝑝, 𝑞) = 𝜓

(
log 𝑝 + 1

2
log𝑞

)
≈ 2
𝑏
. (26)

We should expect the real 𝜓, as calculated by a line-by-line model, to approximately exhibit these
same properties.

To calculate 𝜓 from a line-by-line model, we need the emission pressures for a dense sampling
of wavenumbers. The profile of the absorption coefficient 𝜅 is first obtained from the line-by-line
model. That 𝜅 profile (m2 mol−1) is then multiplied by the number density of carbon dioxide (with
units of mol m−3) and integrated over height to get the 𝜏 profile, at which point we can find the
pressure where 𝜏 equals one. Once we have these emission pressures (𝑝em,𝑖 indexed from 1 to
40,001 to cover 467 cm−1 to 867 cm−1 sampled at 0.01 cm−1), we evaluate the integral in equation

6It is worth emphasizing how very logarithmic all of these cases are. When 𝐹 tot is perfectly logarithmic, i.e., 𝐹 tot ∼ log(𝑞) , then the ratio
of the maximum 𝐹2× to the minimum 𝐹2× over these ten doublings is one: [log(4096) − log(2048) ]/[log(8) − log(4) ] = 1. This is the case
for IsoAtmo. For StdAtmo, the ratio exhibited in Figure 16 is about 5/4 = 1.25, which is quite close to one. In contrast, if 𝐹 tot ∼ 𝑞, as in the
case of very weakly absorbing gas, the ratio over ten doublings would be (4096 − 2048)/(8 − 4) = 512. Or, if 𝐹 tot ∼ √

𝑞, the ratio would be
(
√

4096−
√

2048)/(
√

8−
√

4) =
√

512 ≈ 23.
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Fig. 16. (left) 𝐹2× calculated from equations (7), (18), and (20) using 𝜅0 = 8.4×10−15 m2 mol−1 and 𝑏 = 0.04
cm for the IsoAtmo, IsoStrat, and StdAtmo atmospheres. (right) Same, but for 𝐹 tot.

(15) to get the broadband weighting function,

𝜓(𝑝, 𝑞) =
(
0.01 cm−1

) 40001∑︁
𝑖=1

2exp
(
− 𝑝2

𝑝em,𝑖 (𝑞)2

)
𝑝2

𝑝em,𝑖 (𝑞)2 . (27)

Figure 17 plots this broadband weighting function at CO2 concentrations ranging from 4 ppmv
to 4096 ppmv in the StdAtmo atmosphere. Although the shape of this line-by-line 𝜓 has more
wiggles7 than in the simple model’s 𝜓 of Figure 15, we see, as expected, that the line-by-line 𝜓

covers the same-sized swath of log(𝑝), it has an overall magnitude of about 2/𝑏 = 50 cm−1, and it
moves down the log(𝑝) axis by log(2)/2 for every doubling of concentration (for the ten doublings
shown, 𝜓 shifts a total distance of 10log(2)/2).

Consequently, the line-by-line model generates forcings that are similar to those generated by the
simple model. The top row of Figure 18 plots the total baric forcing 𝐹 tot

log(𝑝) produced by this line-
by-line 𝜓 for each of three atmospheres (IsoAtmo, IsoStrat, and StdAtmo) for CO2 concentrations
ranging from 256 to 2048 ppmv by powers of two. Comparing to the total baric forcing in Figure
15, we see that the line-by-line model increments the forcing in a way that closely resembles the
prediction from the simple model. The bottom row of Figure 18 plots the TOA forcing as calculated
by the line-by-line model for each of the three atmospheres. We see, as expected, that the forcing
is still logarithmic in the IsoAtmo atmosphere even without a tropospheric lapse rate. We also see
that the magnitude of the forcings is largely independent of the atmospheric temperature profile (so

7At low CO2 concentrations, the wavenumbers with the lowest absorptivity (near the edges of the 15-micron band) emit to space from deep in
the subsurface layer, where extreme collisional broadening has a homogenizing effect on the distribution of 𝜅 , causing emission pressures to cluster,
which generates the peak in 𝜓 around 100 bar. This high-pressure phenomenon has no effect on the forcing since the shape of 𝜓 in the isothermal
subsurface has no effect on upwelling fluxes in the atmosphere. The subsurface 𝜓 is plotted only to illustrate the fraction of wavenumbers that are
in the surface.
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Fig. 17. As calculated from the line-by-line model, the broadband weighting function 𝜓 for the 15-micron
CO2 band in StdAtmo for CO2 concentrations ranging from 4 ppmv to 4096 ppmv by ten factors of two. Marked
on the plot is the value of 2/𝑏 diagnosed from Figure 8. Also indicated is 10log(2)/2, which is the distance that
𝜓 is expected to move down the log(𝑝) axis after 10 doublings of the CO2 concentration.

long as the range of temperatures is the same), and that the magnitude agrees with that predicted
by the simple model.

9. “Lapse-rate theory” is not relevant to carbon dioxide

In contrast to the success of the simple model constructed in sections 3–7, we will see here that
the “lapse-rate theory” is neither necessary nor sufficient as an explanation for the logarithmic
forcing of carbon dioxide. The derivation of the lapse-rate theory is as follows. As discussed
in section 5d, 𝜏 is proportional to 𝑞𝑝2. Approximating the tropospheric temperature profile as
𝑇 =𝑇surf +Γ log(𝑝/𝑝surf) for some constant Γ (with units of K), then 𝑝 = 𝑝surf exp[(𝑇 −𝑇surf)/Γ] and
𝜏 ∝ 𝑞 exp[2𝑇/Γ]. Solving for the emission temperature 𝑇em where 𝜏 = 1, we get 𝑇em ∼ −Γ log(𝑞).
To the extent that the Planck distribution can be approximated as linear in temperature, i.e., 𝐵 ∼𝑇em,
then the spectral flux emitted to space is linear in −Γ log(𝑞), and so the total forcing is linear in
Γ log(𝑞).
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Fig. 18. (top row) Plots of the total baric (per logarithm of pressure) forcing 𝐹 tot
log(𝑝) calculated with the

line-by-line model for CO2 concentrations ranging from (cyan) 256 ppmv to (purple) 2048 ppmv by factors of
two for the (left) IsoAtmo, (middle) IsoStrat, and (right) StdAtmo atmospheres. The area to the left of each
of these curves is equal to 𝐹 tot. Compare these curves to the plots of 𝐹 tot

log(𝑝) in the simple model in Figure
15. (bottom row) Grey diamonds plot 𝐹2× calculated with the line-by-line model and black circles show the
contribution to 𝐹2× from the 15-micron band. Compare these data to the plots of 𝐹2× in the simple model in
Figure 16.

This derivation did not require a uniform distribution of log(𝜅), but it does implicitly assume
that all of the wavenumbers contributing to the forcing remain in the troposphere as 𝑞 is varied.
Since the wavenumber train of carbon dioxide’s 15-micron band does not satisfy this condition,
the lapse-rate theory is inapplicable. In fact, we can go a step further and show that the existence
of a tropospheric lapse rate – a key component of the lapse-rate theory – is neither necessary nor
sufficient for carbon dioxide’s logarithmic forcing.

Lapse-rate theory is not necessary to explain the logarithmic forcing of carbon dioxide because
the logarithmic forcing can be retained even in the absence of a troposphere. Figure 19a illustrates
this using the simple model with IsoAtmo. As shown in the right-most panel, 𝐹2× (the area under
each 𝐹2×

log(𝑝) curve) is the same for each doubling despite the absence of a troposphere.
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Fig. 19. Same as Figure 15, but for (a) IsoAtmo and (b) HotStrat. These demonstrate that “lapse-rate theory” is
neither necessary nor sufficient to generate the logarithmic forcing from carbon dioxide.

Lapse-rate theory is not sufficient to explain the logarithmic forcing of carbon dioxide because,
even in the presence of a realistic troposphere, the logarithmic forcing is eliminated if the strato-
sphere and surface have the same temperature. Figure 19b illustrates this using the simple model
with HotStrat. Although 𝑇em is linear in log(𝑞) for wavenumbers emitting to space from the
troposphere, 𝐹2× is zero because the head and rear of the train are at the same temperature.

10. When can “lapse-rate theory” be applicable?

The “lapse-rate theory” can work only when the wavenumbers contributing to the forcing keep
their emission levels in the troposphere as 𝑞 is varied. This is most easily achieved if the wavenum-
bers all have the same emission level, i.e., if they all have the same 𝜅. A hypothetical greenhouse
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gas that has this property is a best-case scenario for the lapse-rate theory. In this hypothetical case,
the spectral weighting function 𝜙(�̃�, 𝑝, 𝑞) would be independent of �̃� within the band, so 𝜓 would
simply be the width of the band (in inverse length) times 𝜙.

For how many doublings of concentration could this hypothetical band’s 𝜏 = 1 level remain in the
troposphere? The troposphere spans log(10) in the logarithm of pressure, and, as shown in section
6, each doubling of the gas concentration reduces log(𝑝em) by log(2)/2. Therefore, log(𝑝em) for
any given wavenumber can remain in the troposphere for no more than log(10)/[log(2)/2] −1 ≈ 6
doublings of concentration. This would seem to suggest that the hypothetical gas could produce a
logarithmic forcing in Earth’s atmosphere – via the mechanism of the lapse-rate theory – over six
doublings of concentration.

In fact, however, the logarithmic dependence would not hold for six doublings. The reason
why is that the spectral weighting function is not a delta function located at 𝑝em, but is the broad
distribution 𝜙 centered on 𝑝em. The spectral weighting function 𝜙 is so broad that it barely fits
inside the troposphere and so nearly always includes significant chunks of either the surface or
stratosphere. This is illustrated in Figure 20.

The left column of Figure 20 plots 𝜙 from equation (17) for some wavenumber using 𝑞 equal
to 2−8𝑞0 (blue), 𝑞0 (red), and 28𝑞0 (green), where 𝑞0 is defined to be the concentration that
makes 𝑝em = 1 bar. There are three rows in Figure 20, each using a different model atmosphere
(IsoAtmo, IsoStrat, and DeepTrop), and the second column plots the temperature profiles of those
atmospheres. The third column of Figure 20 plots the product of 𝜙 and 𝜋𝐵; when integrated over
log(𝑝), this gives the wavenumber’s spectral flux to space. The fourth column plots the spectral
forcing for this wavenumber from a doubling of 𝑞. The circles mark the forcing at every factor
of two in 𝑞. Only in DeepTrop does 𝜙 fit comfortably inside the troposphere and, therefore, a
logarithmic forcing is generated.

Note that Figure 20 is not specific to carbon dioxide; it applies to any sole well-mixed greenhouse
gas with 𝜅 ∝ 𝑝. If 𝜅 is not proportional to 𝑝, then matters become even worse for the lapse-rate
theory because 𝜙 is then even broader. While the lapse-rate theory does not work for well-mixed
greenhouse gases in Earth’s atmosphere, it could work in other atmospheres with tropospheres that
span a larger log(𝑝). That would be possible, for example, with a smaller gravitational acceleration
or higher specific heat capacity.

11. Summary

Over a wide range of concentrations, the forcing from carbon dioxide is approximately logarithmic
in its concentration. It is tempting to attribute this behavior to the troposphere’s lapse rate, but this
is not the correct explanation. Indeed, the forcing from carbon dioxide is largely independent of the
tropospheric temperature profile (see Figures 16 and 18) and its logarithmic dependence persists
even when the atmosphere is isothermal (so long as the surface is warmer; see the IsoAtmo results
in Figures 16 and 18).

Instead, the logarithmic forcing of carbon dioxide can be understood by analogy to a freight train
carrying the wavenumbers of the 15-micron band (which dominates the forcing by property #1)
from the surface to the stratosphere. The train cars hold same-sized sets of wavenumbers (property
#2) grouped by their coefficient of absorptivity; or, more accurately, the train cars carry same-sized
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Fig. 20. Illustration of spectral forcing for a single wavenumber for the IsoAtmo, IsoStrat, and DeepTrop
atmospheres, with 𝑞0 defined to be the concentration that makes 𝑝em = 1 bar for the wavenumber. The first
column plots 𝜙 from expression (17) for 𝑞 = 2−8𝑞0 (blue), 𝑞0 (red), and 28𝑞0 (green). The second column plots
the temperature profile; for illustration, the surface has been replaced by a 300-K semi-infinite atmosphere. The
third column plots 𝜋𝐵 times 𝜙, i.e., the spectral flux to space. The fourth column plots the spectral forcing, i.e.,
the difference in spectral flux to space between 𝑞 and 2𝑞, as a function of 𝑞.

chunks of the emission to space, 𝜓𝑑 log(𝑝), as defined in equation (15). Since the train cars
all move together by 𝑑 log(𝑝em) = −𝑑 log(𝑞)/2 (property #3 combined with 𝜅 ∝ 𝑝 from pressure
broadening), and since the head of the train is in the stratosphere and the rear is on the surface
(property #4), and since the radiative emission to space dims the same for all the cars as they
rise (property #5), each doubling of CO2 concentration effectively moves the same-sized chunk of
emission to space from the surface to the stratosphere, reducing the total emission to space by the
same amount for each doubling. Thus, we arrive at the well-known empirical fact that the total
forcing from carbon dioxide scales as the logarithm of its concentration. Using 𝜓 (the broadband
weighting function for emission to space) and 𝐹 tot

log(𝑝) (the total baric forcing, which depicts where
in the atmosphere the forcing is generated), we can visualize the underlying mechanism for this
logarithmic forcing in both a simple model (Figure 15) and a line-by-line model (Figures 17 and
18).
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Appendix

To derive the broadband weighting 𝜓 for carbon dioxide, let us make two observations. First, the
expression for 𝜙 in equation (17) can be written as

𝜙 = 2𝑒−𝑒
2𝑥
𝑒2𝑥 ,

where 𝑥 ≡ log(𝑝) − log(𝑝em). Second, using the expression for 𝑝em in equation (7), we can deduce
that 𝑑 log(𝑝em)/𝑑�̃� = −𝑏/2. Using these two facts, we can calculate the broadband weighting
function for the 15-micron band of CO2 (in an atmosphere where well-mixed CO2 is the only
greenhouse gas) as follows:

𝜓(𝑝, 𝑞) =
∫ �̃�2

�̃�1

𝑑�̃� 𝜙(�̃�, 𝑝, 𝑞) (28)

=

∫ log 𝑝em (�̃�2,𝑞)

log 𝑝em (�̃�1,𝑞)
𝑑 log(𝑝em)

(
𝑑 log 𝑝em

𝑑�̃�

)−1
𝜙 (29)

= −2
𝑏

∫ log 𝑝em (�̃�2,𝑞)

log 𝑝em (�̃�1,𝑞)
𝑑 log(𝑝em) 𝜙 (30)

=
2
𝑏

∫ log 𝑝−log 𝑝em (�̃�2,𝑞)

log 𝑝−log 𝑝em (�̃�1,𝑞)
𝑑𝑥 2𝑒−𝑒

2𝑥
𝑒2𝑥 (31)

= −2
𝑏

∫ log 𝑝−log 𝑝em (�̃�2,𝑞)

log 𝑝−log 𝑝em (�̃�1,𝑞)
𝑑 (𝑒−𝑒2𝑥 ) (32)

=
2
𝑏

[
𝑒−𝑝

2/𝑝em (�̃�1,𝑞)2 − 𝑒−𝑝
2/𝑝em (�̃�2,𝑞)2

]
. (33)
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