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SUMMARY

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural 

activity at cellular resolution is needed. Here, we introduce wavelength multiplexing to perform 

fast volumetric two-photon imaging of cortical columns (>2,000 neurons in 10 planes at 10 vol/s), 

using two different calcium indicators, an electrically tunable lens and a spatial light modulator. 

We image the activity of neuronal populations from layers 2/3 to 5 of primary visual cortex from 

awake mice, finding a lack of columnar structures in orientation responses and revealing 

correlations between layers which differ from trial to trial. We also simultaneously image 

functional correlations between presynaptic layer 1 axons and postsynaptic layer 2/3 neurons. 

Wavelength multiplexing enhances high-speed volumetric microscopy and can be combined with 

other optical multiplexing methods to easily boost imaging throughput.
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In Brief

In this work, Han et al. demonstrate two-color two-photon volumetric imaging of cortical neurons 

from layer 2–5 in vivo from more than 2,000 neurons at 10 vol/s. This scheme is compatible with 

many other imaging techniques, providing a new tool for high-throughput volumetric imaging.

INTRODUCTION

High-speed volumetric imaging of neural activity at cellular resolution is an important 

method to decipher the function of microcircuits at a population level. Because the 

mammalian cortex is organized into layers, the coordinated activity of neurons within and 

across layers likely contributes to the emergent functional properties of circuit, making it 

necessary to measure neuronal activity in three dimensions (Alivisatos et al., 2012). Calcium 

imaging provides a powerful tool for recording the activity from a large population of 

neuron in vivo (Tian et al., 2009; Yuste and Katz, 1991). In combination with two-photon 

imaging, it allows the observation of neuronal activity deep in brain tissue (Denk et al., 

1990; Helmchen and Denk, 2005; Yuste and Denk, 1995). However, conventional two-

photon calcium imaging is constrained to imaging a single two-dimensional (2D) plane. To 

extend it to a three-dimensional (3D) volumes, while maintaining cellular resolution and 

high temporal resolution, multiple strategies have been developed (Ji et al., 2016; Yang and 

Yuste, 2017). Focusing devices such as piezo-controlled objectives (Peron et al., 2015; 

Göbel and Helmchen, 2007), spatial light modulators (SLMs) (Yang et al., 2016), 
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electrically tunable lenses (ETLs) (Grewe et al., 2011), and remote focusing units 

(Botcherby et al., 2008; Rupprecht et al., 2016) are capable of switching focus at various 

speeds over a relatively large depth range (up to ~500 μm) and have been demonstrated for 

volumetric imaging. Although piezo-controlled objectives may perturb the sample 

mechanically and require longer settling time, ETLs, SLMs, and remote focusing units are 

decoupled from the sample and can operate on faster scale, enabling high-speed sequential 

scanning in depth (z). In addition, optical multiplexing strategies have been applied to 

increase the throughput of two-photon imaging, such as holographic imaging with SLMs, in 

which multiple beamlets are generated to simultaneously image multiple planes across >500 

μm, with their signals demixed using statistical algorithms (Pnevmatikakis et al., 2016; Yang 

et al., 2016

Here we use wavelength multiplexing and combine it with fast z-scan devices as a hybrid 

approach for fast volumetric imaging. We labeled superficial and deep neuronal populations 

with calcium indicators of two different colors and simultaneously excited each neuronal 

population with a laser of a different wavelength. To minimize scattering, we chose 

GCaMP6 (Chen et al., 2013) for superficial layers (layers 2/3), and the red-shifted jRGE-

CO1b (Dana et al., 2016) for deep layers (layer 5). We used an ETL for fast sequential z 

scanning in superficial layers and an SLM for deep layers through wavefront shaping, 

simultaneously. We demonstrate imaging 10 planes over 450 μm spanning from layer 2 to 

layer 5 in primary visual cortex (V1) of awake mice at 10 vol/s, reconstructing the activity of 

more than 2,000 neurons at this sampling rate. We further show simultaneous volumetric 

imaging of layer 1 local dendrites with layer 2/3 somata, and long-range projections from 

prefrontal cortex (PFC) in layer 1 of V1 with local layer 2/3 population. We identify visually 

evoked neuronal ensembles in three dimensions, finding a lack of columnar structures in 

visually evoked responses and correlations between cortical layers that vary from trial to 

trial and cannot be captured in sequential imaging. The wavelength multiplexing approach 

can be easily combined with many currently available methods, greatly enhancing fast high-

throughput volumetric imaging.

RESULTS

Two-Color Two-Photon Microscope

Our microscope consists of two beam paths with two separate two-photon lasers, exciting 

green and red calcium indicators. The beam path for green indicator (GCaMP6) includes an 

ultrafast laser (920 nm), a telescope that expands the beam to fill the ETL, and an ETL for 

fast sequential defocusing. The beam path for red indicator (jRGECO), based on a previous 

design (Yang et al., 2016), has an ultrafast laser (1,064 nm), a telescope for beam expansion, 

and an SLM for generating holographic focal planes. A negative offset lens conjugate with 

the imaging plane was used to shift the SLM path 200 μm deeper than the ETL path (Figure 

1A). Placing the 1,064 nm laser with red indicator in the deep layers benefits from less 

scattering of longer wavelength excitation and emission. The two lasers combine at a 

dichroic mirror and are then scanned by a resonant scanner and a galvanometric scanner, 

simultaneously exciting the sample at different depths. The emitted fluorescence is separated 

by another dichroic mirror and collected by two photomultiplier tubes (PMTs) with filters 
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optimized for corresponding fluorophores. Additionally, in order to optimize for large-angle 

scanning, we adopted the relay lens complex design between the two scanners on the basis 

of a previous study (Stirman et al., 2016) (Figure 1B). For volumetric imaging in vivo, two 

planes of ~200 μm apart are excited and recorded simultaneously; the dual focal planes are 

directed to a set of depths that covers two separate volumes in synchronous through ETL and 

SLM (Figure 1C).

To optimize for deep-layer imaging and to compensate for the optical aberrations in the 

system, we also implemented adaptive optics (AO) with the SLM in the 1,064 nm excitation 

path. We modeled the wavefront aberrations with a combination of Zernike polynomial 

aberration modes, measured their coefficients using fluorescent beads (Love, 1997), then 

corrected for the wavefront using the SLM (Figure S1; STAR Methods). AO improves both 

the target intensity and the point-spread function (PSF) over a defocus range of ±200 μm, 

reaching a minimum full width at half maximum (FWHM) of 6 μm at +150 mm defocus 

with a maximum of 12 μm at −200 μm defocus (Figures S2B and S2D). Wavefront 

correction for the ETL path is less critical, as it images superficial layers; the minimum 

FWHM is 8 μm at 0 μm defocus and the maximum 16 μm at −200 μm defocus (Figures S2A 

and S2C).

To ensure that the signals we recorded from the simultaneous dual planes do not interfere, 

we characterized the cross-channel contamination of our system. We imaged mice V1 in 
vivo by turning on the 920 nm laser only, or the 1,064 nm laser only, while recording signals 

from both PMTs simultaneously (Figure S3B). In this case, signals from the non-exciting 

channel represent potential contamination. We then analyzed the signal and noise from both 

channels with single laser excitation. For both single laser excitations, the desired signal 

(green for 920 nm excitation in Figure 1D, red for 1,064 nm excitation in Figure 1H) are 

much higher than the cross-channel contamination (red in Figure 1D, green in Figure 1H), 

while the noise exhibits similar patterns (Figures 1E and 1I). Overall, the signal-to-noise 

ratio (SNR) is much higher in the desired channel (Figures 1F and 1J). Under the situation in 

which both lasers are exciting, there are two types of noise in our system for each imaging 

channel: (1) noise from single laser excitation (represented by noise in Figure 1E for Ch1) 

and (2) noise from crosstalk of the other laser (represented by signal in Figure 1H and noise 

in Figure 1I for Ch1). The effective noise of each channel is obtained by adding up these two 

types of noise. Our calculation shows that the signal is substantially higher than the effective 

noise in both channels (Figures 1G and 1K). We conclude that our system has minimal 

cross-channel contamination and is optimized for simultaneous two-color imaging.

In Vivo Volumetric Imaging of Cortical Columns

We applied our system to image the cortical activity of neurons from awake mice V1. We 

labeled the V1 neuron population with the green GCaMP6s (Chen et al., 2013) and the red 

jRGECO1b (Dana et al., 2016) through viral vectors. We used the ETL beam path to image 

GCaMP6s with 5 planes spanning from 150 to 350 μm in upper layers and the SLM beam 

path to image jRGECO1b with 5 planes spanning from 400 to 600 μm in deeper layers, all 

spaced with intervals of 50 μm (Figure 2A; Video S1). This wavelength multiplexing 

strategy with two beam paths together achieved a total of 10 imaging planes across 450 μm 
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depth with a field of view (FOV) of ~500 × 500 μm at each plane, covering from the top of 

layer 2 through layer 5 at 10.4 vol/s. In the example shown in Figure 2A, we recorded the 

spontaneous activity over a 10 min period from a total population of 1,497 cells. In our best 

dataset, we achieved 2,084 cells in a 500 × 500 μm FOV from 150 to 600 μm cortical 

depth,at 10.4 vol/s (Figure S4).

We then extracted the fluorescence traces from every neuron by a modified version of a 

constrained nonnegative matrix factorization (CNMF) algorithm (Pnevmatikakis et al., 

2016). This version takes manual initialization of neuron locations and performs the original 

CNMF algorithm to automatically optimize the spatial components (shape of each potential 

neuron), extracts the raw fluorescence (Figures 2C and 2D, light traces; Figure S3A), filters 

out the noise, and calculates the deconvolved traces that represent the noiseless estimation of 

firing probability (Figures 2C and 2D, dark traces). Extracted traces and neuronal regions of 

interest (ROIs) are manually selected before further analysis on the basis of their quality. To 

exclude cross-channel contaminations from particularly “bright” neurons, trace pairs that are 

highly correlated and come from laterally overlapping ROIs in the simultaneously recorded 

dual planes (e.g., 150 and 400 μm planes) are kept using only the neuron with the highest 

SNR (STAR Methods). Figure 2A shows examples of extracted ROIs from the 10 planes 

after the above pre-processing steps, and Figure 2B displays their raw traces.

Orientation Selective Cells in Cortical Columns

Although standard two-photon microscopes can image from one cortical layer at a time or a 

volume using z-scan devices, our microscope, through a hybrid multiplexing approach, 

provides a powerful tool for studying neural circuit dynamics simultaneously across layers 

2–5 (L2–L5) with high spatiotemporal resolution. To demonstrate this, we recorded visually 

evoked activity from V1 volumes covering both L2/3 and L5 simultaneously while 

presenting drifting gratings of eight directions to the animals. It has been shown that subsets 

of mouse V1 population are tuned to orientation or direction of drifting gratings (Niell and 

Stryker, 2008; Rochefort et al., 2011). We indeed identified robust orientation-selective cells 

across the cortical column in both L2/3 and L/5 (Figures 3A-3C). For each orientation, we 

observed an average of 5%–8% orientation-selective cells for each of the four orientations at 

L2/3, in agreement with the characterization previously done using two-photon imaging 

(Rochefort et al., 2011), while L5 showed fewer orientation-tuned cells of 3%–7% for each 

of the four orientations, supporting previous results with extracellular recordings (Niell and 

Stryker, 2008) (Figure 3D; n = 4 mice, seven FOVs).

Visually Evoked Neuronal Ensembles Span Superficial and Deep Layers

In neuronal circuits, individual neurons cooperate to form larger ensembles of neurons that 

are functionally correlated. The coactive groups, rather than single neurons, are considered 

to be the functional units during sensory, behavioral, and cognitive processes (Carrillo-Reid 

et al., 2017a; Cossart et al., 2003; Luczak et al., 2007; Mao et al., 2001; Miller et al., 2014; 

Yuste, 2015). One advantage of our microscope is that we can image multiple cortical layers 

almost simultaneously, which enables us to define and study cortical ensembles across layers 

on the basis of the correlation structure of the population. Several computational approaches 

have been proposed for ensemble detection (Avitan et al., 2017; Carrillo-Reid et al., 2015, 
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2017b; Lopes-dos-Santos et al., 2013); because we record from a relatively large population 

of neurons, we chose to use a fast graph-based community detection method (the Louvain 

method; Blondel et al., 2008), whose aim is to maximize modularity measurement. To detect 

stable ensembles, we combined the Louvain method with consensus clustering, which finds 

the best agreement between repetitions (Lancichinetti and Fortunato, 2012). Here we aimed 

to find visually evoked ensembles because of their clear functional correlation with the 

visual stimulus. We constructed similarity matrices from population activity during visual 

stimulation, detected and cross-validated neuronal ensembles with the hybrid approach of 

Louvain method and consensus clustering (Figure 4A; STAR Methods), and then evaluated 

the decoding performance of each ensemble against each visual stimulus. To do this, we 

generated population vectors from the ensembles, calculated the cosine similarity between 

the population vectors and real data, and computed the standard ROC (receiver operating 

characteristic) curve and AUC (area under the curve). We defined visually evoked ensembles 

as ensembles that are predictive of visual stimulus with an empirically defined threshold 

(Figure 4C). For simplicity, we combined pairs of orientations that are shown in opposite 

directions, resulting in ensembles for four orientations (Figures 4A-4C). The detected 

ensembles exhibit higher decoding performance than random sampled controls, as well as 

higher internal pairwise correlation (Figures 4D and 4E; n = 16 ensembles; AUC: control 

0.500 ± 0.011 [SEM], ensemble 0.663 ± 0.051, p < 0.001; correlation: control 0.092 

± 0.017, ensemble 0.478 ± 0.078, p < 0.001, Wilcoxon signed rank test), indicating their 

coherent emergent activity as a group.

We then investigated the correlation structure of the ensembles between L2/3 and L5 using 

recorded activity during all visual stimulation trials, or using L2/3 activity during first half of 

all trials and L5 activity during second half of all trials. The former case represents 

simultaneous volumetric imaging. The latter case represents sequential imaging sessions of 

each layer during repetitive trials and aligning them with trial onsets, typically done with 

two-photon microscopes that do not have fast z-scanning devices or the z-scanning cannot 

cover a large span. To reduce noise in correlation structures, we investigated functional 

correlations only within identified visually evoked ensembles. We separated the ensemble 

constituent cells into L2/3 and L5 subsets and computed the pairwise correlation between 

these two subsets during first and second half trials or during full trials (Figure 4F). Results 

combined from six datasets show that correlations obtained from full trials are higher than 

those from half trials, and there is a lack of correlation between full trial correlation and half 

trial correlation (Figure 4G; R2 = 0.08; half trials correlation −0.032 ± 0.046, full trials 

correlations 0.305 ± 0.080, p < 0.001, Wilcoxon signed rank test). Background activity 

obtained from non-ROI pixels, however, does not differ drastically (half trials correlation 

−0.005 ± 0.010, full trials correlation 0.084 ± 0.014, p = 0.031, Wilcoxon signed rank test). 

This reflects the trial-to-trial variation, possibly due to the animals’ endogenous state 

(Carandini, 2004; Kiani et al., 2015; Kisley and Gerstein, 1999). When studying functional 

properties of neural circuits, it thus appears key to simultaneously capture the dynamics of 

the entire population of interest, because otherwise the trial-to-trial variability may dilute the 

correlational structure of the activity.
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Lack of Correlated Columnar Structures in Mouse V1

The visual cortex of many mammalian species is organized in a columnar spatial map in 

which neurons that have similar functional properties, such as orientation preference, are 

spatially close to each other (Bonhoeffer and Grinvald, 1991; Flubel and Wiesel, 1962). 

Flowever, using 2D two-photon calcium imaging, the visual cortex of rodents was originally 

characterized as having a salt-and-pepper structure, in which neurons with similar functional 

properties are intermingled (Ohki and Reid, 2007; Ohki et al., 2005). On the other hand, 

recent studies have reported the existence of narrow (~40–120 μm in diameter) columns of 

neurons with similar tuning properties in rodent V1 (Li et al., 2012; Ringach et al., 2016) 

and correlated columnar structures (Smith and Kohn, 2008). To investigate this, we applied 

our volumetric method, because we could not only analyze the orientation preference map in 

three dimensions (Figure 5B), but also extend the analysis to the spatial organization of cells 

that share emergent properties, which are identified as ensembles (Figure 5A), and 

functional correlation within narrow columns from the entire population. We analyzed the 

correlation between lateral distance (distance of xy, ignoring depth) of cell pairs and their 

evoked activity correlation, among all cell pairs (Figure 5C, left), among visually evoked 

ensembles (Figure 5C, middle), and among orientation-selective cells (Figure 5C, right). If 

columnar structure exists, we expect to see higher correlation in cell pairs that are distributed 

closer laterally. However, all of the three groups show a flat distribution, indicating uniform 

correlation regardless of lateral distance. We further analyzed the correlation values of cell 

pairs in narrow columns of 30, 50, and 100 μm during visually evoked activities. Compared 

with random controls in which correlation was calculated between cells within the column 

and a random set of cells outside of the column, none of the column diameters give 

significant differences (Figure 5D; n = 6 experiments; Wilcoxon rank-sum test on each 

correlation bin; statistics done with individual experiments). Additionally, the difference of 

preferred orientations among orientation-selective cells did not differ significantly with 

lateral distance (Figure S5). Our results thus indicate a lack of correlated columnar structure 

in mouse V1, extending to three dimensions the original 2D salt-and-pepper description of 

orientation responses (Ohki and Reid, 2007; Ohki et al., 2005), but in apparent disagreement 

with the reported existence of narrow vertical columns (Li et al., 2012; Ringach et al., 2016).

Volumetric Imaging of Correlation between Long-Range Projection Axons and Local 
Somata

As a final demonstration of the biological utility of our method, we sought to capture the 

input-output correlation of a circuit, by simultaneously imaging a presynaptic axonal 

population and a postsynaptic population of cells. Indeed, the simultaneous two-color 

excitation with two lasers in our system not only expands the volume that can be imaged at 

once through wavelength multiplexing but also provides a tool to image and identify two 

distinct populations simultaneously. Using this microscope, we studied the functional 

correlation between the long-range axonal projections from PFC to L1 volume in V1 

(labeled with GCaMP6s) and local neurons in L2/3 of V1 (labeled with jRGECO1b) (Figure 

6A). We imaged the spontaneous activity of both L1 axonal projections and L2/3 somata 

with four planes from 25 to 100 μm in L1 and four planes from 150 to 300 μm in L2/3, 

achieving a volume rate of 13.0 vol/s (Figure 6B). ROIs and fluorescence traces in L2/3 

were extracted using CNMF algorithm as described above, and ROIs and traces in L1 were 
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extracted using a recently developed simultaneous denoising, compression and demixing 

algorithm with penalized matrix decomposition (PMD) (Buchanan et al., 2018) (Figures 6C 

and 6D). The latter results in fragmented ROIs that represent putative axonal fragments and 

boutons with an improved SNR through denoising techniques. To group these putative ROI 

fragments that are potentially from the same projection, we clustered the activity traces 

using affinity propagation (Frey and Dueck, 2007), which does not require a cluster number 

input but could identify clusters of ROIs that exhibit highly correlated activity patterns 

(Figure 6E, four examples shown on right). Examples of these super-ROI groups are shown 

in Figure 6F. These ROI clusters show higher internal correlation than randomly sampled 

controls, indicating functional correlation (Figure 6G; n = 11 experiments; control 0.173 

± 0.005, data 0.636 ± 0.007, p < 0.001, Wilcoxon signed rank test). As the activity of long-

range axonal projections and local somata are nearly simultaneously recorded, we could 

further use the collected dataset to investigate the correlation structure between these two 

populations (Figure 6H). Although the overall population correlation is distributed around 

zero (Figure 6J; n = 11 experiments; mean correlation 0.006 ± 0.012, p = 0.617, t test), we 

could identify ROI pairs from L1 PFC projection and L2/3 V1 soma that are highly 

correlated (Figure 6I), revealing functional relationships between these two populations.

Similarly, our system also enables volumetric imaging of L1 apical dendrites with L2/3 

somata from the same population at the same time. To do so, we labeled the V1 population 

with a co-injection of GCaMP6s and jRGECO1b and simultaneously imaged the 

spontaneous activity of apical dendrites with the green path with four planes from 25 to 100 

μm and somata with the red path with four planes from 150 to 300 μm, at a volume rate of 

13.0 vol/s (Figures S6A and S6B). ROIs and traces were extracted as above (Figures S6C 

and S6D). The correlation between L1 and L2/3 is distributed slightly higher than zero 

(Figures S6E and S6F; n = 10 experiments; mean correlation 0.061 ± 0.011, p < 0.001, t 

test), confirming a stronger spontaneous functional correlation between apical dendrites and 

L2/3 somata, which could potentially come from the same neurons.

DISCUSSION

Volumetric Imaging through Wavelength Multiplexing

In this work, we extend sequential volumetric two-photon imaging with a hybrid approach 

that acquires two volumes simultaneously through wavelength multiplexing, combining two-

color excitation and emission with ETL- and SLM-based fast z scanning. By using a red 

calcium indicator, jRGECO1b, that reduces the loss of photons from tissue scattering and an 

SLM as a z-scan device that can also implement AO to correct system aberration, we 

optimized our system for deep-layer imaging. We demonstrated successful volumetric 

calcium imaging in vivo of 10 planes at 10.4 vol/s, spanning across L2/3 to L5, as well as 8 

planes imaging at 13.0 vol/s of L1 dendritic or axonal activity with L2/3 somatic activity. 

Our approach provides a method to sample a large number of neurons per second across 

cortical columns (>2,000 neurons sampled at 10 Hz, located over 10 planes across a depth of 

450 μm, with an FOV of 500 × 500 μm per plane; see Figure S4). Further improvement can 

be expected with optimization of fluorophore efficiency, such as the SNR of jRGECO. Our 
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approach, introducing excitation wavelength multiplexing to parallelize the scanning 

process, provides an alternative to the volumetric imaging toolbox.

Comparison with Other Two-Photon Volumetric Imaging Methods

Many methods have been developed for two-photon volumetric imaging (see Table S1 in 

Yang and Yuste, 2017, for a detailed summary). Comparing with current volumetric imaging 

techniques that depend on a single defocusing strategy such as piezo-controlled objectives 

(Göbel and Helmchen, 2007), ETLs (Grewe et al., 2011), and remote focusing (Botcherby et 

al., 2012), our approach is designed with two independent modules that cover two separate 

volumes simultaneously, thus immediately doubling the imaged volume from single volume-

based systems. These two volumes are separated by their excitation and emission properties, 

making them optically independent of each other. The scanning speed of commonly used 

piezo-controlled objectives, on the other hand, is limited by the weight of objectives, 

especially for high-NA objectives, which tend to be heavy. In addition, comparing with 

acousto-optic deflectors (AODs) for random access (Duemani Reddy et al., 2008; Katona et 

al., 2012), which are fast but scan only selected ROIs and are therefore best for sparsely 

labeled samples, our method is more suitable for densely labeled samples in which more, or 

potentially all, pixels are of interest. Comparing with SLM-based holographic multiplexing 

(Yang et al., 2016), our current approach has the same advantage of simultaneously 

recording from two separate planes yet doubles the image volume, while keeping both 

volumes within the best performance range for each z-scan device (within ± 150 μm for 

both) and avoiding the performance decay at larger defocus planes. Additionally, through 

wavelength multiplexing, depth information is encoded by wavelength, and the 

simultaneously recorded dual planes are collected by two separate PMTs, avoiding post hoc 

source separation and signal demixing problems. Finally, compared with temporal 

multiplexing in which the laser beam is split into multiple beams with their laser pulses 

interleaved in time and focused at different positions (Cheng et al., 2011; Stirman et al., 

2016), our approach does not require a complex data acquisition scheme and also makes full 

use of both lasers and is therefore more effective when imaging a large number of planes.

In terms of speed, our approach has a particularly high imaging throughput. Because the half 

decay time of commonly used calcium indicator (e.g., GCaMP6f) is on the order of 200–500 

ms, the minimum imaging speed should be >10 Hz. With this constraint, and to the best of 

our knowledge, our experiment represents the most extensive imaging at this rate of a large 

number of neurons (2,084) over a large FOV (10 planes across 450 μm depth down to 600 

μm in cortex, with an FOV of 500 × 500 μm in each plane; see Figure S4) in mice in vivo. 
Among all imaging approaches, AODs perform faster sampling of fewer pixels and are 

therefore ideally suited for sparse labeling. For comparison, one of the best demonstrations 

of AODs was an imaging of 532 cells across a 400 × 400 × 500 μm volume at 56 Hz 

(Katona et al., 2012). Our experiment demonstrates a 4-fold larger cell count and holds great 

promise for dense labeling, potentially imaging every cell in a volume. With an improved 

labeling efficiency, our imaging throughput could be further boosted.

Nevertheless, many of these strategies are not mutually exclusive, and wavelength 

multiplexing could be combined with other volumetric imaging approaches, e.g. with other 
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z-scan devices such as piezos, remote focusing units, or AODs, to further increase their 

imaging throughput. Coupled with other temporal or holographic multiplexing could further 

increase the speed or throughput. Our approach thus provides a general platform that can be 

broadly applied in combination with many currently available methods, opening more 

possibilities for fast high-throughput volumetric imaging.

Finally, because of the excitation spectrum overlap of GCaMP6 and RCaMP or jRGECO, a 

single laser, tuned between 1,020 and 1,030 nm, could be used to simultaneously image 

GCaMP6 and RCaMP (Inoue et al., 2015). However, because GCaMP excitation efficiency 

peaks at about 920–940 nm and RGECO or RCaMP between ~1,060 and ~1,150 nm (Dana 

et al., 2016), using a single laser to excite both indicators would compromise the fluorophore 

efficiency for both indicators. Our system, with two lasers set at 920 and 1,064 nm, 

optimizes the fluorophore performance for simultaneous two-color imaging.

Volumetric Imaging of Large Cortical Population for Single-Trial Dynamics

The mammalian cortex is organized into six layers, and sensory information is transformed 

through interactions between layers (Constantinople and Bruno, 2013; Douglas and Martin, 

2004). To study cortical dynamics in different layers during sensory perception or behavioral 

tasks, a common approach is to record from each layer of interest during repetitions of the 

task trials and analyze the average response, using z-scan devices such as piezo (Attinger et 

al., 2017; Peron et al., 2015; Kerlin et al., 2018). Although trial structures provide an 

important reference for the underlying cortical activity, the neural activity is intrinsically 

noisy and is affected by the immediate internal state of the animals (Gilbert and Sigman, 

2007; Niell and Stryker, 2010), and it is still challenging to study the correlation structure 

between layers or areas with non-simultaneous recordings. Some commonly used methods 

such as piezo-controlled objectives and ETLs offer long travel range but have a trade-off 

between the volume or number of planes imaged, and imaging speed. Additionally, using the 

full range of these devices could compromise the imaging quality of longer defocus range. 

To study the population dynamics across multiple cortical layers, our method can 

simultaneously record from twice the volumes than commonly used methods, while 

achieving optimal imaging performance in both volumes. This provides an important tool to 

study cross-layer computations. As demonstrated in Figure 4, simultaneous volumetric 

imaging reveals a different laminar correlation structure than that could be measured using 

separated trials. We thus expect that our system will provide a powerful tool for studying 

laminar interactions in the future.

Lack of Orientation Columns in Mouse V1

As a proof of the utility of the method to reveal spatial interaction in functional responses, 

we analyzed the correlational structure of the orientation responses across layers. This is a 

controversial issue, because the original description of unstructured orientation responses in 

mouse V1 (“salt and pepper” patterns of orientation) (Ohki and Reid, 2007; Ohki et al., 

2005) has been questioned by reports of the existence of neurons that are arranged in narrow 

vertical strips and that have similar orientation responses (Li et al., 2012; Ringach et al., 

2016). With our method, we could, as a third party, independently examine the validity of 

these claims. In our analysis, however, we find no statistically significant vertical 
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correlations in the orientation responses. Although we did not ascertain the clonal relation 

among neurons, our data are in principle inconsistent with the presence of vertical narrow 

“minicolumns” of orientation and suggest that orientation selectivity maps in three 

dimensions are disorganized in V1 of the mouse. Our method and analysis could be 

extended to the study of the spatial structure of other functional properties in the cortex or 

other neural circuits.

Imaging the Correlation between Pre-and Postsynaptic Populations

Besides doubling the imaged volume, our two-color strategy provides a tool to image 

distinct neuronal population labeled with different colors at the same time. This includes 

examples of L1 long-range projections from other regions with local somata (Figure 6), as 

well as excitatory and interneuron populations (Inoue et al., 2015). Combined with its 

volumetric imaging ability, our system provides a tool for studying the correlation of large 

population of distinct subnetworks and to functionally dissect the input-output correlations 

of neural circuits.

In closing, we present a wavelength multiplexing design for two-photon volumetric imaging 

that is compatible with many other current methods. As the study of neural circuits becomes 

increasing more sophisticated, it is likely that there will not be a single “one shoe fits all” 

method to functionally dissect the interactions between many different types of neurons. 

Instead, we imagine a hybrid future in which different methods and probes and analysis 

could be flexibly combined and be properly targeted to the specific question of study. In this 

scenario, wavelength multiplexing should be standard, as it immediately enhances the 

performance of any volumetric method, increasing its range and speed.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Shuting Han (shuting.han@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were performed on C57BL/6 wild-type mice, on both males and females. 

Experimental animals were typically postnatal (P) day P60-P120 at the time of experiments. 

Animals were housed on a 12h light-dark cycle with food and water ad libitum. All 

experimental procedures were carried out in accordance with the US National Institutes of 

Health and Columbia University Institutional Animal Care and Use Committee.

METHOD DETAILS

Virus injection and surgery—Virus injection was performed between P30 and P60. For 

virus injection, a mixture of 200 nL AAV9.hSyn.GCaMP6s.WPRE.SV40 (UPenn Vector 

Core) and 700 nL AAV1.Syn.NES-jRGECO1b.WPRE.SV40 (UPenn Vector Core, 19279) 

was injected into both layer 2/3 and layer 5 on left V1 (from lambda: X = −2500, Y = 500, Z 

Han et al. Page 11

Cell Rep. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= −250/−500 μm, 400/500 nL per site). Virus was injected with glass micropipets, at a rate 

of 80 nl/min. For experiments imaging axonal projections from PFC to L1 volume in V1, 

700 nL AAV1.Syn.NES-jRGECO1b.WPRE.SV40 with 200 nL buffer (0.14M NaCl, 0.02M 

pH 8.0 Tris, 0.01 ‰ pluronic F68) was injected at the same location on left V1 (Z = −300 

μm) between P30 and P60; two weeks after the GCaMP injection, 400 nL 

AAV9.hSyn.GCaMP6s.WPRE.SV40 with 200 nL buffer was injected into left PFC (from 

bregma: X = 300, Y = 500, Z = −900 μm). Although AAV9 has retrograde ability, we note 

that this is unlikely the case in our experiments, based on the following arguments: (1) in the 

beginning of each experiment, we adjusted the focus of both lasers path from the brain 

surface to ~500 μm depth, during which we observed signals in green channel with confined 

spatial shapes only appears within ~100 μm depth from brain surface, indicating there were 

no axons projecting from L5, and no GCaMP-labeled somas; (2) unpublished results from 

our group show that, with 400 nL injection of the same virus AAV9.h-

Syn.GCaMP6s.WPRE.SV40 in the same coordinates of PFC did not show noticeable 

retrograde labeling of other brain areas in histology sections after ~4 weeks of expression. 

We therefore believe that retrograde labeling is not impacting our experiments.

Approximately 4-6 weeks after the initial injection, headplate implementation and 

craniotomy surgery were performed on the mice. Mice were anesthetized with isoflurane 

(1%–2%), injected with dexamethasone (2 mg/kg body weight, subcutaneous), enrofloxacin 

(4.47 mg/kg, subcutaneous), and carprofen (5 mg/kg, intraperitoneal). A custom made 

titanium headplate was mounted on the skull centered on V1 using dental cement. A 2 mm 

diameter circular cranial window was made around the injection site on left V1 with a dental 

drill, and the cranial window was covered by a 3 mm circular glass coverslip, sealed with 

cyanoacrylate adhesive. The mice were allowed to recover for at least one day before 

experiment, and were habituated with head-fixation prior to experiments. Mice were 

monitored and given analgesics (5mg/kg carprofen intraperitoneal) for two days post-

procedure.

Two-color volumetric imaging microscope—The microscope is designed as shown in 

Figure 1. Two excitation lasers were used: a tunable Ti:Sapphire laser (Chameleon Ultra II, 

Coherent) tuned to 920 nm with a maximum output power of ~1.6W (140-fs pulse width, 

80-MHz repetition rate), and an amplified fiber laser (Fianium) with a fixed wavelength at 

1064 nm with a maximum output power of ~6W (200-fs pulse width, 80-MHz repetition 

rate). No pre-chirper was used. Each laser power is controlled with a separate Pockels cell: a 

Conoptics EO350-160-BK Pockels cell with a 275 driver for 920 nm laser, and a Conoptics 

EO350-105-BK Pockels cell with a 302 RM driver for 1064 nm laser. For 920 nm path, the 

beam is first expanded with a 1:7.5 telescope (focal length f1 = 40 mm, f2 = 300mm). Then, 

the beam passes an ETL (Optotune; EL-10-30-C-NIR-LD-MV), and is rescaled by a 4:1 

telescope (f3 = 400 mm, f4 = 100 mm). For the 1064 nm path, a l/2 λ waveplate (Thorlabs; 

AHWP05M-980) is used to rotate the laser polarization, and the beam is expanded with a 

1:4 telescope (f5 = 100 mm, f6 = 400 mm) to fill the active area of SLM. Then, the focal 

plane is shifted with an offset lens set [composed of two lenses (f = 500 mm, −100 mm) that 

contact together] with an equivalent offset of ~200 μm at imaging plane. The beam is 

relayed by a 1:1 telescope (f7 = 200 mm, f8 = 200mm) before being modulated by an SLM 
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(Meadowlark Optics; HSP512-1064; 7.68 × 7.68-mm2 active area, 512 × 512 pixels). The 

beam is then rescaled by a 3:1 telescope (f9 = 300 mm, f10 = 100 mm). Then, both beams 

are combined through a dichroic mirror, scanned first by a resonant scanner (Cambridge 

Technology; CRS 8K resonant scanning system), then relayed by a telescope that is 

composed of two equivalent lens complexes (Figure 1B) (Stirman et al., 2016) installed in 

the opposite direction. The scan angle of the resonant scanner is ± 7.2°. Since this angle is 

small compared to the working range of the Stirman design (±14.8°), we do not anticipate 

distortion at the field edges or strong field curvature. The combined beam is then scanned by 

a galvanometric scanner (Cambridge Technology; 6215HM40B). Both scanners are 

positioned at the conjugate plane to the objective pupil. The scan lens (Olympus pupil 

transfer lens, fscan = 50 mm) and tube lens (ftube = 180 mm) are from a modified Olympus 

BX-51 microscope. Imaging was done with a 25x Olympus 253 N.A. 1.05 XLPlan N 

objective. The imaging frame rate is 60 Hz (256×256 pixels) for single plane imaging; under 

this situation, we have ~254 ns/pixel, or ~20 pulses/pixel rate for both lasers. Focal planes of 

both paths were shifted in steps at the end of each frame; the scanner flyback time to start 

the next frame was set to 3 ms, during which both ETL and SLM would change the beams’ 

focal depth.

Fluorescence emission was collected through two separate photomultiplier tubes (PMTs; 

Hamamatsu; H7422P-40) and two low noise amplifiers (FEMTO DHPCA-100), with a 

collection bandpass filter of 520 ± 40 nm (Chroma, ET520/40 m) for the green path, and a 

630 ± 75 nm bandpass filter (Chroma, ET630/75 m) for the red path. The standard 

ScanImage 2016 (Pologruto et al., 2003) was used to control the Pockels cells, the focus of 

the ETL, the scanning mirrors and the digitizer for data storage, as well as image 

acquisition. SLM was controlled by a custom MATLAB (The Mathworks) software (Yang, 

2018). Locomotion of the animals was recorded with an infared LED/photodarlington pair 

(Honeywell S&C HOA1877-003), which consists of a small c-shaped device positioned at 

the edge of the rotating wheel (striped with black tape) connected to the imaging computer 

as an analog input. Locomotion was detected as voltage changes in the photodarlington 

readout. The typical imaging power ranges between ~15 mW to ~100 mW for 920 nm laser 

path, and around ~200 mW for 1064 nm laser path, depending on the depth. Details of 

optical elements used in the system can be found in Table S1.

Special notes in two-color volumetric imaging scheme—The wavelength 

multiplexing scheme is essentially a combination of two microscopes with different two-

photon excitation wavelengths. All the necessary steps used in the two-photon microscope 

apply here. One particularly important step for our high speed volumetric imaging is to set 

up the offset lens in one beam path so the focal spots of the two beam paths are separated 

axially. The offset lens should be placed in a conjugate plane to the back aperture of the 

objective lens. The collimated laser beam should be aligned to the optical axis of the offset 

lens to minimize aberration. The focal length of the offset lens could be calculated through 

thin lens equation with the consideration of the desired focus offset in the sample, and the 

other lens in the microscope. The two beams should be well aligned so their imaged fields of 

view are overlapped laterally in general, though a lateral offset could also be implemented if 

needed. The z-scanning device such as the ETL or SLM should be in the conjugate plane of 
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the back aperture of the objective, otherwise the imaged field of view could change with 

different focal setting on the ETL or SLM. To fully utilize the focusing effect of ETL or 

SLM, the beam should fill the aperture of ETL or SLM.

To achieve effective wavelength multiplexing, the two fluorophore should have a large 

separation in spectrum, otherwise strong cross talk could happen between the two PMT 

channels. In the rare case that neurons have strong emission which bleed through to another 

channel, steps detailed in “Image processing and signal extraction” should be implemented 

to remove the cross-talk.

Adaptive optics—As SLM is a natural choice for correcting wavefront aberration induced 

by both the system and samples, the excitation efficiency of the SLM path in our system can 

be improved by implementing adaptive optics (AO) through SLM (Love 1997; Ji et al., 

2012). Here we implemented system correction by modeling wavefront aberration with the 

first 30 modes of Zernike polynomials. This includes common aberrations such as spherical 

aberration, astigmatism, coma, etc. We estimated the coefficient for each Zernike 

polynomial by varying the coefficient and optimizing the imaged intensity of 0.5 μm 

fluorescent beads. The final correcting wavefront on SLM is a combination of weighted 

Zernike polynomials with measured coefficients. For the best optical performance and 

effectiveness of AO, we optically coupled the resonance scanner and galvanometric mirror 

by placing them at each other’s conjugate planes through the relay lens complex (Figure 

1B).

PSF measurement—PSF was measured with 0.5 μm fluorescent beads on slides. Z stack 

images were taken centering on a selected bead with a range of focal depths, with an interval 

of 1 μm between each consecutive image. Each image were averaged from 5 imaged frames. 

Axial FWHM were calculated by fitting the intensity versus depth curve to a Gaussian 

distribution function, then taking the half width using the fitted curve. Since we aimed to 

achieve long defocus range with both ETL and SLM paths, we underfilled the back aperture 

of objective, resulting in lower effective excitation NA and thus larger PSFs. With an 

effective excitation NA of ~0.55, we estimate that the axial FWHM for 920 nm path would 

best be ~5.2 μm, and for 1064 nm path ~6 μm. The experimentally measured minimum axial 

FWHM for the 920 nm path was 8 μm; it is larger than 5.2 μm, mostly due to system 

aberration. With adaptive optics in the 1064 nm path, the minimum axial FWHM was 

measured to be 6 μm. Note that a higher excitation NA will make the PSF degrades faster 

with larger defocus, and therefore we chose a smaller excitation NA, balancing PSF size and 

defocus range.

Image processing and signal extraction—The raw imaging datasets were first motion 

corrected using an ImageJ plugin Moco (Dubbs et al., 2016). All imaging planes in the same 

datasets were registered using the same motion profile estimated from the most 

representative plane. Then, for somatic imaging datasets, putative neuronal regions of 

interest (ROIs) were initialized manually by playing through each plane of the datasets and 

generating a list of centroid locations using an ImageJ plugin Time Series Analyzer, in order 

to obtain an accurate guess of cell locations. The ROIs were then segmented by a modified 

version of a constrained nonnegative matrix factorization (CNMF) algorithm (Pnevmatikakis 
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et al., 2016) that initializes with the manual list of ROI locations, and the algorithm 

automatically estimates the background fluorescence, the raw fluorescence signals, the 

denoised (filtered) signals, and the deconvolved signals. Then, all ROIs are manually 

selected using a custom MATLAB GUI that displays both the shape of ROIs and the 

corresponding traces. ROIs that exhibit reasonable shape (having the contour that could 

represent a neuron), and have activity during the imaging course (not silent through the 

entire imaging session, with recognizable calcium events, with typical form of calcium 

transient) were kept. Rejected ROIs are typically due to motion artifact, or low SNR, both of 

which could results in variable calcium traces and contour.

We observed fewer active cells at deeper planes, which could result from light scattering 

effect. Since we injected jRGECO1b at 500 μm cortical depth, and that virus typically 

spread at least 500 μm axially in both directions after 4 weeks of expression, we believe the 

fewer active cells at deeper planes are not due to expression profile. Deeper planes are 

naturally more affected by scattering effect, especially with dense labeling in the cortex; 

emitted fluorescence from densely labeled tissue above naturally leads to stronger 

background for deeper imaged layers, making the low SNR cells lost in the noise. We 

believe due to such scattering effect, only high SNR cells in deeper layer were observed, 

resulting in a smaller number of active cells.

To remove potential duplicated cells either due to spectrum bleed through, or redundant 

manual seeding during ROI location initialization, we removed potentially redundant ROIs 

that are highly correlated, laterally close and are (a) in the same plane, or (b) from adjacent 

planes in the same PMT channel, or (c) from dual planes that are recorded simultaneously, 

from the two PMT channels (Figure S3C). ROI pairs that (1) have a Pearson correlation 

coefficient higher than 0.75, (2) are within 15 μm apart laterally, and satisfy one of the 

criteria (a-c), were regarded as redundant pairs, and only the ROI with highest signal-to-

noise ratio (SNR) were kept. Approximately 10% ROIs were removed during this procedure.

For dendritic and axonal imaging datasets, a penalized matrix decomposition (PMD) 

algorithm was used to automatically denoise and demix the datasets, which improved the 

resulting SNR for noisy dendritic/axonal imaging (Buchanan et al., 2018). Then, dendritic or 

axonal ROIs were automatically segmented, and fluorescence traces were extracted by the 

algorithm. The traces were then filtered by trend filtering as described in the above 

reference. After that, ROIs were manually selected using the custom MATLAB GUI as 

described above.

Visual Stimulation—Visual stimuli were generated using MATLAB and the 

Psychophysics Toolbox (Mathworks) and displayed on a monitor (Dell; P1914Sf, 19-inch, 

60-Hz refresh rate) positioned 28 cm in front of the right eye. Each animal was presented 

two consecutive visual stimulation sessions, each session with 15 trials, and each trial with a 

random order of 8 drifting gratings separated by 45°. In each trial, drifting gratings (100% 

contrast, 0.04 cycles per degree, 2 cycles per second) were shown for 4 s, followed by a 6 s 

interval with mean luminescence gray screen.
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Orientation tuning analysis—Orientation tuning curves were calculated by averaging 

the ΔF/F response traces of all grating stimulus sessions. This gives the polar plots. 

Orientation selectivity indices were calculated using circular statistics, defined as 

OSI = ∑k Rk exp(2iθk) ∕ ∑k Rk , where Rk is the response to each orientation (k = 1-8), i is 

the imaginary unit, and θk is the orientation in radians (Tzvetanov, 2016). Neurons with OSI 

> 0.2 were defined as orientation selective cells. The preferred orientation was determined 

by the orientation that evoked the strongest ΔF/F response. L2/3 was defined as 100 μm - 

300 μm depth from surface, and L5 was defined as 400 μm - 600 μm from surface. We 

excluded L4 for analysis due to the relatively smaller number of cells recorded and reduced 

GCaMP labeling in some cases (Peron et al., 2015).

Ensemble identification—Ensembles were detected using a graph-based community 

detection method, the Louvain method (Blondel et al., 2008). This method aims at detecting 

community structures in graphs, which are subsets of highly interconnected nodes. To apply 

this method, we first computed the pairwise similarity matrix using the inferred 

(deconvolved) fluorescence traces. Running epochs were excluded in order to reduce 

correlation artifact. This results in a Nneuron-by-Nneuron correlation matrix. Then, to further 

reduce noise, weak correlation values that are below the sum of mean and three times of 

standard derivation were zeroed. A MATLAB module was used to perform Louvain 

community detection (Rubinov and Sporns, 2010). This method does not require a cluster 

number input, however, a resolution parameter γ was used to control the size of output 

communities, with γ = 1 resulting in classic communities, γ < 1 detecting larger 

communities, and γ > 1 detecting smaller communities. We ranged γ between 1 and 1.5 

with an interval of 0.05, performed community detection with each γ and cross-validated 

using the visual stimulus prediction performance of the resulting communities, taking the γ 
that gives best overall prediction performance. To calculate visual stimulus prediction 

performance, we considered the detected communities as Nneuron-by-1 population vectors, 

where entries corresponding to the constituent neurons in the communities are 1, and others 

are 0. We computed the cosine similarity between these community population vectors and 

real data, and used the output similarity values to compute the standard receiver operating 

characteristic (ROC) curves and the area under curve (AUC). AUC = 0.5 represents chance 

level, while larger than 0.5 represents positive predictions, and smaller than 0.5 represents 

negative predictions. For each detected community, we summed the AUC values for each 

grating direction, and combined the opposite directions to be a single orientation. For each 

orientation, communities that have an average AUC higher than 10% above chance level 

(0.55) were considered to be visually-evoked ensembles.

Clustering of axonal activity—We used affinity propagation to cluster axonal activity in 

layer 1 (Frey & Dueck 2007). This method operates on the pairwise similarity matrix 

between all pairs of data points, and identify the exemplers based on an input preference 

vector, then automatically determines the number of clusters. The preference vector was set 

to 95% quantile of the similarity matrix here. The MATLAB module used is available at 

[https://www.psi.toronto.edu/index.php?q=affinity%20propagation] (without sparsity).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical analysis method, sample size, type of sample and significance level can 

be found in corresponding figure legends. Statistics was done by Wilcoxon rank-sum test for 

unpaired samples, and Wilcoxin signed rank test for paired samples unless otherwise noted, 

due to their unknown distribution. Unless otherwise indicated, error bars represent SEM. 

Statistical analysis were done using MATLAB (Mathworks). In this paper, statistical 

significance levels are depicted as * for p < 0.05, ** for p < 0.01, or *** for p < 0.001.

DATA AND SOFTWARE AVAILABILITY

SLM control code is available at https://github.com/wjyangGithub/Volumetric-Imaging. Raw 

imaging datasets are available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Fast volumetric imaging of cortical columns in vivo with hybrid wavelength 

multiplexing

• Functional correlations across cortical layers vary from trial to trial

• Lack of columnar structures in orientation responses in mouse V1

• Simultaneous imaging of axonal projections and neuronal populations in 3D
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Figure 1. Two-Color Two-Photon Volumetric Imaging Microscope
(A) Microscope design diagram. Two lasers at 920 and 1,064 nm are expanded in beam 

spatial profile and modulated by an ETL unit and an SLM unit, correspondingly, then 

combined through a dichroic mirror and passed through a resonant scanner and a 

galvanometric scanner before exciting the sample through an objective lens. Emitted 

fluorescence is collected through two separate PMTs. The SLM path is also equipped with 

an offset lens that separates its focal plane (200 μm deeper) from that of the ETL path. See 

Table S1 for detailed parameters of the optical elements.

(B) Details of the lens complex design.
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(C) Diagram of volumetric imaging. Two planes are excited and recorded at the same time: 

the shallower one from the ETL path and the deeper one from the SLM path. The imaging 

depth of the dual planes cycles over time to record a three-dimensional (3D) volume.

(D–F) Measured signal (D), noise (E), and signal-to-noise ratio (SNR) (F) from both green 

(Ch1) and red (Ch2) PMTs, with only 920 nm laser on.

(G) Quantified signal strength with effective noise in green channel (Ch1). Signal strength is 

from signal in (D) (green dots). Effective noise is computed as the sum of noise in (E), 

signal in (H), and noise in (I) (all in green dots).

(H–J) Measured signal (H), noise (I), and SNR (J) from both green (Ch1) and red (Ch2) 

PMTs, with only 1,064 nm laser on.

(K) Quantified signal strength with effective noise in red channel (Ch2). Signal strength is 

from signal in (H) (red dots). Effective noise is computed as the sum of noise in (I), signal in 

(D), and noise in (E) (all in red dots). n = 3 experiments.

See also Figures S1-S3 and Table S1.
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Figure 2. In Vivo Volumetric Imaging of Cortical Columns
(A) Row 1, temporal average images of recorded planes in Ch1 with 920 nm laser, recorded 

from 150 to 350 μm, with a spacing of 50 μm. Row 2, ROI contours extracted by the CNMF 

algorithm, overlaid with temporal average images. Row 3, temporal average images of 

recorded planes in Ch2 with 1,064 nm laser, recorded from 400 to 600 μm, with a spacing of 

50 μm. Row 4, ROI contours extracted by the CNMF algorithm, overlaid with temporal 

average images. Scale bar: 100 μm.

(B) Raw ΔF/F traces from all extracted ROIs in each plane, over 10 min spontaneous 

activity.
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(C) Two examples of raw (light color) and deconvolved (dark color) traces, from 920 and 

1,064 nm path.

(D) Example traces from each plane. Light color, raw traces. Dark color, deconvolved traces.

See also Figure S4 and Video S1.
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Figure 3. Orientation-Tuning Cells in V1 Columns
(A and B) Fluorescence traces (left) and polar graphs (right) of representative cells that are 

selective to 0°, 45°, 90°, and 135° drifting gratings in layer 2/3 (A) and layer 5 (B).

(C) 3D distribution of orientation-selective cells in the imaged cortical column from a 

representative dataset.

(D) Percentage of orientation-selective cells in layer 2/3 and layer 5 (n = 7 experiments).
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Figure 4. Correlation Structure of Visually Evoked Ensembles
(A) Example of 3D structures of visually evoked ensembles in the imaged cortical column 

identified with Louvain method and consensus clustering.

(B) 3D view of all visually evoked ensembles, from the same ensembles as (A).

(C) Prediction performance of the ensembles in (A), of all directions. Color represents 

AUC-0.5; red color represents high prediction performance.

(D) Statistics of ensemble prediction performance, compared with random controls (p < 

0.001). Note that the y axis represents AUC; 0.5 on the AUC axis represents chance level.

(E) Statistics of average correlation within ensembles, compared with random controls (p < 

0.001). Random controls were generated by random sample subsets of the population with 

the same number of neurons in corresponding ensembles, for 10 times each ensemble.

(F) Example correlation structure between ensemble cells in layer 2/3 and layer 5, using the 

first and second half of visual stimulus trials (left) and using the entire trials (right).

(G) Scatterplot of pairwise correlation between layer 2/3 and layer 5 ensemble cells from 

half trials and full trials. Dashed line represents x = y; black dots represent data point 

correlations; red crosses represent background correlation from Ch1 and Ch2 in all 

experiments; black line represents the least squares linear regression result. n = 7 

experiments, 16 ensembles.
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Figure 5. Lack of Columnar Structures in V1 Responses
(A) Example of the spatial locations of visually evoked ensembles (top-projection views 

from all planes).

(B) Example of spatial locations of orientation-selective cells (top-projection views from all 

planes). Note the salt-and-pepper structure in both cases.

(C) Scatterplot of pairwise lateral distance and correlation, among all cell pairs (left), among 

visually evoked ensembles (middle), and among orientation-selective cells (right). Red line 

shows mean ± SD. Data pooled from six experiments.

(D) Distribution of pairwise correlation within columns of 30, 50, and 100 μm diameter. 

Red, real data; black, random controls. Random controls were generated by computing the 

correlation between cells within the column and a random set of cells with the same number 

outside of the column, repeated 50 times each column. n.s., not significant. Statistical 

analysis was done using the Wilcoxon rank-sum test in each correlation bin of individual 

datasets, comparing real data with random controls. All correlation bins above −0.3 were not 

significant, for all experiments. n = 6 experiments.

See also Figure S5.
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Figure 6. Volumetric Imaging of Layer 1 Long-Range Axonal Projections from PFC and Local 
Layer 2/3 Somata in V1
(A) Schematic of experiment design. In this experiment, the 920 nm laser path covers four 

planes in layer 1, and the 1,064 nm path covers four planes in layer 2/3.

(B) Examples of average images from the recorded planes, from 25 to 100 μm with a 

spacing of 25 μm in layer 1 and from 150 to 300 μm with a spacing of 50 μm in layer 2/3. 

Scale bar: 100 μm.

(C) Examples of extracted ROIs in each plane.

(D) Example traces from each plane.
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(E) Example of clustered correlation matrix of all ROIs in layer 1, sorted by cluster identity 

(left), and four examples of ROIs that are identified in the same clusters with corresponding 

traces (right). Note that the imaging depth of the example ROIs on the right might be 

different.

(F) Clustering result in each plane. ROIs belonging to the same cluster are shown with the 

same color.

(G) Correlation within clusters, compared with random controls (p < 0.001, Wilcoxon 

signed rank test).

(H) Correlation between layer 1 ROIs and layer 2/3 ROIs in one representative dataset.

(I) Two examples of ROI pairs from layer 1 (green) and layer 2/3 (red) that are highly 

correlated. The lateral locations of ROI pairs are shown on the left, and their traces shown on 

the right.

(J) Distribution of correlation between layer 1 and layer 2/3 ROIs (individual dataset plotted 

in gray with their mean plotted in black). Upper right curve shows the cumulative 

distribution function. n = 11 experiments; mean correlation 0.006 ± 0.012 (p = 0.617, t test).

See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV1.Syn.NES-jRGECO1b.WPRE.SV40 Dana et al., 2016 UPenn Vector Core; Addgene 100857-AAV1

AAV9.hSyn.GCaMP6s.WPRE.SV40 Chen et al., 2013 UPenn Vector Core; Addgene 100843-AAV9

Experimental Models: Organisms/Strains

Mouse (wild-type, C57BL/6J) Jackson Laboratory N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/

Moco Dubbs et al., 2015 https://github.com/NTCColumbia/moco

MATLAB(R2016a) MathWorks https://www.mathworks.com/

SLM control software This paper https://github.com/wjyangGithub/Volumetric-Imaging

Constrained nonnegative matrix factorization (CNMF) 
algorithm

Pnevmatikakis et al., 2016 https://github.com/flatironinstitute/CaImAn-MATLAB

Penalized matrix decomposition (PMD) algorithm Buchanan et al., 2018 https://github.com/paninski-lab/funimag
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