
UCLA
UCLA Previously Published Works

Title
Eigenrank by committee: Von-Neumann entropy based data subset selection and failure 
prediction for deep learning based medical image segmentation.

Permalink
https://escholarship.org/uc/item/126674br

Authors
Gaonkar, Bilwaj
Beckett, Joel
Attiah, Mark
et al.

Publication Date
2021

DOI
10.1016/j.media.2020.101834
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/126674br
https://escholarship.org/uc/item/126674br#author
https://escholarship.org
http://www.cdlib.org/


Eigenrank by Committee: Von Neumann Entropy Based Data 
Subset Selection and Failure Prediction for Deep Learning 
Based Medical Image Segmentation
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Wilsona, Azim Laiwallaa, Banafsheh Salehib, Bryan Yoob, Alex Buib, Luke Macyszyna

aDepartment of Neurosurgery, University of California Los Angeles

bDepartment of Radiology, University of California Los Angeles

Abstract

Manual delineation of anatomy on existing images is the basis of developing deep learning 

algorithms for medical image segmentation. However, manual segmentation is tedious. It is also 

expensive because clinician effort is necessary to ensure correctness of delineation. Consequently 

most algorithm development is based on a tiny fraction of the vast amount of imaging data 

collected at a medical center. Thus, selection of a subset of images from hospital databases for 

manual delineation - so that algorithms trained on such data are accurate and tolerant to variation, 

becomes an important challenge. We address this challenge using a novel algorithm. The proposed 

algorithm named ‘Eigenrank by Committee’ (EBC) first computes the degree of disagreement 

between segmentations generated by each DL model in a committee. Then, it iteratively adds to 

the committee, a DL model trained on cases where the disagreement is maximal. The 

disagreement between segmentations is quantified by the maximum eigenvalue of a Dice 

coefficient disagreement matrix a measure closely related to the Von Neumann entropy. We use 

EBC for selecting data subsets for manual labeling from a larger database of spinal canal 

segmentations as well as intervertebral disk segmentations. U-Nets trained on these subsets are 

used to generate segmentations on the remaining data. Similar sized data subsets are also 

randomly sampled from the respective databases, and U-Nets are trained on these random subsets 

as well. We found that U-Nets trained using data subsets selected by EBC, generate segmentations 

with higher average Dice coefficients on the rest of the database than U-Nets trained using random 

sampling (p<0.05 using t-tests comparing averages). Furthermore, U-Nets trained using data 
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subsets selected by EBC generate segmentations with a distribution of Dice coefficients that 

demonstrate significantly (p<0.05 using Bartlett’s test) lower variance in comparison to U-Nets 

trained using random sampling for all datasets. We believe that this lower variance indicates that 

U-Nets trained with EBC are more robust than U-Nets trained with random sampling.

Graphical Abstract
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Active Learing; Deep Learning; Data subset selection; Failure Deep Learning

1. INTRODUCTION

1.1. Significance

Deep learning methods have become a mainstay of fully automatic medical image 

segmentation. These methods play a key role in the development of quantitative imaging 

biomarkers for a number of pathologies. However, training and deploying deep learning 

segmentation in practice is beset by a number of challenges. Two significant but related 

challenges are:

• Data subset selection (DSS) - the development of robust segmentation tools by 

using human annotation efforts in the most efficient possible manner

• Failure Prediction (FP) - the ability to predict on which cases a deep learning 

based segmentation model will fail.
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Both problems are significant in medical image segmentation, more than natural image 

segmentation, as the availability of expert annotated data for training medical image 

segmentation models is severely constrained. These models need to be perform adequately 

despite natural and pathologic variation, even when trained using datasets much smaller than 

those regularly used in natural image segmentation competitions. While standard machine 

learning improves generalizability by training on increasingly larger sets of training data, the 

cost of annotation is much higher in medical imaging. Given the limited availability of 

physician effort, it is important that manual annotation efforts be utilized in the most 

efficient manner when creating a new training set aimed at segmenting a specific anatomical 

region. We must be able to optimally choose a training subset of images for manual 

annotation from within the vast store of imaging data available in a standard hospital picture 

archiving and communication system (PACS). Moreover, this subset must be selected 

without the availability of any manual segmentations. This is the data subset selection (DSS) 

problem of medical image segmentation, which we address in this work. A related problem 

that emerges when one attempts to incorporate automatic medical image segmentation 

algorithms into clinical workflows. An algorithmic framework is not expected to be perfect. 

However, an algorithm that is imperfect and that can alert the attending physician to its 

imperfections is far more valuable than an algorithm which fails silently. The majority of 

existing algorithms for medical image segmentation fail silently. The DSS framework we 

propose induces a scan specific score, which may help predict where a deep U-Net 

algorithm will perform poorly or fail. We expect that our DSS framework as well as the 

ability to predict the possibillity of failure is critical to enable deployment of DL 

segmentation algorithms for clinical imaging.

1.2. Related Work

1.2.1. Data subset selection and active learning—Typical DSS aims to choose a 

training subset from a large dataset, such that models trained on the subset incur minimal 

loss compared to models trained on the complete dataset (Wei et al., 2015; Schreiber et al., 

2019). Active learning on the other hand involved the ability to interactively query the user 

during the training process (Settles, 2009). DSS and active learning have been a part of 

machine learning literature for more than three decades (Settles, 2009; Rubens et al., 2015; 

Das et al., 2016; Zhou, 2017). Consequently, there exists substantial literature on data subset 

selection, active learning, as well as weakly supervised learning, all of which cannot be 

reviewed here. However, we note that the majority of standard DSS algorithms are designed 

to work with binary classification and focus on preserving classification accuracy. The 

closest work to ours in literature comes from pathology (Yang et al., 2017; di Scandalea et 

al., 2019) where uncertainty at the voxel level is used to trigger a query to the human expert 

to segment a patch. This strategy of using voxel-level disagreement to drive human annotator 

attention to specific regions of images has also been used with deep ensembles constructed 

by bootstrap sample selection (Dolz et al., 2017; Deng et al., 2018). A disciplined 

framework that defines manual annotation minimization as a linear program is described by 

Bhalgat (Bhalgat et al., 2018). The authors suggest that mixed supervision where weak 

annotation using landmarks and bounding boxes is combined with relatively few full 

annotations could be used to improve segmentation quality. They define an active learning 

based semi-automatic segmentation technique using Fisher information to optimize manual 
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segmentation efforts to differentiate tissue type in infant brains (Sourati et al., 2018). Our 

method is similar in that it is based on a Von Neumann information paradigm, but different 

in the sense that we operate at a whole scan level. Tangentially related work includes 

multilevel networks (Zhao et al., 2018; Gaonkar et al., 2016), that are used with one stage 

detecting a bounding contour while the second stage segments. While these approaches are 

neither DSS nor active learning, they do reduce the amount of human effort needed for 

segmentation.

The aforementioned methods have mainly been designed to improve semi-automatic 

segmentation and improve the throughput of manual segmentation. Hence, the 

aforementioned literature aims to alleviate manual work by focusing on problematic regions 

via active learning at the pixel/voxel level. In contrast, we approach subset selection at the 

subject/patient level rather than a pixel or a patch level. Our work defines and measures 

uncertainty between segmentations produced by multiple models at a subject level. The 

driving motivation in this work is to make automated segmentation-based biomarkers a part 

of the radiological workflow, where majority of the work may be done by the automation, 

while identifying cases which will need human attention in the clinic, and then using such 

cases to improve the automation itself. A second aspect which is not addressed widely in 

previous literature is that of ‘robustness’. If clinical workflow automation is the goal, 

robustness is as important as accuracy. Note that we define robustness as the ability of a 

trained model to consistently segment anatomy and quantify it using the variance of the 

distribution of Dice coefficients comparing automated segmentations and manually 

generated segmentations over a large dataset of scans. A method which performs 

consistently, with a slightly lower accuracy is better than a method which segments 

inconsistently at a high ‘average’ accuracy. The latter method may be non robust in that it 

may achieve higher accuracy, by segmenting ‘easy’ cases with a high Dice score but 

generate extremely poor segmentations on a few challenging cases. Our approach selects 

subsets which lead to the creation of DL models which are both more accurate and more 

robust than random selection. We study subset selection from a robustness point of view as 

opposed to an accuracy point of view. This is another philosophical difference between 

current art and the work proposed here.

1.2.2. Failure Prediction—Failure is a topic of research that has gained wide-attention 

in deep learning as well as machine learning. Deep learning systems based on convolutional 

networks can attain human level performance on narrow tasks yet seem to fail due to 

incomprehensible reasons, while maintaining ‘high confidence’ in the accuracy of prediction 

(Nguyen et al., 2015; Goodfellow et al., 2014). The problem of quantifying ‘model 

uncertainty’, that is having the model ‘know’ when it fails has been addressed by the 

machine learning community in multiple ways. Traditionally, uncertainty estimation is done 

using Bayesian Neural Networks (Neal, 2012) which aim to learn the distribution of a 

network’s weight parameters. Theoretically, this can then enable the computation of a 

distribution over the network outputs and associated uncertainty estimates. However, 

Bayesian inference is computationally intractable in modern deep neural networks, given 

their size. Thus, several recent efforts have focussed on approximating Bayesian Neural 

Networks (BNNs) rather than training them directly. Perhaps, the most notable of these is 
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the use of Dropout to approximate Bayesian inference (Gal and Ghahramani, 2016). Other 

notable attempts at approximating BNNs include the use of Stochastic Batch Normalization 

(Atanov et al., 2019) and Multiplicative Normalizing Flows (Louizos and Welling, 2017). 

All of these approximations produce uncertainty estimates using a large number of forward 

passess through the network at runtime. This makes inference computationaly intensive. 

Deep ensembles (Lakshminarayanan et al., 2017) provide an alternative which computes 

variance in prediction by training many models and recording the variance of their 

predictions. Yet this requires inference on many models. Some authors have proposed direct 

learning for uncertainty estimation to reduce dependence on sampling - a pardigm that 

obviates the need for sampling. (Kendall and Gal, 2017; DeVries and Taylor, 2018a).

Some of these ideas have permeated to the medical image segmentation lliterature. However, 

their application has mainly been to predict segmentation quality. Pixel level uncertainty 

may be estimated using any of the previously described techniques operating under the 

pretext that image segmentation is a pixel classification task (DeVries and Taylor, 2018b; 

Jungo and Reyes, 2019). But image segmentation, especially as applied in clinical practice is 

not a pixel level task but a scan level task. To automate clinical workfow in spine imaging, 

we require that an image segmentation algorithm should either confidently and correctly 

segment anatomy on a scan or leave diagnosis to the physician entirely. In this work we 

present a novel metric which operates at the scan level rather than at the pixel level. Our 

metric quantifies the degree of disagreement in segmentations produced by several DL 

models using the maximum eigenvalue of an associated matrix. The matrix is constructed to 

capture the disagreement amongst multiple deep learning segmentation models. The 

framework we present can incorporate various ‘segmentation’ specific metrics to generate 

the disagreement matrix and address the clinically relevant problem of ‘picking out’ scans 

which might be problematic. This is different from picking out ‘pixels’ where segmentation 

uncertainty might lie. We validate our approach on actual clinical data and demonstrate its 

effectiveness.

1.2.3. Model Stability—Model stability is an important related concept from machine 

learning literature. Model stability is quantified by consistency of model predictions despite 

perturbations in training data (Yu et al., 2013; Yu and Kumbier, 2019). The concept 

proposed here uses the ‘inconsistencies’ between trained deep learning models to identify 

challenging cases in the data. While stability has not been studied in detail in the context of 

deep learning, early work in machine learning links higher stability to better generalization 

for a large class of empirical risk minimization algorithms (Bousquet and Elisseeff, 2002). 

Later, the link between stability and generalization performance was proven for a much 

larger class of algorithms (Poggio et al., 2004; Kutin and Niyogi, 2012). Consequently, it is 

natural to prefer stable deep learning models. In this work, we propose a concrete criterion 

for choosing training data that leads to the creation of more stable deep learning models for 

medical image segmentation. Based on previous work in machine learning, we can expect 

these stable algorithms to generalize better as well.
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1.3. Contributions

The main contribution of this work is to propose a novel iterative algorithm for data subset 

selection and failure prediction in medical image segmentation. Our approach iteratively 

selects challenging cases from a large dataset and archives models trained on cases selected 

in each iteration to generate an ensemble of deep learning models. In the next iteration, 

challenge cases are selected based on the degree of disagreement between all models. The 

degree of disagreement is defined by the maximum eigenvalue of a matrix whose entries are 

the Dice scores comparing segmentations generated by different models in the ensemble. We 

discuss how this measure is closely connected to the Von Neumann information metric and 

validate the proposed algorithm in clinical MRI segmentation tasks related to the spine. In 

broad strokes, the proposed algorithm can be seen as an extension of the query-by-

committee framework (Seung et al., 1992) to medical image segmentation using Von 

Neumann Information metric. Using spinal canal and intervertebral disk segmentation on 

magnetic resonance imaging (MRI), we validated our algorithm. Our experiments show that 

our algorithm:

1. Chooses a subset of ‘challenging’ cases for initial training

2. Yields trained deep learning models more robust and more accurate than models 

trained using random selection

3. Accurately identifies entire scans in the data, which are challenging with respect 

to the defined segmentation task, thus enabling failure prediction

Our work presents a new way to select training data for creating novel segmentation models 

using deep learning. It also presents a systematic approach to identify scans that are most 

likely to require human attention by preempting algorithmic failure. These are fundamental 

challenges in medical image segmentation and addressing them makes deep learning based 

segmentation both more attractive and defensible for deployment in clinical workflows.

2. Methods

The central aim of the investigations presented here is to convince the reader of the value of 

our novel algorithmic framework for data subset selection and failure prediction in deep 

learning based medical image segmentation. Normally, large annotated data sets are thought 

of as prerequisites for training deep learning methods (Greenspan et al., 2016). In this work, 

we show that data selection using our framework can help create robust and accurate deep 

learning models with fewer data. Further, we show that with our algorithmic framework, it is 

possible to preemptively identify scans where a deep learning model will fail.

2.1. Data collection and preprocessing

The data used as a part of this work was obtained by querying the University of California at 

Los Angeles (UCLA) PACS for individuals who had undergone any form of spine imaging 

using the corresponding CPT (Current Procedural Terminology) codes (Terminology, 1970) 

corresponding to lumbar MRI. The search yielded a large number of accession numbers, of 

which we selected cases for the purposes of experiments detailed here. This data was 

obtained under the IRB 16–000196. Images were downloaded from PACS, anonymized and 
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resampled in the axial or sagittal plane to 256×256-px. Subsequently, each image was 

converted to the NIFTI (Li et al., 2016; Larobina and Murino, 2014) format and linearly 

histogram matched to a template image using the SimpleITK (Lowekamp et al., 2013) 

package. Template image intensities were scaled to lie between a maximum of 1 and a 

minimum of 0. Linear histogram matching ensured that the same was true of each image 

used in this study.

2.2. Manual segmentation

Manual segmentation of spinal canals was performed by two medical students using ITK-

SNAP (Yushkevich et al., 2006) and validated by an attending physician. The manual 

segmentation data were used as ground truth for all experiments presented here. The tasks 

we focus on consists of image segmentation of spinal canals on 200 axial lumbar MRI scan 

series and intervertebral disks on 100 sagittal lumbar MRI scans data. We have previously 

published (Gaonkar 2019a, Gaonkar 2019b) on this task and enumerated challenges involved 

in the process. Examples of intervertebral disk segmentations and spinal canal segmentations 

are shown in Figure 2.

2.3. Model architecture and parameterization

We use a standard model architecture called the residual U-Net. The U-Net which was first 

proposed for cellular image segmentation, has become a standard methodology for medical 

image segmentation (Ronneberger et al., 2015). It was further modified by the addition of 

residual layers in (Zhang et al., 2018). For experiments presented here, we use the 

architecture shown in Figure 1. Implementation used the Keras (Chollet et al., 2015) 

interface to the Tensorflow (Abadi et al., 2016) library.

Our network was designed to operate on 128×128 pixel patches of imaging data. In our 

experiments, we generated image patches from axial slices extracted from 3D data using 64 

px strides for spinal canals. For disks, we used sagittal slices and performed the same patch 

extraction. Input patches were collected from pre-processed input scan(s) and output patches 

were collected from corresponding manual segmentation(s). Before training the model, 

patches extracted from images were augmented by transforming each patch (and the 

corresponding segmentation) by a randomly picked combination of a translation, rotation, 

and scaling. Specifically, for each patch, the augmentation algorithm randomly picked an 

angle between +/ − 20°, a scaling factor between [0.8, 1.2], and x-translation and y-

translation limited by +/ − 50 px. For training models used in the EBC selection process, 

each patch is augmented 20 times since these models are based on small data subsets 

(Gaonkar et al., 2018). For training models, which are used to validate the EBC selection 

procedure (see Results), each patch is augmented twice.

2.4. Terminology

• We denote the training set as T , the set of pairs {(I1, S1),(I2, S2), · · · (Ij, S j) · · · 

(IN, S N)} with Ij representing jth patient scan and S j representing the 

corresponding segmentation image.
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• For any subset S ⊂ T , we define DS as the deep learning model trained using a 

chosen deep learning segmentation algorithm denoted by D.

• Further, we denote Sj
DS as the segmentation image obtained by applying the 

model DS to the image Ij ∈ T.

• The Dice coefficient of overlap is denoted by operator Δ(., .), so the Dice 

coefficient comparing Sj
DS annd S j would be Δ(Sj

DS, Sj).

• Further, we remind the reader of the set difference notation. Given sets A and ℬ, 

the set A\ℬ contains all elements of A that are not in ℬ.

2.5. The Eigenrank by Committee Algorithm

Figure 3 shows a gestalt representation of the EBC algorithm and the pseudocode below 

explicitly presents the algorithm itself. As shown in the figure, EBC has an initialization step 

and an iterative step. The initialization step of EBC closely follows the query-by-committee 

(QBC) (Seung et al., 1992) paradigm, although with the modification that Dice coefficients 

used to affirm model agreement are real numbers rather than binary labels. In the 

initialization phase, the algorithm randomly selects two subsets of size k from T and trains 

deep learning segmentation models on them. Then, it compares segmentations generated 

using one model to the other on the remnant of the training images using the Dice score. 

Note that this compares segmentations generated by one model to another and does not need 

ground truth. Images corresponding the lowest ‘k’ Dice coefficients are used to ‘select’ the 

next subset to train on. The second step of EBC is the ‘iterative’ step, in which we have to 

compare segmentation results from an increasing number of deep learning models. A direct 

generalization of the Dice coefficient, if used to compare three or more segmentations, 

yields a metric which becomes zero if just one model in the ensemble DS1, ⋯DSt  fails, or 

generates a segmentation which has no overlap with any of the other segmentations. This 

presents a unique problem which we solve by generating a Dice matrix and using its 

maximum eigenvalue as a measure of ‘disagreement’. At the tth iteration, t models are 

available, each trained on a distinct k− subset of T. We use these models to construct a t × t 
matrix, whose elements are Dice scores comparing segmentations derived from each model 

with every other model. The principal eigenvalue of this matrix serves as a measure of 

disagreement among these t models. This principal eigenvalue is representative of the Von 

Neumann entropy of the Dice matrix, a connection further elucidated in a later section. Note 

that we allow t to increase to a preset T which represents the total number of iterations in 

EBC. Selecting images corresponding to the minimum k principal eigenvalues of the Dice 

matrix takes us to the t + 1th iteration. We formally present the algorithm next.

Initialization

 From T randomly select subsets S1, S2 ⊂ T

  we require k = S1 = S2 < < |T|
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  and define S ≐ S1 ∪ S2

 Train U-Nets DS1 and DS2 and define ℒ =

 For all Ij ∈ T\S,

  – Compute segmentations Sj
DS1

 and Sj
DS2

  – Compute Dice score Δj
S1, S2 ≐ Δ(Sj

DS1, Sj
DS2)

  – ℒ = ℒ ∪ {Δj
S1, S2}

 Use images corresponding to the k–smallest values in ℒ to construct S3

 Set S = S ∪ S3

Iterations

 • For t in {3, · · ·, T}

  ○ Train model DSt and set ℒ =

  ○ Using DS1, ⋯DSt  compute:

   - For all Ij ∈ T, Ij ∉ S

    Compute Dj
pq ≐ Δj

Sp, Sq = Δ(Sj
DSp, Sj

DSq)

    ∀p, q ∈ {1, · · ·, t}

    Define: Dj ≐ [Dj
pq] ∈ ℝt × t

    Compute λj
max = max eig Dj

    ℒ = ℒ ∪ {λj
max}

  ○ Use images corresponding to the k–smallest values in ℒ to construct St + 1

  ○ Set S = S ∪ St + 1

Output

Output selected data subset S

2.6. EBC with Alternate Metrics

The Dice coefficient is not the only available metric for comparing two segmentations. The 

Hausdorff distance (Hauss.) and the average surface/contour distance (Surf.) are both 

established metrics. Unlike the Dice metric, these metrics are distances instead of 

similarities. Hence, we use the regularized inverse of the Haussdorff distance and the surface 

distance to drive EBC.

Concretely, when using the Haussdorff distance as a metric, we replace the Dice matrix Dj 

with a matrix Uj defined as:
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Uj ≐ [Uj
pq] = 1

ℋj
pq + ε

∈ ℝt × t
(1)

where ℋj
pq is the Haussdorff distance between segmentations Sj

DSp and Sj
DSq.

Similarly, we define the matrix Vj as:

Vj ≐ [V j
pq] = 1

Aj
pq + ε

∈ ℝt × t
(2)

where Aj
pq is the average surface distance between segmentations Sj

DSp and Sj
DSq. We use 

an ε value of 0.001 for all our experiments.

We used both these matrices to drive EBC selection using 100 spinal canal cases and the 

results are tabulated in table 5

2.7. Von Neumann Information- Why EBC works

In EBC, we expect each of the t models to generate unique segmentations and expect Dj to 

be at least positive semi-definite (see Appendix for proof) so that we define the associated 

Von Neumann entropy as:

Hj = − ∑
r = 1⋯t

λrlog λr (3)

where {λ1 > λ2 > · · · > λt} are the ordered eigenvalues of Dj.

In the experiments described here it generally turns out that, λ1log(λ1) dominates Hj 

because:

λ1 > > λ2, λ3, λ4, ⋯ λt (4)

Thus, we intuit that EBC effectively looks for cases with the highest Von Neumann entropy. 

To understand why we can generally expect (4) to be true, consider the two extremes of Dj = 

I with I ∈ ℝt × t and Dj = J with J ∈ ℝt × t. Both of these cases never occur in practice but 

correspond to specific fictional scenarios. When Dj = I, each model agrees with itself but 

disagrees completely with every other model. When Dj = J, all models fully agree with each 

other. In the first case, all eigenvalues of Dj are unity. In the second case, we can analytically 

work out λ1 = t and λ2, · · · λt = 0 and (4) will be true and the maximum eigenvalue 

dominates the Von Neumann information. In most cases of practical interest, we would 

expect the various models involved to mostly but not completely agree and the maximum 

eigenvalue remains an effective metric.
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The analysis is presented to give the reader a perspective into why the proposed metric for 

ordering scans works by linking it to a well established information theoretic concept, at 

least as long as the Dice coefficient is used. However, it is important to note that EBC works 

well with other potential metrics as well. As shown in the results, this is true for both the 

Haussdorff distance and the average surface distance. It is important to note that the 

definition of the matrices Uj and Aj also leads to their being positive semi-definite. 

Although, this cannot be explicitly proven, given the definitions of Uj and Vj, it is easy to 

see that their diagonal elements are bound to be constant because ℋj
pp = Aj

pp = 0 which 

makes:

Uj
pp = V j

pp = 1
ε (5)

As, the diagonal is constant, we may apply Conjecture 1 from (Nader et al., 2019), if we can 

show that:

Uj
pq + Uj

qr ≥ Uj
rp + 1

ε (6)

V j
pq + V j

qr ≥ V j
rp + 1

ε (7)

This is easy to enforce by choosing:

ε < < ℋj
pq (8)

ε < < Aj
pq ∀j, p, q (9)

In our case, we chose ε = 0.001 while ℋj
pq > 1 and Aj

pq > 0.1. Thus both Uj and Vj are 

generally positive semi-definite with properties similar to Dj. This explains the effectiveness 

of both metrics in EBC (see results).

2.8. EBC for Failure Prediction

The intuition that drives EBC also provides a framework for failure prediction. If multiple 

models lack strong agreement over segmenting a particular scan, such a case is best referred 

to a human expert. This process closely mimics what human trainees do. The theory behind 

EBC is based on a framework that can quantify how much a group of image segmentation 

models disagree on a particular scan. Thus, it can be used to select scans which are likely to 

challenge deep learning based anatomy segmentation, and refer such cases to human experts. 

This is particularly important if we are to ever deploy machine learning based techniques to 

the clinic. It is no secret that even the best machine learning based segmentation can fail on a 

particularly difficult case. Cases which contain hitherto unseen pathology or atypical 
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anatomy are prime examples of such failure. Such failure is accepted from students in 

training. Even experts consult each other when faced with a challenging case. During 

training, some physicians can often identify cases where their own judgement may not be 

accurate. These cases are most often refer upto their mentors. While this ability to identify 

errors is impressive, it is imperfect and even a senior attending physician might make a 

mistake confidently. However, it shows us that humans associate a measure of confidence 

with each diagnostic judgement. Yet deep learning algorithms, when naively trained, do not 

replicate this ability. The maximum eigenvalue criterion used in EBC provides a simple 

measure of case difficulty. The more multiple models agree upon a case the higher the 

eigenvalue and the higher the confidence that such a case will be segmented well. This 

unlocks a potential deployment workflow where the algorithm performs adequately on cases 

which it is ‘confident’ about and refers the more complex cases to human experts. We have 

illustrated this in Figure 4. Furthermore, since EBC quantifies degree of model disagreement 

on the basis of the maximum eigenvalue of a symmetric positive definite matrix which is a 

continuous real variable, it could also be used to prioritize workflows for clinicians 

themselves.

3. Results

We present both quantitative and qualitative results comparing residual U-Net models 

trained using data subsets selected with EBC, to comparable datasets selected using random 

sampling. We use spinal canal segmentation datasets with 200, 150 and 100 MR scan series 

segmented by physicians and run EBC with k = 2, k = 3 and k = 4. While k = 2, 3, 4 may 

seem small for training a deep neural network - we use heavy data augmentation to make 

training plausible. The data is augmented by adding random rotations, translations and data 

flips 20 times per image (Gaonkar et al., 2018).

3.1. EBC by the iterations

The first set of experiments used 200 axial T2-MRI scans of the lumbar spine, on which 

manual segmentations of the spinal canal are available. The scans used were randomly 

selected from a clinical imaging database. They contained artifacts due to variation in 

acquisition, pathology, and metallic implants and surgical hardware often used in treating 

spine related conditions. We expect a robust segmentation algorithm to achieve accurate 

segmentation despite the presence of these artifacts. Thus, a robust algorithm will have both 

high average Dice score and a lower standard deviation in Dice scores. The more the 

robustness, the better the applicability to a clinical scenario.

At each iteration we train a residual U-Net model using the data selected. We use the model 

to segment all remaining cases out of the 200 and report the mean Dice coefficient and the 

standard deviation of the distribution of these Dice coefficients. At each iteration we also 

randomly sample a corresponding number of cases randomly - train a residual U-Net on the 

randomly selected data and use this model to segment the remaining cases.

Thus, for example at iteration t = 5, EBC run with k = 3 will have cumulatively selected 5 × 

3 = 15 scans. A residual U-Net trained with these 15 scans is used to segment the remaining 

200–15 = 185 scans which exclude the cases selected by EBC. Note that during this training 
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process patches extracted from the images are augmented only twice as opposed to 20 times 

during the EBC selection process. Dice coefficients are then computed for each of those 185 

scans and the mean and standard deviation of these coefficients is tabulated.

To run a comparative analysis, we also randomly sample 15 cases from the original 200, 

train a residual U-Net using those 15 cases and compute Dice coefficients on the remaining 

185 scans which exclude the cases selected by random sampling only. The mean and the 

standard deviation of these Dice coefficients is recorded and compared to the corresponding 

values for EBC using a t-test for means and a Bartlett’s test for variances. We have presented 

these results for spinal canal segmentation using a dataset of 200 axial T2-MRI in Table 1, 

for iterations t = 5 to t = 7.

3.2. EBC for on datasets of various sizes

The first set of experiments used |T | = 200 , |T | = 150 and |T | = 100 axial T2-MRI scans of 

the lumbar spine, on which manual segmentations of the spinal canals are available. The 

scans used were randomly selected from a clinical imaging database.

They contained artifacts due to variation in acquisition, pathology, metallic implants and 

surgical hardware used in treating spine related conditions. We expect a robust segmentation 

algorithm to achieve accurate segmentation despite the presence of these artifacts. Thus, a 

robust algorithm will have both high average Dice score and a lower standard deviation in 

Dice scores. The more the robustness, the better the applicability to a clinical scenario. We 

ran EBC for 7 iterations with k = 3, thus choosing 7 × 3 =21 scans to train a residual U-Net. 

We also selected 21 scans randomly and trained a separate residual U-Net using the 

randomly sampled subsets. For each dataset containing |T| scans, the trained residual U-Nets 

(both EBC based and random sampling based) were used to segment spinal canals on the 

remaining, 179, 129 and 79 scans - and Dice coefficients comparing residual U-Net 

segmentations to human generated segmentations were computed. The mean of such Dice 

coefficients as well as their standard deviations are presented in Table 2. Bartlett’s test are 

use to compare standard deviations and t-tests to compare means. These statistical tests 

indicate a significant increase in accuracy and decrease in standard deviation for the Dice 

score distributions achieved by the algorithm trained on EBC data subsets as compared to 

those trained on random sampling data subsets. We also observe that EBC seems to be more 

effective with larger datasets.

3.3. EBC characterization using different k values

To understand how the choice of k changes the performance of EBC we ran the algorithm 

for 7 iterations with k = 2, k = 3 and k = 4 using the dataset of |T | = 150 scans with 

segmented spinal canals. Thus, for k = 2, k = 3 and k = 4 , residual U-Net models were 

trained using 14, 21 and 28 scans respectively. These models were used to segment the 

remaining 136, 129 and 122 cases respectively. Comparable analyis was done using residual 

U-Nets trained on randomly sampled datasets as well. The average Dice scores and the 

associated standard deviations are recorded in Table 3. The table shows that models trained 

on data subsets picked using EBC are significantly more accurate and robust as compared to 

models trained using data subsets picked using random sampling for all values of k.
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3.4. EBC for data subset selection using a different anatomy

All the experiments presented so far have utilized datasets containing axial MR images and 

corresponding segmentations of spinal canals. We applied EBC to a dataset containing 103 

sagittal MR scans wherein intervertebral disks had been segmented. Table 4 presents a 

comparison between the performance of a U-Net trained on 21 scans (7- iterations) selected 

by EBC and one trained on a comparable data subset picked using random sampling. The 

mean Dice score achieved by the residual U-Net trained on EBC subset continues to be 

signifcantly better than the mean Dice score achieved by the residual U-Net trained on the 

randomly sampled subset, despite the change in anatomy targeted by the segmentation.

3.5. EBC characterization using metrics other than the Dice coefficient to compare 
segmentations

We use the Hausdorff distance and the average surface distance to evaluate the effectiveness 

of models trained using EBC based selection as outlined in section 2.6. The experiment we 

conducted used 1) a dataset of 100 axial MRI scans with spinal canal segmentations and 2) a 

dataset of 103 sagittal MRI scans with intervertebral disk segmentations. We ran EBC to 7 

iterations in both datasets with k = 3 and with matrices Dj, Uj as well as Vj used to drive 

selection. The results are presented in Table 5. It can be seen that EBC based data subset 

selection increases average segmentation quality when the metric used is either the Dice 

coefficient or the average surface distance. However, the Hausdorff distance does not 

replicate this performance. The use of the raw Hausdorff distance as a metric in EBC leads 

to relatively higher standard deviations and lower accuracies. However all metrics lead to 

some improvement over random selection, as evaluated using the Dice coefficient. While a 

thorough investigation of each metric is out of scope in the present manuscript, we note that 

the proposed technique remains applicable for these three common metrics used to compare 

image segmentations.

3.6. EBC - Qualitative visualization

To help the reader gain a qualitative picture of how EBC selects cases, three cases selected 

by the first iteration of an EBC run - on a dataset of 100 axial T2-MRI scans with k = 3 is 

illustrated in figure 5. Three cases selected via random sampling are presented alongside for 

comparison. It can be seen from the Figure 5 that EBC selects cases which are much more 

complex as compared to random sampling. One of these cases has abnormally scoliotic 

pathology, the second has screws, and the third has a relatively lower contrast, perhaps due 

to an MRI acquisition issue. By contrast, the variation in both intensity, pathology, and 

instrumentation within cases picked randomly is distinctively lower. Similarly, figure 6 

presents 3 cases chosen by the first iteration of EBC run with k = 3 on the dataset of 103 

sagittal T2-MRI scans. Again scans selected by EBC contain either instrumentation or 

pathology. Scans selected randomly do not demonstrate these problems.

3.7. EBC - Failure Characterization

EBC can serve as a method for predicting ‘failure’ of deep learning models. In this section, 

we present an experiment which explores this possibility. This experiment uses 1) the dataset 

containing 100 axial lumbar MRIs with spinal canal segmentations and 2) the dataset 
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containing 103 sagittal lumbar MR scans with intervertebral disk segmentations. We train 

residual U-Net models on a random subset of 15 scans selected from each of these datasets. 

Let’s denote these models as Dcanal and Ddisk for the respective anatomies. This leaves 85 

axial MR images with spinal canal segmentations and 87 sagittal MR images with 

intervertebral disk segmentations for the rest of the experiment. We eliminate scans from 

these 85 and 87 in batches of k = 3 using EBC.

For the canal segmentation data after the first iteration, 82 validation cases remain and 3 

cases are eliminated. After two iterations, 6 cases are eliminated and 79 cases remain and so 

on. Similarly, for the disk segmentation data, after the first iteration, 85 validation cases 

remain and 3 cases are eliminated. After two iterations 6 cases are eliminated and 82 cases 

remain and so on. We use Dcanal and Ddisk to segment both: the set of eliminated cases and 

the set of remaining validation cases - at each iteration for both anatomies. Dice score means 

and standard deviations across these sets are documented for canal segmentation in Table 6 

and for disk segmentation in Table 7.

Both tables indicate that as EBC eliminates the complex cases, the average Dice score on the 

remaining cases increases and the standard deviation of the Dice scores decreases. This 

indicates that EBC can preemptively detect cases which Dcanal and Ddisk will find 

challenging - even though the data they were trained on were not part of the evaluations 

presented in the Tables 6 and 7.

4. Discussion

We have presented our algorithm from a utilitarian point of view. In this section, we first 

present intuitions which drove the design of EBC. Then, we discuss alternative metrics 

which could be used in EBC, in place of the eigenvalue measure proposed. We also discuss 

in detail why we consider EBC a better alternative to traditional data subset selection in 

medical image segmentation. We also highlight how EBC is related to QBC and note some 

of the mathematical problems which emerge from our experiments.

4.1. Relationship to Query-by-Committee

The query-by-committee (QBC) framework of active learning, first presented by Seung 

(Seung et al., 1992), motivated EBC. QBC operates on a framework similar to EBC, where 

multiple models are trained on current labels, and new candidates for training are picked 

based on where “the committee” disagrees the most. QBC was first proposed from an 

information theoretic perspective , and further developed in it (Freund et al., 1997). Later, 

other authors extended QBC with kernels (Gilad-Bachrach et al., 2006) and studied its 

theoretical properties (Buus et al., 2003). The premise of QBC-based DSS is that a data 

instance in which two machine learning models label differently, is more informative for the 

training subset. In the standard classification setting where labels are either binary or 

discrete, this premise is straightforward to apply. However, in deep learning based medical 

image segmentation, applying QBC directly presents several challenges unless one is 

applying it at a pixel level where standard deviation of segmentation intensities provide a 

simple metric to quantify disagreement. Applying QBC at the scan level requires that 
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comparisons of outputs of multiple models are made at the global segmented image level. 

EBC presents one paradigm in which this may be done.

4.2. Comparison to traditional data subset selection

Traditional data subset selection methods (as well as active learning) algorithms have most 

often been designed for either classification or regression problems. Their applicability in 

medical image segmentation is thus fairly limited. Further most traditional data subset 

selection techniques tend to operate independently of the algorithm. For instance, facility 

location based submodular dataset selection, would select the same subset whether we were 

segmenting a spinal canal or spinal vertebrae or some other anatomical structure. EBC, on 

the other hand, has the potential adapt selection and selection strategy to the specific 

anatomical substructure of interest. This is true of active learning in general. Yet, the 

majority of literature on active learning for medical image segmentation focuses on 

identifying variance between models at a local pixel/voxel level rather than a global entire 

image level. It is unclear whether such disagreement at the pixel or patch level translates to 

overall disagreement at the scan level. Moreover, it is easy to imagine scenarios where local 

disagreement does not translate to global disagreement. For instance, the existence of an 

unusually bright pixel, may cause certain models to fail locally causing local variance, yet 

globally a single pixel being mis-segmented hardly matters. To the best of our knowledge 

EBC based data subset selection is unique in quantifying and utilizing inter-model variance 

on an full image basis for data subset selection and active learning. This global variance 

quantification using Von Neumann entropy places EBC uniquely in the space of active 

learning methods used in medical image analysis.

4.3. A note on model selection

In this work, we have used a specific instance of a residual U-Net model to both construct 

and validate our framework. Perhaps a completely different model, patch generation and 

data augmentation scheme could be used. As such, hyperparameter optimization, learning 

rate optimization, batch normalization, architecture optimization, and all the other 

techniques which can improve deep networks could be used to create better models. 

Hyperparameter selection is an area of research unto itself. Our aim in this work is not to 

focus on model optimization, but rather to highlight the effectiveness of EBC for data subset 

selection and failure prediction, rather than delving into parameter or network selection 

theory. Hence, we have used a relatively straightforward architecture with fixed 

hyperparameters, patch generation, and augmentation schema.

4.4. Mathematical aspects

It is useful to understand the positive semi-definiteness of Dj ⪰ 0 from a geometric 

standpoint. Specifically, we explore the implications of this for comparing three 

segmentations to each other.

In the case presented by Figure 7, it is possible to visualize why Dj might be positive semi-

definite for the relative of three models shown in Figure 7. In the case of three models, if two 

models agree with the third one, they cannot disagree among themselves. This unviable 

situation would lead to a non-positive definite matrix
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Dj =
1 1 1
1 1 0
1 0 1

with eigenvalues [2.42, 1, −0.42]. Thus, the intersection of the cube and the cone of positive 

semi-definite Dj forms a region of space where feasible Dice matrices arise. Dj ⪰ 0 also 

leads to an elegant relationship between Dice coefficients arising out of mutual comparisons 

of segmentations generated by a trio of deep learning models. If Dj
pq, Dj

qr and Dj
rp are Dice 

scores comparing segmentations generated on image Ij by a trio of models DSp, DSq, DSr. 

Then,

[Dj
pq]2 + [Dj

qr]2 + [Dj
rp]2 − 1 < 2Dj

pqDj
qrDj

rp (10)

This follows from the fact that the Schur complement of positive semi-definite matrix is 

positive semi-definite under the appropriate conditions. This can be used as an efficient 

testing criterion for simulating viable Dice matrices. We use it to test the following 

conjecture:

Conjecture: As the number of models t increases, the Shannon information of the maximum 
eigenvalue Dj dominates the Shannon information of all other eigenvalues.

If λ1 > λ2 > λ3 · · · λt were sorted eigenvalues of Dj then this conjecture can be expressed 

as:

lim
t ∞

λ1log λ1
∑r = 1

t λrlog λr
= 1 (11)

In Figure 8, we provide the results of simulations performed using randomly generated 

positive semi-definite matrices confirming diagonal elements being equal to ‘1’ and off-

diagonal elements modeled as 1 − δpq. Trios of 1 − δpq are constrained by (10). δpq is 

randomly selected from the interval [0, ϵ] with ϵ set to various values. These simulations 

support the conjecture and this conjecture is the link connecting EBC and information 

theory. Specifically it justifies the use of the maximum eigenvalue measure. Future work to 

ascertain the exact conditions under which it remains true, will be necessary to understand 

the limits of the proposed algorithm.

5. Conclusion

In conclusion, we have proposed a method for addressing both data subset selection and 

failure prediction for deep learning based image segmentation. We have also demonstrated 

the effectiveness of the proposed paradigm in two medical image analysis datasets. Our 

technique can help select subsets of images from large databases, in a manner such that 

accurate and more importantly, ‘robust’ deep neural networks can be trained for anatomical 
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segmentation. It can also accurately identify challenging cases from a given dataset, where 

human attention is most likely needed. This gives deep learning based segmentation 

algorithms the ability to prioritize challenging cases within automated clinical image 

analysis workflows, thereby enabling better integration between human and machine in the 

future.
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7.: Appendix

Proof of Positive semi-definiteness of the Dice matrix Dj

The Von Neumann entropy for the symmetric positive definite matrix and is defined to be 

the sum of the Shannon entropy of its eigenvalues. Thus, in our paper the Dice matrix Dj can 

be proved to be positive semi-definite (Nader et al., 2019). The proof follows from the fact 

that we can express:

Dj
pq = 2sp . sq

sp + sq
(12)

where

sp, sq ∈ 0, 1 Ij (13)

are the vectorized representations of images Sj
DSp, Sj

DSq. Thus, the Dice matrix itself can 

be thought of as a Hadamard product of an inner product matrix and a Cauchy matrix. That 

is:

Dj = 2Kj ∘ Cj (14)

where we define:

Kj
pq = sp ⋅ sq (15)

and

Cj
pq = 1

sp + sp
(16)

Thus, Kj is an inner product matrix - which are always positive semi-definite. The Cauchy 

matrix is positive semi-definite (Bhatia, 2009) because it can be expressed as an inner 

product matrix in Hilbert space:
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1
sp + sq

= ∫
0

∞
e− sp + ∣ sq tdt (17)

and

∫
0

∞
e− sp + ∣ sq tdt = ∫

0

∞
e− sp t . e− sq tdt (18)

Given that both Kj and Cj is positive semi-definite, the Schur product theorem then ensures 

that Dj is positive semi-definite as well. The proof presented here is based on previous work 

by Nader (Nader et al., 2019) and Bhatia (Bhatia, 2009), which the reader should refer to for 

more details.
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Highlights

• Eigenrank by Committee reduces the need of training data for deep learning-

based segmentation in medical imaging.

• Eigenrank by Committee can alert physicians to a likely segmentation failure 

when using a deep learning methods.

• Eigenrank by Commitee presents a Von Neumann information based 

theoretical criterion for quantifying deep model disagreement in image 

segmentation.
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Figure 1: 
Residual U-Net model used in our experiments
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Figure 2: 
Illustration of intervertebral disk and spinal canal segmentation
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Figure 3: 
Illustration of the EBC framework
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Figure 4: 
(Top) Standard machine learning algorithms fail silently. Consequently it is impossible to 

prioritize physician attention onto cases which are difficult cases. (Bottom) With EBC, there 

is potential to prioritize cases which are difficult and refer them to human experts and 

channel the easier cases to an allgoorithm for segmentation.
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Figure 5: 
Top Row Randomly selected subjects Bottom Row Subjects selected by the first iteration of 

the proposed algorithm
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Figure 6: 
Top Row Randomly selected subjects Bottom Row Subjects selected by the first iteration of 

the EBC

Gaonkar et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Viability and unviability of Dj in comparing three models to each other.
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Figure 8: 
Why the largest eigenvalue of Dj suffices as a measure of disagreement for EBC
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Table 1:

EBC selection outperforms random selection on spinal canal segmentation. Results comparing EBC and 

random subset selection on a curated set of lumbar axial MRIs with spinal canals manually segmented for 

|T | = 200 scans

Iteration Metric EBC Random

7 Mean Dice 0.8062 0.7073

Stdv Dice 0.0830 0.1831

t-test of means (t= 6.94, p=7.23E-11)
Bartletts test of variances (T=99.47, p = 1.99E -23)

6 Mean Dice 0.8014 0.7049

Stdv Dice 0.1103 0.1676

t-test of means (t=6.54, p=6.15E-10)
Bartletts test of variances (T=30.21, p =3.87 E -8)

5 Mean Dice 0.8070 0.7050

Stdv Dice 0.0991 0.1703

t-test of means (t=6.98, p=5.30E-11)
Bartletts test of variance (t=50.47, p=1.21E-12)
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Table 2:

Comparing Dice scores for spinal canal generated using training subsets of 21 scans picked using EBC and 

using random sampling. These subsets were picked from datasets containing |T | = 200, 150 and 100 axial 

MRI scans. The segmentation task used was automated delineation of spinal canals.

EBC Random Statistical testing (t-test for means Bartlett’s for variances)

|T | = 200
Mean Dice 0.8062 0.7073 t = 6.94 (p <0.05)

Stdev. Dice 0.0830 0.1831 T = 99.74 (p <0.05)

|T | = 150
Mean Dice 0.7973 0.6981 t = 5.48 (p <0.05)

Stdev. Dice 0.0825 0.1901 T = 80.03 (p <0.05)

|T | = 100
Mean Dice 0.8814 0.8461 t = 2.68 (p <0.05)

Stdev. Dice 0.0372 0.1136 T = 78.13 (p <0.05)
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Table 3:

Comparing Dice scores for spinal canal segmentation generated using various values of ’k’ in EBC and using 

the same number of scans picked using random sampling from a data set containing |T | = 150 axial MR scans. 

The segmentation task was automated delineation of spinal canals.

|T | = 150 EBC Random Statistical testing (t-test for means Bartlett’s for variances)

k=2

Mean Dice 0.7457 0.6352 t = 5.89 (p <0.05)

Stdev. Dice 0.1128 0.2109 T = 49.89 (p <0.05)

k=3

Mean Dice 0.7973 0.6981 t = 5.48 (p <0.05)

Stdev. Dice 0.0825 0.1901 T = 80.03 (p <0.05)

k=4

Mean Dice 0.8301 0.8031 t = 2.15 (p <0.05)

Stdev. Dice 0.0839 0.1201 T = 5.45 (p <0.05)
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Table 4:

EBC selection outperforms random selection on intervertebral disk segmentation. Results comparing EBC and 

random subset selection on a curated set of lumbar sagittal MRIs with intervertebrall disks manually 

segmented for |T | = 103 scans

Iteration Metric EBC Random

7 Mean Dice 0.8582 0.8425

Stdv Dice 0.0333 0.0655

t-test of means (t= 2.05, p=0.043)
Bartletts test of variances (T=33.06, p = 8.90E-9)

6 Mean Dice 0.8521 0.8379

Stdv Dice 0.0329 0.0665

t-test of means (t=2.02, p=0.046)
Bartletts test of variances (T=37.11, p =1.11 E-9)

5 Mean Dice 0.8538 0.8318

Stdv Dice 0.0371 0.0666

t-test of means (t=3.11, p=0.002)
Bartletts test of variance (T=27.11, p=1.91E-7)
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Table 5:

This table shows how Eigenrank run using different metrics for data selection performs as evaluated using 

each of those metrics. The datasets used contain |T | = 100 axial MRI scans with spinal canal segmentations 

and |T | = 103 sagittal MRI scans with intervertebral disk segmentations. EBC was run with k = 3 for 7 

iterations with three metrics and the residual U-Net was trained using the corresponding data subset selections. 

Evaluations performed using alll three metrics are tabulated.

Eigenrank (selection metric) Random

Dice Hauss Surf.

Validation Metric

Canal

Dice 0.88±0.036 0.87±0.053 0.88±0.058 0.84±0.11

Hauss. 69.4±31.7 67.5±29.8 61.8±36.1 75.2±27.8

Surf. 0.92±1.02 0.90±1.05 0.63±0.71 1.45±1.90

Disk

Dice 0.86±0.033 0.84±0.062 0.86±0.026 0.84±0.065

Hauss. 37.1±25.0 39.2±15.2 33.8±15.8 38.9±26.2

Surf. 0.32±0.22 0.49±0.57 0.33±0.19 0.52±0.71
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Table 6:

Using EBC purely as a failure analysis method for spinal canal segmentation, a model is created by training on 

a left-out set of 15 cases. Out of the remaining 85 validation cases, EBC was used to iteratively 

remove ’difficult’ cases. After each iteration, we compute the mean Dice score of the cases eliminated and of 

the remaining validation cases

Iteration For cases eliminated by EBC For remaining cases

Mean Dice Stdev Dice Mean Dice Stdev Dice

1 0.611 0.317 0.835 0.076

2 0.650 0.265 0.839 0.075

3 0.710 0.253 0.840 0.075

4 0.742 0.238 0.840 0.076

5 0.750 0.222 0.842 0.074

6 0.769 0.212 0.840 0.074

7 0.749 0.208 0.851 0.052
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Table 7:

Using EBC as a failure analysis method for disk segmentation on sagittal MRI. A model to segment disks in 

sagittal MRI is created by training on a left-out set of 15 cases. Out of the remaining 87 validation cases, EBC 

was used to iteratively remove ‘difficult’ cases. After each iteration, we compute the mean Dice score of the 

cases eliminated and of the remaining validation cases.

Iteration For cases eliminated by EBC For remaining cases

Mean Dice Stdev Dice Mean Dice Stdev Dice

1 0.681 0.154 0.835 0.040

2 0.739 0.152 0.839 0.040

3 0.773 0.145 0.840 0.040

4 0.789 0.135 0.840 0.040

5 0.804 0.132 0.842 0.040

6 0.805 0.125 0.840 0.038

7 0.809 0.119 0.851 0.037
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