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Abstract 
A key goal of cognitive science is to understand and map the 
relationship between cognitive processes. Previous works 
have manually curated cognitive terms and relations, 
effectively creating an ontology, but do they reflect how 
cognitive scientists study cognition in practice? In addition, 
cognitive science should provide theories that inform 
experimentalists in neuroscience studying implementations of 
cognition in the brain. But do neuroscientists and cognitive 
scientists study the same things? We set out to answer these 
questions in a data-driven way by text-mining and automated 
clustering to build a cognitive ontology from existing 
literature. We find automatically generated relationships to be 
missing in existing ontologies, and that cognitive science does 
not always inform neuroscience. Thus, our work serves as an 
efficient hypothesis-generating mechanism, inferring 
relationships between cognitive processes that can be 
manually refined by experts. Furthermore, our results 
highlight the gap between theories of cognition and the study 
of their implementation. 

Keywords: ontology; cognitive neuroscience; text-mining; 
neuroinformatics, meta-analysis 

Introduction 

Ontology: Key Challenge in Cognitive Science 
    One of the fundamental goals of cognitive science is to 
study the set of processes that combine to give rise to 
“cognition”. These processes can be thought of as 
abstractions to common, overlapping sets of behaviors. 
Constrained by methodological behaviorism, we can only 
observe behavior and label underlying cognitive processes 
after the fact. As such, they do not have direct grounding in 
the physical world, and thus need to be defined by the 
relational structure that link each other – an ontology. For 
example, attention and working memory are processes with 
different labels but are nonetheless woven together through 
behavior: one cannot allocate “working memory” without 
“paying attention”. Thus, as we collect more observations to 
fill up the space of cognitive processes, we must be attentive 
in organizing what we know. This is the problem of 
mapping the ontological structure of cognitive processes, 
and has received extensive consideration previously (see, 
e.g., Poldrack & Yarkoni, 2016). 

Neuroscience: Studying the Substrate of Cognition? 
If cognitive processes are viewed as algorithms 

performing a set of computations, there must then exist a 

physical substrate that is performing the computations. In 
the case of computer algorithms, the substrate consists of 
transistor elements. The brain, on the other hand, is a large 
part of the computational substrate of human cognition 
(along with our body and environment). Cognitive 
neuroscience, with the aid of neuroimaging, has revealed 
much about our cognitive processes, such as timing between 
consecutive steps in a cascade of processes. However, 
neuroimaging studies are almost always conducted in the 
laboratory, with specific physical and task constraints. 
Hence, one cannot be certain that cognitive neuroscience 
actually measures, or even attempts to measure, the full 
array of cognitive processes at play. For example, the 
consolidation of long-term memory is quite difficult to 
measure within the span of a single experiment, while visual 
perception can be easily studied. Conversely, observations 
in neuroscience may provide constraints for cognitive 
theories, but only if there is an overlap of interest in the 
same processes. Thus, we should understand the degree to 
which we are over- and under sampling cognitive processes 
while measuring the brain. This is the problem of adequate 
sampling of cognitive processes in cognitive neuroscience. 

Frameworks for Ontology-Mapping  
The problem of ontology has been addressed previously. 

Notably, Poldrack and colleagues (2011) started a 
monumental effort in charting the ontological space of 
cognitive processes, as well as their related experimental 
tasks and disease correlates, aptly named the Cognitive 
Atlas. These authors hand-crafted hundreds of terms and 
their relations with each other, and invited researchers to 
contribute to documenting new relations – like a Wikipedia 
for cognitive science. While quality-controlled, curating 
these processes by hand relies on massive participation of 
the community, and must match the speed at which new 
evidence linking old processes is published. A 
complementary approach to human-generated relations is to 
let experts judge the validity of machine-generated relations, 
which can cover much more ground very quickly, saving 
human time and resources. 
 
 

Automated Generation of Cognitive Ontology 
Here, we present an automated text-mining algorithm that 

scans through relevant literature databases and builds an 

2067



ontology through co-occurrences of cognitive terms mined 
from the Cognitive Atlas. In particular, we apply the mining 
algorithm to PubMed, as well as the proceedings to the 
Annual Meeting of the Cognitive Science Society, in an 
attempt to automatically generate an ontological structure 
supplementing the Cognitive Atlas. Furthermore, we search 
PubMed for cognitive terms in conjunction with 
neuroimaging terms to establish the cognitive ontology 
viewed through neuroscience. We note here that previous 
neuroinformatic works have tackled related challenges. In 
particular, Yarkoni et al. (2011) created Neurosynth as a 
meta-analysis of fMRI studies. Its strength lies in providing 
voxel-level identification of the neural support of cognition, 
though it necessarily ignores the massive body of 
electrophysiological research (EEG, MEG, etc.) in favor of 
certainty in spatial location. In addition, Voytek & Voytek 
(2012) built BrainSCANR, an automated PubMed text-
mining application for similar purposes. However, that work 
focused primarily on aspects of neuroscience, with inclusion 
of brain regions and neurochemicals as keywords, while 
having a limited set of cognitive terms. 

In the following sections, we describe the text-mining 
procedure, as well as an analysis of the word-relations 
constructed from the automatically generated databases. We 
present similarities of term-frequency in 4 databases: 
CogSci (CS), PubMed Cognitive (PMCog), and PubMed 
Neuro (PMNeu & PMNeuMeth). We further explore latent 
structures within each database via hierarchical clustering to 
automatically generate an ontology of cognitive processes. 

Methods 
All code available online at: 
https://github.com/voytekresearch/IdentityCrisis 

Data Collection 
Term Collection 803 cognitive terms were scraped from 
the “Concepts” page from the Cognitive Atlas. These were 
used as the main search terms below, and will thus be 
referred to as “cognitive terms.” 
 
CogSci Abstracts This database is constructed from the 
title and abstracts of the Presentations, Tutorials, Symposia, 
and Papers of the Annual Meeting of the Cognitive Science 
Society from 2010 to 2016. We look for the cognitive terms 
in each document, constructing a term-document matrix. 
We then built a co-occurrence matrix by noting all pair-wise 
co-occurrences of cognitive terms in each document. Data 
from all 7 years are aggregated. Terms with 50 or more 
occurrences are included in the clustering analysis (86). 
 
PubMed Cognitive This database is constructed by 
searching in PubMed for pairs of cognitive terms in 
quotations, such as “attention”AND“working memory”, 
plus a base phrase: ('AND("cognitive"OR"cognition")'), to 
ensure searches are constrained to hits relevant to cognition. 
Counts are recorded as the number of articles that include 
the search terms in the title or abstracts. Prior to pairs 

search, we built a term-frequency vector measuring the 
occurrence of all 803 cognitive terms. Only individual terms 
with 500 or more hits (217 terms) were included in the pairs 
search to decrease search time. The number of hits for each 
pairs of terms (i & j) are recorded in the co-occurrence 
matrix as element aij. Search code was built upon the 
PubMed EUtils Tool API. 
 
PubMed Neuro Method & Neuro These databases are 
created as the one above, but in conjunction with a base 
phrase reflecting neuroimaging techniques,  
('AND('+ '("fmri"OR"neuroimaging")OR'+ 
'("pet"OR"positron emission tomography")OR'+ 
'("eeg"OR"electroencephalography")OR'+ 
'("meg"OR"magnetoencephalography")OR'+ 
'("ecog"OR"electrocorticography")OR'+ 
'("lfp"OR"local field potential")OR'+ 
'("erp"OR"event related potential")OR'+ 
'("single unit"OR"single-unit"OR"single neuron")OR'+ 
'("calcium imaging")'')'). 
138 terms remained after thresholding at 500 hits. 
As suggested by reviewers, we further included a “general 
neuroscience” database that was not exclusively techniques, 
using ("neural"OR"neuroscience") as base phrase. 

Data Analysis 
Term-Frequency Term-frequency for each cognitive term 
were calculated as a fraction by dividing the number of hits 
a term generated by the total results returned for the base 
phrase alone (for PubMed databases) or the total number of 
abstracts (for CogSci database). To visualize differences in 
term usage, we take the term-frequency difference between 
pairs of databases and find the terms with the highest 
absolute difference. 
 
Hierarchical Clustering We use the SciPy hierarchical 
clustering module  (scipy.cluster.hierarchy) to cluster terms 
based on their normalized co-occurrence matrix, where each 
row is divided by the diagonal of that row (co-occurrence 
with self). Dendrograms are generated and leaves are cut 
(colored) to generate ~N/4 clusters, where N is the total 
number of terms in tree. 

Results 
In summary, we find that:  
1) there are discrepancies between prevalent terms 
discovered in the CogSci database and the PubMed Neuro 
database, with the former leaning towards more theoretical 
constructs, and the latter, experimentally tangible; 
2) hierarchical clustering reveals reasonable yet novel 
groupings of cognitive terms that are undocumented in the 
Cognitive Atlas. 

Term-Frequency Across Databases 
First, we address the question: do cognitive scientists and 
neuroscientists study the same underlying processes? Table 
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1 presents the top 20 most frequent cognitive terms in each 
database. 
 
Table 1: Proportion of term occurrence for the top 20 terms 
in each database. Green boxes denote terms unique to that 
database, while red boxes denote terms unique to Neuro. 

 
 
First, we note the general trend that CogSci proceedings 

are much more likely to contain one of several popular 
terms, with 3 terms appearing in more than 20% of the 
abstracts and 9 terms in more than 10%. In contrast, only 
one word in the PMNeuro database is contained in more 
than 10% of the abstracts (“activation”), which may be 
artificially inflated due to usages of the word in contexts not 
describing cognitive activation (e.g., fMRI activation). This 
suggests that the terms we deem to describe “cognitive 
processes” do indeed see more usage in the cognitive 
science community.  

On an individual term level, several striking patterns 
prevail. First, “learning” appears in about 25% of CogSci 
abstracts, but only 10% in PMCog, 7% in PMNeu, and 3% 
in PMNeuMeth. This reveals that the concept of “learning” 
is a rather popular theoretical construct, while being harder 
to study empirically via neuroimaging. Additionally, 
“search”, “language”, and “logic” all appear in more than 
15% of CogSci abstracts, but do not crack the 5% mark in 
PMNeuro, further suggesting the difficulty or reluctance in 
studying these theoretically important but empirically ill-
defined concepts in a neuroscientific context. 

On the other hand, “attention”, “perception”, and 
“movement” occur in all 4 databases with relatively low but 
similar proportions. This is unsurprising, as physical 
processes are much more easily studied in neuroscientific 
experiments.  

 
Figure 1: Term frequency results for each database. Note 
that y-axis is in log scale. 

 
We saw from Table 1 that term usage distribution for the 

most frequent terms are not the same across the 4 databases. 
Figure 1 plots these distributions for the top 250 terms used. 
We see that CogSci proceedings are not very diverse in 
terms of their topics of investigation, as the more common 
terms are much more represented in the abstracts. This may 
be due to the small number of CogSci abstracts available, 
compared to around 100 times more results returned from 
PubMed searches. However, PMCogs is less drastic but 
follows a similar trend, suggesting that cognitive science as 
a whole refers to these cognitive terms much more 
frequently than neuroscience. 
 

 
Figure 2. Terms used most differently between Cognitive 
Science (CogSci, left, PMCogs, right) and Neuroscience. 
 

Finally, we find terms with the biggest usage proportion 
difference between cognitive science and neuroscience. 
These results recapitulate the top terms we see in Table 1, 
where an overwhelming proportion of high-level, 
conceptual terms are overrepresented in the 2 cognitive 
datasets. Overall, these analyses demonstrates that, while 
cognitive terms are adopted more frequently in CogSci 
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abstracts than the general body of literature in PubMed, 
many of the processes that are focused on in the CogSci 
community has not seen as much empirical investigation in 
the neuroscience community. 

Hierarchical Clustering 
Having shown a difference in the frequency of cognitive 
term usage between cognitive science and neuroscience, we 
turn to the term co-occurrence data to generate ontologies. 
Here, we can address the question of, in addition to being 
used with differing frequencies, whether the terms are used 
in different ways in relation to each other, which suggests a 
difference in term “meaning”. Figure 3 shows dendrograms 
generated from the CogSci database and PMNeuMeth 
database. The length of the colored lines (starting from the 
right) when they merge reflect the similiarity of the the 
merged terms: the shorter the lines, the more similar they 
are. As such, pairs of terms like “acuity” and “visual 
acuity”, or “memory” and “working memory” are merged 
very early on due to the overlap in words, which is a 
limitation of the text-mining method employed. 

Barring these overlapping terms, very reasonable clusters 
emerge at the mid-level. For example, at the lower end of 
the CogSci tree exists a language group (red & green) and a 
learning group (teal). Interestingly, “learning” and 
“generalization” are very closely tied. Moving up a few 
clusters, a reasoning cluster emerges (black), including 
“reasoning”, “inference”, “induction”, and “rule”. Similar 
clusters existing in the PMNeu tree, where the top clusters 
reflect all forms of perception, then attention, transitioning 
to speech processing, and finally to language understanding. 
“Theory of mind” is grouped with “empathy” and “social 
cognition”, while “discrimination” is grouped with 
“categorization” and “judgement”.  

Due to the difference in term prevalence between these 
two databases, some clusters exclusive to one or the other 
appear. “Logic”, “analogy”, and “schema” exist as one 
cluster in the CogSci database, while “anxiety”, “fear” and 
“extinction” emerge as a cluster in the PMNeu database. 
These clusters clearly reflect the theoretical vs. experimental 
nature of works published in these two fields. Furthermore, 
“learning” in CogSci, as mentioned above, talks about a 
high-level, mental process (tied to “category learning”), 
while it is linked to “skill”, “navigation”, and “expertise” in 
neuroscience. Overall, these examples qualitatively 
demonstrate that an automated mining and clustering 
process can tease out: 1) similarity of cognitive terms by 
grouping them within clusters, and 2) contextualized 
meaning of terms by grouping them into different clusters 
specific to cognitive science or neuroscience. 

Finally, in keeping with our original goal, we examine 
whether clusters discovered with our automated process can 
be used to supplement information in the Cognitive Atlas. 
Figure 4 demonstrates one example concept: “learning”. We 
observe that the only populated relationship is “are kinds 
of”, in which more specific types of learning are listed. 
However, the ontological mapping does not capture 

categorically similar terms described above, such as 
“generalization” or “categorization”. Other examples of 
missed relationships are more nuanced. For example, under 
“addiction”, the Cognitive Atlas currently includes “reward 
processing” as a part of addiction (also discovered in our 
clustering). However, it does not mention “anticipation” and 
“impulsivity”, both of which are key factors in the 
continuation of addictive behavior. Hence, we conclude that 
automated clustering of related concepts can greatly aid in 
the curation of an extensive cognitive ontology.  
 

 

  
 

 

 
 

Figure 4: “learning” and “addiction” as curated by 
Cognitive Atlas, supplemented by clusters generated 

automatically (from Fig. 3).  
 

Discussion 

Summary 
In this study, we created a text-mining and clustering 
pipeline that aims to automate the process of aggregating 
information from existing literature to create an ontological 
structure for cognitive processes. We searched for cognitive 
keywords curated by the Cognitive Atlas, and analyzed 
databases created by scraping the proceedings to the Annual 
Cognitive Science meeting, as well as PubMed articles, 
containing these keywords. We find a prevalent usage of 
these terms in all the databases, particularly so in the CogSci 
abstracts. The frequency of term usages differ between 
CogSci abstracts and PubMed neuroscience articles, likely 
reflecting the methodological preferences in each field. 
Hierarchical clustering on pairwise term co-occurrence data 
group terms relating to each other, demonstrating 
practicality in serving as a hypothesis-generating procedure 
to further populate manually-maintained ontologies, such as 
the Cognitive Atlas. 
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Figure 3: hierarchical clustering results for CogSci and PubMed Neuro Method database.
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Implications for Cognitive Science 
The current work presents two main contributions. First, the 
tool itself is completely open-sourced and depends on 
publicly available databases. Domain-specific researchers 
can utilize this tool to find common associations to their 
process of choice, such as addiction. This will be especially 
useful for beginner researchers, like undergraduate and early 
graduate students, to quickly situate their topic in the 
broader context. Furthermore, on a larger scale, this tool can 
serve as a complementary approach to hand-curated 
ontologies, saving experts time from manually filling in 
blanks. One point worth noting is that our work does not 
attempt to build the ontological structure of cognitive 
processes as it exists in our minds, similar to ideas 
suggested by Newell’s universal theory of cognition (UTC). 
Rather, it is a meta-analysis of how cognitive scientists 
decide to investigate the latent structure of our cognitive 
processes through their work, with no claims on whether or 
how this ontological structure actually exists. 
   Second, the theoretical contribution of this work is that it 
points to the discrepancy between how cognitive science 
and neuroscience study cognition. One simple explanation is 
that neuroscience only partially overlaps with cognitive 
science, as genetic, molecular, and cellular investigations 
often do not relate to cognitive phenomena. This is clearly 
true, however, given that the PubMed Neuro Method 
database is built specifically with keywords relating to 
animal neuroimaging techniques, this is unlikely to be the 
explanation here. Furthermore, the gap similarly exists 
between PubMed Cognitive and PubMed Neuro databases, 
so it is not simply a difference in the source of data. Thus, 
this gap raises the alarming possibility, as one reviewer 
pointed out, that theories in cognitive science are not 
testable in the realm of neuroscience, and/or that 
neuroscience is simply not interested in or ready for the 
grand theories of cognition. 
 

Limitations & Future Work 
While the algorithm returns reasonable and novel results, a 
few methodological and data-collection limitations must be 
raised. First, in building the databases, CogSci abstract were 
collected only up to the annual meeting in 2010, as further 
archives were unavailable. In contrast, PubMed searches 
return all hits dating back 30 or more years. As such, it is 
possible that trends observed in the term-frequency analysis 
may be due to a temporary peak in interest in certain areas 
of research, such as “learning”. This can be easily 
ameliorated, however, by rebuilding the PubMed databases 
while constraining the included search years. In fact, we can 
analyze different decades (or other periods of time) to see 
how ontological structure develops over time. 

Second, due to the scraping method applied, terms with 
overlapping words, such as “memory” and “procedural 
memory” will co-occur with much higher frequency, 
possibly leading to inflated inferred relationships. Since 

terms with overlapping words are very likely to have a 
superset-subset relationship, the over-interpretation of 
relationship is unlikely to create false positives. However, 
the artificial increase in co-occurrence may lead clustering 
to exclude related but now suppressed terms, leading to 
false negatives. This may be circumvented by making 
queries for specific terms, i.e., accessing specific rows in the 
co-occurrence matrix, and ranking related words in their rate 
of co-occurrence. Hierarchical clustering is simply one 
method to visualize the co-occurrence data, and many others 
may be applied on the same dataset to further tease out 
latent structures, such as Multi-Dimensional Scaling. 

Lastly, the co-occurrence matrix is built on the 
assumption of a bag-of-words model, i.e., word-order and 
semantic relations don’t matter, simply their shared 
presence in a document. This may lead to spurious linkages, 
if a document contained a phrase like “attention is not a type 
of memory.” This is likely to be rare, and ultimately, still 
useful knowledge, as it implies that at some point these 
terms were wrongfully linked. This last point, however, 
raises a larger, philosophical question: can automated text 
mining of existing literature get at the ontology of cognitive 
science, and if so, is that the same ontology that exists in our 
minds? We may never know the answer to the latter, but the 
former is certainly an issue worth investigating. Regardless 
of whether or not the structure can be recovered from the 
model presented here, the knowledge structure clearly exists 
within the minds of practicing cognitive scientists. As such, 
we may leverage other sources of information, such as 
citation links, to trace out the ontology, which ultimately 
just represents a consolidation of knowledge across the 
broad, interdisciplinary study of cognition. 
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