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The interplay between disorder and transport is a 
problem central to the understanding of a broad range of 
physical processes, most notably the ability of a system to 
reach thermal equilibrium. Disorder and many body 
interactions are known to compete, with the dominance of 
one or the other giving rise to fundamentally different 
dynamical phases. Here we investigate the spin diffusion 
dynamics of 13C in diamond, which we dynamically polarize 
at room temperature via optical spin pumping of engineered 
color centers. We focus on low-abundance, strongly 
hyperfine-coupled nuclei, whose role in the polarization 
transport we expose through the integrated impact of 
variable radio-frequency excitation on the observable bulk 
13C magnetic resonance signal. Unexpectedly, we find good 
thermal contact throughout the nuclear spin bath, virtually 
independent of the hyperfine coupling strength, which we 
attribute to effective carbon-carbon interactions mediated 
by the electronic spin ensemble. In particular, observations 
across the full range of hyperfine couplings indicate the 
nuclear spin diffusion constant takes values up to two orders 
of magnitude greater than that expected from homo-nuclear 
spin couplings. Our results open intriguing opportunities to 
study the onset of thermalization in a system by controlling 
the internal interactions within the bath.  

INTRODUCTION 
Although the quest to understand the roles of disorder and 

couplings in the out-of-equilibrium dynamics of many body 
systems goes back several decades 1 , the field is presently 
witnessing a resurgence, in part due to its intrinsic connection to 
the development of novel quantum technologies. Progress has 
been made largely possible by captivating experiments in cold 
gases where the coupling to outer reservoirs can be virtually 
suppressed and the evolution of each of the atoms in the 
interacting ensemble is probed individually2-4. An example of 
recently observed phenomena is many-body localization 5 , 6 
(MBL), a process where, despite the interactions between its 
inner units, the system fails to thermalize, i.e., its long-term 
properties cannot be captured by conventional equilibrium 
statistical mechanics7,8. Unlike Anderson-localization9, inter-
particle couplings lead to dephasing of individual, initially- 
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localized states7. Interestingly, however, the absence of 
exchange between different MBL modes endows these systems 
with a long-term memory, which makes them potentially useful 
platforms to store and retrieve quantum information.  

Interacting spins in diamond provide an intriguing platform 
to investigate the interplay between localization and 
thermalization because electrons and nuclei feature species-
specific interactions and concentrations that can be tuned and 
dynamically controlled. Hyperfine couplings with paramagnetic 
centers can take extreme values (exceeding hundreds of MHz for 
first shell carbons), while the low gyromagnetic ratio and natural 
abundance of 13C spins make homonuclear couplings orders of 
magnitude weaker (~100 Hz). Given our understanding of 
thermalization as a spin diffusion process, the large frequency 
mismatch between hyperfine-coupled and bulk nuclei 
immediately raises questions on the system’s ability to reach 
equilibrium. This problem — paramount to interpreting nuclear 
spin-lattice relaxation 10  but equally relevant to carrier 
transport9, 11  — has been traditionally explained through the 
notion of a ‘spin diffusion barrier’, i.e., a virtual line in the space 
around a paramagnetic center separating ‘a frozen core’ of nuclei 
unable to communicate (i.e., ‘flip-flop’) with bulk spins12-14.  

Here, we combine optical excitation and nuclear magnetic 
resonance (NMR) at low magnetic fields to investigate the 
generation and transport of nuclear magnetization in a diamond 
crystal hosting nitrogen-vacancy (NV) centers. Formed by a 
substitutional nitrogen immediately adjacent to a vacancy, these 
spin-1 point defects polarize efficiently under green 
illumination, which can be exploited to dynamically polarize the 
13C nuclei in the crystal. Working under ‘energy matching’ 
conditions — where NVs cross-relax with surrounding spin-1/2 
nitrogen impurities or ‘P1 centers’ — we find that strongly 
hyperfine-coupled carbons can efficiently exchange polarization 
with bulk nuclei; this process is made possible by many body 
interactions involving electron and nuclear spins through 
mechanisms we formally capture via a nuclear-spin-only 
effective Hamiltonian. Further, we measure nuclear spin 
diffusion constants across a range of hyperfine couplings orders 
of magnitude greater than the nuclear Larmor frequency, and 
find values ~100-fold bigger than those possible via 
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homonuclear couplings, a phenomenon we interpret in terms of 
electron-mediated interactions between distant carbons.  

RESULTS 
13C hyperfine spectroscopy at low magnetic fields 

Figs. 1A through 1C summarize the conditions in our 
experiments. We study a diamond sample with a large NV and 
P1 content (~10 and ~50 ppm, respectively) produced via high-
energy electron irradiation and annealing. We operate in the 
regime of ‘cross-relaxation’ where the separation between the 
𝑚" = 0  and 𝑚" = −1  energy levels of the NV 

approximately matches the P1 Zeeman splitting in an external 
magnetic field 𝐵 ( , whose exact value depends on the angle θ 
with the NV axis 15 , 16 . Optical pumping of the NV induces 
dynamic nuclear polarization (DNP) of bulk 13C, which we 
subsequently detect using a field cycling protocol (Fig. 1C). Fig. 
1D shows the amplitude of the observed 13C NMR signal as a 
function of the optical pumping field 𝐵: The DNP generation can 
be simplistically understood through an energy-conserving NV–

P1–13C process where nuclear spins polarize positively or 
negatively depending on the sign of the difference between the 
NV and P1 transitions above or below 𝐵 ( . On the other hand, 
the fact that sizable DNP can be observed for a field mismatch 
as large as ~0.4 mT (corresponding to hyperfine couplings of 
order ~10 MHz) immediately points to non-trivial channels of 
polarization transfer from nuclear spins strongly coupled to 
defects.    

To measure the 13C spectrum at a given optical pumping 
field, we apply a radio-frequency (RF) pulse immediately after 
laser illumination (prior to sample shuttling, Fig. 1E) within a 
range around the 13C Zeeman frequency. The pulse duration (1 
s) is chosen so as to make the up/down 13C spin populations 
equal when on resonance, hence leading to a “dip” in the 
observed signal amplitudes plotted as a function of the RF 
frequency. Fig. 1F shows the results for variable RF power: In 
the limit of weak RF excitation (-25 dBm), the NMR linewidth 
amounts to ~1.5 kHz, coincident with that observed at high field 
(see Supplementary Material, Section I). Stronger RF power 
results in broader dips, a consequence of the greater excitation 

 

Figure 1 | Low-field dynamic polarization and manipulation of 13C spins in diamond. (A) Electron-nuclear spin set. 
Polarization flows from hyperfine-coupled carbons to bulk carbons. (B) Schematics of the NV/P1 energy diagrams as a function 
of the magnetic field. Cross-relaxation between the NV and P1 is most favorable when the energy differences are matched 
(vertical arrows); this condition depends on the angle θ between the magnetic field 𝐵 and the NV symmetry axis. (C) Dynamic 
nuclear polarization and detection protocol. We illuminate the sample with 532 nm laser light for a time 𝑡+, at a variable field 
𝐵, followed by sample shuttling to the bore of a 9.0 T magnet for high-field 13C NMR detection. (D) NMR signal amplitude of 
hyperpolarized 13C as a function of 𝐵. In a typical experiment, the magnetic field during DNP is set at 𝐵(.) or at 𝐵(0), so as to 
produce the largest positive or negative 13C polarization, respectively. (E) Indirect observation of low-field 13C NMR through 
variable-frequency RF excitation; for simplicity, the drawing omits the sample shuttling step. (F) Experimental results from 
applying the protocol in (E) for different RF powers. In (D), (E) and (F), the optical pumping time is 𝑡+, = 10 s and the laser 
power is 1 W focused to a ~200-µm-diameter focal spot; in (F) the RF-pulse duration is 𝑡12 = 250 ms, the magnetic field is 
𝐵(.) = 52.3 mT, and its angle θ with the NV axis amounts to ~10 deg.  
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bandwidth; in the experiments below we use an RF power of -8 
dBm, which confines the effect to a ~13 kHz band around 
resonance. 

The ability to manipulate 13C spins gives us the opportunity 
to probe the transport of spin magnetization from paramagnetic 
centers to ‘bulk’ (i.e., very weakly coupled) carbons as it 
cascades down across nuclear spins with different hyperfine 
couplings under NV–P1 cross relaxation. Given the multi-spin 
nature of the dynamics at work, this process is better visualized 
in frequency space as a sequence of jumps along a chain formed 
by groups of carbons with varying hyperfine coupling (and 
hence different resonance frequencies, Fig. 2A). Nuclear spins 
proximal to paramagnetic centers (NVs or P1s) are normally 
invisible in the standard NMR signal due to their comparatively 
low abundance and extreme hyperfine-induced gradients. 
Nevertheless, their ability to mediate the transfer of 
magnetization to bulk spins can be selectively exposed through 
the accumulated effect of RF excitation on the polarization 
buildup during optical spin pumping. 

Initial evidence revealing the non-trivial role of hyperfine 
coupled carbons is shown in Fig. 2C where we compare the 
NMR signal amplitudes following simultaneous RF and laser 
excitation (Fig. 2B): Accompanying the expected dip near the 
13C Zeeman transition (𝜔8~2𝜋×560 kHz), we observe (partial) 
NMR signal reduction over a wide frequency range (green 

squares), far exceeding the excitation bandwidth (faint, 13-kHz-
broad Gaussian in the back here serving as a reference). 
Intriguingly, we find this effect persists at even higher 
frequencies, where inter-carbon flip-flops should be strongly 
suppressed. This is further shown in Fig. 2D where we measure 
the equivalent of a hyperfine-resolved spectrum over a 160 MHz 
range, selectively sensitive to nuclear spins participating in the 
magnetization transport. We identify several high-frequency 
regions where RF excitation has a significant impact on the 
observed NMR signal, suggesting that localization — the regime 
naively anticipated for hyperfine-coupled carbons in a dilute 
nuclear spin system such as diamond — cannot capture the 
dynamics at play. Very much on the contrary, we show next that 
most nuclear spins communicate efficiently with each other 
despite their relatively large frequency mismatch.  

To shed light on the underlying mechanisms, we start with 
a comparison between the RF absorption spectrum in Fig. 2D 
and the set of hyperfine couplings to NVs and P1s (respectively, 
colored bands in the background and vertical bars in Fig. 3A). 
We find a moderate correlation between the two: For example, 
the dip at ~40 MHz — associated to a second shell carbon 
around the P1 center17 — suggests substitutional nitrogen plays 
an important role in enabling spin exchange between near-defect 
and bulk nuclei. Importantly, the dip disappears if one shifts the 
magnetic field from 𝐵 .  to 𝐵 0  — a change of only ~0.2 mT, 

 

Figure 2 | 13C spin diffusion spectroscopy via signal amplification of low-abundance nuclei. (A) Schematics of the spin 
diffusion process. Starting with the cross-relaxation of an NV–P1 pair and a strongly-hyperfine-coupled 13C spin (green circles), 
polarization flows from less abundant, unobservable nuclei to more abundant, bulk carbons. RF excitation at a predefined (but 
variable) frequency equilibrates the populations of a select nuclear spin subset (horizontal red band), hence disrupting the 
polarization flow. (B) Experimental protocol. 13C NMR detection is carried out at 9.0 T, following sample shuttling (not shown). 
(C) 13C NMR signal amplitude as a function of the RF frequency upon application of the protocol in (B) in a vicinity of the 13C 
Larmor frequency at 𝐵(.) = 52.3 mT. The faint solid trace reproduces the spectrum in Fig. 1F at 0 dBm. (D) Same as in (C) 
but for an extended RF range. Here, the magnetic field is 𝐵(.) = 52.3 mT (𝐵(0) = 52.7 mT) in the upper (lower) half plot 
(green and red circles, respectively). The dashed green square on the left indicates the region of the spectrum presented in (C). 
Solid lines are guides to the eye; faint horizontal traces indicate signal levels in the absence of RF. (E) 13C NMR signal amplitude 
as a function of the applied magnetic field in the presence of RF excitation either resonant (39.6 MHz) or non-resonant (30.0 
MHz) with the dip in (D). Solid lines are guides to eye. In (C), (D) and (E), the RF power is 0 dBm, and 𝑡+, = 𝑡12 = 5 s.    
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see Fig. 2E — suggesting spin diffusion emerges from a multi-
spin process requiring precise alignment between the NV, P1, 
and 13C energy levels. This notion is consistent with the very 
premise of DNP near ~51 mT, arising from nuclear-spin-assisted 
NV–P1 cross-relaxation at these fields15,18. On the other hand, 
one cannot rule out spin-lattice relaxation effects, as the bulk 
carbon T1 time is also seen to moderately change, from ~5 s to 
~7 s when transitioning from 𝐵 .  to 𝐵 0 . Finally, the ~97.5 
MHz resonance — which we could not match to any reported 
13C site near the NV or P1 — may, instead, correspond to 
polarization pathways involving the nuclear spin of the 14N host 
at the P1 (known to participate in the polarization transfer15,16,18); 
additional work, however, will be needed to clarify its origin.  

The absence of RF absorption is also an important indicator: 
For example, the flat response in Fig. 2D near 𝜈12~130 MHz — 
coincident with the hyperfine splitting of first shell carbons 
around the NV19 — indicates these sites do not partake in the 
polarization transfer process, hence suggesting select nuclear 
spins — featuring exceedingly strong hyperfine interactions — 
fail to thermalize with the rest (see below). By the same token, 
no RF dips are observable between ~50 and ~90 MHz (omitted 
in Fig. 3A for simplicity), a range with no hyperfine coupled 
carbons17,20,21.  

More generally, the amplitude of the RF absorption dip 
reflects on the number of diffusion channels available to the 
system near a given excitation frequency 𝜈12  (Fig. 3B). A 
complete transport blockade — manifesting in the form of a full-
contrast dip — is possible only when the nuclear spins resonant 
with the applied RF intervene in every polarization transfer 
event. As the number of alternative channels increases, the RF-
induced contrast diminishes because most spin diffusion 
pathways do not involve resonant nuclei. The latter, of course, 
depends on the granularity of the frequency jumps 𝛿𝜈@ 𝜈12  
characterizing the multi-spin configurational change during spin 
diffusion; greater RF absorption can be regained as 𝛿𝜈@ 𝜈12  
becomes comparable to (or smaller than) the RF bandwidth 𝛿𝜈A 
(~13 kHz in the present experiments). We believe this interplay 
is responsible for the DNP signal response below ~10 MHz, 
where the number of carbon sites with comparable hyperfine 
couplings (and thus the number of spin diffusion pathways) 
increases rapidly, while the nuclear spin energy difference 
𝛿𝜈@ 𝜈12  in each jump gradually fades away. On a related note, 
a close inspection of Fig. 2D shows a slight offset relative to the 
signal amplitude observed in the absence of RF (faint horizontal 
lines). We presently ignore its origin but hypothesize it could 
stem from weak RF absorption between many body electron spin 
states (i.e., weakly allowed ‘zero-quantum’ transitions), which 
subsequently causes nuclear spin relaxation. Additional 
experiments, however, are mandatory to clarify this point.  
 
Effective Hamiltonian and spin diffusion dynamics 

Deriving from first principles a Hamiltonian that correctly 
reproduces the behavior of interacting electron and nuclear spin 
ensembles — a problem at the center of ongoing efforts22— 
remains a challenging task. Here, we capture the dynamics at 
play by considering a pair of carbons, each interacting with one 
of two P1 centers, which, in turn, couple dipolarly to each other 
(Fig. 3C). Focusing first on the ‘hyperfine-dominated’ regime 
(where 𝐴C ~ 𝐴D > ℐ@ > 𝜔8 ), we find the polarization can 
flow from one carbon to the other with an effective rate 

𝐽HII~𝜔8Dℐ@ 2𝐴D , where ℐ@  is the inter-electronic dipolar 
coupling constant, and 𝐴 = 𝐴C + 𝐴D 2  denotes the 
average hyperfine coupling. Though stemming from high-order 
virtual processes, 𝐽HII can reach sizable values when the electron 
spin concentration is sufficiently high. As an illustration, for an 
electron spin dipolar coupling ℐ@ 2𝜋 ~1 MHz (corresponding 
to a nitrogen concentration of ~10 ppm23), we obtain 𝐽HII 2𝜋 ~1 
kHz for 𝐴 2𝜋 ~10 MHz.  

While the above effective coupling allows most hyperfine-
shifted nuclei to communicate, we also find that transport can be 
suppressed if the hyperfine shift difference 𝛿𝐴 = 𝐴C − 𝐴D  
between the two carbons is large. More formally, we express the 
condition for delocalization as 

ℐ@ ≳ 𝜔8 𝐴𝛿𝐴 𝐴D − 𝛿𝐴D 	,																							 1  
increasingly difficult to meet as 𝐴  approaches 𝛿𝐴  (i.e., when 
𝐴C ≫ 𝐴D , see Supplementary Material, Section III). This is 

likely the scenario for first shell carbons ( 𝐴~130  MHz), 
separated from the rest by a large spectral gap (see Fig. 3A). For 
completeness, it is worth mentioning that in the ‘dipolar 
dominated’ regime (where ℐ@ > 𝐴, 𝜔8 ), the effective nuclear 
spin coupling takes the form 𝐽HII~ 𝐴D 4ℐ@ . This expression 
shows, as expected, vanishing interaction for nuclei decoupled 
from paramagnetic defects (ℐ@ > 𝜔8 > 𝐴), but it also suggests 
𝐽HII  can be quite strong, potentially exceeding 10 kHz in the 
narrow window where ℐ@ > 𝐴 > 𝜔8  (Supplementary Material, 
Sections II and III).  

Importantly, ℐ@-induced state mixing activates transitions at 
frequencies other than those expected for pure nuclear spin flips. 
This is shown in Figs. 3C and 3D, where we plot the calculated 
nuclear spin polarization in a 13C–P1–P1–13C chain under 
continuous RF excitation assuming both carbons start from a 
polarized state (see also Supplementary Material, Section IV). 
When ℐ@~0, the system absorbs selectively at the single nuclear 
spin hyperfine transitions. As ℐ@ increases, however, new dips 
corresponding to simultaneous nuclear and electron spin flips 
emerge. Given the range of possible spatial configurations in 
disordered spin ensembles, RF excitation should therefore yield 
broad bands of less-than-optimal DNP crudely centered around 
the hyperfine transitions, in qualitative agreement with our 
observations. 

From the above considerations, we surmise the ensemble of 
paramagnetic defects can be thought of as an underlying network 
providing the couplings required for nuclear spins to 
thermalize24; correspondingly, the spin Hamiltonian for a group 
of (otherwise non-interacting) 𝑁8 carbon spins 𝐈R takes the form 
(see Supplementary Material, Section III) 

𝐻HII = 𝜔T
(R)𝐼RV

WX

R

+ 𝐽HII,VV
RY 𝐼RV𝐼YV + 𝐽HII,Z[

RY 𝐼R.𝐼Y0 + 𝐼R0𝐼Y.
WX

R\Y

					(2) 

where 𝜔T
(R) denotes the (electron-spin-dependent) local field at 

the i-th nuclear spin site, and 𝐽HII,VV , 𝐽HII,Z[  represent effective 
electron-spin-mediated inter-nuclear couplings, which, in 
general, must be seen as functions of the applied magnetic field 
and electron spin concentration.  

While chain-like systems are often integrable, added spatial 
dimensions break any underlying symmetry and typically render 
the dynamics chaotic. A realistic simulation of the system at 
hand requires, therefore, the use of multi-dimensional spin 
arrays, an increasingly challenging task as the number of nuclei 
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grows. Here, we qualitatively test the dynamics of the 
Hamiltonian in Eq. (2) using a model nuclear spin set of 22 
carbons in a Cayley tree geometry assuming only the central spin 
is initially polarized (Fig. 3E). The effective couplings between 
nuclear spins in different rings grow to the outside of the tree, so 
as to emulate the transition between the hyperfine-dominated 
(i.e., 𝐴 > ℐ@ > 𝜔8 ) and the dipolar-dominated (i.e., ℐ@ > 𝐴 >
𝜔8) regimes. It is known that the interplay between the terms 
linear and bilinear in 𝐼V (respectively corresponding to the local 
potential and interaction terms of the Hubbard Hamiltonian in a 
carrier transport picture7) may lead to MBL. To make the 
numerical problem tractable, we assume below that the flip-flop 
terms are dominant and thus the system is in an ergodic phase. 

To compute the many body spin dynamics, we use a Trotter-
Suzuki decomposition assisted by quantum parallelism25. Unlike 
other, more common approaches26,27, this technique does not 
require truncation of the Hilbert space, and is thus applicable to 
long times (see Materials and Methods). As shown in Fig. 3F, 
we observe a diffusive (i.e., recurrence-free) evolution, pointing 
to the onset of quantum chaos 28 - 30 . Chaoticity arises in the 
Cayley geometry as a consequence of the system branching, 
effectively enlarging the size of the accessible Hilbert space as 
the polarization moves from inner to outer rings. Note that 
despite the growing inter-nuclear couplings, the characteristic 
time constant (of order ~2 ms) is uniform across the tree 
structure, dictated by the higher-order (and hence weaker) 
effective electronic couplings communicating the central spin 
with nuclei in the first ring.  

Experimentally, we probe the time scale of spin diffusion in 

our sample via the protocol in Fig. 4A where we evenly 
distribute RF pulses of fixed duration throughout the 
illumination interval; the pulse length is chosen so as to ensure 
several 13C Rabi cycles (Supplementary Material, Section I). The 
upper half of Fig. 4B shows an example plot corresponding to 
radio-frequency at 10 MHz: For inter-pulse intervals 𝜏 ≳ 10 ms, 
we find that the effect of RF pulses on the hyperpolarization 
amplitude is negligible, an early indication that spin diffusion 
takes place on a time scale faster than that deriving from direct 
inter-nuclear dipolar couplings (averaging ~100 Hz in non-
enriched diamond). Overall, our data can be reasonably 
described via a stretched exponential dependence of the form 
𝑆 = 𝑆( − 𝑆C exp − 𝜏 𝜏@ b , where 𝜏  is the inter-pulse 
separation and all other variables are fitting parameters, with 𝜏@ 
representing the characteristic nuclear spin diffusion time. 
Interestingly, we find 𝜀 < 1 , typically indicative of 
heterogeneity in the underlying physical process31,32. This idea 
is consistent with the multi-channel nature of the transport 
dynamics at play, here expressed via the probability distribution 
ℒ 𝜇, 𝜀  satisfying exp − 𝜏 𝜏@ b = ℒ 𝜇, 𝜀 exp −𝜇𝜏 𝑑𝜇h

( . 
Using an inverse Laplace transform to explicitly compute 
ℒ 𝜇, 𝜀 , we find the distribution median satisfies 𝜇~ 1 𝜏@, i.e., 
diffusion rates are equally likely to lie above or below 1 𝜏@ 
(lower half plot in Fig. 4B). In particular, we identify a broad set 
of fast transport processes whose rates extend beyond ~1 ms-1 
(shadowed tail in the plot).  

To capture these observations into a functional microscopic 
model, we now return to the notion of magnetization transport 

 

Figure 3 | Electron-spin-mediated many-body nuclear spin diffusion under NV–P1 cross relaxation. (A) Histograms of 
hyperfine resonance frequencies above 1 MHz for 13C nuclei near individual P1s and NVs (upper and lower plots, respectively). 
For reference, the faint green and red bands reproduce the level of RF absorption observed in Fig. 2D. (B) The impact of RF 
excitation on DNP efficiency can be cast in terms of a polarization sink of width 𝛿𝜈A defined by the excited bandwidth. For a 
given RF power, the sink efficiency reflects on the spin network connectivity: (i) Full contrast arises when all polarization 
transfer pathways (solid lines) rely on a single nuclear spin site (grey circle) featuring a characteristic hyperfine shift. (ii) For a 
typical frequency change 𝛿𝜈@ between consecutive nuclear spin nodes and assuming 𝛿𝜈@ > 𝛿𝜈A, the sink efficiency diminishes 
as the number of alternative pathways increases. (iii) Full contrast reappears when 𝛿𝜈@ ≲ 𝛿𝜈A. (C) (Top) Model spin chain 
comprising two carbons hyperfine-coupled to two P1s subject to a dipolar interaction ℐ@. (Bottom) Calculated eigen-energies 
for eigen-states |𝑖⟩, 𝑖 = 1… 8 within the subspace where the electron spins are anti-parallel; for these calculations, ‖𝐴C‖ =
2𝜋×6 MHz, and ‖𝐴D‖ = 2𝜋×10 MHz. (D) 13C polarization in the presence of RF for the spin system in (C) for different ℐ@; 
both 13C spins are assumed initially polarized. (E) Network of 22 13C spins in a Cayley tree configuration; green, yellow, and 
orange lines indicate 𝐽HII equal to 100 kHz, 10 kHz, and 1 kHz, respectively. (F) Computed 13C magnetization in each ring as a 
function of time starting from a configuration where only the central spin is polarized. 
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along a one-dimensional (spectral) chain formed by 𝑚 spin sets 
𝑁R , 𝑖: 1 …𝑚  each featuring resonance frequencies within 

bands ΔνR  centered around effective hyperfine couplings 𝐴R  
(Fig. 4C). Aiming at a qualitative comparison with experiment, 
this time we model the transport problem classically using a set 
of coupled differential equations adapted to describe 
magnetization hops between boxes in the presence of optical and 
RF excitation, as well as nuclear spin-lattice relaxation 
(Supplementary Material, Section V). A train of RF pulses 
(resonant with nuclear spins within a band 𝛿𝜈A along the chain) 
partly disrupts the transport of polarization and leads to a change 
𝛿𝑀t in the magnetization stored in box 𝑚 (here serving as the 
observable). This effect saturates in the limit where the inter-
pulse separation 𝜏  is equal to (or shorter than) the interval 
required to replenish the magnetization in the depleted cell 
(roughly, the inflexion point in the sigmoid), hence allowing us 
to extract the characteristic spin diffusion time 𝜏@  at the 
corresponding excitation frequency 𝜈12 (Fig. 4D). 

Fig. 4D summarizes numerical results from a chain of 𝑚 =
40 spin cells, each connected to its immediate neighbors via 
transfer rates 𝛾R,R.C. To establish a starting connection between 
𝜏@ and the underlying rates, we first investigate the case where 
𝛾R,R.C takes a constant value 𝛾 throughout the chain (Fig. 4D). As 
expected, we find that 𝜏@ grows inversely with 𝛾0C, though the 
dependence is not linear, a consequence of the finite duration of 
the RF pulse. To investigate the impact of transport 
heterogeneity, we also consider the case where 𝛾R,R.C takes on 

different values depending on the position across the chain, 
peaking at the midpoint. Imposing greater transfer rates between 
cells effectively amounts to fusing neighboring groups of spins 
into a larger cell, hence amplifying the impact of individual RF 
pulses resonant with the set and thus altering 𝜏@ . Since the 
experimental response upon excitation at different frequencies 
does not substantially depart from our observations in Fig. 4B 
(see Supplementary Material, Section V), we tentatively 
conclude that the transfer rates across the hyperfine spectrum — 
or, more generally, the representative values from the transfer 
rate distributions connecting each cell in the chain with all others 
— are relatively uniform. On a related note, our numerical model 
exhibits only a moderate departure from a single exponential 
response ( 𝜀~0.9  in Fig. 4D). The latter could well be a 
consequence of the first neighbor coupling structure assumed for 
the spin chain, likely oversimplifying the system complexity by 
limiting the number of channels available to the transport of 
nuclear polarization. 

Capitalizing on the above considerations to interpret our 
observations, we find that the characteristic diffusion rate 
𝜏@0C 𝜈12  in the present spin system falls within the range 0.3-
0.6 ms-1. The agreement with the quantum model in Figs. 3E and 
3F should be considered rather fortuitous as a numerical value 
of the diffusion time can only emerge from a suitable average 
over the set of possible spin configurations. On the other hand, 
given the mean inter-carbon distance in diamond 𝑟x = 0.5 nm, 
we conclude the effective diffusion constant observed herein can 

 

Figure 4 | Probing paramagnetic-center-assisted nuclear spin diffusion. (A) Experimental protocol. We apply a train of 
short, equidistant RF pulses during the fixed illumination time  𝑡+, = 5 s and monitor the 13C DNP signal as we increase the 
number of pulses 𝑙. (B) (Top) 13C NMR signal amplitude 𝑆(𝜏) as a function of the inter-pulse time 𝜏 ≈ 𝑡+, 𝑙⁄  at a representative 
radio-frequency. The RF pulse duration is 𝜏12 = 1	ms at a power of -8 dBm; the solid line is a fit to a stretched exponential, see 
main text. (Bottom) Probability distribution for the diffusion rate 𝜇 ; the vertical dotted and dashed lines indicate the 
characteristic diffusion rate 1 𝜏@⁄  and distribution median 𝜇̅. The shadowed half correspond to transport processes with rates 
faster than 𝜏@0C. (C) We model the observed response as a classical flow of magnetization through a chain of 𝑚 boxes, each 
containing 𝑁R spins with hyperfine resonance frequencies within box-selective-bandwidths Δ𝜈R. The arrow indicates increasing 
hyperfine coupling ‖𝐴‖, and 𝛾R,R.C denotes the polarization transfer rate between neighboring boxes. (D) Numerical simulations 
of the model in (C) for chains of length 𝑚 = 40 and with uniform (but variable) spin transfer rate 𝛾. We attain a sigmoidal 
response, whose inflection point at 𝜏@ grows with the inverse of the spin diffusion rate 𝛾. The magnetization contrast 𝛿𝑀} 
reflects on the RF impact, here set to act on a fraction of the spins in the 20-th box of the chain. (E) Effective spin diffusion 
constant  𝐷HII = 〈𝑟x〉D𝜏@0C at different RF frequencies 𝜈12 as determined from data plots similar to those in (C); 𝐷x is the spin 
diffusion for carbon in pure diamond. The broad green band reproduces the RF absorption from Fig. 2D and has been included 
as a reference. All experiments are carried out at a fixed magnetic field 𝐵(.) = 52.3 mT.  
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be as large as 𝐷HII~ 𝑟x D𝜏@0C~1.5×10D nm2 s-1, about 100-fold 
greater than that derived from nuclear dipolar interactions 
alone33,34 (Fig. 4C). This result reinforces the understanding of 
the cross-relaxing electron spin bath as a mediator to swiftly 
move around magnetization from otherwise many-body 
localized groups of nuclei. Such behavior could prove 
advantageous to expedite the transport of polarization across the 
diamond surface into arbitrary nuclear spin targets16,35.  

DISCUSSION 
While the effective Hamiltonian in Eq. (1) supports the 

notion of a coherent, electron-mediated nuclear spin transport, a 
question of interest is whether spin-lattice relaxation (electronic 
or nuclear) impacts the diffusion process itself (beyond imposing 
a limit on the polarization buildup). Supporting this notion, 
recent numerical studies suggest incoherent dynamics can help 
drive the spin system away from ‘blockade’ regimes, i.e., spin 
configurations that prevent the transport of spin polarization35. 
In the present framework, such processes could, e.g., flip P1 
centers that have previously been polarized upon cross-
relaxation with the NVs. Note that coherent channels remain the 
main transport driver and interacting paramagnetic defects are 
still central to the process, but here it is spin-lattice relaxation 
(not necessarily electron spin diffusion) that prepares the P1 for 
the next cycle of spin transport. This picture is consistent with 
the measured 𝜏@ , on average comparable to the NV/P1 spin 
lattice relaxation time (of order 1 ms in this diamond sample). 
Future experiments, for example, above and below room 
temperature or for samples with variable NV/P1 concentrations 
could help shed light on the role of incoherent processes.   

Extensions of the ideas introduced herein can provide 
additional insights on the complex spin dynamics at play. For 
example, the use of chirped MW pulses to induce nuclear spin 
polarization 36 , 37  — away from the NV-P1 cross relaxation 
condition — can be exploited to separate the roles of NVs and 
P1s during the spin diffusion process. Along the same lines, 
microwave manipulation of the electron spin bath should give us 
the opportunity to controllably reintroduce localization in the 
nuclear spin system or to count the number of correlated carbons 
as the polarization spreads 38 , 39 . Particularly attractive is the 
combined use of super-resolution microscopy40-42 and magnetic 
resonance techniques to monitor the spin dynamics of small 
ensembles of nuclear spins communicating via NV-P1 networks, 
which could be relevant to quantum information processing with 
many body disordered systems43.  

While our experiments centered on spins in diamond, we 
anticipate similar techniques can be adapted to investigate the 
dynamics of other material systems hosting spin active nuclear 
and electronic spins. These include organic systems exhibiting 
(non-optical) dynamic nuclear polarization, where simultaneous 
microwave and radio-frequency excitation could be exploited to 
gain information on nuclear spins proximal to radicals, normally 
invisible in standard DNP-enhanced NMR experiments.  
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I. Experimental  
The experimental setup is a modified version of the system described in Ref.  [1]. Briefly, it consists of a 400 

MHz solid-state NMR magnet and spectrometer with a pneumatic shuttling device (Fig. S1A). During the 
hyperpolarization sequence, the sample is kept outside of the bore of the magnet, in the magnet’s stray field, at about 
52.3 mT. An electromagnet, with current provided by a programmable power supply (GW Instek PSM-6003) is used to 
fine tune the magnetic field to the hyperpolarization condition (Fig. S1B). The sample is optically pumped at low field 
with a 532 nm laser with ~ 700 mW at the sample. The laser is pulsed with an AOM (acousto-optic modulator, Isomet 
1250C) for time-resolved measurements. The beam diameter is adjusted using a lens just before the sample. The 
pneumatic shuttling system sends the sample to the magnet’s “sweet spot” in ~1s and a 13C FID is subsequently collected. 
The shuttling and spectrometer triggering are controlled with TTL pulses from a National Instruments DAQ card (PCIe 
6321). 
 The NMR probe — which moves along with the sample — has been altered slightly from Ref.  [1] to allow for 
manipulation of the 13C spins at low field in the hyperpolarization process. The RF is provided by an additional loop of 
wire near the sample. The loop terminates to either a 50-ohm resistor or shorts to ground to form a stub antenna depending 
on power needs. The RF signal is generated by a Rhode & Schwarz SMV 03 and amplified with a Minicircuits LZY-
22+. Before amplification, the RF signal is gated by a switch (Minicircuits ZASWA-2-50DR+). Due to the bandwidth 
of the amplifier overlapping with the bandwidth of our spectrometer’s receiver, the blanking control line of the amplifier 
is used to reduce the noise level in the detected signal. The RF amplifier blanking is controlled by the DAQ card. For 
experiments requiring precise time resolution, the AOM and the gate for the MW switch are controlled with pulses from 
a SpinCore Pulseblaster-300. 
 The RF power is calibrated by detecting 13C Rabi oscillations (Figs. S1C and S1D). To this end, a 
hyperpolarization step is performed; the laser pumps the diamond for 10 seconds with the magnetic field tuned close to 
52.3 mT to where the hyperpolarization is maximum. At the end of the pumping, just before the shuttling, an RF pulse, 
resonant with the 13C Larmor frequency is applied. The sequence is repeated 4 times and averaged. This is done for a 
range of RF pulse durations allowing us to extract the Rabi frequency and hence, the 𝐵" magnetic field amplitude. An 
oscilloscope is used to monitor the peak-to-peak voltage. The output of the signal generator is adjusted so as to maintain 
the peak-to-peak voltage unchanged for all frequencies used. 
 Experiments to determine the impact of different hyperfine coupled 13Cs (Fig. 2 in the main text) were performed 
by tuning the magnetic field to the positive or negative hyperpolarization features associated with the P1’s central 
Zeeman transition. For the present crystal orientation, this occurs slightly below or above 52.5 mT for the positive or 
negative polarizations (respectively 𝐵 #  and 𝐵 $ , in Fig. 1D of the main text). The AOM and RF switch are triggered 
both at the same time for a variable duration, typically 5-10 s. This is repeated several times (normally 8) for each RF 
frequency. When the RF excites a hyperfine coupled carbon, this shorts the hyperpolarization diffusion process, lowering 
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the hyperpolarization signal. To characterize nuclear spin diffusion (Fig. 4 in the main text), a pulse sequence consisting 
of 2 ms laser pulses separated by a dark time with variable duration RF pulses is looped until 2 seconds of laser time has 
been accumulated and averaged 12 times per RF pulse duration. A reference with the same dark time and no RF pulse is 
taken to compare the impact of the RF pulse. 
 

II. The spin Hamiltonian 

The main goal in this and the following sections is to provide a quantum-mechanical model that qualitatively 
describes the polarization flow from strongly hyperfine-coupled 13Cs to bulk 13Cs. In order to simplify our formal 
description, we assume that the hyperfine-coupled carbons are initially polarized (by means of the NV-P1 energy 
matching mechanism discussed in Ref.  [1]) and focus specifically on the spin-diffusion process. This means that we do 
not need to include the primary source of polarization, i.e. the NVs. The complete spin system therefore comprises 𝑁& 
electrons (P1 centers) and 𝑁' nuclear spins (13C). The Hamiltonian describing this system is given by: 

 

Figure S1. Stray-field optical pumping of 13C polarization in diamond. (A) Experimental setup. Dynamic polarization of 13C 
spins in diamond is carried out via optical excitation in the stray field of a superconducting NMR magnet (9.0 T). To detect the 
induced polarization, we shuttle the sample to the sweet spot of the magnet and acquire a free-induction-decay (FID) upon a 
resonant π/2-pulse at 96.87 MHz. (B) Example 13C NMR spectra upon 2-second optical excitation and a laser power of 0.7 W; 
the total number of repeats is 12 and spectra have been slightly displaced vertically for clarity. The signal is positive or negative 
depending on the exact value of the optical pumping field (see main text for details). From a comparison against the thermal 
signal amplitude at 9 T (24 repeats, upper inset) and the size of the illuminated spot (~100 µm), we conclude the dynamically 
pumped 13C polarization is of order 1-3%. (C) 13C spin manipulation at low field (𝐵(#) = 52.3 mT) is carried out via RF 
excitation at a variable frequency prior to sample shuttling. As an example, the cartoon shows the schematics of a Rabi protocol 
at low field. (D) 13C NMR amplitude as a function of the RF pulse duration as obtained from the protocol in (C). The polarization 
field is 𝐵(#) = 52.3 mT and the RF frequency (560 MHz) is resonant with the bulk carbon Zeeman transition. The optical 
illumination time is 10 s and the number of repeats per point is 4.  
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Here, the first term corresponds to the dipolar interaction between 13C nuclear spins, the second is the dipolar interaction 
between P1 centers, the third and fourth are the corresponding Zeeman contributions, and the last term corresponds to 
the interaction between the two-spin species. Due to the typical 13C-13C spatial separation in samples with natural 13C 
abundance, the first term corresponds to a very weak interaction, which we neglect. 

The term involving 𝑉BCD corresponds to the hyperfine couplings between electronic and nuclear spins. A direct 
flip-flop between a P1 spin and a 13C spin is not allowed due to the large energy mismatch 𝛾'𝐵 ≪ 𝛾&𝐵 . Then, we are 
left with: 

𝑉BCD(𝑰4, 𝑺;)
7=

;

78

4

≈ 𝐴JJ
;,4 𝑆;J 𝐼4J + 𝐴JM

;,4 𝑆;J 𝐼4M
7=

;

78

4

																																							(A. 2) 

Notice here that the second term (known as pseudo-secular) cannot be truncated since, in the case of interest, the 
hyperfine energies exceed the nuclear Zeeman energy. For future reference, Eq. (A.1) can be easily extended to include 
an NV center provided the magnetic field is chosen so that the frequency of the  0 ↔ −1  NV transition matches the 
electron Larmor frequency, namely, when 𝛾&𝐵 ~Δ 2, where Δ = 2.87 GHz denotes the NV zero field splitting. This 
condition — met near 51 mT — immediately implies that the transfer of polarization from carbons coupled to an NV 
center is field dependent.  

 

III. The four-spin system and the effective 13C-13C mechanisms 
 

To analyze the dynamics induced by Eqns. (A.1) and (A.2), we start by considering a simple system with two 
13Cs and two P1 centers, as shown in Fig. S2. Our objective is to derive an effective description of the dynamics of 
polarization within a spin system only composed by 13Cs. We start by writing down the Hamiltonian 𝐻1 in Eq. (A.1) for 
the model depicted in Fig. S2, 

𝐻1 = −𝜔'𝐼"J − 𝜔'𝐼VJ + 𝜔&𝑆WJ + 𝜔&𝑆XJ + 𝐴JJ"W𝑆WJ𝐼"J + 𝐴JM"W𝑆WJ𝐼"M + 𝐴JJXV𝑆XJ𝐼VJ + 𝐴JMXV𝑆XJ𝐼VM + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[ 					 A. 3 . 

 Here, 𝜔& = 𝛾&𝐵 , 𝜔' = 𝛾'𝐵 (note both frequencies are positive), and ℐZ is the dipolar coupling between the two P1 
centers (spins 2 and 3 in Fig. S2), and, as stated above, we assume an energy-matching external magnetic field 𝐵 =
51	mT. Since 𝜔& is the leading energy scale in 𝐻1, we can split it into three blocks given by the subspaces corresponding 
to P1-spin projection equal to 1, 0, -1. These blocks are not mixed by 𝐻1 since 𝑆WJ + 𝑆XJ, 𝐻1 = 0. Furthermore, 
subspaces with spin projection 1 or -1 cannot yield an effective 13C-13C interaction since the dynamics within these 
subspaces are equivalent to the evolution of the two 13Cs in the presence of an external static magnetic field. Thus, we 
restrict ourselves to the subspace of zero spin projection for the two P1 spins.  

	

Figure S2. The four-spin system. Two 13Cs interact with two P1 centers. Each number labels the corresponding spin (see text).  
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By introducing the norm of the hyperfine interactions,  

∆"W= 𝐴JJ"W W + 𝐴JM"W W																																																																							(A. 4) 

∆XV= 𝐴JJXV W + 𝐴JMXV W	.																																																																					(A. 5) 

we identify two different regimes defined by the hierarchy in the energy scales: Regime 1, where ∆"W≳ ∆XV> ℐZ > 𝜔', 
and Regime 2, where ℐZ > ∆"W~∆XV, 𝜔'.  

 In what follows we analyze both regimes in detail. 
 

Regime 1. Hyperfine-dominated limit 

 This case is characterized by ∆"W≳ ∆XV> ℐZ > 𝜔'. Since the 13C quantization axis is essentially given by the 
hyperfine vector, it is natural to rewrite 𝐻1 as: 

		𝐻1 = −𝜔'𝐼"J − 𝜔'𝐼VJ + 𝜔&𝑆WJ + 𝜔&𝑆XJ + 𝑆WJ 𝐴JJ"W𝐼"J + 𝐴JM"W𝐼"M + 𝑆XJ 𝐴JJXV𝐼VJ + 𝐴JMXV𝐼VM + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[ 						(A. 6) 

In order to diagonalize the hyperfine interaction, we rotate the local basis of each 13C spin to obtain 

𝐻1 = −𝜔J
" 𝐼"J + 𝜔M

" 𝐼"M − 𝜔J
V 𝐼VJ + 𝜔M

V 𝐼VM + 𝜔&𝑆WJ + 𝜔&𝑆XJ + ∆"W𝑆WJ𝐼"J + ∆XV𝑆XJ𝐼VJ + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[ 		(A. 7) 

where 

𝜔J
(") = 𝜔'

𝐴JJ"W

∆"W
 

𝜔M
(") = 𝜔'

𝐴JM"W

∆"W
 

𝜔J
(V) = 𝜔'

𝐴JJXV

∆XV
 

𝜔M
(V) = 𝜔'

𝐴JMXV

∆XV
 

Now we explicitly write down the Hamiltonian 𝐻1 in the subspace of interest. Only for the purposes of 
simplifying the notation, we assume 𝜔J

(") = 𝜔J
(V) = 𝜔 (in our simulations below, however, we lift this restriction and 

consider these values not necessarily equal).  

 ↑d↑↓↑d  ↑d↓↑↑d  ↑d↑↓↓d  ↑d↓↑↓d  ↓d↑↓↑d  ↓d↓↑↑d  ↓d↑↓↓d  ↓d↓↑↓d  
↑d↑↓↑d  −𝜔 +

∆"W − ∆XV
4  ℐZ/2 𝜔M

(V)/2 0 𝜔M
(")/2 0 0 0 

↑d↓↑↑d  ℐZ/2 −𝜔 +
∆XV − ∆"W

4  0 𝜔M
(V)/2 0 𝜔M

(")/2 0 0 

↑d↑↓↓d  𝜔M
(V)/2 0 

∆"W + ∆XV
4  ℐZ/2 0 0 𝜔M

(")/2 0 

↑d↓↑↓d  0 𝜔M
(V)/2 ℐZ/2 

−∆"W − ∆XV
4  0 0 0 𝜔M

(")/2 

↓d↑↓↑d  𝜔M
(")/2 0 0 0 

−∆"W − ∆XV
4  ℐZ/2 𝜔M

(V)/2 0 

↓d↓↑↑d  0 𝜔M
(")/2 0 0 ℐZ/2 

∆"W + ∆XV
4  0 𝜔M

(V)/2 

↓d↑↓↓d  0 0 𝜔M
(")/2 0 𝜔M

(V)/2 0 𝜔 +
∆XV − ∆"W

4  ℐZ/2 

↓d↓↑↓d  0 0 0 𝜔M
(")/2 0 𝜔M

(V)/2 ℐZ/2 𝜔 +
∆"W − ∆XV

4  

(A.8) 
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Here, the prime in the 13C spin states indicates the quantization axis defined by the hyperfine vector. The two states 
highlighted in yellow and the two in green are nearly degenerate. If we focus on the green pair, i.e. states ↑d↑↓↓d  and 
↓d↓↑↑d  (same argument valid for the pair ↑d↓↑↓d  and ↓d↑↓↑d ), second order perturbation theory yields a small energy 

difference 𝛿 that breaks the degeneracy, 

𝛿["] ≈ 2𝜔M
" 𝜔M

V 𝜔
∆"WW − ∆XVW

∆"WW ∆XVW
																																																																				(A. 9) 

where the index 1 in square brackets stands for Regime 1. An effective description dealing only with 13C spins needs to 
incorporate a local field term accounting for this energy shift between the states ↑d↓d  and ↓d↑d .  

Effective flip-flops can occur if we consider third-order processes, 

↑d↓↑↓d → ↑d↓↑↑d → ↑d↑↓↑d → ↓d↑↓↑d  

↑d↓↑↓d → ↓d↓↑↓d → ↓d↑↓↓d → ↓d↑↓↑d  

and 

↑d↑↓↓d → ↑d↑↓↑d → ↑d↓↑↑d → ↓d↓↑↑d  

↑d↑↓↓d → ↓d↑↓↓d → ↓d↓↑↓d → ↓d↓↑↑d . 

The sequences above include a single 13C spin-flip, a dipolar P1-P1 flip-flop, and finally a second single 13C spin flip. 
The entire process can be thought of as a virtual four-body interaction, already hinting at the effective mechanism of 
13C-13C flip-flop. More specifically, such a flip-flop occurs with a third-order coupling element 

𝐽mnn
["] ≈

4𝜔M
" 𝜔M

V ℐZ
∆"W∆XV

.																																																																													(A. 10) 

Then, the proposed effective Hamiltonian describing the dynamics of the 13C pair in Regime 1 is:  

𝐻mnn
["] = −

𝛿 "

2
𝐼"J +

𝛿["]

2
𝐼VJ + 	 𝐽mnn

["] 𝐼"M𝐼VM + 𝐼"
[𝐼V

[ 																																																					(A. 11) 

We compare the dynamics induced by 𝐻1 (Eq. (A.7)) and by 𝐻mnn
["] (Eq. (A.11)) in Fig. S3. In particular, we 

consider an initial state given by ↑d↓↑↓d  and monitor the time evolution of the polarization for both 13Cs. The comparison 
shows that the effective flip-flop mechanism can have a strength of up to a few kHz for strongly coupled P1 pairs. In 
fact, the flip-flop dynamics is dominant when 𝛿["] < 𝐽mnn

["] ∝ ℐZ. Conversely, if the P1-P1 interaction is weak, then 𝛿["] >
𝐽mnn
["] , and correspondingly the polarization remains localized. It is therefore natural to envision a direct generalization of 

𝐻mnn
["] into the Anderson localization problem  [2] for a large set of 𝑁' spins. In such case, the P1-P1 interaction controls 

the dynamical phase of the 13C system. In our simple two-spin case, a symbolic estimate for this localized-to-delocalized 
transition would occur at a critical interaction (𝛿["] ≈ 𝐽mnn

["]) 

ℐZ
q ≈ 𝜔

∆"WW − ∆XVW

2∆"W∆XV
.																																																																														(A. 12) 

 We stress that an estimate of the mean P1-P1 interaction (or, equivalently, P1 concentration) needed to ensure 
spin diffusion within the 13C system requires a good knowledge of the statistical distribution of hyperfine couplings.  
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We caution that the denominator in 𝐽mnn
["] (Eq. (A.10)) cannot be arbitrarily small. Further, the effective description 

also fails if there is a large mismatch between the hyperfine couplings (for example, when ∆"W≫ ∆XV~𝜔). In such a case, 
the dynamics is essentially given by an uncorrelated single-spin flip at a frequency given by 𝜔M

V ,  

↑d↑↓↓d ↔ ↑d↑↓↑d  

↓d↓↑↑d ↔ ↓d↓↑↓d  

↑d↓↑↓d ↔ ↑d↓↑↑d  

↓d↑↓↑d ↔ ↓d↑↓↓d  

and no polarization transfer happens (an equivalent example can be given for ∆XV≫ ∆"W~𝜔). This scenario implies that 
strongly hyperfine-coupled 13Cs cannot transfer the polarization directly to bulk 13Cs. Nevertheless, strongly coupled 
13Cs can effectively interact with ‘moderately’ hyperfine-coupled 13Cs, and these, in turn, interact with more weakly-
hyperfine-coupled 13Cs, thus allowing the polarization to gradually cascade down to the bulk carbons.  

 Finally, by inspection of the matrix representation of 𝐻1 in (A.8), it would be natural to expect terms of the form 
𝐼"J𝐼VJ in 𝐻mnn

["]. These terms should account for the energy difference between the subspace spanned by ↑d↓d , ↓d↑d  and 
the subspace spanned by ↑d↑d , ↓d↓d . However, the simplified model employed herein is only useful to analyze the 
effective flip-flop mechanism and a more detailed analysis is required to derive the effective coupling element 
corresponding to an Ising term of the form 𝐼sJ𝐼tJ. Such an approach, at the same time, would extend our previous 
discussion on (Anderson-) localization-delocalization into the many-body localization-delocalization problem.  

 

	

Figure S3. Comparison of the flip-flop dynamics (polarization transport) between the Hamiltonians 𝐻1 (a and c) and 𝐻mnn
["] (b 

and d). In all the cases, 𝐴JM"W = 𝐴JJ"W = 40	MHz, 𝐴JMXV = 𝐴JJXV = 9	MHz and the initial state is |↑d↓↑↓d⟩. In (a) and (b), ℐZ = 1	MHz. 
In (c) and (d), ℐZ = 5	MHz.  
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Regime 2. Dipolar-dominated limit 

 This regime is characterized by ℐZ > ∆"W~∆XV, 𝜔', which means that the dipolar P1-P1 interaction defines the 
leading energy scale. We first consider the case ℐZ > ∆"W~∆XV≳ 𝜔'; notice, however, that since ℐZ does not largely 
exceed ~1 MHz for moderate P1 concentrations (50 ppm in the present case), both hyperfine interactions would have 
strengths comparable to 𝜔' (or, at least, not much higher than 𝜔'), effectively limiting this regime to a narrow window. 
Then, we can choose here the 13C quantization axis to be given by the Zeeman interaction with the external magnetic 
field.  

We further simplify this regime and assume, for now, 𝐴JJ"W = 𝐴JJXV = 0. Then, the matrix representation of 𝐻1 in 
Eq. (A.3) for the subspace of interest is  

 

 ↑↑↓↑  ↑↓↑↑  ↑↑↓↓  ↑↓↑↓  ↓↑↓↑  ↓↓↑↑  ↓↑↓↓  ↓↓↑↓  
↑↑↓↑  −𝜔' ℐZ/2 −𝐴JMXV/4 0 𝐴JM"W/4 0 0 0 
↑↓↑↑  ℐZ/2 −𝜔' 0 𝐴JMXV/4 0 −𝐴JM"W/4 0 0 
↑↑↓↓  −𝐴JMXV/4 0 0 ℐZ/2 0 0 𝐴JM"W/4 0 
↑↓↑↓  0 𝐴JMXV/4 ℐZ/2 0 0 0 0 −𝐴JM"W/4 
↓↑↓↑  𝐴JM"W/4 0 0 0 0 ℐZ/2 −𝐴JMXV/4 0 
↓↓↑↑  0 −𝐴JM"W/4 0 0 ℐZ/2 0 0 𝐴JMXV/4 
↓↑↓↓  0 0 𝐴JM"W/4 0 −𝐴JMXV/4 0 𝜔' ℐZ/2 
↓↓↑↓  0 0 0 −𝐴JM"W/4 0 𝐴JMXV/4 ℐZ/2 𝜔' 

 (A.13) 

 Now we transform the Hamiltonian into a basis that diagonalizes the dipolar P1-P1 interaction 
ℐZ 𝑆WM𝑆XM + 𝑆W

[𝑆X
[ . Here, the eigenstates are  

+ =
1
2

↑↓ + ↓↑ 																																																																				 A. 14  

− =
1
2

↑↓ − ↓↑ 																																																																				(A. 15) 

Then, the Hamiltonian matrix is given by 

 ↑ −↑  ↑ +↑  ↑ −↓  ↑ +↓  ↓ −↑  ↓ +↑  ↓ −↓  ↓ +↓  
↑ −↑  −𝜔' − ℐd/2 0 0 −𝐴JMXV/4 0 𝐴JM"W/4 0 0 
↑ +↑  0 −𝜔' + ℐd/2 −𝐴JMXV/4 0 𝐴JM"W/4 0 0 0 
↑ −↓  0 −𝐴JMXV/4 −ℐd/2 0 0 0 0 𝐴JM"W/4 
↑ +↓  −𝐴JMXV/4 0 0 ℐZ/2 0 0 𝐴JM"W/4 0 
↓ −↑  0 𝐴JM"W/4 0 0 −ℐd/2 0 0 −𝐴JMXV/4 
↓ +↑  𝐴JM"W/4 0 0 0 0 ℐZ/2 −𝐴JMXV/4 0 
↓ −↓  0 0 0 𝐴JM"W/4 0 −𝐴JMXV/4 𝜔' − ℐd/2 0 
↓ +↓  0 0 𝐴JM"W/4 0 −𝐴JMXV/4 0 0 𝜔' + ℐd/2 

(A.16) 

The subspace highlighted in green contains two pairs of quasi-degenerate states: ↑ −↓  and ↓ −↑  with energy 
−ℐZ/2, and ↑ +↓  and ↓ +↑  with energy +ℐZ/2. As before, second order perturbation theory provides an estimate for 
the energy shift that breaks degeneracy, 
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𝛿[W] ≈ 𝜔'
𝐴𝑧𝑥34 2 − 𝐴𝑧𝑥12 2

8ℐZ
W 																																																																(A. 17) 

where the index 2 in square brackets refers to Regime 2. Again, an effective description only dealing with 13C spins 
needs to incorporate a local field term accounting for 𝛿[W].  

An effective flip-flop mechanism can be derived also from second order processes, 

↑ +↓ → ↑ −↑ → ↓ +↑  

↑ +↓ → ↓ −↓ → ↓ +↑  

and 

↑ −↓ → ↑ +↑ → ↓ −↑  

↑ −↓ → ↓ +↓ → ↓ −↑ . 

This type of transition involves a sequence of two 13C spin flips mediated by a virtual change in the P1 interaction 
energy. The obtained effective flip-flop mechanism has a coupling element 

𝐽mnn
[W] ≈

𝐴JMXV𝐴JM"W

4ℐZ
.																																																																																	(A. 18) 

where we use ℐZ > 𝜔' to drop the dependence of 𝜔' in the denominator. This leads us to propose the following effective 
Hamiltonian, 

𝐻mnn
[W] = −

𝛿[W]

2
𝐼"J +

𝛿[W]

2
𝐼VJ + 𝐽mnn

[W] 𝐼"M𝐼VM + 𝐼"
[𝐼V

[ ,																																															 A. 19  

From Eqns. (A.17) and (A.18), it is straightforward to verify that  

𝛿 W ≲
𝜔'
ℐZ
𝐽mnn
W < 𝐽mnn

W 	,																																																																						 A. 20  

thus the polarization dynamics in Regime 2 is always delocalized.   

We illustrate the accuracy of 𝐻mnn
[W] by comparing the polarization dynamics induced by Eqns. (A.3) and (A.19). 

In Fig. S4 we consider an initial state given by ↑↓↑↓  and monitor the time evolution of the polarization for both 13Cs 
using the complete Hamiltonian 𝐻1 and the effective 𝐻mnn

[W]. The comparison shows that the effective flip-flop mechanism 
can have a strength of hundreds of kHz, though only within the narrow window where ℐZ ∼ 𝐴JM"W ∼ 𝐴JMXV ≳ 𝜔'. Beyond 
this condition (i.e., when ℐZ~𝜔') we expect the effective Hamiltonian to gradually deviate from the exact 𝐻1, since in 
Eq. (A.18) we disregard the effect of 𝜔' in the denominator of the coupling parameter. This situation is seen in Fig. S4(a) 
(where ℐZ = 𝐴JM"W = 1	MHz, 𝐴JMXV = 750	kHz, and 𝜔' = 𝛾'𝐵 ≈ 500	kHz). The modulations present in the dynamics of 
the effective flip-flop Hamiltonian 𝐻mnn can be more important if 𝐴JJ"W, 𝐴JJXV ≠ 0 because these terms contribute to the 
diagonal Hamiltonian matrix elements. Note that as long as ℐZ remains the leading energy scale, Eq. (A.18) applies 
beyond the condition ℐZ > ∆"W~∆XV≳ 𝜔' to include the limit where the hyperfine shifts go to zero, i.e. ℐZ > 𝜔' >
∆"W~∆XV.  

A complete hierarchical picture of the 13C-13C interactions can thus be drawn: Medium strength (few kHz) 
effective interactions develop inside the classical “diffusion barrier”, provided the frequency mismatch between 
hyperfine couplings is sufficiently small (Regime 1); stronger effective interactions (reaching up to 100 kHz) become 
possible as carbons occupy positions farther removed from the electron spins, to subsequently decay as the hyperfine 
couplings gradually vanish (Regime 2). In this latter limit, carbon couplings take the value corresponding to that defined 
by the dipolar spin coupling between bulk nuclei. 



9	
	

IV. The effect of RF excitation  

 To study the impact of RF on the system dynamics, we go back to the four-spin model and rewrite the 
Hamiltonian in Eq. (A.6) as,  

𝐻1 = −𝜔'𝐼"J − 𝜔'𝐼VJ + 𝜔&𝑆WJ + 𝜔&𝑆XJ + 𝑆WJ 𝐴JJ"W𝐼"J + 𝐴JM"W𝐼"M + 𝑆XJ 𝐴JJXV𝐼VJ + 𝐴JMXV𝐼VM + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[ 																											 

																																+ 𝐼"M + 𝐼VM Ω cos 𝜔�n𝑡 				(A. 21) 

Now, assuming for concreteness Regime 1 and transforming into the hyperfine basis, we obtain 

						𝐻1 = −𝜔J
" 𝐼"J + 𝜔M

" 𝐼"M − 𝜔J
V 𝐼VJ + 𝜔M

V 𝐼VM + 𝜔&𝑆WJ + 𝜔&𝑆XJ + ∆"W𝑆WJ𝐼"J + ∆XV𝑆XJ𝐼VJ + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[  

+ ΩJ
" 𝐼"J + ΩM

" 𝐼"M cos 𝜔�n𝑡 + ΩJ
V 𝐼VJ + ΩM

V 𝐼VM cos 𝜔�n𝑡 					(A. 22) 

where 

ΩJ
(") = Ω

𝐴JJ"W

∆"W
 

ΩM
(") = Ω

𝐴JM"W

∆"W
 

ΩJ
(V) = Ω

𝐴JJXV

∆XV
 

 

Figure S4. Comparison of the flip-flop dynamics (polarization) between the Hamiltonians 𝐻1 (a and c) and 𝐻mnn (b and d). In all 
cases, 𝐴JM"W = 1	MHz, 𝐴JMXV = 750	kHz, and the initial state is |↑↓↑↓⟩. In (a) and (b), ℐZ = 1	MHz. In (c) and (d), ℐZ = 5	MHz.  
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ΩM
(V) = Ω

𝐴JMXV

∆XV
 

In the rotating frame, after performing standard time averaging, we finally write 

										𝐻1 = −𝜔J
" + ΩJ

" − 𝜔�n 𝐼"J + ∆"W𝑆WJ𝐼"J + −𝜔J
V + ΩJ

V − 𝜔�n 𝐼VJ + ∆XV𝑆XJ𝐼VJ 

+ΩM
(")𝐼"M + ΩM

(V)𝐼VM + 𝜔�𝑆WJ + 𝜔�𝑆XJ + ℐZ 𝑆WM𝑆XM + 𝑆W
[𝑆X

[ 							(A. 23) 

To highlight the ‘hybrid’ electron/nuclear-spin nature of the transitions, here we assume both 13Cs are polarized and the 
P1 pair is in the subspace of zero spin projection (note that this is in contrast with the case in the main text where we 
assume both P1s are unpolarized). Fig. S5(a-b) shows both the nuclear and electronic polarization as a function of the 
excitation frequency 𝜔�n and the P1-P1 coupling parameter ℐZ. To help understand these results, Figure S5(c) shows the 
energy spectrum as a function of ℐZ with an identification of the eigenstates in the two extreme cases ℐZ = 0 (left) and 
ℐZ~5	MHz (right). In the limit of ℐZ = 0, four possible transitions can be identified, which correspond to each 13C flipping 
independently. As ℐZ increases, the resonance frequencies are shifted and the states involved in each transition change 
accordingly. As the eigenstates feature contributions from different electron and nuclear spin projections, all transitions 
in this regime involve simultaneous nuclear and electronic spin-flips.  

	

Figure S5. Dynamical response in the presence of RF excitation. (a) Polarization of 13C spins as a function of the P1-P1 
dipolar interaction ℐZ and RF excitation 𝜔�n. Both carbon spins are initially polarized. (b) P1 polarization (initially assumed to 
be zero) as a function of ℐZ and 𝜔�n. (c) Eigen-energies as a function of ℐZ in the subspace of zero spin projection for the P1 
spins. The same resonance frequencies shown in (a,b) are shown here with arrows. For the eigenstates in the regime of large 
P1-P1 interaction (e.g., ℐZ~5	MHz), the coefficients verify 𝑐" ≈ 𝑐W and 𝑑" ≫ 𝑑W.  In all cases we assume 𝐴JJ"W = 𝐴JM"W = 14	MHz, 
𝐴JJXV = 𝐴JMXV = 9	MHz, 𝐵 = 51	mT. For (a) and (b), Ω = 75	kHz.  
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V. Master equation approach: Spectral chain 

This section of the Supplementary Material expands on the results of Fig. 4B in the main text, namely the response 
of the 13C NMR signal upon application of a train of RF pulse of variable separation simultaneous with optical 
illumination. Experimental results at various excitation frequencies along their inverse Laplace transforms are presented 
in Fig. S6. While a full quantum mechanical model is impractical, we can employ a classical master equation approach 
to analyze the magnetization flow from strongly hyperfine-coupled 13Cs to bulk 13Cs. The physical picture is based on a 
one-dimensional chain, where each link can be viewed as a spin set with a specific spectral location (hyperfine shift), as 
shown in Fig. 4C of the main text. More precisely, the magnetization charge 𝑞s s�";  of each of these boxes is described 
by 

𝑑
𝑑𝑡
𝑞" = −𝛾"W𝑞" + 𝛾W"𝑞W − 𝛽"𝑞"																																																													 A. 24  

𝑑
𝑑𝑡
𝑞W = −𝛾W"𝑞W − 𝛾WX𝑞W + 𝛾"W𝑞" + 𝛾XW𝑞X − 𝛽W𝑞W																																											(A. 25) 

𝑑
𝑑𝑡
𝑞X = −𝛾XW𝑞X − 𝛾XV𝑞X + 𝛾WX𝑞W + 𝛾VX𝑞V − 𝛽X𝑞X																																											(A. 26) 

                /…/ 

𝑑
𝑑𝑡
𝑞4 = −𝛾4,4$"𝑞4 − 𝛾4,4#"𝑞4 + 𝛾4$",4𝑞4$" + 𝛾4#",4𝑞4#" − 𝛽4𝑞4 − 𝑎��𝑔 𝑡 	𝑞4																	(A. 27) 

                /…/ 

𝑑
𝑑𝑡
𝑞; = 𝛾;$",;𝑞;$" − 𝛽;𝑞;																																																																	(A. 28) 

Here, 𝛾st stands for the transfer rate from box 𝑖 to box 𝑗, and 𝛽s represents the loss of magnetization due to nuclear spin-
lattice relaxation. The RF excitation is resonant with box 𝑘, 𝑔 𝑡  stands for the shape of the train of RF pulses, and 𝑎�� 
is the amplitude of each pulse (here seen to act as a polarization sink). Consistent with the relative spectral proximity 
required for electron-spin-mediated transport (see Eqs. (A.10) and (A.12)), we only consider interactions between 
immediate spectral neighbors (i.e., 𝑘 − 1 and 𝑘 + 1) though additional contributions from farther removed boxes can be 
easily incorporated. Further, we neglect any backflow from the last box to the rest of the chain, and ignore non-linear 
(i.e., ‘blockade’) effects arising from saturation of the magnetization in a given box; this latter regime can always be 
attained when the illumination power is sufficiently low. The set of equations can then be written in the standard matrix 
form 

𝑑
𝑑𝑡
𝑸 = 𝑨𝑸	,																																																																																				(A. 29) 

with 

𝑨 =

−𝛾"W − 𝛽" 𝛾W" 0 0 … … 0
𝛾"W −𝛾W" − 𝛾WX − 𝛽W 𝛾XW 0 0 0 0
0 𝛾WX … 0 0 0 0
0 0 … 𝛾4,4$" 0 0 0
… … 𝛾4$",4 −𝛾4,4$" − 𝛾4,4#" − 𝛽4 − 𝑎��𝑔 𝑡 𝛾4#",4 0 0
0 0 0 𝛾4,4#" … … …
0 0 0 0 … … …
0 0 0 0 … … 0
0 0 0 … 0 𝛾;$",; −𝛽;

	. 
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It is natural to split the evolution into intervals with and without RF excitation, since these correspond to 𝑨𝟏 ≡ 𝑨 𝑔 = 1  
and 𝑨𝟎 ≡ 𝑨(𝑔 = 0), respectively. Using 𝜏 to denote the inter-pulse delay and 𝜏�� to indicate the RF pulse duration (here 
fixed to 1ms), the evolution of the magnetizations in each composite interval is given by  

	

Figure S6. Probing the time scale of 13C spin diffusion. (a) We use the protocol in Fig. 4a of the main text to identify 
the effective nuclear spin diffusion time 𝜏Z upon pulsed excitation at various frequencies (upper left corner in each plot). 
Solid lines represent fits to the stretched exponential function 𝑆 = 𝑆� − 𝑆" exp(−(𝜏 𝜏Z⁄ )¢), where 𝜏Z is the characteristic 
nuclear spin diffusion time and 𝜀, 𝑆�, and 𝑆" are additional fitting parameters. (b) Laplace transforms of the stretched 
exponentials on the left. In each case, the vertical dashed and dotted lines indicate the distribution median and fitted value 
of 𝜏Z. 	
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𝑸 𝜏 + 𝜏�� = exp 𝑨𝟎𝜏 	exp 𝑨𝟏𝜏�� 	𝑸𝟎	.																																																									(A. 30) 

Given a total evolution time 𝑇, the number of composite intervals is given by 𝑛¦ = 𝑇/(𝜏 + 𝜏��). Then, the final 
magnetization is given by  

𝑸 𝑇 = exp 𝑨𝟎𝜏 exp 𝑨𝟏𝜏�� <§𝑸𝟎	.																																																											(A. 31) 

In our simulations, we consider an initial condition given by 𝑞" = 1 and 𝑞s = 0 ∀𝑖 > 1. This is a crude 
approximation since we do not include the continuous effect of the optical pumping. Additionally, we also assume for 
simplicity 𝛽s = 0	∀𝑖. The intensity of the RF irradiation is the leading scale of the problem, here assumed to be 𝑎�� = 1 
MHz. The total time considered is always 𝑇 = 1 s. 

The first case we study corresponds to a uniform set of coupling constants, 𝛾st = 𝛾ts = 𝛾�. Figure S7 shows the 
normalized magnetization charge in the last box after the full evolution 𝑞;(𝑇 = 1	s) as a function of the inter-pulse 
delay time 𝜏, for different 𝛾�. The system has 𝑚 = 40 boxes and the RF-irradiated box is always 𝑘 = 20. 

 In Fig. S8 we investigate the dependence of 𝑞;(𝑇 = 1	s) on the point of RF excitation across the chain. In the 
case of uniform couplings (Fig. S8a), we verify that the observed time-scale does not depend on the location of the 
saturated box. In Fig. S8b we consider a small, localized fraction of the chain has much stronger couplings than the rest. 
In particular, we assume the coupling set given by 

𝛾s,s#" = 𝛾s#",s = 𝛾� + 100𝛾� exp −
𝑘� − 𝑖
𝐾�

W

	,																																																	(A. 32) 

where we choose 𝑘� = 15 and 𝐾� = 2. In this case, we observe a stronger attenuation of	𝑞;(𝑇 = 1	s) as we irradiate 
the boxes close to the box 𝑘�. This means that saturating strongly connected nodes produces a stronger degradation in 
the magnetization reaching the end of the chain.  

 

Figure S7. Normalized magnetization in the end box (𝑚 − th) in a system of 40 boxes upon RF irradiation in box 𝑘 = 20. The 
couplings constants are uniformly distributed, 𝛾st = 𝛾ts = 𝛾�, with 𝛾� given in the inset. The solid lines are given by stretched-
exponential fittings, with 𝜀 = 1 for the blue and green cases, and 𝜀 = 0.8 for the red case. 
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Figure S8. Normalized magnetization in the end box of a chain of 40 upon RF irradiation. Lower panels explicitly show when 
boxes 15 and 25 are being (independently) irradiated (dashed lines are stretched exponential fittings, with 𝜀 = 0.8. In case (a), 
the couplings constants are uniformly distributed, 𝛾st = 𝛾ts = 𝛾� , with 𝛾� = 1 kHz. In (b) we consider a uniform distribution 
perturbed in a small region around 𝑘� = 15 where the couplings 𝛾s,s#" can be up to 100 times 𝛾� .  

 




