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ABSTRACT OF THE THESIS

Improving Projective Geometry in Diffusion Models

by

Rishi Upadhyay

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Achuta Kadambi, Chair

Generative diffusion models have recently become extremely popular in a variety of domains,

but especially in image generation. These models are capable of generating a wide variety

of high-quality images and can be guided by text prompts, depth maps, and more. Despite

these impressive capabilities, these models typically generate images with poor projective

geometry. As a result, generated images differ significantly from real images, decreasing the

photo-realism of generated images. In addition, since perspective is crucial for representing

3D information in 2D images, discrepancies in projective geometry limit the use of generative

models as synthetic data generators. In this work, we introduce a geometric constraint to

improve the projective geometry of diffusion models and show that outputs of models trained

with this constraint both appear more photo-realistic and serve as useful synthetic data by

improving the performance of downstream models fine-tuned on generated images.
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CHAPTER 1

Introduction

The introduction of recent text-to-image synthesis methods such as latent diffusion mod-

els has drastically increased our creative capabilities. These models can generate anything

from a Renaissance style painting to an everyday smartphone selfie from just a simple text

prompt. However, as powerful as these models can be, their limited ability to adhere to phys-

ical constraints that are explicitly present in natural images restricts their potential [88]. In

contrast, traditional methods of image generation such as hand-drawn art or ray-traced im-

ages place careful attention on ensuring an accurate physical environment including geometry

and lighting.

Perspective is one of the most important physical constraints because it ensures object

properties such as size, relative location, and depth are accurately represented. In a sense,

it ensures physical accuracy [40]. As a result, improved perspective accuracy allows for the

use of perspective accurate data for downstream tasks such as camera calibration [10, 15, 17,

35, 47], 3D reconstruction [33, 87], scene understanding [34, 28, 77], and SLAM [13, 31, 50].

However, current diffusion based image generators such as [68, 67, 63, 9, 93] do not gen-

erate perspectively accurate data [25, 76]. Please refer to Fig. 6.1 or [25] for examples of

this phenomenon. This is because latent diffusion models typically lack the interpretability

necessary for explicit encoding of a physical prior such as perspective in the model architec-

ture [41]. By utilizing a novel loss function that ensures the gradient field of an image aligns

with its expected vanishing points, we are able to encode this physical prior. By enforcing

this perspective prior on generated images, we also increase the accuracy of object properties
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important for downstream computer vision tasks and photo-realism.

As it turns out, the perspective correctness of an image has a strong influence over its

overall scene coherence and therefore realism. This is most likely true because, as mentioned

before, perspective provides crucial information regarding the size, relative location, and

depth of a scene. To illustrate this, we set up a human subjective test where the photo-

realism of our perspective-corrected images is put to the test. We show that latent diffusion

models which utilize our novel perspective loss generate images that are rated as more

realistic an overwhelming majority of the time as compared to images generated by the base

diffusion model. We also verify the visual benefits of our proposed constraint by applying it

to the inpainting task. We show that inpainted images generated from models trained with

our loss consistently appear more perceptually similar to the original image than images

from models without our loss.

Additionally, images generated with our novel loss prove beneficial to the accuracy of

downstream tasks which are inherently reliant on these same object properties. As proof

of this concept, we fine-tune multiple SOTA monocular depth estimation models such as

DPT [65] and PixelFormer [2]. We show that training on data with accurate perspective

leads to models with higher performance that can capture high-frequency details to a higher

degree.

In summary, we make the following contributions:

• We introduce a novel geometric constraint on the training process of latent diffusion

models to enforce perspective accuracy.

• We demonstrate that images generated from a diffusion model trained to be perspec-

tively accurate serve as better synthetic data for depth estimation than images from a

regular diffusion model.

• We demonstrate that training with this constraint improves perspective accuracy with-

out limiting the range and diversity of a diffusion model.

2



CHAPTER 2

Background and Related Work

2.1 Synthetic Image Generation

Image generation, while a popular task, has proven to be difficult because of the high dimen-

sional space and variety of images. One of the most popular techniques for image generation

has been Generative Adversarial Networks (GANs) [32]. While GANs are capable of high

quality image synthesis [11], they are limited by the fact that they are difficult to train, often

failing to converge or collapsing into a mode where all generated images are the same [60, 4].

Another popular image generation technique is Variational Auto-encoders (VAEs) [42] which

have stronger theoretical guarantees, but cannot match GANs in image quality [18, 83]. Re-

cently, diffusion models [82] for image generation have grown in popularity. These models

work by reversing a diffusion process which adds noise to high quality images and are capable

of generating high quality samples from a variety of distributions [37, 22, 21]. Subsequent

works have expanded the scope even further by adding text guidance to the diffusion pro-

cess [64, 74], simplifying the inverse process [86], and reformulating the diffusion process to

occur in a latent space for speed benefits [68]. While recent work has explored guiding dif-

fusion models in various ways [85, 38, 59, 69], most diffusion models rely almost entirely on

their vast datasets and text encoders for priors on scene composition and object properties.

This means that there are no explicit guarantees that generated images will be physically

accurate, making them a poor fit for use in synthetic datasets. Our work aims to add 3D

geometry constraints to image generators in order to improve the quality of generated images.
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A specific task in the space of synthetic image generation that is related to our work is

the edge-to-image synthesis problem. In this task, the diffusion model is conditioned on both

a text prompt as well as an edge map of the scene we want to generate [8, 7]. Although this

is similar to our task in terms of constraints on edges in an image, they are not quite the

same problem: for the edge-to-image task, the goal of training is to have a model which can

follow the provided edge map faithfully [91]. If this is achieved, perspective accuracy can be

achieved by providing perspectively accurate edge maps. However, for our work, the task is

to instead train a model that can generate perspectively accurate images without access to

an edge map, meaning our models require less input and are more general.

2.2 Vanishing Points in Computer Vision

Vanishing points have many varied and important uses in computer vision. One common

use for vanishing points is camera calibration. Early examples of this include [15, 10, 17]

who use vanishing point geometry to compute the intrinsics and extrinsics of one or more

cameras given single or multiple images. Subsequent papers, such as [35, 47], provided

improved techniques that were simpler or required less data and assumptions. In addition,

newer works began to not only compute camera parameters, but also use them to compute

3D reconstructions of single images [33, 87]. Beyond camera calibration, vanishing points

are also useful for general scene understanding. [34] use vanishing points to help create

generative grammar for synthetic scenes, [28] use vanishing points as priors for 3D scene

and traffic understanding, and [77] estimate 3D models from singular images using vanishing

point priors. Vanishing points are also particularly useful for road detection thanks to

easily identifiable perspective lines, as demonstrated by [52, 43]. Vanishing points are also

regularly used in SLAM techniques. [46] were one of the first in this space, using vanishing

points to identify the heading of a robot for navigation. Subsequent works further expanded

the capabilities of SLAM systems built on vanishing points including [13, 50, 31] who use

4



vanishing points to identify direction and perform structural mapping of scenes in real-time.

Given the significance of vanishing points in computer vision, we aim to enhance image

generators with accurate perspective, in order to benefit photo-realism and downstream

tasks.

In additional to vanishing points, perspective has been used in computer vision for com-

putational photography tasks. For example, many works use perspective principles to allow

for editing the focal length and camera position of an image after it is taken [6, 54]. An-

other application of perspective are techniques which aim to reduce distortion in wide-angle

images [16, 80]. These techniques often learn the perspective projection of an image and

then find transformations to achieve the desired un-distorted images. Other works have also

gone the opposite direction by introducing new types of perspective projections that are not

necessarily physically accurate but can result in artistic and aesthetic images [19, 3].

2.3 Monocular Depth Estimation

Supervised methods for monocular depth estimation typically require paired image and depth

data. One of the first works in this area was Make3D [78] which relied on hand-crafted

features and Markov random fields. Subsequent works then applied deep learning to the

problem, starting with multi-scale convolutional networks [23] and followed by conditional

random fields [48], residual networks [44], convolutional neural fields [53, 90], and most

recently transformers [65, 66, 2]. Many approaches also take advantage of known geometric

relationships, such as normals [62] and planes [45, 92]. Newer techniques have also taken

an unsupervised approach [89, 26] or use multi-modal data capture [81]. However, most

supervised monocular depth estimation models are limited by the availability of paired data

on which to train as this data is difficult to collect.

In order to overcome the challenge of a lack of sufficient training data, many techniques

turn to synthetic datasets. The renderers used to generate the images in these datasets can
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often generate corresponding ground-truth data, making it simple to acquire pixel-aligned

ground-truth depth maps. In addition, these renderers often allow for different types of

data, such as varied weather conditions or indoor vs. outdoor scenes, making them an

attractive way to get training data. Examples of such datasets include Virtual KITTI,

a photorealistic copy of the popular self-driving dataset KITTI [27, 29] and SYNTHIA, a

dataset that includes depth and semantic segmentation information for images of a synthetic

city [71, 96]. Although these datasets are often quite realistic, there are often key differences

between synthetic and real images which leads models trained on synthetic images to achieve

lower performance when tested on real datasets compared to models trained and tested on

real images. This difference in performance is referred to as the Sim2Real gap. As monocular

depth estimation is a popular task, many works have attempted to address the problem of

the Sim2Real gap [14, 20, 56, 73, 75]. However, all of these techniques approach the problem

by attempting to improve the neural network architectures. On the other hand, we approach

this problem from the perspective of improving the synthetic data used to train the neural

networks.

6



CHAPTER 3

Probing Projective Geometry of Diffusion Models

3.1 Principles of Linear Perspective

Although perspective is a word commonly used in a variety of contexts, it has a very specific

meaning in terms of art and photography: techniques used to draw objects in 2D such that

their 3D attributes are correctly modeled. In practice, perspective refers to a multitude of

different techniques which can be used to create a 3D feel, but the most common technique

is called linear perspective. There a few key components of linear perspective: First, all

mutually parallel lines, on the same or parallel planes, in 3D space, converge to a single

point in the image plane. This point is referred to as a vanishing point. The only exception

to this rule is sets of lines that are exactly parallel to the camera sensor. In this case, these

lines are also parallel in the image plane. A typical drawing/image often has anywhere from

one to three vanishing points, with the number of vanishing points determining the style and

view of the drawing/image. Another key component of linear perspective is the horizon line.

The horizon line is a horizontal line that represents the viewer’s eye level in an image, and

typically at least one of the vanishing points of an image lies on this line. A visualization

of these principles can be found in Fig. 3.1. A second key principle of linear perspective is

”dimunition”: objects that are further away will appear smaller. To understand this better,

we can develop some mathematical intuition. Suppose we have a simple pinhole camera

looking down the Z axis. A 3D point X = (X, Y, Z) is projected down to the 2D point

x = (x, y) = (fX/Z, fY/Z) (3.1)

7
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Figure 3.1: Examples of one, two, and three-point linear perspective. Vanishing
points are labeled in blue, perspective lines are in red, and the horizon lines are in light
green. One-point perspective is typically used when there is one focal point of the image
or when only one side of an object is visible. Two-point perspective is used to illustrate
multiple sides of an object, while three-point perspective is used for viewpoints that are
above or below the horizon line of the 3D scene.

[58]. Using this, we can see the intuition behind dimunition: an object with the same

range of X and Y values with higher Z will take up a smaller region of the image than one

with lower Z. To understand vanishing points, we can then consider a line in 3D space,

L = O + tD = (Ox, Oy, Oz) + t(Dx, Dy, Dz). Plugging that into Equation 3.1, we can write:

(x, y) =

(
f(Ox + tDx)

Oz + tDz

,
f(Oy + tDy)

Oz + tDz

)
(3.2)

Taking the limit as t goes to infinity, we see:

lim
t→∞

(x, y) =

(
fDx

Dz

,
fDy

Dz

)
(3.3)

Since this equation depends only on D, the 2D projection of all rays with the same direction

will converge to the same point, the vanishing point.

3.2 Verifying Perspective Consistency in Images

Perspective in images is not always easy to confirm, as the vanishing points of an image can

only be easily identified with the aid of parallel lines in 3D space, which may not always

exist in images. For the purposes of this work, we measure the perspective consistency of

8



diffusion models using three techniques:

1. For images that do have easily identifiable sets of parallel lines, perspective consistency

can be verified by extending sets of parallel lines in either direction until they intersect

and ensuring that all pairs of lines in a set intersect at the same point.

2. Using recent work on extracting perspective properties from a single image [39], we

extract these properties from real images and synthetic images and compare distribu-

tions. In specific, we predict and compare the roll, pitch, and FOV of images.

3. Building on the idea that perspective consistency helps provide more accurate 3D

information about a scene, we hypothesize that perspectively-accurate images will

serve as better synthetic data than perspectively-inaccurate images for 3D vision tasks

such as depth estimation or camera calibration. Inspired by this, we setup a test where

we fine-tune SOTA depth estimation models on synthetic data from different models

(both with and without our constraint) to see whether and how much they can help

performance. Further details on the experimental setup are in Section 5

9



CHAPTER 4

Methods

In order to improve the perspective accuracy of diffusion models, we introduce a novel con-

straint designed to encourage more consistent images. We fine-tune a depth-conditioned

StableDiffusion v2 model with our constraint and compare against the baseline StableDif-

fusion v2 model. We provide background on the latent diffusion process in Section 4.1 and

introduce our new constraint in Section 4.2.

4.1 Latent Diffusion Models

Traditional image generation diffusion models are concerned with a forward diffusion process

over images x0,...,xT :

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I), (4.1)

where q is the forward diffusion function, t is the current time step, and I is the identity.

αt = 1 − βt and β1,...,βT compose a pre-selected variance schedule. The reverse process is

then parameterized as:

p(xt−1|xt) = N (µθ(xt, t),Σ(xt, t)), (4.2)

where p is defined as the reverse diffusion function and Σ(xt, t) is typically set to time-

dependent constants. µθ(xt, t) is defined as:

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
, (4.3)

10
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Figure 4.1: Graphical description of our geometric constraint. Left: A visualization
of how the loss function sweeps lines across the image. Right: D(v,x) plotted for the image
at right. The red and yellow lines in the left plot are identified by the corresponding dots.

where αt = Πt
i=1αi, and ϵθ(xt, t) is a learned function parameterized by a UNet model [70]

with learned parameters θ. Based on this, the traditional diffusion model loss is as follows:

LDM = Ex,ϵ∼N(0,1),t
[
∥ϵ− ϵθ(xt, t)∥22

]
. (4.4)

More details and derivations can be found in [37]. Latent diffusion models work very similarly,

but perform the forward and reverse diffusion processes in latent spaces. Specifically, an

encoder and decoder are introduced to translate to and from the latent space. The encoder

is defined as: E : X ∈ RH×W×3 7→ Z ∈ Rh×w×3, while the decoder is defined as: D : Z ∈

Rh×w×3 7→ X ∈ RH×W×3, where h = H/f , w = W/f and f is a downsampling factor. With

this formulation, the loss function now becomes:

LLDM = EE(x),ϵ∼N(0,1),t
[
∥ϵ− ϵθ(zt, t)∥22

]
, (4.5)

where the image xt is replaced by its latent space representation zt.
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ALGORITHM 1: Algorithm to compute perspective loss

Function perspective loss(x, x̂,vx)
Input : Image x̂
Input : Ground Truth image x
Input : Vanishing Points vx

Gx ← img derivative(x)
Gx̂ ← img derivative(x̂)
loss← 0.0
foreach v ∈ vx do

ϕmin, ϕmax ← calc image angle(v)
for i← 0; i < N ; i = i+ 1 do

angle← i
N ∗ (ϕmax − ϕmin) + ϕmin

d← calc perp vec(angle)
p← get line pixels(v, angle)
D(i)←

∑
p |Gx̂ · d|

Dgt(i)←
∑

p |Gx · d|
loss← loss+ norm(D −Dgt)

end
loss← loss/|v|

end
return loss

end

4.2 Perspective Constraint

In order to add perspective priors to a latent diffusion model, we add an additional per-

spective loss term. At a high level, this loss works by sweeping lines extending out from a

vanishing point over the image and calculating the sum of image gradients across the line,

as illustrated in Fig. 4.1. Pseudocode for this algorithm is shown in Alg. 1. This sum is

designed to represent how ”edge-like” the region along that line is in the image. We can

then write our new loss as:

LDM = EE(x),ϵ∼N(0,1),t
[
∥ϵ− ϵθ(zt, t)∥22

]
+

λEx,ϵ∼N(0,1),v [Lpersp(x̂,x,vx)] .
(4.6)
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where λ is a weight factor for our perspective loss, vx is a set of vanishing points in image

space and x̂ is our reconstructed image, which can be written as:

x̂ = D
(

1√
αt

(
zt −

√
1− αtϵθ(zt, t)

))
. (4.7)

where t is randomly chosen between 0 and T for each iteration. In order to define Lpersp, we

first define some intermediate quantities:

• Gx represents the gradients of an image x computed with a 3x3 Sobel filter.

• ϕmin and ϕmax represent the minimum and maximum angle from the vanishing point

to a corner of the image relative to the x-axis.

• ϕ0,...,ϕn represent n equally-spaced angles between ϕmin and ϕmax.

• v represents a particular vanishing point in the set vx.

• li(v, k) represents a point at time k on a ray li(v) starting at v in the direction of ϕi.

• di(v) represents a vector perpendicular to the line li(v).

Using these, we define:

Di(v,x) =

∫ k1

k0

|di ·Gx(li(v, k))|dk, (4.8)

where k0 and k1 represent the times of the intersection of li(v) with x. Di(v,x) is then our

measure of how ”edge-like” the region along this ray is, and we can then define:

Lpersp(x̂,x,vx) =
1

|vx|
∑
v∈vx

||D(v, x̂)−D(v,x)||2. (4.9)

In practice, the integral in Eq. 4.8 becomes a sum over the image pixels that the line inter-

sects. Additionally, because x̂ will be quite blurry for high values of t, we only apply our loss

for the first 20% of t values. Our loss function was implemented entirely in PyTorch and is

fully differentiable end-to-end.
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CHAPTER 5

Experiments

In order to evaluate our proposed constraint, we conduct comprehensive experiments. In

Section 5.1, we detail how we fine-tune latent diffusion models with the proposed constraint,

in Section 5.2, we detail how we fine-tune monocular depth estimation models on images

generated from our fine-tuned models. In Section 5.3, we describe how we use recent work

on detecting perspective quantities [39] to compare models with and without our constraint.

In Section 5.4, we describe how we evaluate the photo-realism of images generated from our

fine-tuned models, and in Section 5.5, we describe our ablation studies.

5.1 Training Latent Diffusion Models

For all of our image generation experiments, we build off the depth-conditioned Stable Dif-

fusion V2 model from [68]. This model is trained on LAION 5B, a database of 5.85 billion

image caption pairs [79]. In this paper, we refer to this model as the baseline model.

Datatsets In order to fine-tune the baseline model, we use the HoliCity dataset [95]. This

dataset provides 50,078 real images taken in London along with ground truth vanishing

points for each image. We use MiDaS [66] to compute a depth prediction for each image

which is then used as conditioning for the latent diffusion model.1 This is the same procedure

used to originally train the depth-conditioned model [68]. Captions used for conditioning

1The HoliCity dataset also provides ground truth depth images, however, they are derived from a CAD
model, meaning they are missing finer details such as people, cars, and trees.
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are generated for each image using the BLIP captioning model [49].

Training Details The code for our fine-tuned model is built using PyTorch on top of [61],

which is built on top of the original code released by [68]. The original code from [61] is

built on top of Stable Diffusion v1, so part of the modifications made by us include updating

the code to be compatible with Stable Diffusion v2 checkpoints, including updating the

encoder/decoder and dataloaders. We update the loss function of the baseline model to

the loss function detailed in Eq. 4.6. We train at an image resolution of 512×512 with a

learning rate of 1e-6 and λ = 0.01. We train for 4 epochs or approximately 200k steps with

an effective batch size of 16 after gradient accumulation. We found that the perspective

loss had generally saturated by this point. This training takes approximately 12 hours on 4

RTX3090 GPUs. Results are shown in Section 6.1.

5.1.1 Inpainting

In addition to text-to-image generation, we also test the value of our constraint for the

inpainting task where a model is asked to fill in masked regions of an image. Applying

our proposed constraint to the inpainting task does not require any extra training, as we

are able to take our general text-to-image diffusion models and perform inpainting using

the techniques described by [57]. We evaluate the results using the LPIPS metric [94] as is

the norm for the inpainting task. LPIPS measures the perceptual similarity between two

images using features from deep neural networks, in particular AlexNet. Results are shown

in Fig. 6.4 and Table 6.4 and are discussed in Section 6.1.1

5.2 Training Monocular Depth Estimation Models

In order to evaluate the performance from another perspective, we also conduct an experi-

ment on the effect of our new images on monocular depth estimation models. In particular,
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we fine-tune DPT-Hybrid [65] and PixelFormer [2] on images generated from both the base-

line model and our fine-tuned model. DPT-Hybrid is originally trained on MIX 6, a collection

of 10 datasets described in [65], and PixelFormer is originally trained on the KITTI dataset.

In order to generate our synthetic datasets, we rely on the SYNTHIA-AL [96] and Vir-

tual KITTI 2 [12, 27] datasets. SYNTHIA-AL contains 70,000 images and Virtual KITTI

2 contains 2,656 images. We take only depth maps from both datasets, and use them as

conditioning to generate synthetic images using the base, and our latent diffusion models.

In addition, we use BLIP [49] to generate captions for all images. For Virtual KITTI 2, we

take 8 random crops per image. We also generate diffusion images with 4 different seeds,

resulting in a total of 84,992 images derived from the Virtual KITTI 2 dataset. We refer

to this dataset as VK. For SYNTHIA, we use the original images, resulting in a total of

70,000 images. We refer to this dataset as SY. Combined, our dataset is 154,992 images and

covers various city and driving scenes. We additionally append the name of the model used

to generate different datasets so that VK+SY Enhanced refers to the full set of 155k im-

ages generated by our Enhanced model while VK+SY Base refers to the full set of images

generated by the Baseline model. Results of fine-tuning on these datasets are discussed in

Section 6.2.

Training Details For DPT-Hybrid, we train with a learning rate of 5e-6 for 19,500 steps

with a batch size of 16. We use a scale and shift invariant loss as described in [65, 23]. For

PixelFormer, we train with a learning rate of 4e-6 for 20,800 steps with a batch size of 8.

We train on 1 RTX3090 GPU using the same loss as DPT.

Test Sets We evaluate the trained depth estimation models on commonly used real datasets

KITTI [30] and the outdoor subset of DIODE [84]. We use the Eigen split for KITTI [23]

and a test set of 500 images from DIODE.
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Metrics In order to evaluate the performance of the models, we follow the procedure used

by [65] and we adopt common depth estimation metrics: Absolute relative error (Abs Rel),

Square relative error (Sq Rel), Root mean squared error (RMSE), Log RMSE (RMSE log),

and Threshold Accuracy (δi) at thresholds τi’s = 1.25, 1.252, 1.253 as used in [2, 66, 65].

5.3 Comparing Perspective Fields

Recent work [39] has enabled predicting perspective quantities, such as roll, pitch, and FOV,

directly from a single image. We leverage this technique to extract these quantities from

sets of real and synthetic images generated from multiple models and then compare the

distribution of predicted quantities either against the distributions of predictions from real

images or ground truth values if they are available. In specific, we predict the roll angle,

pitch angle, and vertical field of view. We run this experiment on the Holicity [95] test set

with two models: baseline StableDiffusion v2 and our fine-tuned model. Results from this

test are discussed in Section 6.3

5.4 Human Subjective Test Methodology

In order to evaluate the photo-realism of images generated by our fine-tuned models, we run

human subjective tests on the Prolific [1] website. We ran two tests, one comparing our

enhanced model with the baseline model and one comparing our enhanced model with an

ablation model. We set up the test as a ranking task where participants are asked to rank

sets of three images (Real, Baseline, Ours or Real, Ablation, Ours) in order of photo-realism.

The real images come from the HoliCity dataset [95], a landscapes dataset from Kaggle [72],

and an animal images dataset from Kaggle [5]. The baseline, ablation, and enhanced (ours)

images are generated using depth maps extracted from the real image by MiDaS [66] and

prompts from the BLIP captioning model [49]. Participants were shown all three images side
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Figure 5.1: A screenshot of the graphical user interface for the human subjective
test we performed on the Prolific platform. Annotators are asked to rank the image by
realism, with ”1” being the most and ”3” being the least real. Images include one generated
from a baseline model, one generated from our enhanced model, and one real image in
random order.

by side in random order. Please refer to Fig. 5.1 for a visualization of the testing setup. We

recruit 50 participants across the world and ask them to rate 80 sets of images. Participants

were given up to 90 minutes to complete the task. Results from this test are in Section 6.4

and Fig. 6.8.

5.5 Ablation Study

In order to evaluate the benefits of our proposed constraint, we perform two ablation studies.

First, we fine-tune the baseline model on the same dataset but without our updated loss.

We refer to this model as the No Loss/Ablation model. We also train a model which takes
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in vanishing points as conditioning and is trained without our loss. For both models, we

generate the same synthetic datasets and train the same monocular depth estimation models

described in Section 5.2. Results are shown in Section 6.5. An ablation study was also done

for the human subjective tests and the inpainting task for the no loss model. Results are

described in Section 6.4 and shown in Fig. 6.8, Fig. 6.4, and Table 6.4.
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CHAPTER 6

Results

This results section is split into sub-sections according to the experiments described in Sec-

tion 5. In Section 6.1, we describe the results of fine-tuning latent diffusion models. In

Section 6.2, we discuss the results of fine-tuning SOTA monocular depth estimation models

on our generated images. In Section 6.4, we discuss the results of our human subjective test,

and in Section 6.5, we discuss the results of our ablation tests.

6.1 Fine-tuned Latent Diffusion Models

We show some representative generations from our fine-tuned model in Fig. 6.2. In the figure,

we show the depth maps used to condition the diffusion models along with generations

from the baseline model and our enhanced model. Images from the baseline model tend

to suffer from curved lines and distortions that affect perspective accuracy. In particular,

the baseline model tends to have trouble accurately generating regions with windows, high-

frequency details such as many parallel horizontal or vertical lines, and corners. We also

draw perspective lines on images from the baseline and our models in Fig. 6.1. Images from

our model tend to have more coherent perspective lines and more accurate vanishing points.

In addition, in both figures, because of the aforementioned distortions, the baseline images

look further from the distribution of natural images than images from our model. Since

our enhanced model is fine-tuned on a dataset of mainly only cityscapes, we also generate

varied nature [72], animal [5], and indoor scenes [84] to verify that this fine-tuning does not

limit the ability of the model to generate other types of images. Some representative images
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Depth Baseline Enhanced Depth Baseline Enhanced

Figure 6.1: Images from our model have more consistent vanishing point lines.
This figure shows examples of stable diffusion outputs from the baseline model and from our
model with perspective loss along with perspective lines for the image. The depth maps these
outputs are conditioned on are put in the left-hand column. Note that for the baseline image
in the first row, the lines do not intersect at a single vanishing point, violating perspective
geometry. These violations can sometimes result in curved lines as seen in the baseline image
in the second row.

are shown in Fig. 6.3. We additionally quantitatively evaluate these images using the FID

metric [36]. Our model outperforms both the baseline model and the no loss model. The

results are shown in Table 6.5.

6.1.1 Inpainting

We evaluate the inpainting performance of our models using both qualitative (Fig. 6.4) and

quantitative (Table 6.4) results. All three models of interest, the baseline model, ablation

model, and enhanced model were tested on the combination of two datasets: the HoliCity

validation set [95] and a landscape dataset [72]. The LPIPS metric [94], which measures

perceptual similarity using features from deep image networks, was used to compare mod-

els as is the norm for the inpainting task. We used the official implementation provided

by [94]. Note that lower is better for the LPIPS metric. As seen in Table 6.4, our enhanced

model consistently outperforms both the baseline model and ablation model, with a 7.1%

improvement over the baseline model and a 3.6% improvement over the ablation model on

the combined dataset.
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Figure 6.2: Images from our model are better at preserving straight lines. Examples
of outputs from the base model and from our enhanced model. The depth maps these outputs
are conditioned on are put at the top. Inlets show specific regions of interest.
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Figure 6.3: Despite being fine-tuned on images of city scenes, our model is able to
generate high-quality images of varied settings including nature landscapes, in-
door scenes, and pictures of animals. Images were taken from a landscapes dataset [72],
an animal dataset [5], and the indoor subset of the DIODE dataset [84].

Original Masked Baseline No Loss
(Ablation)

Enhanced (Ours)

Figure 6.4: The proposed geometric constraint provides benefits for the inpainting
task on diverse scenes. Images reconstructed with our enhanced model consistently
outperform the baseline and ablation models on LPIPS scores (shown in the top right, lower
is better).
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Input Original Original Error RMSE: 6.746

Ground Truth Ours Ours Error RMSE: 5.968

Input Original Original Error RMSE: 7.158

Ground Truth Ours Ours Error RMSE: 6.325

Input Original Original Error RMSE: 5.307

Ground Truth Ours Ours Error RMSE: 4.178

Input Original Original Error RMSE: 7.052

Ground Truth Ours Ours Error RMSE: 6.022

Figure 6.5: Qualitative comparisons of DPT-Hybrid fine-tuned on the data from
our fine-tuned models and the original DPT-Hybrid model. The depth maps pro-
duced by models trained on images from our enhanced model capture more high-frequency
detail than the models trained on images from the baseline model. The RMSE error of the
outputs of our model is also consistently lower.
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Depth No Loss Enhanced Depth No Loss Enhanced

Figure 6.6: The proposed perspective constraint is responsible for the increase in
perspective accuracy of generated images more than the dataset the diffusion
models were fine-tuned on. The depth maps these outputs are conditioned on are put
in the left-hand column. Note that the images without our loss suffer from more distortions
and curved lines and are less photo-realistic.

Table 6.1: Monocular Depth Estimation performance of DPT-Hybrid fine-tuned
on our data compared to the base DPT-Hybrid model. The original DPT-Hybrid
model was trained on a dataset referred to as MIX 6, which is a collection of 10 datasets as
described in [65]. Fine-tuned models were trained on synthetic datasets generated by either
the base stable diffusion model or our fine-tuned model. The best performing model is in
bold and the second best is underlined.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ δ1 ↑ δ2 ↑ δ3 ↑

DPT-Hybrid
–

KITTI
5.0287 0.1874 0.1328 0.9705 18.6320 0.8385 0.9552 0.9855

VK Base 4.7680 0.1800 0.1286 0.8104 17.8890 0.8401 0.9587 0.9881
VK Enhanced 4.6749 0.1760 0.1250 0.7827 17.4836 0.8496 0.9608 0.9890

DPT-Hybrid
–

DIODE
Outdoor

9.5311 0.5667 0.4593 7.0644 52.6255 0.4709 0.6588 0.7759
VK Base 9.4863 0.5669 0.4560 6.7930 52.6316 0.4705 0.6586 0.7758

VK Enhanced 9.4854 0.5663 0.4559 6.8371 52.5902 0.4713 0.6595 0.7763

6.2 Monocular Depth Estimation

In order to evaluate the performance of our fine-tuned depth estimation models, we use both

qualitative and quantitative measures. A qualitative comparison is shown in Fig. 6.5, while

quantitative comparisons are in Table 6.1 and Table 6.2.

DPT-Hybrid We fine-tune one model from the base DPT-Hybrid using the generated

vKITTI datasets and then test the model on both the original KITTI test set (Eigen Split)

and a subset of the DIODE Outdoor test set. Results are in Table 6.1. The models fine-tuned

on images generated from our diffusion model outperform the original DPT-Hybrid model on

all metrics on both datasets and outperform the model fine-tuned on images generated by the
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Table 6.2: Monocular Depth Estimation performance of PixelFormer fine-tuned
on our data compared to the base PixelFormer model (trained on KITTI) on the
DIODE outdoor dataset. Fine-tuned models were trained on synthetic datasets generated
by either the base stable diffusion model or our fine-tuned model. The best performing model
is in bold and the second best is underlined.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ δ1 ↑ δ2 ↑ δ3 ↑

PixelFormer

–
DIODE
Outdoor

8.8726 0.7041 1.4532 21.8911 66.0165 0.3254 0.5586 0.7075
KITTI 8.9302 0.7102 1.4441 22.1350 66.4702 0.3244 0.5523 0.6929

VK Base 8.5381 0.6891 1.4140 21.8363 64.5891 0.3294 0.5651 0.7209
VK Enhanced 8.4728 0.6870 1.3738 19.3406 64.4721 0.3329 0.5677 0.7245

PixelFormer

–
DIODE
Outdoor

8.8726 0.7041 1.4532 21.8911 66.0165 0.3254 0.5586 0.7075
KITTI 8.9302 0.7102 1.4441 22.1350 66.4702 0.3244 0.5523 0.6929

VK+SY Base 8.5296 0.7109 1.4768 22.0467 66.6546 0.3270 0.5531 0.7038
VK+SY Enhanced 8.5109 0.7027 1.4408 21.5139 65.8426 0.3360 0.5635 0.7116

Table 6.3: Ablation Study: Monocular Depth Estimation performance of DPT-
Hybrid fine-tuned on data from a model trained with no loss, a model conditioned
on vanishing points with no loss and a model trained with our loss. The best
performing model is in bold.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ δ1 ↑ δ2 ↑ δ3 ↑

DPT-Hybrid
VK No Loss

KITTI
5.5733 0.2159 0.1573 1.1084 21.3919 0.7803 0.9389 0.9807

VK Condition 5.0437 0.1935 0.1402 0.8768 19.1673 0.8150 0.9499 0.9861
VK Enhanced 4.6749 0.1760 0.1250 0.7827 17.4836 0.8496 0.9608 0.9890

DPT-Hybrid
VK No Loss

DIODE
Outdoor

9.5241 0.5728 0.4573 6.7422 53.1904 0.4670 0.6581 0.7737
VK Condition 9.7312 0.5822 0.4641 7.1056 54.0504 0.4645 0.6520 0.7694
VK Enhanced 9.4854 0.5663 0.4559 6.8371 52.5902 0.4713 0.6595 0.7763

PixelFormer
VK No Loss

DIODE
Outdoor

8.5054 0.7047 1.3889 20.3750 66.5519 0.3184 0.5543 0.7035
VK Condition 8.8021 0.7034 1.3923 19.4538 66.2341 0.3318 0.5592 0.7083
VK Enhanced 8.4728 0.6870 1.3738 19.3406 64.4721 0.3329 0.5677 0.7245

Table 6.4: Inpainting Quantitative Results: Images generated by our enhanced
model out-perform both the baseline Stable Diffusion V2 model and Ablations
on the LPIPS metric. Our enhanced model performs best on all three datasets, while
the ablation model is outperformed by the baseline model when tested on only landscapes.
Lower is better for all columns.

Dataset Holicity Nature All

# of Images 250 320 570

Baseline 0.1367 0.1584 0.1488
Ablation 0.1147 0.1659 0.1434
Ours 0.1138 0.1573 0.1382
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Table 6.5: FID Comparison: Images of non-building scenes generated by our
enhanced model out-perform both the baseline Stable DiffusionV2 model and
the No Loss model on the FID metric. Metric was computed on 6.7k images from
nature [72], animal [5], and indoor datasets [84]. Lower is better.

Model Baseline No Loss Enhanced (Ours)

FID ↓ 23.1717 31.0726 21.1350

baseline model on all metrics for KITTI and all but one metric (SqRel) for DIODE Outdoor.

In addition, for the DIODE Outdoor dataset, the original DPT-Hybrid model outperforms

the base model on five out of eight metrics, but outperforms our model on no metrics.

In particular, our model shows a 7.03% improvement in RMSE and a 19.3% improvement

in SqRel over the original model while also demonstrating a 3.4% improvement in SqRel

and a 2.2% improvement in SiLog over the baseline model. Fig. 6.5 also shows qualitative

comparisons between the original DPT-Hybrid model and the model fine-tuned on images

generated by our enhanced diffusion model. Each set of images contains the input image,

ground truth depth map (dilated with a 3×3 kernel), and error maps from both the original

model and our enhanced model. Additionally, the RMSE values for each of the depth

predictions are shown in the top right of the error maps. The depth models from our model

capture more high-frequency detail such as corners and poles, and also consistently have

lower RMSE values.

PixelFormer We fine-tune the base PixelFormer using both the generated vKITTI dataset

and the full generated dataset and evaluate on the DIODE Outdoor test set. We addition-

ally fine-tune a model using the original training set, KITTI [30, 2]. Results are shown in

Table 6.2. The model fine-tuned on images from our diffusion model outperforms the orig-

inal model, the models trained on images from the baseline model, and the model trained

on KITTI on all metrics. Our model trained on the vKITTI dataset achieves a 4.1% im-

provement in RMSE over the original model, while our model trained on the entire dataset
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Figure 6.7: Predicted perspective quantities from [39] across models. From top to
bottom, we predict: pitch, roll, and vertical field of view. From left to right, we use: ground
truth images, images from StableDiffusion v2, and Our model. The histograms from our
model are more consistent with ground truth histograms than baseline histograms across
quantities, and especially on vertical field of view.

achieves an 11.6% improvement in SiLog over the original model and a 2.4% improvement

over the model trained on baseline images. Additionally, the original model outperforms the

baseline model trained on the entire dataset on five of eight metrics, but outperforms the

model trained on our images on no metrics.
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6.3 Perspective Fields Comparisons

Results from the perspective field prediction comparisons are shown in Fig. 6.7. We visualize

histograms of predictions for the roll angle, pitch angle, and vertical FOV (vFOV). The

differences are most obvious when comparing vFOV, as StableDiffusion v2 images lead to

predictions ranging from 20-100deg, while the ground truth images and images from our

model tend to be concentrated around the 60-100deg range, which is closer to the ground

truth value of 90deg. As discussed in Section 3, focal length (and as a result field of view)

directly affect the location of vanishing points in an image, suggesting that more accurate

FOV predictions might suggest better perspective accuracy.

6.4 Human Subjective Tests

Results from the human subjective tests are shown in Fig. 6.8. (a) shows the comparison

between our enhanced model and the baseline model while (b) compares our enhanced model

and the ablation model. Over all trials, images from our enhanced model appear more

photo-realistic than images from the baseline model 69.6% of the time and appear more

photo-realistic than images from the ablation model 67.5% of the time. In addition, the

average rank of our images (between 1 and 3, lower is better) compared to the baseline was

1.9345 vs 2.4383 and was 1.9584 vs 2.4011 compared to the ablation model. The differences

in average rank between our enhanced images and the baseline images (0.5038) and the

difference between our images and the ablation images (0.4427) are also consistently less

than the difference in average rank between our enhanced images and real images (0.3072

and 0.318 respectively). Overall, the results show that our proposed geometric constraint

helps improve the photo-realism of generated images, as our enhanced images are consistently

preferred over images from both the baseline model and ablation model.
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Figure 6.8: Images from our enhanced model consistently appear more photo-
realistic than images from the baseline model (a) and our ablation model (b)
according to the results of the subjective human tests. Top. How often each set of
images was ranked lower. Our enhanced images were ranked as more photo-realistic (lower)
than baseline images in 69.6% of trials and were ranked as more photo-realistic than the
ablation images in 67.5% of trials. Bottom. Average ranking for our images, real images,
and comparison images. Although real images are consistently ranked the lowest, our images
beat out both baseline and ablation images and are closer to real than the comparison.
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6.5 Ablation Study

To evaluate the value of our proposed constraint, we perform extensive comparison between

our enhanced model and the ablation models. We include qualitative results comparing the

no loss model and enhanced model in Fig. 6.6. The edges and corners of our images are more

consistent than similar features in the baseline model’s images. We also include quantitative

comparisons between depth estimation models trained on the vKITTI dataset from our

enhanced diffusion model and depth estimation models trained on the vKITTI dataset from

our no loss and conditioned diffusion models. The results from this experiment, for both

DPT-Hybrid and PixelFormer, are shown in Table 6.4. The models trained on our enhanced

model images outperform the models trained on the no loss model images on all metrics

except for one (SqRel for DPT-Hybrid trained on the vKITTI dataset and tested on DIODE

Outdoor). In addition, our model demonstrates significant improvements, up to 16.11%

on RMSE, compared to the no loss model. Our enhanced model also out-performs the

conditioned model on all metrics. These results demonstrate that the superior performance

of downstream models trained on our enhanced dataset is a result of our proposed constraint

rather than a result of the new images introduced in fine-tuning. Beyond downstream tasks,

the human subjective tests also show that our enhanced images are considered more photo-

realistic than images from the no loss model 67.5% of the time (Fig. 6.8). In addition,

quantitative and qualitative results (Fig. 6.4 and Table 6.4) on the inpainting task further

highlight the improvement between our enhanced model and the no loss model. Combined,

results from downstream tasks, human subjective tests, and the inpainting task demonstrate

that the improvements achieved by our enhanced model are the result of our proposed

geometric constraint rather than a result of fine-tuning on new images.
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CHAPTER 7

Discussion and Conclusion

7.1 Limitations

One of the key limitations of our approach is that fine-tuning the diffusion model requires a

dataset of images with vanishing points during training. Although these can be approximated

using vanishing point detection tools [51, 55], these tools generally only work for images with

strong vanishing lines. For images without these lines, such as nature scenes, our proposed

loss would likely be ineffective. Another limitation is that although our images are improved

compared to the baseline model’s images, they are still not quite at the level of real images as

shown by our subjective test results. For example, Fig. 7.1 shows an image of Big Ben, and,

although perspective lines are accurately depicted in the output, certain semantic details

of the image are missing. Additionally, our technique only enforces perspective accuracy,

meaning that other physical properties, such as lighting, shadows, or spatial relationships,

may still be inaccurate.

7.2 Future Work

The current work is limited to 3D geometry perspective constraints, but there are still many

other physical properties that affect the realism of generated images. One such example is

lighting and shadow consistency [25, 24] and semantic and physical consistency. Images gen-

erated by diffusion models often break physical laws, for example by having people walking

on water. Future work can explore other constraints to help fulfill these physical laws and
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Real Ours Enhanced

Figure 7.1: Outputs from stable diffusion are still unable to make certain semantic
judgments. Note that the clock shown on Big Ben is not functional and has no hour or
minute hand.

further increase photo-realism and the performance of downstream tasks.

7.3 Conclusion

In this work, we propose a first attempt at a novel geometric constraint which encodes

perspective into latent diffusion models. Perspective provides 3D information about the

scene, making it an important aspect of images in terms of both photo-realism and use

as synthetic data. We demonstrate that introducing our physically-based 3D perspective

constraint improves both photo-realism on subjective tests and downstream performance on

monocular depth estimation, however there is still much work to be done in terms of ensuring

accuracy across domains and models. We hope that our work can be a small step in our

community effort to improve the realism of image synthesis.
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[65] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense
prediction. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 12179–12188, 2021.
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