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Abstract of the Dissertation

High-Level Library Mapping for RT Components
by

PRADIP KUMAR JHA

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1995

Professor Nikil D. Dutt, Chair

We present High-level library mapping (HLLM), a novel library mapping

technique for RT level components that supports the current day design method

ologies using High-level design and Design reuse. HLLM uses RT level functional

behavior to perform mapping of a RT component onto another RT component of

similar complexity. The technique is well-suited for mapping regularly-structured

datapath and memory components. In this dissertation, we first introduce high-
level library mapping and distinguish it from other library mapping approaches.

Next, we define a generic library of reusable RT parts that provides the functional

basis of HLLM. We demonstrate the HLLM approach on two classes of compo

nents, namely ALUs and memories. Our experimental results demonstrate the

comprehensiveness and efficacy of the HLLM approach in mapping RT compo

nents. Finally, we describe the GENUS library environment and a user-interface

to the HLLM system for performing RT level design. The HLLM approach we

describe uses functional behavior to elevate library mapping from the logic to the

RT level.



Chapter 1

Introduction

1.1 Motivation

Current VLSI designs have reached complexities of millions of gates; it is

expected to grow even higher in the coming years. Systems of such complexity are

very difficult to design by handcrafting each transistor or by defining each signal in

terms of logic gates, since human designers can not do an effective job for problems

involving a large number of objects. For systems of such complexities, even the

traditional design automation tools such as logic synthesis and physical design fail

to provide good solutions in reasonable amounts of time. There is a need to develop

design methodologies that can handle systems of higher complexity.

Another requirement for the current system design methodology is to reduce

the design time. For certain time critical applications, if the product is delayed by

six months, one could lose the market by as much as half. With increasing system

complexity, the design time reduction requirement becomes even more difficult to

achieve.

Industry and academia have been very actively working on finding solutions

to the problem of increased complexity and the problem of reducing the time-to-

market for VLSI systems. The two prominent techniques to handle the current

day design problems that have emerged out of these works are: High-Level Design

(HLD) and Design Reuse. High-level design [GDWL92] suggests that the design



process should be elevated to higher levels of abstraction where design functionality
and tradeoffs are easier to comprehend. Furthermore, higher levels of abstraction

make the design process tractable by reducing the number of objects involved in

the design process. Design reuse, on the other hand, suggests reusing previously

design circuits as much as possible in a new design, as opposed to redesigning it

from scratch which is time-consuming and cost-ineffective.

Specifically, high-level design [GDWL92] refers to the task ofrealizing a high-

level behavior ofa design (written asan algorithm) with a netlist ofregister transfer

(RT) level components. The high-level design task could be performed by a de

signer (manual mode) in which he/she refines a behavior into an RT level design.

High-level synthesis (HLS), the automatic mode, refers to a design automation

approach that synthesizes a behavior with RT level components. ELD often uses

generic RT components to specify the result of the design. There is a need to map

these generic RT components onto actual RT components from a library, so that

the design can be physically realized through fabrication.

Design reuse manifests itself in various design scenarios, a few of which are

listed below:

• Design phase : Typically, system design proceeds through various phases,

from prototypes to large volume implementations. Initially, the designer

might make a prototype of the design in order to verify the functionality

of the design within its environment. Design prototypes and low-volume

designs are often manufactured using programmable devices such as FPGAs.

These prototype designs are often migrated to gate arrays when the volume

of demand goes above a threshold. In a high-volume environment, the same

design may get implemented using a custom methodology. Design reuse is

applicable in all of these cases.

• New Features : A new design could be generated by upgrading an exist

ing design with additional features. The functionality of the old design is

enhanced with those of the new features.



• Technology Retargetting : Newer technologies with smaller feature sizes

result in circuits with better performance and smaller area. Hence there is a

need to migrate existing designs to newer technologies. In some instances, the

older libraries may no longer be supported, forcing the need for technology

or library migration.

In all these scenarios, a designer would like to replace a component with

a new component, insert a new component, or retarget the whole design onto

components from a new library, as opposed to redesigning it from scratch which

is time consuming and cost ineffective. With the growth in design complexity, a

need for design reuse techniques at higher levels has emerged. Current day design

methods build and store complex parts in libraries; techniques to reuse these parts

need to be developed.

The system design process usually refines an input behavior into a netlist

of components from a library. Component libraries are essential for design re

finement; a well-characterized library plays a pivotal role in establishing a design

methodology. For example, existence of well-defined logic level libraries has been

instrumental for the acceptance of logic level design in the design community.

Moving the designs to higher levels of abstraction necessitates raising the libraries

to higher levels as well. There is a need for characterizing the libraries at higher

than the logic level.

Library mapping refers to the task of transforming a design using cells from

one library to a design using cells from another library. Library mapping is required

for coupling the output of a synthesis tool to technology libraries as well as for

supporting design reuse by retargetting a design across different libraries. Library

mapping at the logic level has been the subject of active research for quite some

time; well-defined library mapping techniques exist at the logic level. With the

trend towards higher levels of abstraction, there emerges a need for higher-level

library mapping techniques, where the mapping is conducted at levels higher than

the logic level, such as RT-level.



In this thesis, we present a novel library mapping technique that supports
design reuse at RT level as well as links the output of HLD to real RT libraries.

High-level Library Mapping (HLLM) maps a RT level component onto another

RT level component of the same complexity. Our approach can reuse components

coming from various sources such as standard libraries, datapath generators and

handcrafted components. HLLM can also realize the RT netlist generated by
high-level design by mapping each component in the netlist onto one or more RT

components from a physical library.

1.2 Thesis Contributions

In this dissertation, we claim to make the following contributions:

• Novel RT level library mapping technique : We present a novel li

brary mapping technique at RT level based on the functional behavior of

RT level components and based on a reusable generic library of RT compo

nents. A distinguishing feature of our approach is that we can map a RT

level component onto other RT level component of the same complexity.

• Efficient formulation for a datapath component : We define HLLM

for a representative datapath component (an ALU) and present an efficient

HLLM formulation based on dynamic programming. Experimental results

establish the comprehensiveness as well quality of designs produced by our

approach for regularly structured datapath components.

• Efficient formulation for Memory : We also present an efficient formula

tion for memory mapping based on domain specific knowledge for memories.

Experimental results demonstrate the efficacy of HLLM for memories as well.



1.3 Thesis overview

The rest of thesis is organized as follows.

• Chapter 2: High Level Library Mapping

We first briefly describe the library mapping techniques at various levels and

then introduce High-level library mapping (HLLM), a novel library mapping

technique. Next, we compare and contrast HLLM with other library map

ping approaches and describe the domain and design scenarios supported by

HLLM. Finally, we describe the three subtasks for HLLM.

• Chapter 3: RT Component Libraries

We first motivate the need for an RT library and then describe a generic RT

library. We then present results to demonstrate its comprehensiveness and

effectiveness.

• Chapter 4: HLLM for ALU

We formulate HLLM for ALUs and present a dynamic programming algo

rithm to perform ALU mapping. We also describe experimental results to

demonstrate its comprehensiveness and effectiveness.

• Chapter 5: HLLM for Memory

We formulate HLLM for memories and present an efficient algorithm to per

form memory mapping. We also describe experimental results to demonstrate

the efficacy of HLLM for memories.

• Chapter 6: GENUS and HLLM Environment

We first describe the GENUS environment that implements the generic li

brary presented in Chapter 3 along with a set of model generators and tech

nology projectors. Next we describe a user-environment for the HLLM sys-

Chapter 7: Conclusion

We summarize the results and contributions of this dissertation, and conclude

with future directions for this research.



Chapter 2

High-Level Library Mapping

2.1 Library Mapping

Library mapping refers to the task of transforming a design with cells of one

library to an equivalent design with cells from another library. Forexample, library

mapping can transform a combinational circuit built using AND, OR and NOT

gates to a circuit that uses only NAND gates. Figure 2.1 shows an example that

transforms a design with AND and OR gates to an equivalent design with NAND

gates. Figure 2.1(a) shows the source library cells, source design and its function,

whereas Figure 2.1(b) shows target library cells, target design and its function.

The source design could use technology independent generic cells or cells from a

specific vendor library. However, the target cells are usually from a technology

library, the reason why library mapping is often refered to as technology mapping.

Library mapping enables a design process to be broken into two phases: tech

nology independent optimization and technology dependent optimization. The

technology independent optimization phase generates a design using generic com

ponents void of any technology information. The generic design then can be

mapped to a technology library using library mapping. This delayed binding to

a specific library helps in retargetting the same design onto different technologies,

thus supporting design reuse. Moreover, the technology independent optimizing

tools can be developed independent of variations in technologies over time as well

as across different vendors giving the tool longer a lifetime.
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F = AB + CD F = AB + CD

Figure 2.1: Library mapping example (a) Source design (b) Target design

Based on the complexity of cells used in mapping, the library mapping could

be categorized into different levels. At the logic level, library mapping implements

a logic level design using logic level cells from a library. Similarly, library mapping

could be applied on RT level by implementing a RT level design with RT level or

lower level components from a library. This mapping scheme could be applied all

the way up to system level where the behavior of a system is mapped on to system

level parts. Next we briefly discuss library mapping techniques at each level with

some examples.

2.1.1 Logic level library mapping

Logic level library mapping (LLLM) has been very actively used in the de

sign process. The existence of very well-defined logic level cells, both technology

specific as well as technology independent ones, has helped in developing various

library mapping techniques at logic level. LLLM is defined in terms of a source

design with logic level cells (generic or technology specific), a logic level target

cell library and an optimizing cost function (usually area or delay). Given the

logic level source design, the aim of LLLM is to transform the source design into



a functionally equivalent target design using target cells that performs well with

respect to the user given cost function. Figure 2.1 shows an example of logic level

library mapping.

Library

=o

m1: {g1, OR}
m2: {g2, AND}
m3: {(g1,g2).0A}

Figure 2.2: An example for logic level library mapping (a) Target library (b)
Subject graph (c) Match set (d) A cover

The logic level library mapping typically applies these four steps in order to

transform a source design to a target design:

Decomposition breaks the source design into base cells such as two-input gates

(e.g., AND and OR).

Partitioning extracts combinational portion of the circuit and partition the circuit

into smaller pieces called subject graphs.

Matching finds templates in subject graphs that are functionally equivalent to a

target cell.



Covering replaces templates in the subject graph with matching library cells to

complete the mapping.

Figure 2.2 shows an example of a complete match set and a cover for a subject

graph. Note that there are three matches in this example, one using each library

cell as shown in Figure 2.2(c). The cover shown in Figure 2.2(d) represents the

area optimal cover for this example.

The logic level library mapping could be broadly classified into two groups :

heuristic algorithms and rule-based approaches [Mich92]. Heuristic algorithms

themselves could be classified based on techniques to solve the matching problem.

In the Boolean approach [MaMi93] [STMF90], the library cells and the subject

graphs are described by Boolean functions. In the structural approach [Keut87]

[BRSW87], graphs representing algebraic decompositions of Boolean functions are

used instead. The rule-based approach[DJBT94] uses a set of rules to transform a

source design into a target design. [Mich92] discusses each of these approaches in

detail.

The library mapping technique for for field programmable gate arrays (FPGA)

also fall into logic level library mapping category, since these techniques uses logic

level properties of the source design. However, in contrast to traditional LLLM,

FPGA libraries are represented implicitly. This is because FPGAs cells are capa

ble of performing a huge set of functions, often all functions for a fixed number

of inputs; thus we can not apply LLLM techniques discussed above. We briefly

describe a technique for look-up table (LUT) based FPGAs. The library mapping

for LUT based FPGAs first partitions the subject graph into subgraphs satisfying

the input-output constraints of the target FPGA cells, followed by covering each

subgraph with an FPGA cell. Figure 2.3 shows an FPGA mapping example using

cells that can perform any function for 4-inputs. Note that the cover uses two cells.

[Mich92] details library mapping approaches for two classes of FPGAs.



Figure 2.3: An example for FPGA mapping

2.1.2 RT level library mapping

RT level library mapping maps a source RT level component or design onto

a target library. We can classify RT level mapping into three approaches, based

on the levels of building blocks used to realize the source component :

• Logic-level Mapping An RT component's functionality can be described

using Boolean equations for the transformation of the inputs into outputs.

These equations can then be mapped to logic level cells using logic-level li

brary mapping techniques discussed above. For example, the ALU in Figure

2.4 can be described with Boolean equations for each output (OO, OCOUT

and OZERO) in terms of the inputs 10, II, ICIN and C. Each of these equa

tions can be mapped to components from a logic-level technology library

using an LLLM technique.

10 II

ICIN V" /^OCOUT
\ GENUS ALU /

C -^\ A-OZERO

00[0] = I0[0] 11 [0];

00[1] = l0[1]'^i1[1];

OZERO =.

OCOUT =.

Figure 2.4: Logic-level mapping of an ALU

At the logic level, we have well-characterized primitive cells and technology

mappingprovides good results for smalland random logic designs. Assoon as



the complexity of the circuit grows, the run-time of logic level tools becomes

prohibitive. [CaTr89] presents an investigation of the relationship between

logic-level and high-level synthesis and presents some basic tradeoffs. It

is commonly known that designs produced by logic synthesis for regularly-

structured datapath components are often of poor quality, indicating the

need to apply mapping techniques at higher levels of abstraction. MILO

[VaGa88] is one approach that combines logic-level mapping techniques with

microarchitectural optimization to realize a netlist of RT-level components.

• Functional Decomposition A RT-level regular-structured datapath com

ponents can be mapped to MSTlevel blocks from a technology library. Each

component can be functionally and/or structurally decomposed into smaller

building blocks based on well-defined techniques for building datapath com

ponents of larger sizes. For instance, an ALU can be implemented as separate

AU and LU blocks that are MUXed at the output. Alternatively, an ALU

can be built using replicated bit-slices of one-bit ALUs.

The choice of such construction schemes leads to a design space of alternative

implementations, where the RT-level component is represented as a hierar

chical tree of alternative decompositions using library primitives. The root

of the tree represents the source component (i.e., the one to be mapped),

while leaves of the tree consist of the MSI/SSI-level blocks from the technol

ogy library. Figure 2.5 shows a sample decomposition tree for an ALU. This

ALU is realized by composing the leaf cell blocks (such as 4-bit adders, FAs,

MUX2, gates) from a technology-specific component library. The DTAS sys

tem [Kipp91] and [BrMR93] follows this mapping approach. The functional

decomposition approach is useful when the target component bit widths are

much smaller than that of the source component.

• High-level Library Mapping High-level Library Mapping (HLLM) can be

viewed as a source-to-target component mapping approach where the source

and target components have overlapping functionality and are of approxi

mately equal size and complexity. In this approach, the source component
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GENUS ALU
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«-OCOUT

OZERO
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/Tim fLU ^Mux
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^-y\ 1 gates mUX2 gates

8-bit lib fa 4-bit gates
adder adder

Figure 2.5: Functional decomposition of an ALU

is implemented using the target component, with a minimal amount of glue

logic to satisfy the design constraints. We will discuss the high-level library

mapping for RT component in more detail later in this chapter.

RT library mapping techniques have also been integrated in some of the

RT-level and high-level synthesis works. These works combine two steps of the

high-level design process (design synthesis and library mapping), and provides

a direct approach to the reuse of RT-level library components. Although this

approach can yield good results for a specific library, it requires a lot of effort in

tuning the synthesis and refinement tools to accommodate variances in RT-level

technology components. Furthermore, changes in the RT-library may necessitate

a complete rewrite of the core synthesis algorithms that implement HLS with RT-

level components. [Marw93] [AnDu94] [RuGB93] [GCDM93] [LoWM93] follow this

strategy.

2.1.3 System level mapping

At the system level, mapping can be performed between system-level com

ponents such as processors, memories and interface units. MICON [BiGS89] is

one approach that tries to reuse off-the-shelf system-levelparts such as processors,

memories and peripherals to build a single-board computer system. The input to

MICON is a set of system-levelspecifications that describe the functionality of the

required computer in terms of the type of processor, amount and type of memory.



etc., along with the design constraints (board size, cost, etc.). MICON generates

a design (netlist of the above components) that satisfies the requirements given to

the system.

In this work, we focus on library mapping techniques at RT level. Specifically,

we present High-level library mapping (HLLM), a novel library mapping technique

at RT level. Next we define High-level library mapping for RT components and

mention its distinguishing features. We then compare HLLM with logic level li

brary mapping and illustrate the domain of HLLM along with design scenarios

supported by HLLM.

2.2 High-Level Library Mapping

High-level library mapping is a library mapping technique based on the higher

level functional behavior of components. In this work, we concentrate on HLLM

for RT level components. RT components are often very regular in their structure;

human designers and somecustomized layout generators (e.g., datapath compilers)

make use of the regularity of these components and can generate highly optimized

designs. Since these designs are usually repetitive in nature, designers first optimize

the base cells and then replicate the base cells to generate the complete design. For

example, for generating a ripple carry adder, we first generate the optimized layout

for a full-adder cell and then abut this full-adder cell n-times to generate an n-bit

adder. Similarly, a memory module is designed by first optimizing a single-bit cell

and then replicating these cells. A general purpose synthesis tool (e.g., traditional

logic synthesis tools) can not make use of such domain specific knowledge; designs

generated by these tools are of either inferior quality or require prohibitively longer

run-time. Our experimental results show that for moderately sized ALUs, the

designs generated by the traditional logic synthesis tools are inferior with respect

to all the three design metrics, namely area, delay and runtime. High-level library



mapping provides a mechanism to use thesehighly optimized RT components from

a library.

A distinguishing feature of HLLM for RT components is that it maps a RT

component onto other RT component(s) of the same complexity. This is in contrast

to logic and other RT level library mapping techniques that break down the source

RT component into lower level library cells. Decomposing the source component

into lower level blocks may not result into good designs, specially if the library

contains highly optimized higher level parts. HLLM tries to use these higher level

parts that are of the the same complexity as of the source component.

The target components differ from the source component in terms of port

names, size, or set of RT functions they perform. In the HLLM approach for RT

components, we study differences between the source and target components with

respect to size, ports and functionality and then formulate a schemeto implement

the source component behavior with target component and some glue logic. The

glue logic accounts for the differences between the source and target component

behaviors. The goal of high-level library mapping is to use the target component

functionality as much as possible with a minimal amount of glue logic.

RT components have well-defined behavior and can be described very con

cisely using RT level functions. [Kipp91] shows that the functional description of

RT components are smaller as compared to lower level description using boolean

logic by orders of magnitude. Furthermore, functional descriptions are indepen

dent of the size of the component; the description does not increase with the size of

the component. For example, the functional description size ofan ALU performing

two functions namely ADD and SUB is independent of the bit-width of the ALU.

This is in contrast to a logic-level description of an ALU, whose size increases lin

early with the bit-width for a ripple carry implementation of the ALU. Similarly,

the functional description of a memory component is independent of its word-count

and bit-width. High-level library mapping uses this functional description to com

pare and contrast the source and the target components and finally to perform the



mapping. Since HLLM is based on the functional description, its run-time usually

independent of the size of the component.

2.2.1 HLLM versus LLLM

Figure 2.6 summarizes the salient features of high-level library mapping and

compares HLLM with logic level library mapping (LLLM). Specifically, the figure

compares HLLM and LLLM with respect to the source component domain, the

target component domain, base function used for mapping, the approach itself and

the application domain :

Source comp

Target library

Base function

Approach

Applicability

LLLM

Any circuit described with
logic level gates

Simple logic level cells

2-input logic function
e.g., NAND, NOR

Replacement of a pattern with
library cells

Small random logic

HLLM

RT level complex comps
e.g., ALU, Memory mod.

RT level complex comps
e.g., ALU, Memory mod.

RT functions
e.g., ADD, SUB, READ

Implementation of a RT
fn from another RT fn

Datapath components

Figure 2.6: Comparing HLLM with LLLM

• Source component Logic level library mapping is targeted towards combi

national circuits described with logic equations. High-level library mapping

is targeted towards towards RT level datapath component such as ALUs,

memories, etc.

• Target library The target library in LLLM consists of simple logic level

cells such as NAND, NOR, etc. In contrast to LLLM, the target components



in HLLM approach are once again RT components ofthe source component's

complexity (e.g., ALUs and memories).

• Base functions

High level library mapping is based on a higher level of abstraction in terms

of using RT level functions based on 2's complement arithmetic. The base

functions in LLLM consists of simple 2-input logic functions such as AND,

OR, etc.

• Approach

The mapping process in LLLM uses simple 2-input logic functions such as

NAND, NOR, etc. Our approach uses RT level functions such as ADD, SUB,

READ etc. The basic mapping approach in LLLM is to replace a pattern in

the design with a library cell with anequivalent behavior. HLLM implements

a source RT function using RT functions from the target library.

• Applicability

Finally, because of the above characteristics, logic level library mapping is

suited for small random logic. High level library mapping, on the other

hand, is suitable for regularly structured datapath components such as ALUs,

memories etc.

In summary, high level library mapping is based on a higher level of abstrac

tion in terms of using RT level functions as compared to the Boolean functions

used by the logic synthesis approach.

2.2.2 Domain of HLLM

High-level library mapping is applicable to RT level designs, where the basic

architectural model is the control unit and datapath with memory, representing a
finite state machine with a datapath (FSMD) [GDWL92]. Figure 2.7 shows the

three major components of an RT design : a datapath to perform RT operations.



a memory unit to provide major storage requirements and a controller to sequence

the activities of the datapath and the memory unit. The datapath consists of com

binational components that perform arithmetic, logic and comparison operations

and sequential components to provide temporary storage capability. The memory

unit has a set of memory modules that provide foreground as well as background

storage capability.

Controller Datapath Memory

Figure 2.7: Domain of High Level Library Mapping

As illustrated by the shaded region in Figure 2.7, HLLM is well-suited for

components in the datapath unit as wellas memory unit. The controller is typically

built using random logic; hence traditional logic synthesis tools work well for the

controller. However, datapath components such ALU, counters, shift-registers are

regularly-structured components that could be hand-optimized. Similarly,memory

modules are also typically hand-optimized and placed in the library. HLLM is

therefore suitable for components in the datapath and the memory units. HLLM

will provide good results for regularly structured components with relatively larger

2.2.3 Design scenario with HLLM

Figure 2.8 shows the design scenario supported by high-level library mapping

approach. Given an RT level design, HLLM maps this design using RT level

components from a library and generates a library specific design. Specifically, it

considers each component in the RT level design one by one and then maps the



component onto one or more components from the given library. The final design
consists of a netlist of library specific components.

RT netlisti

RT Design

High-Level
Library Mapping

RT netiist2

RT library

RT netlistS

Figure 2.8: Design scenario with HLLM

The above design scenario supports the two current day design methodolo

gies: high-level design and design reuse. High-level design generates a RT level

design as its output. HLLM can map this RT design onto components from a

real library. HLLM also supports design reuse by retargetting a RT design across
various libraries. Given an RT design (using components from one library), HLLM
can retarget the design onto another library by mapping each RT component in

the design onto RT components of the target library, thus achieving design reuse.
In summary, by providing a library mapping scheme at RT level, HLLM facilitates

current day design methodologies using high-level design as well as design reuse.

2.2.4 HLLM tasks

In order to perform HLLM, we need to do the following



1. We need to define a library of RT level components that will provide a refer

ence point for comparing the source and target components and allow map

ping of the source component behavior on the target component. The library

should be representative of existing RT level component libraries and provide

precise semantic definitions for each component.

2. We need to formulate the HLLM approach for the datapath components

shown in Figure 2.7.

3. We need to formulate the HLLM approach for the memory modules shown

in Figure 2.7.

In the following chapters, we will address each of these tasks and present our

formulations.

2.3 Summary

In this chapter, we introduced library mapping and summarized library map

ping techniques at various levels. Specifically, we summarized the library mapping

techniques at logic level, RT level and system level. We then introduced high-level

library mapping, a novel library mapping technique at RT level. We compared

high-level library mapping with logic level library mapping and defined the do

main of high-level library mapping. We also demonstrated how HLLM design

scenarios can support high-level design and design reuse methodologies. Finally,

we listed the three problems that need to be solved in order to perform the HLLM

Having given a general overview of HLLM, we next address each of the three

subtasks for HLLM problem. In the next chapter, we define a generic RT library

that forms the basis of HLLM. Next we apply HLLM to two classes of components.

Chapter 4 describes HLLM formulations for a representative datapath component.



the ALU. Chapter 5 describes HLLM for memories. These two formulations along
with a generic library definition completes the overall HLLM formulation.



Chapter 3

RT Component Libraries

Component sets and libraries play an important role in the present-day de

sign methodologies that use schematic capture as well as high-level design. These

methodologies output designs that are interconnections of components drawn from

a vendor's library. The components can vary in their level of complexity from

simple logic gates, to sequential components such as counters and registers, to

arithmetic blocks such as ALUs, and all the way up to complex components such

as CPU cores. However, the register-transfer (RT) level is a common design entry

point that is supported by most of the existing CAD tools on the market. The

RT-level has had a long history of use as a design entry point, as evidenced by

the frequent use of TTL databook component names by designers, as well as in

digital system design courses outlined in standard textbooks and taught at univer

sities. We also note that most data sheets for product specifications (either being

designed, or after they have been designed) are often composed of register-transfer

schematics typically drawn up by system level designers.

A well-defined component library is also critical for the successful realization

of a synthesis tool. We typically use generic components to specify the input or

intermediate results of synthesis, and follow with a phase of technology mapping to

realize the design with a set of components from a technology library [GDWL92].

For instance, logic synthesis uses generic components such as simple logic gates

(e.g., AND, OR, INVERT) at the input and for intermediate synthesis steps, but

the last step of logic synthesis involves technology mapping of the generic design



into components drawn from a technology library (e.g., complex CMOS gates, or

a different logic gate family such as NOR-NOR)[Mich92]. Generic component sets

facilitate technology independence, and allow the capture of a design in a stan

dard form that can be retargetted to different libraries (or technologies) without

changing the input description. Of course, technology independence needs to be

coupled with good technology mapping strategies that can effectively map generic

designs to target library components with low overhead.

High-Level Design (HLD) also relies on a library of well-defined, parameter

ized RT component generators to simplify the mapping of behavioral variables and

operators to physical components. This mapping of the abstract design into an

interconnection of RT components involves design space exploration by selecting
and allocating a proper set of RT components, guided by design metrics (e.g.,

area and delay). Each component is customized by parameterized attributes such

as the required bit-width and functionality. A well-characterized RT library also

serves as a repository of reusable parts and thus supports design reuse. A design

using components from such a library is well-suited for retargetting across various

technology libraries using library mapping. Similar to logic level library mapping,
a well-defined RT-level component set would form the basis for RT level library

mapping.

Although RT-level components are commonly used in specifying, document

ing, refining and synthesizing designs, there is a lack of standardized RT com

ponent sets that can facilitate unambiguous documentation, communication and

design reuse. The existing RT-level vendor libraries in the domain of gate-arrays

[Tosh90], module generators [Casc92][VTI91] and FPGAs [XBL092] provide a
limited coverage for the RT component domain and are tuned to specific backend

technologies. There has been an initial work by Dutt [DuttSS] that defines a set of

RT-level generic components. Recently there has been another effort spearheaded

by the FPGA community (LPM)[LPM93] to characterize RT-level generic compo
nents. This is in contrast to the logic-level, where the designs can be expressed



as netlists of well-understood standard components such as the equivalent 2-input

NAND or NOR gate. [CaTr89] [Wolf89] are representative of approaches that pro

vide component characterization and module databases at the layout and logic

levels.

With increasing interest in high-level design methods, the need has thus

evolved for a well defined generic RT component set, along with estimators and

mappers to allow technology projection and mapping respectively into different li

braries. In this chapter we briefly describe an RT-level library of reusable parts and

discuss its comprehensiveness by comparing it with various technology libraries.

We then present the results of experiments on some high-level synthesis bench

marks to evaluate the amount of overhead incurred by using generic components.

This library provides the basis for high-level library mapping.

3.1 Generic RT Library Definition

We have defined a generic RT library based on the GENUS library described

in [Dutt88] and an examination of commonly used RT level parts. The library

contains a set of parametrized component generators based on GENUS [Dutt88],

and expanded further to make it comprehensive. These component generators are

defined using RT-level functionality and are grouped into classes based on func

tional similarity. A component instance is generated by specifying the parameters

for a corresponding generator. For example, an ALU generator is characterized

by the following parameters; (bit-width, set-of-functions, implementation-style),

whereas a specific ALU instance is generated by specifying values for these param

eters. The grouping of similar components into classes of generators makes the

task of library management simpler and more efficient since the resulting number

of generators (approximately 50) is much less than the virtually infinite number of

possible component instantiations.



Besides the parameters that are used to instantiate a specific component,

each generator is characterized by a well-defined interface and associated seman

tics. Components derived from a generator can perform a specific set of RT level

functions and each generator's specification includes the set of these functions.

RT-functional mappings specify the exact relationship of each output with respect

to the inputs.

The generic RT library components could be broadly classified into three

groups: combinational, sequential and miscellaneous. Next, we briefly describe

components in each group; [JhD94a] provides detailed description each of these

components including their semantic definitions.

3.1.1 Combinational components

A combinational component directly manipulates input data; it either per

forms a computation or routes the input data to the output. Combinational com

ponents do not have have any storage capability; their functionality could be de

scribed using Boolean equations.

Table 3.1 and 3.2 show the list of generic combinational component genera

tors, along with their set of functions and parameters. The ALU performs the five

arithmetic, six comparison and sixteen logical operations. The adder-suhtractor

component performs three functions: ADD, SUB and RSUB (Reverse subtract).

The logic unit can perform all the sixteen logic functions on two operands; the

comparator can perform 6 comparison functions. The multiplier and divider are

self-explanatory. The barrel-shifter and shifter shifts the input data; the barrel-

shifter is more general in the sense that it has another input that specifies the

number of bits to be shifted. The multiplexer and selector route one of the input

data to the output based on the control signal. A parity generator component can

generate two types of parities : odd and even. The library also includes single

output as well as bitwise logic gates. The concat and extract components are used



Name Functions Parameters

ALU 5 arith, 6 comps

16 logic fns

input-width, style,

num-fns, fn-list

Adder-subtractor ADD, SUB, RSUB input-width, style,

num-fns, fn-Ust

Logic unit 16 logic functions input-width, num-fns,

fn-list

Comparator EQ, NEQ, GT, LT

GEQ,LEQ

input-width, num-fns,

fn-list

Multiplier * left-input-width, style,

right-input-width

Divider / input-width, style

Barrel-shifter SHR, SHL, ROTL, ROTR input-width, num-fns

fn-list, shift-distance

Shifter SHR, SHL, ROTL, ROTR input-width, num-fns,

function-list

Mux Select input i num-inputs, input-width

Selector Select (on guard value) input-width, num-guards

guard-list, else-flag

control-width

Parity generator input-width, type

Logic gates

(Single output)

GAND, GXOR, GNOT, GNOR

GOR, GNAND, GXNOR

input-width

Bitwise logic

gates

AND, OR, NAND, NOR

XOR, XNOR

num-inputs,

input-width

Table 3.1: Generic combinational components



Name Functions Parameters

Concat

Extract

Decoder

Encoder

num-inputs,

input-width-list

input-width

left-index, right-index

input-width

input-width

Table 3.2: Generic combinational components (continued)

to concat a set of inputs into the output and to extract a set of bits from the input

data respectively. Finally, the decoder and encoder are used to perform binary

decode and encode respectively. [JhD94a] provides a detailed information for each

of these components.

3.1.2 Sequential components

Sequential components provide storage capability; their operations are usu

ally activated by a clock signal. In addition to providing the storage capability,

these components may perform some computation. Table 3.3 shows the list of

sequential components in the generic library. The register component can store

an input data and shift the data to the left or right. The counter component can

count up or down, besides performing a synchronous load operation. The stack

and FIFO are used to store and access the data in a specific order. The register-file

and memory have the same generic structure and are used to store large amounts

of data.



Register

Counter

Stack/Fife

Register-file/

Memory

Functions Parameters

LOAD, SHL, SHR input-width, num-fns,

fn-list, type,

invert-out, set-value

LOAD, COUNT-UP, input-width, num-fns

COUNT-DOWN fn-list, type, style

PUSH, POP input-width, num-words

input-width, num-words,

num-input-ports,

num-output-ports,

num-inout-ports

Table 3.3: Generic sequential components

3.1.3 Miscellaneous components

Table 3.4 shows the list of components that perform miscellaneous operations.

The buffera,nd tnstote are interface components. The busand wired-or components

are similar, except that the bus component has tristate drivers at each input of

the bus. The clock-generator generates a clock with its duty cycle specified by

the clock-period and clock-high parameters. The oneshot component generates a

pulse of the specified width. Read-only memories {ROMs) are used to store a list

of constants. The delay component delays the input data by a specific duration.

The port component models the design's ports that are used to encapsulate the

design and communicate with other designs. Finally, the black box is a generic

component that a user can customize to define a component not included in this

library.

The generic components along with their functional behavior could serve

as a RT level intermediate form for design documentation, exchange as well as

library mapping. We could use these definitions of RT components as the RT-level

counterpart for the logic level generic functions defined by 2-input NAND and



Name

BuflFer

Tristate

Wiredor

Clock generator

Oneshot

ROM(constant)

Delay

Black box

Functions Parameters

input-width

input-width, invert-flag

input-width, num-inputs

input-width, num-inputs

fan-out

clock-period, clock-high

pulse-width

input-width, num-words,

num-output-ports, core-file

input-width, delay-value

input-width, mode

comp-key

Table 3.4: Generic miscellaneous components

NOR gates. We use generic component definitions as a basis for high-level library
mapping to compare and contrast the source and target RT components as well as

to perform mapping between them.

Although generic components are appealing in concept, we have to address

some important issues while defining a standardized generic component set. First,

how comprehensive is the generic library set? That is, how well do generic com
ponents cover various components across different technology libraries? Second,

how much penalty do we pay in using generic components as compared to directly
using the technology components? Next we discuss these two issues.

3.2 Generic component coverage
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Figure 3.1: Coverage of generic components across different libraries and parame
ters

We present the results of our survey of library coverage with respect to dif

ferent technology libraries that use varying layout styles for component imple

mentation. In particular, we examined the following layout styles: Standard cell,

Bitslice, Gate array and Field programmable gate array (FPGA). The first two

layout styles typically result in more compact designs at the cost of longer design

cycles, while the gate array and the FPGA styles provide a quick method for pro

totyping designs. We considered the following technology libraries in our survey:

VTI Datapath Compiler [VTI91], Cascade Digital Library [Casc92], Toshiba Gate

Array Library[Tosh90] and the XBLOX FPGA library [XBL092]. We summarize

the results here; further details can be found in [JhDG93].

Figure 3.1 pictorially illustrates the coverage of generic components across

various parameters relative to different technology libraries. [JhD94a] contains a

description of the set of parameters associated with various components. Each

column in Figure 3.1 represents a parameter type or component attribute and

each row shows a technology library. In this figure, the white and shaded circles

represent the domain (with respect to a specific parameter) of generic and a target



library respectively. The size of these circles represents thedomain size; therelative

position specifies the domain overlap. For example, the entry in the first row and

the first column specifies that the generic library and VTI cover approximately
the same number of components and that most of the components are common

between the two libraries. On the other hand, the entry in the first row and third

column specifies that VTI supports a much smaller set of functions and that some

of these are different from the set of functions supported by the generic library.

From the table in Figure 3.1 we observe that the technology libraries that

are parametrized (e.g.. Cascade and VTI) provide fairly good coverage for generic

components. The Toshiba gate array library provides components ofspecific sizes;

components of other sizes have to be built from the available components. The

other major difference was the availability of a specific set of functions in realm of

multifunction components. We also observed a common problem with mismatches

in the port names. This survey indicates that generic components provide good
coverage for several technology libraries.

3.3 Generic component effectiveness

In order to further evaluate the usefulness of generic components, we per

formed some experiments with various designs derived from the HLSW92 bench

mark suite [DuRa92]. The goal was to test our approach on designs of various
sizes, and that encompass different sets ofcomponents so as to exercise the major
component types in the generic component set. In our experiments, the designs

varied in complexity from a few hundred gates to a couple of thousand gates.
The mapping experiments were performed with respect to two different technol

ogy libraries: the VTI Datapath Compiler [VTI91] and the Toshiba Gate Array
library [Tosh90]. We chose these libraries since they had published gate counts for
their databook components, thereby allowing us to compare the effectiveness of

mappings for different designs.
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Figure 3.2: Study of overhead incurred with generic library

Design
VTI Library Toshiba Gate Array

Direct Tech % Direct Tech %
(!) Map(ll) Overhead (|) Map(ll) Overhead

AM2901 391 435 11.25% 1523 1628 6.89%

AM2910 832 869 4.44% 1528 1557 1.89%

SRT
Interface

CB
Interface

735 747 1.63% 674 674 0.00%

1832 1836 0.22% 1979 2227 12.53%

Figure 3.3: Experimental results of generic component overhead study



We considered the following RT-level designs derived from different cate

gories such as processors, DSP and interface circuits: the AM2901 Microprocessor

[Am2901], the AM2910 Microprogram Controller [Am2910] anSRT Interface [Li93],

and a Circular Buffer(CB) Interface [Li93].

In our experiments, we designed each of these circuits using two different

paths, as shown in Figure 3.2. First, we designed the circuit using technology li

brary components only (labeled I). Next, we designed the circuit using only generic

components, and then mapped each of these generic components to the technology

library components (labeled II). The goal was to examine the penalty incurred by

designing with a generic component library, followed by technology mapping, as

opposed to directly implementing the designs with technology-specific components.

For each of these designs, we calculated the total gate count. For our experimental

results, a gate is equivalent to the layout area of 4-transistors.

Figure 3.3 tabulates the gate-counts for various designs across different li

braries. For each design and each technology library, we present the gate-count for

the two methodologies (I, II). We also present the percentage difference (in terms

of the gate-count) between implementing a component in the technology library

(I) and mapping the generic component design to the technology library (II). This

percentage gives a measure of how much overhead is incurred by using generic

components.

In Figure 3.3, we observe that the percentage difference between the two

design methodologies (I and II) varies from 0.00% to 12.53%. For the SRTinterface,

the two designs (I and II) are very close in gate-count. This is because the SRT

circuit is fairly simple and primarily uses lower-level components such as logic

gates and flip-flops that have good coverage relative to the technology libraries.

The lack of complex RT components enables a very simple and effective mapping

with a resulting overhead that is very low.



On the other hand, consider the mapping of the 2901 microprocessor and the
\

CB interface to the Toshiba gate array library. There is a significant difference in

gate-counts for the two methodologies (I and II). These designs use higher-level

components such as ALUs and register-files which have a larger mismatch with

respect to the technology library components.

Based on these experiments, we observe that not much penalty (generally

< 10%) is incurred in using generic components first and then performing high

level library mapping. This supports our hypothesis that high-level mapping is

feasible and practical for the designs we examined.

3.4 Summary

With increasing interest in tightly coupling high-level design techniques with

physical design, the need for a well-characterized RT-library has emerged. In

this chapter, we motivated the need for such generic RT component libraries, and

described a specific well-characterized generic RT component library. We then

surveyed the relative coverage of of this library with respect to some technology

libraries and performed experiments on some high-level synthesis benchmarks for

testing the usefulness of the generic library. We believe that the benefits of using a

standard component set such as the one described in this chapter greatly outweigh

the small penalty that may be incurred during technology mapping to target li

braries. In Chapter 6, we present the GENUS environment that implements this

generic RT library.

The generic library forms the basis of high-level library mapping. HLLM uses

the definitions of generic components as a reference point to compare the source

and target components and finally to map the source component onto the target

component. In the next chapter, we formulate HLLM for ALU.



Chapter 4

HLLM for ALUs

4.1 Introduction

In this chapter we describe the high-level library mapping technique for

arithmetic-logic units (ALUs). An ALU is a representative component from the

datapath unit and is commonly used in RT designs. ALUs are often handcrafted

and stored in libraries for future use; different versions of ALUs exist in databases

or design groups within a company. Due to the regularity in arithmetic structures

and the fact that logic synthesis and logic-level technology mapping techniques do

not work well for regularly-structured components such as ALUs, we address the

issue of ALU mapping. We consider ALUs that perform any subset of arithmetic,

logic and comparison functions, using a well-defined set ofoperations for the ALUs.

Hence it is possible to formulate mapping schemes that map an ALU onto another

ALU based on the sets of functions they perform.

In this chapter, we define high-level library mapping problem for ALUs, de

scribe an algorithms to solve the problem, and provideexperimental results to val

idate its effectiveness. Specifically, we demonstrate the versatility of this approach

by applying HLLM to ALUs drawn from different libraries. We also compare the

HLLM approach versus a traditional logic synthesis approach and demonstrate the

advantages of HLLM for complex datapath components.



This chapter is organized is as follows. Section 4.2 defines high-level library

mapping for ALUs based on their functional behavior. Section 4.3 discusses the

overall approach to the ALU mapping problem. Section 4.4 presents an algorithm

to map a source ALU onto a target ALU. Section 4.5 demonstrates the comprehen

siveness and quality of designs produced by our approach. The chapter concludes

with a summary.

4.2 Problem Definition

The high-level library mapping problem for ALUs is based on functional spec

ifications of the source and target components, which are compared with respect

to a "canonical" functional representation to derive an effective mapping result.

When the functionality of the target component does not exactly match that of

the source component, the target component may need to be padded with addi

tional (glue) logic. Figure 4.1 illustrates this high-level mapping approach between

a source and a target ALU.

glue logic

Source ALU

Figure 4.1: High-level library Mapping of an ALU

We therefore define the high-level library mapping problem in terms of a

Source component (S), a Target component (T) and a set of Mapping rules (R)

that maps the source component onto the target component. In order to establish

equivalence between the source and the target components, each component is

described in terms of a set of RT-functions that are defined using a canonical

representation of the component. A mapping rule in R describes an alternative



for implementing a function in S using a function in T; each source function can

potentially be implemented by different target functions. The task of high-level
library mapping, then, reduces to selecting a set of rules, one for each function in

source component S, that realizes the best mapping of S on T with respect to the

cost function (e.g., area or delay).

In the rest of this section we discuss our assumptions, the canonical repre

sentation used for components and functions, and the mapping rules along with

cost function to be used in our approach.

4.2.1 Assumptions

Our formulations of HLLM for ALUs make the following assumptions :

• All data and arithmetic use the 2's complement representation.

• A source component can perform only one function at a time. For example,
a comparator can implement several RT-functions (e.g., EQ, NEQ, GT, LT,

etc.), but only one function is performed at a time.

• We restrict ourselves to arithmetic, logic and comparison functions. These

functions are defined using a universal ALU that performs a set of canonical

arithmetic, logic and comparison functions (as described inthe next section).

• Each of the target component's RT-functions should either be a canonical

RT-function or a simple negation of a canonical RT-function.

• The source (S) and the target (T) components have the same bit-widths.

These assumptions are made in order to make the problem size tractable

and also to facilitate illustration of the high level library mapping approach. We

believe that these assumptions can be relaxed once the basic HLLM approach is
defined and well understood.



4.2.2 Universal ALU representation

01 OOn

Figure 4.2: The Universal ALU

In order to provide a reference model for HLLM, we define a universal ALU

(U) that performs a canonical set of ALU functions: 5 arithmetic functions (ADD,

SUB, RSUB, INC, DEC), 16 logic functions (all Boolean functions of 2 variables),

and 6 comparison functions (EQ, NEQ, GT, GEQ, LT, LEQ). Using these canon

ical ALU functions, we can build any other ALU including library-specific ALUs.

The canonical ALU and its functions are based on the ALU generator definitions

provided by the GENUS library. The canonical ALU functions are described in

more detail later in this section.

Figure 4.2 shows an n-bit universal ALU with the following ports:

• IO[n]: primary left input.

• II [n]: primary right input.

• O0[n]: primary output for arithmetic and logic functions.

• ICIN: carry input used by the arithmetic functions.

• OCOUT: carry output used by arithmetic functions.

• OVF: secondary output that is used by arithmetic functions.

• Ol: comparison output.

• CS[m]: control input.



Function Operation

add (OCOUT, O0[n], OVF) = IO[n] + Il[n] + ICIN

SUB (OCOUT, O0[n], OVF) = IO[n] + 71^ + ICIN

RSUB (OCOUT, O0[n], OVF) = 7oM + Il[n] + ICIN

INC (OCOUT, O0[n], OVF) = IO[n] + 1

DEC (OCOUT, O0[n], OVF) = IO[n] - 1

Table 4.1: Canonical arithmetic functions

Function

ZERO

AND

NAND

NOR

XOR

XNOR

LNOT

RNOT

LINHI

RINHI

LIMPL

RIMPL

Operation

O0[n] = 0[n]

O0[n] = l[n]

O0[n] = /0[n] A/l[n]

O0[n] = /0[n] A/l[n]

O0[n] = /0[n] V/l[ra]

O0[n] = /0[n] V/l[n]

O0[n] = /0[n] 0 /1[ti]

O0[n] = /0[n] ©/l[n]

O0[n] = /0[n]

O0[n] = /l[n]

O0[n] = /0[n]

O0[n] = 71^

O0[n] = /0[ra] AIl[n]

O0[n] = 70[n] A71[n]

O0[n] = 70[n] V71[n]

O0[n] = 70[n] V71[n]

Table 4.2: Canonical logic functions



Function Operation

EQ 01 = (/0[n

NEQ 01 = (/0[n

GT 01 = (/0[n

LT 01 = (/0[n

GEQ 01 = (/0[n

LEQ 01 = (/0[n

= -'"IN)

/ /IN)

> /IN) t

< /IN) t

> n[n]) t

< /IN) t
fAssumes that the data is in 2's complement form.

Table 4.3: Canonical comparison functions

4.2.3 Canonical ALU functions

Each canonical ALU function defines a functional mapping between the in

puts and the outputs of the universal ALU. Note that an ALU function need not use

all the ports of a universal ALU. Table 4.1 presents the canonical representation for

5 arithmetic functions. The arithmetic functions make use of the following ports:

IO[n]? IlN? OON; ICIN, OCOUT and OVF. The canonical representation for 16

logic functions are shown in Table 4.2. These functions use only primary inputs

(IO[n]) Il[ii]) 3.nd the primary output (O0[n])- Table 4.3 describes the canonical
representation of 6 comparison functions. These comparison functions use primary

inputs (IO[n] and II[n]) and the primary output 01. The universal ALU therefore

has a total of 27 canonical ALUfunctions (5 arithmetic, 16 logicand 6 comparison).

4.2.4 Representation of library components

We need a representation of library components (e.g., S or T in our problem)

that not only captures the functionality but also facilitates the comparison between

them. A representation based on canonical functions supports both these needs.

Specifically, an ALU library component is described by its port lists and the set

of functions it performs. A function in the library component is a variant of one



Source Canonical
Function Function

A+B+Cin ADD

Input Output Control

"io ii ICIN ~C Cout S

A AB CIn OO OCOUT 0

Figure 4.3: Alibrary ALU example: (a) Port description (b) Function description

of the 27 canonical ALU functions. It is described by providing the corresponding
canonical function and the Boolean relationship between the ports of the library
component and the ports of the universal component. The Boolean relation be

tween the library component ports and the universal component ports is described

in a tabular fashion. The table contains a row for each function in the library
component; there is a column for each input port in the universal ALU, a column

for each output port in the library component and a column for the control config
uration. The control configuration lists the values of control linesfor each function.

An entry in this table consists of a Boolean expression showing relationship be
tween the ports of a library component L and the universal ALU U. For example,
a library component (L) that performs the functions (C = A4- AB -f Cm) and
C = AVB is shown in Figure 4.3(a), and the corresponding tabular representation
is shown in Figure 4.3(b).

4.2.5 Logic function representation

Each logic function of the ALU is described using a standard minterm repre
sentation of two primary inputs. Note that we have four minterms with two inputs
A and B, namely AB, AB, AB and AB. A specific logic function selects a subset

of these four minterms. As an example, the OR function is given by the following
minterms: AB, AB and AB. In other words, when one or more of these three

minterms are active, output of the OR function is 1. Table 4.4 lists minterms for



Figure 4.4: Implementation of logic unit with two functions: OR and XOR

Function AB AB AB AB

ZERO

AND

NAND

NOR

XOR

XNOR

LNOT

RNOT

LINHI 0

RINHI 0

LIMPL

RIMPL 1

Table 4.4: Minterms for logic functions



all the 16 logic functions. Aset of logic functions is implemented by ANDing the
minterms for each function with the corresponding control lines and feeding the
output to an OR gate. As an example, Figure 4.4 shows an implementation for

two logic functions OR and XOR.

We use an ordered vector (logic vector or LV) of length 4for representing the
implementation of one or more logic functions. The first entry in the logic vector
represents the first minterm (AJ5), the second entry represents (AB), the third
entry represents {AB) and the fourth entry represents the last minterm {AB). For
example, the logic function OR is represented by the vector "0111", since it does

not need minterm AB but requires all the other minterms 'AB, AB and AB. A

logic vector (LV) for a set of logic functions is obtained by adding the vectors
(entry wise) for each function. Thus, the logic vector for the two logic functions
OR ("0111") and XOR ("0110") is "0221".

4.2.6 Mapping rule representation

A mapping rule describes how to implement a canonical function from an

other canonical function. Given a set of mapping rules, we can implement all the
functions in the source component including the ones that are not present in the
target component. Let SF and TF be the source and the target canonical func

tions respectively. Let us define port names for the source and target canonical
component (CS and CT) as shown in Figure 4.5. A mapping rule describes the
mapping of CS ports onto CT ports such that SF is implemented using TF.

A rule is described in a tabular fashion similar to the library component

representation. Table 4.5 lists some sample rules. Each row of this table contains

a rule name, a source function (SF), a target function (TF), and the port mapping
information. The first set of port mappings expresses the target component's
inputs in terms of the source component's inputs. The second set of port mappings



SIO[n]

SOCOUT

X SOVF
\ S01 SOO[n]

SICINi

SCS[m]A

TIO[n]

TOCOUT

A. TOVF

\ T01 TOO[n]

TICINy
TCS[m]A

Figure 4.5: Port names : (a) Source canonical ALU (b) Target canonical ALU

describes the the source component's outputs in terms of the target component's

outputs.

Each rule describes the implementation of a source function using a target

function and indicates the port mappings required to implement the mapping. Note

that each source function can be implemented using several alternative target func

tions. For example, the source ADD function in Table 4.5 could be implemented

using target ADD function (rule "AAl"), or with the target SUB function (rule

"ASl"). The input and output port entries indicate the connectivity and addi

tional logic required to implement the mapping rule. For instance, the second rule

"ASl" in Table 4.5 implements the source function ADD with the target function

SUB by inverting the right input (5/1).

For each source logic function, there is a rule that implements the function

from scratch without using any target function. To this rule, we add another entry

Rule Source Target Input ports Output ports

name fn fn TIO Til TWIN SCO SOCOUT SOVF SOl

SIl SICI

Sir SICI

SIO "i..r

XOR I SIO SIl

TOCOUT

TOCOUT

TOCOUT

Table 4.5: Sample mapping rules

nor(TOO)



Rule Source Target Input ports Output ports LV

name fn fn TIO Til SCO

ANAN AND AND SIO SIl

AN_ AND - - -

ANNA AND NAND SIO SIl

X0_ XOR - - -

"0001"

Table 4.6: Sample mapping rules for logic functions

in the table: a logic vector (LV) as discussed previously. The primary output for a

logic rule is given by the logic output (LO). Table 4.6 lists some sample logic rules.
For example, the source AND logic function could be implemented from scratch

(rule "AN_") by adding the minterm corresponding to the LV "0001", i.e. AB.

[JhD94b] contains an extensive list of rules for all the ALU functions.

4.2.7 The cost function

A good cost function captures the important characteristics of an efficient

source-to-target component mapping. We use a cost function based on two criteria:

(a) an area metric, represented by the gate-count of the hardware overhead, and (b)
a delay metric, represented by the worst case delay or max-delay of the generated
design.

Gate-count

Mapping S on T requires extra hardware that could arise due to:

Routing data from the inputs of S to the inputs of T and from the output of
T to the output of S.

Mapping a function in S onto some other function on T.



• Generating a function (for example, a logic function) of S from basic gates.

• Mismatch between the canonical functions and the functions in S and T.

• Mapping the control lines of S onto the control lines of T.

In our current formulation, we use the gate-count (GO) of the extra hardware

as a measure of the hardware cost. Specifically, we use the number of equivalent

2-input gates as the cost function to guide ouralgorithm. Note that the actual cost

of a design should also include the cost of the target component. However, since

this cost function is used just to compare two designs, it does not matter if we

exclude the component cost in our cost function, because this portion of the cost

will be present in each design. Therefore, we use the gate-count of the hardware

overhead as an area optimization criterion.

Figure 4.6: Worst case delay for an ALU design

Max-delay

We use the worst-case delay of the design as a delay metric. The worst-case

delay, max-delay (MD), for a design is given by the maximum delay through all

paths of the design. It is an approximation of the delay of the resultant design.

As an example, consider the design shown in Figure 4.6, that shows a sample

source component (S) mapped to a target component (T). Let {MDt) be the



maximum delay through the component T. We can calculate MD for the design S
in the following way:

1. Calculate the max-delay to the inputs(Af/},) of T. It is given by the maximum
of delays through all the paths shown by light lines in Figure 4.6.

2. Calculate the max-delay to the output(AfZ)o) of T. It is given by the maxi
mum of delays through all the paths shown by thick lines in Figure 4.6.

3. Calculate the worst case delay for logic-circuit(MA) of T. It is given by the
maximum delay through all the paths shown by shaded lines in Figure 4.6.

4. The MD of the design, then, is given by maximum of the two figures:

Max{MDi + MDo + MDt, MDi -)- MDo)

Note that unlike the previous area metric (gate-count) calculation, we cannot
ignore the delay of the target component T. This is because MD for all the designs
may not include the delay of T; the worst case path might pass through the logic

4.3 ALU Mapping Approach

Figure 4.7 illustrates our overall approach to the ALU mapping problem. The
inputs to the system consist of the source component (S), the target component
(T) and the mapping rule database (R). As mentioned before, both S and T are
library components and they are described as source canonical and target canon
ical components using the representation discussed in the previous section. The
mapping rule database (R) contains all the rules required to map one RT-function
onto another RT-function. The rule database is also represented in a tabular fash

ion. In the first step, the mapping algorithm implements the source component
using the target canonical component. In the second step, the target canonical
function is mapped to the actual target component. The output of the system is



database

Se ected rules

Source lib component
(S)

Source function table

Mapping algorithm

Source mapped to canonical target

Canonical target to
target mapping

Source mapped to target

Target lib component
(T)

Target function table

Cost function
evaluator

Figure 4.7: Overall system for ALU mapping



an implementation of Son the target component T with some additional (glue)
logic surrounding T. We focus primarily on the first mapping step and describe
a mapping algorithm for it. The second step consists of simple tasks such as the

matching of port names and is relatively trivial.

Function
Input Output Control

10 11 iCIN C Gout S[1] S[0]
A B Gin OO OCOUT 0 0

A 8 Gin OO OGOUT ~0 i

A 8 Gin OO OGOUT 1 0

Figure 4.8: Example source component: (a) Port description (b) Function table

Function
Output Control

10 II ICIN

GO OO OGOUT

CO OO OGOUT

Figure 4.9: Example target component: (a) Port description (b) Function table

We illustrate each of the steps in the approach by walking though an example.
Let S be an arithmetic unit that can perform three functions: ADD, SUB and

RSUB. Let T be another arithmetic unit that can perform two functions: ADD,
SUB. These two components are shown in Figures 4.8 and 4.9 respectively. Note
the differences in the port names of these two components. From these component
descriptions, we extract the function tables for Sand T as shown in Figures 4.8(b)
and 4.9(b).

The mapping rule database (R) contains an extensive set of rules to map one
I^T-function onto another. From this database, we extract rules that map a source
function onto a target function. Table 4.7 shows some interesting rules that have
been extracted for our example.



Input ports Output portsRule Source Target

name fn fn TICIN SCO SOCOUT SOVF \ SOl

AAl ADD ADD SIO SIl SICIN TOO TOCOUT

ASl ADD SUB SIO SIl SICIN TOO TOCOUT

SAl SUB ADD SIO 5lT SICIN TOO TOCOUT

SS SUB SUB SIO SIl SICIN TOO TOCOUT

RAl RSUB ADD 570 SIl SICIN TOO TOCOUT

RS RSUB SUB SIl SIO SICIN TOO TOCOUT

Table 4.7: Selected set of rules for mapping example

In the next step, the mapping algorithm implements S onto a canonical ALU

(C). This canonical ALU uses only those functions that are present in T. This

mapping is achieved by finding a set of rules, one for each source function, such

that cost of extra hardware (i.e., gate count) is minimized. The set of selected rules

provides the connectivity between the ports of S and C. Figure 4.10 shows one such

solution in terms of the selected set of rules and the canonical implementation.

IO[n] 11 [n]

^OCOUT c ICINi
\oVF oo[n] CS/

Selected rule set:

AAl, 88, RAl

Figure 4.10: Mapping of source component (S) to canonical component (C)

The final step involves mapping the canonical ALU (C) onto the target com

ponent (T). This is usually a simple process since we restrict T to be very close to

C (see Section 4.2.1). This step connects the ports of C to the ports of T. Figure

4.11 shows the final implementation.



Figure 4.11: Mapping of source component (S) to target component (T)

Note that generation of the final design requires solving many other subprob-
lems such as bit-width mapping, control mapping, secondary input and output
mapping, port name mapping, etc. Again, it is important to note that the work

described here focuses on an algorithm for the functional mapping of the source to
the target component, which is the heart of the ALU mapping problem (the first
mapping step in Figure 4.7).

4.4 An ALU Mapping Algorithm

The task of mapping a source component (S) onto target component (T) is
accomplished by selecting a set of mapping rules, one for each function in source

component S, that realizes the best mapping of S on T with respect to the cost

function (e.g., area or delay). Recall that not only are there multiple mapping
rules for each source function, but the selection of mapping rules for various source

functions are also interdependent. For example, consider the rules presented in
Table 4.7. If we decide to use the rule "ASl" for mapping the source function



ADD, the rule "SAl" for source function SUB would lead to an efficient imple

mentation, since it shares the factor 5/1 for the right primary input. Thus a

strategy is required to select a mapping rule out of multiple alternatives for each

source function. In this section, we present a mapping algorithm that performs

this selection of mapping rules in an efficient manner. This algorithm takes as

input the function tables of T and S along with the selected rule set, and maps a

source component (S) onto the canonical component (C). This corresponds to the

first (and major) mapping step in Figure 4.7. The algorithm generates as output

the required mapping in terms of the set of rules and port connectivity.

Our mapping algorithm employs a constructive approach where an initial

(possibly null) partial solution is refined into the final solution. While working

through an algorithm, we need to keep track of the partial mapping. A partial

mapping is represented by storing the list of inputs to the input ports of C and

the output ports of S. Eventually, all these inputs are multiplexed based on the

control signals. Specifically, a partial solution keeps the following list of inputs to

each of these terminals:

lO : Left input, given by Boolean expressions with primary inputs of S and

constants.

II : Right input, given by Boolean expressions with primary inputs of S and

constants.

• ICIN : Carry input, given by Boolean expressions with carry input and

constants.

• Primary output of T : given by Boolean expressions with primary output

• of C, logic output (LO) and constants.

• Comparison output of T : could be generated with the comparison output

of C and some functions of GO and LO.

• Secondary output of T : e.g., carry out and overflow signal.



• Logic vector(LV) : used to keep track of the implementation of logic func
tions from scratch (as discussed in Section 4.2.5). This is required only if
logic functions are to be synthesized.

Atextual representation ofthe partial solution could be described in a tabular

fashion just like the mapping rule. In fact, each mapping rule is apartial mapping
with only one function. Since we know the ordering of input and output ports
(e.g., 10, II, ICIN, Primary output. Comparison output. Secondary outputs and
LV), we need not be explicit in associating the terminal to its input list. Instead,
an ordered arrangement of list of inputs for each terminal should suffice. As an

example, the output of the mapping algorithm in the previous section (Figure
4.10) is shown in Figure 4.12. It shows both the explicit tabular and the implicit
representation.

A[„i B,n, iojii|iciN|c|
r:- A,A B Cin OO OCOUT^ 3 1

J L Explicit

IO[n] II[n]

^COUT c 'CINy
O0[n] CS/

II ICIN
10 \ / c

A,A I B I Cin I 00
OCQUT I

Gout LV

Implicit

Figure 4.12: Partial solution example: (a) Pictorial representation (b) Textual
representation

Note that we need not keep track of all the above input lists. Depending on
the requirements (set of functions to be mapped) some of the port mappings might
not be required and could be omitted. For example, if we are not dealing with
logic functions, LV could be omitted. If we are using the implicit representation.



we have to be more careful. Note that it is very easy to compute the hardware

cost(gate-count) and the implementation from this partial solution representation.

This is evident from the example shown in Figure 4.12 as we see that there is a

one-to-one correlation between the hardware and the representation.

4.4.1 The search space

Since many feasible mappings exist and since we use a constructive approach,

we need to define the search space for our mapping problem. The search space is

built by applying different sets of valid mapping rules for the mapping problem.

Each of the algorithms mentioned in this section goes though the partial solutions

and finally leads to a complete solution. We introduce the search space for the

mapping example discussed in the last section. It is described by the tree shown in

Figure 4.13. The leaves of this tree represent a complete solution whereas internal

nodes represent partial solutions. At the root of the tree, we have a null partial

solution. At each level, a source function is selected and all the mapping rules for

this function are explored. An internal node represents the partial solution using

the rules that are on the path from the root to this node. Figure 4.13 shows some of

the partial solutions along with a few complete solutions. Some of the algorithms

(1-greedy and m-greedy) could be illustrated using this tree of the search space.

Note that a trivial way of finding an optimal solution is the exhaustive method

that generates all the leaf nodes and selects the best mapping. Of course, this is a

very time-inefficient solution.

We have formulated a suite of 4 algorithms to solve the ALU mapping prob

lem, namely 1-greedy, k-greedy, dynamic programming axid graph clustering. These

algorithms are independent of the cost functions and that these algorithms could

be applied with either of the cost functions discussed before. We focus on the

dynamic programming algorithm here; [JhD94b] describes all the four algorithms.



A I B I Cin I OO
OCOUTI-

A I 8 I Cin I OO
OCOUTI-
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A I 8 I Cin I OO
OCOUTI -

' A,8 I A,8 I Cin I OO
I OCOUTI -

Figure 4.13: The search space for ALU mapping example

4.4.2 Dynamic programming algorithm

RSUB

The Dynamic Programming (DP) algorithm is based on dynamic program
ming technique of building the partial solutions in the bottom-up fashion [CoLR90].
The algorithm starts with the mapping for subsets of single functions, followed by
mapping for subsets of two functions and so on till it has the mapping for the en
tire set of source functions. Each of the partial mapping for a subset of functions

is stored in a table and subsequently used for building the partial solutions for

subsets of bigger size. Refer to [CoLR90] for details on the concepts behind the
dynamic programming algorithm.

Algorithm 4.4.1 is a dynamic programming algorithm that keeps track of k
(bucket size) best partial solutions. Note that number of partial solutions increases

exponentially with the size of function set. We restrict ourselves to a limited

'i '̂̂ ber(k) of partial solutions for each subset. Of course, by doing so we may
sacrifice optimality with the advantage of requiring bounded storage space.



Algorithm 4.4.1 : Dynamic programming (DP) algorithm
INPUT: f(S), f(T), r(ST), k.
OUTPUT: A set of rules, one for each function in f(S).
1. Order f(S).
2. for i = 0 to nS-1 do

2.1 Table[i,i] = k-best way of mapping /,.
3. end for
4. for i = 1 to nS-1 do

4.1 for j = 1 to (nS-i) do
4.1.1 CreateEntry(j-l, i+j-1).

4.2 end for
5. end for

As mentioned before, the dynamic programming algorithm builds up a table

of partial solutions in a bottom-up fashion. This table is indexed by the number

of source functions(n5) for both row and column. Anentry table{i,j) represents a

set of partial solutions for source function i to source function j. Figure 4.14 shows

the table with the bucket size of 2 for our walk-through example. Note that the

table is upper-triangular.

Algorithm 4.4.2 : CreateEntry(row,col)
1. mink = 0.

2. for i = 0 to (col-row-1) do
2.1 miuk = k-best of combine(table(row,row-fi), table(row-l-i-l-l,col)).

3. end for

This algorithm iteratively fills up the table with partial solutions. It starts

by filling diagonal entries by generating the mapping for single functions. Each

diagonal entry represents a set of partial solutions that map exactly one source

function. Then it fills up the entries corresponding to two function sets and so on.

The final solution is given by the top-row and right-most column. For our example

shown in Figure 4.14, taWe(0,2) lists few solutions that represent the complete

mapping. Function CreateEntry creates the list of partial solutions for a set of

source functions using the partial solutions generated so far.
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Figure 4.14: Execution of dynamic programming algorithm on an ALU example



Complexity analysis

The complexity of the algorithm is 0{n^P), where n is the number of source

functions and k is the bucket size. Algorithm 4.4.2 has a loop with worst case

iteration count of n. Each iteration of this loop takes 0{k^) time. Algorithm 4.4.1

has a doubly nested loop at statement 4. This loop runs for O(n^) times and each

iteration requires 0{nk'̂ ) time. Thus, the complexity of the whole algorithm is

0{n^P).

4.5 Experimental results

We performed two sets of experiments to validate our approach. The first set

of experiments tests the comprehensiveness of the approach in terms of mapping

different arithmetic components. The second set of experiments compares the

metrics of the designs generated by our approach against the ones generated by

previous approach, namely the logic synthesis approach. First, we demonstrate the

comprehensiveness of our approach, followed by the comparative study of design

quality.

4.5.1 Comprehensiveness

In this section, we present experimental results that establish the generality

of our approach across different source and target libraries using algorithms men

tioned in the last section. Specifically, we considered design metrics for sample

ALUs mapped by two algorithms: Greedy and Dynamic programming. These al

gorithms were run with two cost functions: gate-count(GC) and max-delay(MD)

as optimization criteria. Recall that gate-count is an approximation of extra hard

ware required to implement the source ALU, whereas max-delay represents the



maximum delay though all theports of the generated design. We will be summariz
ing mapping results generated by the dynamic programming algorithm; [JhD94b]
provides detailed results, including the ones generated by the Greedy algorithm.

Algo: Dynamic programming Bucket size: 2

Example Source component Target component

Library

GENUS

GENUS

GENUS

GENUS

Library Fns

2 arith,
2 comp

5 arith CASCADE 1 arith

2 arith,
11 logic, VTI
2 comp

3 arith, ,,ti
5 logic ^'

3 arith,
9 logic

2 arith, _ ...
11 logic, CASCADE
2 comp ^®'09ic

CASCADE jlgllj. VTI

CASCADE AMD

Cost fn : Gate count

Result Run-time

Gate-count Delay (seconds)
(2-input) (ns)

36.10 5322.1

5500.7

Figure 4.15: Experimental results for area-efficient mapping

We considered a variety of ALUs, both source and target, in our experi
ments. These ALUs vary in terms of the library they come from, number and

the set of functions they perform. We present the mapping results for ALUs
from four libraries : GENUS[JhD94a], CASCADE[Casc92], VDP300[VTI91] and
AMD[Am2901]. GENUS contains an ALU generator parametrized by the set of
functions, bit-width, etc. The ALUs in CASCADE and VDP300 have a fixed set

of functions. The AM2901 ALU is a commonly used 8-function ALU.

We covered a wide range of ALUs in terms of the number of functions they
perform. Starting from a simple uni-function adder, the most complex ALU had



32 functions. Note that an ALU, as we have defined, can have only 27 distinct

canonical functions. Thus, some ALUs in our experiments have variants of the

canonical functions repeated in the function set. For example, one of the ALUs

in our experiments has 9 ADD functions, each with different port configurations.

The ALUs in our experiments performdifferent sets of functions, covering different

functional categories: arithmetic, logic and comparison. We also chose ALUs of

different bit-widths.

Algo: Dynamic programming Bucket size: 2

Example Source component Target component

Library Fns Library Fns

GENUS i VTI2 comp

2. GENUS 5 arith CASCADE 1 arith

2 arith,
GENUS 11 logic, VTI i

2 comp 9 'ogic

4. AMD
3 arith, .,xi
5 logic ^''

ariin, _ „

5. GENUS inogte, CASCADE

6. CASCADE |6anth, 3anlh,

Cost fn : Max delay

Result Run-time

Gate-count Delay (seconds)
(2-input) (ns)

389 24.50

1110 68.10 73.6

464 32.40 11.1

278 28.20

485 36.20 4558.4

Figure 4.16: Experimental results for delay-efficient mapping

Note that the examples in our experiments were restricted by the availability

of design metrics and not by the limitations of our approach. For example, the

delay for target components in a library were available only for specific bit-widths

such as 8, 16, 48. Thus, all our experiments are for ALUs with one of the above

bit-widths. Recall that our approach is independent of bit-widths and that it

will require same amount of computation for all bit-widths. Similarly, we had to

restrict ourselves to only those libraries that provide design metrics. Even though



we considered other libraries such as XBL0X[XBL092], LSI[LsiLogic], Toshiba

gate array[Tosh90] etc., we could not run our algorithms due to lack of metric

data (gate counts, performance) for these libraries. We also had to restrict our

mapping examples to ALUs with fixed sets of functions, since these are the only

ALUs supported by some of these libraries.

Figures 4.15 and 4.16 summarize the area-efficient and delay-efficient designs

respectively generated by the dynamic programming algorithmfor seven examples.

These tables are in two parts; the left part contains the component descriptionsand

the right part describes the mapping result. The component description includes

example number, followed by the description of the source and the target compo

nent. Each of the component description includes the library name and the set of

functions that a given ALU can perform. The result section (right part) describes

the design metrics and the run time for each mapping result. The gate-count in

the result section represents the approximate number of extra 2-input gates that

will be required to build the source component using target component. Delay

represents max-delay in nanoseconds, i.e., this is the maximum delay through all

the input-output port combination of the resultant design. The run time column

shows execution time (user -f system) for the given example on Sparc 2 (sun-670-

mp for examples 6 and 7). We also show the name of the mapping algorithm, the

bucket size and the optimizing cost function on the top of the table.

As mentioned before, the seven examples in our experiments are from dif

ferent libraries and are of varying complexity. Example 1 maps a GENUS ALU

with 2 arithmetic and 2 comparison functions onto a VDP ADD-SUB compo

nent. Example 2 implements a GENUS ALU with all the arithmetic functions on

CASCADE adder. The third example maps another GENUS ALU with functions

covering all the three categories (arithmetic, logic and comparison) onto a VDP

ALU that covers some of the arithmetic and logic functions. The next example

maps the AM2901 ALU with 3 arithmetic and 5 logic functions onto a VDP adder-

subtracter. The fifth example maps the same source component as in Example 3,



but this time the target component is a CASCADE ALU that covers some of

the arithmetic and all the 16 logic functions. Examples 6 and 7 use same source

component; a complex ALU from CASCADE that has 32 functions with many

repetitions of same canonical function. In Example 6, the target component is

a VDP ALU whereas in Example 7 the target component is the AM2901 ALU.

[JhD94b] describes each of the output designs for these examples.

Figures 4.15 and 4.16 summarizes the mapping results generated by the dy

namic programming algorithm for a specific bucket size (=2). We ran dynamic

programming algorithm with different bucket sizes (e.g., 1 and 4) and other map

ping algorithms (e.g., greedy). [JhD94b] shows the complete results for these runs.

From the results shown in Figures 4.15 and 4.16 and others reported in [JhD94b]

we observe that our approach is quite versatile in the sense that it can map ALUs

from one library onto another. We have demonstrated the versatility of our ap

proach by applying it on ALUs from wide variety of libraries. Also, our approach

can handle ALUs with diverse complexity in terms of bit-width, number of func

tions and set of functions. Our algorithms generate designs of high quality, often

optimal designs.

We conclude this section with the following comment. Note that we have

used a restricted set of rules to map a source function onto a target function.

[JhD94b] shows the list of rules that has been used in our experiments. These

set of rules are not complete, particularly with respect to rules for mapping logic

functions. Our algorithms may generate even better results, if provided with a

comprehensive set of rules.

4.5.2 Goodness

Now we present the results our experiments that compare metrics of the

designs produced by our approach against the ones produced by a commercial

logic synthesis tool[Syno92]. Figure 4.17 describes the experimental set-up. For



RT tech
library

High-level
library mapping

.OS

Logic synthesis
(for glue logic)

Source ALU

. (S) .

Logic tech
library

Optimized
glue logic

GENUS logic
equation generator

Logic
equations

Logic synthesis

Our Approach (I) Previous approach (II, ill)

Figure 4.17: Experimental setup for comparing HLLM with logic synthesis

Example

# BW

1. 32

2. 27

3. 32

Source component 1 Targetcomponent

Library Fns Library Fns

GENUS 3 arith Designware add,sub

GENUS 5 arith Designware add

GENUS 3 arith,
5 logic Designware add,sub

GENUS
2 arith,
11 logic,
2 comp

Designware add,sub

Figure 4.18: Source and target ALUs for comparative study



each source component, we first map this component onto a macro in the Synopsys

DesignWare library[Degn92], with additional glue logic using our approach. Then

we pass the resultant design through logic synthesis to optimize the glue logic. We

present metrics for the designs (I) arrived by this path (our approach). The left

portion of Figure 4.17 illustrates this path. In the next phase of the experiment,

we generate the logic equations for the input source component and directly map

onto gate-level cells using the logic synthesis approach. Logic synthesis is tried

with two levels of optimizations: low and medium. The designs generated by the

low optimization script are refered to as (II) and those generated by the medium

optimization script are refered to as (III). For each of these designs, we present

design metrics: gate-count, max-delay and run-time and compare them against

the metrics for designs generated by our approach (I).

For each input source component, we perform two sets of experiments. In

the first, we generate designs that are optimized for area (minimum gate-count).

For this set of experiments, both the logic synthesis tool and our algorithm are

configured to generate best area designs. In the other set of experiments, we

configured our algorithm and logic synthesis tool to optimize the worst case delay.

We present designs metrics for each of these experimental sets.

Figure 4.18 shows the source and target ALUs used in this experiment. The

table in this figure shows the bit-width for each example, followed by the source

component and the target component description. The table specifies the library

name and the set of functions for each source and the target component used in this

experiment. Specifically, the we have used four examples. The source components

are from GENUS library and are of varying complexity both in terms of the bit-

width and the set of functions they perform. All these components are mapped

onto the adder or adder-subtractor macros from the designware library.

Figures 4.19 through 4.22 graphically present the experimental results for

the four examples shown in Figure 4.18. Detailed results for this experiment are



Our approach
Logic synthesls(low optimization)
Logicsynthesis(medium optimization)



Our approach
Logic synthesis(low optimization)
Logic synthesis(medium optimization)



available in [JliD94b]. Figures 4.19 and 4.21 illustrate area and delay for area-

optimized and delay-optimized designs respectively. There are three columns for

each design in these two figures. These three columns represent performance met

rics for the designs generated by the three approaches: our approach (I), logic

synthesis approach with low (II) and medium (III) effort. Figures 4.20 and 4.22

depict run-time for area-optimized and delay-optimized designs respectively. Note

that there is one extra column for each design in these two figures. The runtime

for generating designs with our approach is split into two columns. The first col

umn represents runtime for mapping algorithm and the second column represents

runtime for optimizing the glue logic.

From Figures 4.19 through 4.22, we observe that designs generated by our

approach(I) are better with respect to all the three metrics: gate-count,

delay and runtime. Designs generated by our approach are not just better, but

substantially better than the ones generated by the logic synthesis tools. For all

these example, the delay of the designs produced by our approach is less than the

delay of designs produced by logic synthesis approach (except for one example).

The area of designs from our approach is less than the half the area of the designs

produced by the logic synthesis approach. With respect to runtime, results are

even more dramatic. Specifically, designs generated by logic synthesis tools are

inferior in area by 139% to 487%, in delay by -12% to 191% and in runtime by

37% to 834%.

Note that these percentage differences for runtimes considers the sum of

the runtimes for mapping algorithm and glue logic optimization. If we consider

the time for just mapping algorithm, we outperform logic synthesis by orders of

magnitude. This is quite apparent by the bar-charts shown in Figures 4.20 and

4.22. Note that the bars for mapping algorithm in these figures are barely visible

for the first three examples, indicating how relatively small they are.

We conclude this analysis with two comments. First, note that in this ex

periment, we have compared metrics from the netlist of generic gates. The effects



of regularity are more pronounced when we map these designs onto layout; de

signs from our approach would perform even better. Second, the reason we have

been able to outperform logic synthesis tools is that these tools are designed for

optimizing random or control logic. These tools cannot exploit the regular struc

tures inherent in data-path components. The logic equations for a moderately size

component (32-bit ALU in our example), are too big to be handled by these tools.

Thus, there is need for a RT level library mapping techniquesuch as ours to handle

these regularly structured datapath components.

4.6 Summary

In this chapter, we formulated a high-level library mapping technique for

ALUs. We presented an efficient polynomial time ALU mapping algorithm based

on a dynamic programming formulation. The algorithm could be used for gener

ating either area-optimized or delay-optimized designs.

In our experiments, wedemonstrated the versatility of our approach by apply

ing HLLM on ALUs drawn from a wide variety of libraries. We also demonstrated

the superiority of our approach over logic synthesis for complex ALU components

in all the three metrics: area, delay and runtime. These experimental results

establish the necessity of a RT level library technique such as ours.



Chapter 5

HLLM for Memories

5.1 Introduction

Memory modules are commonly used in RT level designs and are explicitly
represented in the design model at the RT level (Figure 2.7, Chapter 2). With
the increasing importance of high-speed data intensive applications in the fields
of speech, image and video processing that require significant amount of storage
capability, the memory subsystem becomes an important focus of design. For such
applications, the area cost of memory components could be as high as 80% of the
complete design. Hence, there is a need for efficient implementations of memory
elements in these designs.

In this chapter, we present High-level library mapping for memories, a tech
nique to implement a source memory module from a set of memory modules from
a target library. HLLM for memory is based on higher levels of abstraction for

memories: given the high-level specification of the source and the library modules
in terms of word-count, bit-width and the port configurations, the high-level li
brary mapping for memories implements the source memory module using target
memory modules in an efficient manner so as to optimize a user-given cost func
tion. This approach is applicable to the synthesis of the on-chip as well as the

off-chip memory modules.



This chapter is organized as follows. Section 5.2 briefly describes related

work. Section 5.3 defines high-level library mapping for memories and decomposes

it into three subproblems. Section 5.4 combines the three subproblem formula

tions into an efficient memory mapping algorithm. Section 5.5 describes sample

memory mapping results to demonstrate the efficacyof our approach. The chapter

concludes with a summary.

5.2 Previous Work

Research in the use of memories for design automation systems at RT and

HLS domain has recently gained importance. These works could be broadly clas

sified into two groups. The first group of work concentrates on translating the

storage requirements in the input behavior onto logical memories. The second

group of work maps these logical memories onto physical memories from a library.

HLLM for memories fits in the second group. [JhD95b] describes related work in

the first group; we summarize works in the second group in this section.

[KiLi93] packs a set of logical memories (result of scalar variable clustering)

into a set of memory modules from a library. They model this process as a two

dimensional bin-packing problem where the number of ports and number of regis

ters in the modules constitute the two dimensions. [BaGa95] applies a sequence of

simple memory expansion steps to build a memory organization that satisfies the

logical memory requirements. These steps include bit-width expansion (when the

required bit-width is larger than the bit-width of the library memory modules),

word-count expansion (when the required word-count is larger than the word-count

of the library memory modules), interleaving (to increase the access rate) and port

multiplexing (to increase the number of ports or to decrease the access delay)^.

set of n words can be accessed serially from a port and be stored in n buffer registers

and subsequently be read out in parallel, virtually increasing the number of ports at the cost

of increasing the access delay. Conversely, n ports can be grouped together to provide n words



Another work by Schmit and Thomas [ScTh95] first groups arrayed variables using

a set ofbasic moves such as horizontal concatenation (that increases thebit-width),

vertical concatenation (that increases the word-count), array widening (consecu

tive words are placed in a single wider word) and array narrowing (a word is split

and placed into consecutive words) then binds (maps) each of these grouped vari

ables onto one or more instances of the same physical memory module. They use

simulated annealing to select a set of basic moves (array clustering steps, array

binding, etc.) that leads to an efficient memory design. [KaRo94] packs a set

of logical memories into a fixed set of physical memories to be used in a Field

Programmable System. Each logical memory is first broken into smaller pieces

that can fit into a physical memory. Next they use a Branch and Bound algorithm

to map these logical memory pieces onto physical memory modules.

Work
Logical memory Physical memory Memory parameters

Number Type Number Type Words Bits Ports

[Kilj93] Multiple Multiple Multiple Multiple Yes No Yes

[BaGa95] Single Single Multiple Single Yes Yes Yes

[ScTh95] Multiple Multiple Multiple Single Yes Yes ?

[KaRo95] Multiple Multiple Multiple Single Yes Yes ?

Ours Single Single Multiple Multiple Yes Yes Yes

Figure 5.1: Classification of memory mapping works

Most of these works perform the task of memory mapping as a backend

to their behavioral synthesis system. [KiLi93] emphasizes grouping of the scalar

variables into logic memory modules and then packs these logic memory modules

into physical memory modules. [BaGa95] performs the task of memory selection,

and synthesizes the logical memory if the required memory is not available in the

library. [ScTh95] incorporates the memory mapping scheme directly into their

which can be accessed serially at the rate of n-times the memory access rate, virtually decreasing

the memory access delay by utilizing multiple ports.



behavioral synthesis system. However, in this work we focus on the task of post-

synthesis memory mapping. The work of [KaRo94] falls in this domain; they

concentrate mainly on mapping logical modules onto physical modules.

Memory mapping works can also be classified on the basis of the number

and the type of logical and physical memory modules considered simultaneously.

Figure 5.1 illustrates this feature for the above mentionedmemorymapping works.

[KiLi93] performs the most general mapping in terms of mapping multiple logical

memory modules of different types onto multiple physical memories of different

types. [ScTh95][KaRo94] realize multiple logical modules with multiple physical

memories of the same type. We and [BaGa95] focus on realizing a single logical

memory at a time. However, in contrast to [BaGa95], we pack different types of

physical memory modules to realize a logical module.

With respect to realizing a single logical memory, these works have limited

scope in the sense that either they do not consider all the degrees of freedom asso

ciated with memories (word-count, bit-width and port) or their mapping scheme

is tuned for a specific memory module set. The last three columns in Figure 5.1

(labelled Bits, Words and Ports) compares the comprehensiveness of these works

with respect to the three memory parameters^. Specifically, [KiLi93] does not con

sider bit-width expansion, [BaGa95][ScTh95] consider only simple realizations of

a source memory module that does not use multiple memory types; [KaRo94]'s

system is tuned to a fixed set of physical modules (4 instances of 32Kx8 SRAM).

Our approach is comprehensive; it considers all degrees of freedom associated with

memory modules (word-count, bit-width and port) and can pack multiple memory

types together to realize a required memory module. Furthermore, our approach

is not tuned to any specific system or the source or the target memory module

^In Figure 5.1 the "Yes" and "No" entries specify that the corresponding work considers or

ignores a specific memory parameter, whereas a "?" entry in the Ports column specifies that the

work does not clearly state how they handle port mismatches between the logical and physical

memory modules.



set, and can therefore be used as a backend to most existing behavioral memory

synthesis approaches.

5.3 Problem Definition

We define high-level library mapping for memories (or simply memory map

ping) as the task of realizing a source memory module with a set of target memory

modules from a library. The memories can be on-chip macros or off-chip compo

nents. If the size (number of words or bit-width) of a target memory module is

greater than the required size, the source memory module can be realized with a

single target memory module; otherwise the source memory is realized with a set

of target memory modules. Figure 5.2 shows a memory mapping example where a

768-word, 72-bit memory (the source) is implemented using two instances of a 512-

word, 36-bit and two instances of a 256-word, 36-bit target modules from a library.

Besides the target memory modules, the mapping also requires address decode logic

that translates the source module address into the target moduleaddresses, as well

as the multiplexers to steer the data output from the target modules. The goal of

the mapping process is to achieve a feasible target implementation that satisfies a

user-given cost function.

In this section, we first describe the parameters used to specify a memory.

Next we define and present algorithmic formulations to the three memory-mapping

subproblems, namely port mapping, word-count mapping and bit-width mapping.

The sectionends with a briefdescription of the costfunctions used in our approach.
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Figure 5.2: Sample high-level library mapping for memories: (a) Source and target
modules (b) Mapping result



5.3.1 Memory specification

Alibrary memory module is typically specified by the following parameters :
type (SRAM, DRAM, EPROM, etc.), clocking mechanism (asynchronous or syn
chronous), size (number of words and bit-width for each word), number and type
of ports, protocol timing diagram, etc. At higher level of abstraction, a memory
module mcan be characterized by its size (number ofwords and bit-width for each

word) and the amount of data access parallelism (number of ports). ^Ve enumerate
the following list of parameters required to characterize a memory component m.
For each parameter, we define a function that returns the value of the parameter
for a memory module.

• Ports : Data is accessed in and out ofmemory through ports. Based on the

direction of transfer of data, ports are categorized into three types:

Read ports support data transfer in only one direction, from the memory.
Let R{m) be the number of read ports for m.

Write ports support data transfer only to the memory. Let W{m) be the
number of write ports for m.

Read-write ports support data transfer inboth thedirections, i.e., in and out
of the memory component. Let RW{m) be the number of read-write

ports for m.

• Word-count : The storage capacity of a memory is characterized by speci
fying its number of words. Let N{m) be the number of words for m.

• Bit-width : specifies the width of each word in the memory. Let B{m) be
the bit-width for each word in the memory m.

The cost function

We define three cost measures for a memory module. These cost measures

are used to guide the mapping algorithms.



• Area measure : represents the area used by a memory module; this can be

represented by the silicon area, the transistor-count, the gate-count or the

actual area occupied on a PCB by the ofF-chip memories. Let A{m) be the

area measure for m.

• Price measure : represents the price of a memory component. Let P(m)

be the price measure for a memory.

• Delay measure : The timing diagram for a memory component is described

by a set of access times, set-up times, hold times as well as cycle times. In

this work, we use the worst case access time (read or write) to characterize

the timing behavior for a memory component and denote it by D(m).

5.3.2 Memory mapping

Word-count /
I /

I /

Figure 5.3: Three degrees of freedom in memory mapping problem

The memory mappingproblem is defined in terms of a source memory module

s, a set of target memory modules T from a library and a user-given cost function

C. The source and target modules are characterized by specifying the three param

eters, namely the ports, the word-count and the bit-width. The aim of memory

mapping is then to implement the source s with one or more target modules from

the set T in such a way that the realized design performs well with respect to the

user-given cost function C.



The memory mapping problem addresses the mismatches in the source and

target modules with respect to the three memory parameters namely the ports, the

bit-widthand the word-count. Figure 5.3 shows thesethree degrees offreedom for a

typicalset ofmemory modules from standard databook libraries.^ The lengthof an

axis in thisfigure represents the relative variance in the values for the corresponding

parameter. We observe maximum variance in the word-count of memory modules.

For instance, a memory component could have its word-count vary from 4-word

register-files to 16 Megaword memories. Bit-width has relatively lower variance,

usually in the range of 1 to 128. The number of ports in a memory component

are usually very small, ranging from 1 (single port ROMs) to 6 (Multiport RAMs

from [Casc92]).

Note that these three parameters are orthogonal to each other, i.e., variation

of one parameter is independent of another within a library of memory modules.

However, the cost measure for a memory module typically is a function of all

these three parameters. Thus, we need to consider all these parameters together

in selecting a set of target memory modules to find a good implementation. In our

mappingformulation, we first consider eachof these parameters separately; the rest

of this section describes formulations for the port mapping, bit-width mapping and

word mapping problems. In Section 5.4, we.combine these formulations to achieve

a global solution to the complete memory mapping problem.

For the rest of the chapter, s refers to the source memory component, T to

the target memory set and U to a specific target memory component. We use the

terms memory component and memory module interchangeably. Furthermore, the

word-count and the bit-width for a memory layout in a figure are shown in the

vertical and horizontal directions respectively.

^See [JhDG93] for a survey of RT-level libraries.



5.3.3 Port mapping

The port mapping formulation first specifies the necessary and sufficient con

ditions that target modules need to satisfy in order to meet the data access re

quirements of the source memory. We then present a simple scheme to associate a

source memory port with a distinct target memory port.

Port constraints

Each of the target memory modules should have enough data access paral

lelism in terms of number of ports required to support the data bandwidth for the

source memory component. A source read port can be realized either by a target

read or a target read-write port; likewise a source write port can be realized by a

target write or a read-write port. A source read-write port can be realized using

a target read-write port or a target read and a target write port. The following

three equations establish the necessary and sufficient conditions that a target mem

ory module t needs to satisfy to meet the port requirements for a source memory

module s:

R{s) + RW{s) < R{t) + RW{t) (5.1)

W{s) + RW{s) < W{t) + RW{t) (5.2)

R{s) + W{s) + RW{s) > R{t) + Wit) + RW{t) (5.3)

The read constraint in Equation 5.1 ensures that t has enough ports to read

out the data; the write constraint in Equation 5.2 ensures that t has enough ports

to write in the data. The read-write constraint shown in Equation (5.3) ensures

that each port of t can get assigned to only one port of s. These three constraints

together are called port constraints. Note that at this point we can not improve

the data access parallelism by interleaving memory modules, since we do not know

that data access patterns; we can use only those memory modules that meet the

above port constraints.



Port assignment

Once we have selected a target memory module that can satisfy the access

rate requirements of s, we need to assign each port of a source memory component

to a distinct port of a target memory component. Algorithm 5.3.1 describes a

simple scheme to perform a one-to-one port assignment. The algorithm first tries

to perform a simple one-to-one mapping in terms of mapping a source read port

to a target read port, a source write port to a target write port and a source

read-write port to a target read-write port. Each of the remaining read and write

ports is realized by a single read-write port. Similarly, each of the remaining source

read-write ports is realized as a read port together with a write port of t. Note

that the port constraints ensure that t has a sufficient number of ports to perform

this assignment.

Algorithm 5.3.1 : Port assignment
INPUT: Source memory module (s). Target memory module (t).
OUTPUT: Assignment of ports of s to the ports of t
1. if {R{s) < R{t)) then

1.1 assign R{s) read ports of s to R{s) read ports of t]
2. else

2.1 assign R{t) read ports of s to R{t) read ports of t;
2.2 assign R{s) —R{t) read ports of s to R{s) —R{t) read-write ports of t;

3. if (1T(5) < W{t)) then
3.1 assign lT(s) write ports of s to VF(s) write ports of t;

4. else
4.1 assign W{t) write ports of s to W{t) write ports of t;
4.2 assign lT(s) —IT'(t) write ports of s to W(s) —W{t) unused read-write

ports of t]
5. if (i?lT(s) < it:iT(f)) then

5.1 assign read-write ports of s to RW{s) unused read-write ports of

6. else
6.1 assign RW{t) read-write ports of s to RW{t) unused read-write ports of

6.2 assign —RW{t) read-write ports of s to RW{s) —RW{t)
unused read ports of t and RW{s) —RW{t) unused write ports of t;



Besides specifying the port constraints and port assignment, port mapping

also involves name mapping and control mapping. Name mapping refers to the

task of connecting the data inputs of the source memory component to the data

inputs of the target memory component. Control mapping refers to matching the

enable lines of s to the enable lines of t. We assume that these tasks are performed

by the user. We focus on the high-level task of port constraints specification and

port assignment.

Target

Figure 5.4: Port map example (a) Source and target memory components (b) Port
map between source s and target t.

An example

Figure 5.4 illustrates an example for port mapping. Figure 5.4(a) lists the

port configurations for a source component s and three target components tl, t2

and t3. The source component s is a IR-IRW register file used in the AM2901

microprocessor slice [Am2901]. The target memory modules are instantiated from

the Cascade [Casc92] module generator.

We observe that module tl can not be used to implement s, since it violates

the read constraint (Equation 5.1) as well as the read-write constraint (Equation

5.3). Also, t2 fails to satisfy the write constraint. tS, on the other hand, fulfills all

the port constraints. Figure 5.4(b) shows the result of port assignment between s

and tS generated by Algorithm 5.3.1. The read port (R) of s has been assigned to



the first read port (Rl) of^3, whereas the read-write port (RW) is realized with a

read (R2) and a write (Wl) port of ^3.

5.3.4 Bit-width mapping

Bit-width mapping refers to the task of achieving the bit-width requirement

of the source memory component s using a set (one or more) of target memory

modules from a library. In order to find a good realization, we often have to

compose a set of target memory modules to meet the bit-width requirements of s.

For example, the memory realization in Figure 5.2 composes two memory module

each with bit-width=36 to implement a source memory module of bit-width=72.

Next we formulate the bit-width mapping problem in terms of the bit-width

of the source {B{s)) and the target {B{ti)) memory modules. Based on the char

acteristic distribution of bit-widths, we then present an enumeration scheme to

select an optimal set of target memory modules (for a user-given cost measure),

whose composition satisfies the bit-width requirement of s.

An ILP formulation for bit-width mapping

We present a simple integer linear programming formulation for an area-

based bit-width mapping problem. Given a source memory module s and a set

T = {^1,^2, of target memory modules from a library, we have to find the

number (a:,) for each of the target memory module ti that minimizes the following

expression;

m

(5.4)

and satisfies the following linear constraint:
m

«=1



Recall that the functions A and B refer to the area measure and bit-width

respectively for a memory module. The above bit-width mapping problem is NP-

complete, since another NP-complete problem, namely the subset-sum problem

[CoLR90] can be reduced to the bit-width mapping problem.

Finding an optimal solution to an unrestricted NP-complete problem is a

computationally expensive process. However, the bit-width mapping problem do

main for practical applications are restricted to a smaller range of bit-widths (the

bit-width of a memory module typically lies between 4 and 128). Thus, we can

apply an exhaustive search (enumeration) scheme to find the optimal solution.

An algorithm for bit-width mapping

Algorithm 5.3.2 describes an enumeration scheme for all possible composi

tions of each bit-width in a systematic fashion. The input to the algorithm is the

source memory module s, the target memory module set T and the cost measure

C (area, delay or price). The algorithm returns an optimal set of target memory

modules (with respect to the given cost measure C) that performs the bit-width

mapping for the source s.

In this algorithm the arrayed variable best.sol keeps track of the best com

position of target memory modules for each bit-width. The set Ts stores one or

more instances of each target memory module. For each target memory module

ti, we include instances, since a good mapping would require at most these

many instances of t,-. Finally, T,- enumerates all possible bit-widths that can be

composed using the first i memory modules from Ts.



Algorithm 5.3.2 : Bit-width mapping
INPUT: Source memory module, s; Target memory module set, T;

Cost measure, C.
OUTPUT: Bit-width mapping of s.
1 for i = 1 to B(s) do

1.1 best-Sol[i] = (j);
2 end for;
3 Ts = (j);
4 for each t, G T do

4.1 best-soI[B{ti)] =
4.2 For j = 1to rlgl do

4.2.1 Ts = Ts + U;
4.2 end for;

5 end for;
6 Lq = (f>',
7 for i = 1 to ITsl do

7.1 Li —Expand-list(T,_i, Tsi)]
8 end for;
9 return iesLso/[B(s)];

The algorithm first initializes array variable besLsol, Ts and Lq (Step 1-5).

It then successively enumerates all possible bit-widths that can be composed using

a subset of Ts (Steps 6-8). The algorithm finally returns the best composition

for the bit-width of s stored at besLsol[B{s)]. The fimction Expand-list builds

a new list of bit-width compositions using pre-existing compositions along with

a new target memory module: Algorithm 5.3.3 describes the steps involved to

perform this task. The function Expand-list composes each element of L with a

new target memory module and if the resulting composition is not a suboptimal

one, the function stores the compositions in the new list and updates the global

best solution array bestsol. The above algorithm uses the user-given cost function

C to determine the quality of the bit-width mapping compositions.



Algorithm 5.3.3 : Expand-list(L,i)
INPUT: Sorted list of bit-width mappings, L; Target memory module, t;

OUTPUT: Sorted list of bit-width mappings composed of members of
L and t.

1 Lnew —
2 for i = 1 to \L\ do

2.1 new.map = Compose(Ti, t)-,
2.2 if B(new-map) < B(s) or new^map does not have a tj

such that B(ne«;_map - tj) > B(5) then
2.2.1 insert new^map to Lnew]
2.2.2 Update-best-sol(new_map);

2.3 end if;
3 end for;
4 return

An example

Figure 5.5 walks through the bit-width mapping algorithm (Algorithm 5.3.2)

on an example. The source memory module in this example is a part of an in

dustrial example from [KaRo94]. The target modules are instantiated from the

Toshiba gate array library [Tosh90]. The source and target memory modules are

shown in Figure 5.5(a).

The bit-width of the source module is 24. There are three target memory

modules, namely tl, t2 and tS with bit-widths equal to 4, 8 and 16 respectively.

Note that [Tosh90] contains a wide variety of memory modules; we selected a

smaller set to illustrate the essence of the algorithm. We use the area measure

represented by the gate-count as the optimizing cost function.

Figure 5.5(b) lists memory module instances that are used in the enumeration

steps (Steps 6-9) of the Algorithm 5.3.2 for this example. Note that there are 6

instances of tl, 3 instances of t2 and 2 instances of t3 in Ts. Figure 5.5(c) shows

sample lists of bit-width compositions generated by the example. The first list

LI contains a single composition for 4-bits. List L6 has 6 elements each with a



Bit-width

Word-count

Gate-count

Source Target

s 11 12 13

24 4 8 16

64 64 64 64

3172 4182 6636

S = {t1, t1, t1, t1, t1, t1, t2, t2, t2, t3, t3}

L1 ={(t1)}

L2 ={(t1).

L3 ={(t1).

L6 ={(t1).

L7 ={(t1),

L9 ={(t1).

L11 ={(t1).

t1)}

t1),(t1,t1,t1)}

t1), (t1,t1,t1) {t1.t1.t1.t1.t1,t1)}

t1), {t2), (t1, t1, t1), (t2, t1) (12.11,11,11,11)}

11), (12), (11,11,11), (12,11) (12,12) (12,12,12)}

11), (12), (11,11,11) (11,11,11,11,11,11), (12,12,12), (tS, t2), (13,13)}

Bit-width I Composition I Gate count

4 {t1} 3172

8 {12} 4182

12 {11.12} 7354

16 {13} 6636

20 {13,11} 9808

24 (13,12} 10818

10 13

OO

Figure 5.5: An example for bit-width mapping (a) Source and target memory-
components (b) Target memory module set (c) Enumeration of memory composi
tions (d) List of best compositions for different bit-widths (e) Data input-output
connection between the source and the target modules



different number of instances of tl. L7 uses a single instance of t2 with multiple

instances of tl. The last list Lll contains 20 compositions including the one that

uses two instances of 13. The best mappings for each bit-width are shown in Figure

5.5(d). The optimal mapping for the source component is given by the mapping

(t3, t2) with a gate-count of 10818. Figure 5.5(e) shows the connection between

data inputs and outputs of s, t2 and t3.

We conclude this example with two comments. In this example the bit-width

of.the optimal solution is exactly equal to the bit-width of the source component

(24). This may not be true in general. Secondly, for this example the cost function

per bit decreases with increasing bit-width. For such cases, the optimal mapping

can be achieved with a linear time algorithm. However, in general the cost function

may not necessarily follow the above behavior; our algorithm provides an optimal

solution for the unrestricted bit-width mapping problem. The algorithm consid

ers mappings with bit-widths equal or greater than the source bit-width and is

independent of the cost distribution for the target modules.

5.3.5 Word mapping

Word mapping, in the context of memory mapping, refers to the task of

accomplishing the word-count requirement of the source memory component s

using a set (one or more) of target memory modules from a library. As in bit-

width mapping, we often have to compose a set of target memory modules to

meet the word-count requirement of the source memory module. Refering back to

Figure 5.2, the design composes two memory modules with 512 and 256 words to

realize the source memory module with 768 words. Recall that the word-count of

the resultant design has to be greater than or equal to the word-count of s. The

word mapping problem is very similar to the bit-width mapping problem discussed

in the last section. As before, we first present an ILP formulation for a simplified



word mapping problem. Next, based on the problem domain characteristic we

present an efficient algorithm to perform the task of word mapping.

An ILP formulation for word mapping

The ILP formulation for a simplified area based word mapping problem is

similar to the ILP formulation for bit-width mapping. Given a source memory

module s and a set T = {^1,^2, of target memory modules from a library,

we have to find the number(a;,) of each of the target memory module t,- that

minimizes the following expression:

m

(5.6)
t=i

and satisfies the following linear constraint:

m

Y^XiN{ti)>N{s) (5.7)

Recall that function A for a memory module refers to the number of words in

the module. The above ILP formulation is a simplified version of the actual word

mapping problem in the sense that Equation 5.6 does not capture the complete

cost of the resultant design. It does not account for the cost of the multiplexers

required to select the data output from the various modules used in the design.

Refering to Figure 5.2, the design requires two 2-input 72-bit multiplexers (one for

each output). Furthermore, Equation 5.6 does not include the cost of the address

decoding logic. In the worst case, the address decoding logic may require adders

incurring a significant increase in the total cost of the design.

The word mapping problem as defined (similar to the bit-width mapping

problem) is an NP-complete problem. However, unlike bit-width mapping, the

domain of word mapping is quite large, since the number of words in a memory

module varies in a wide range. Thus, a simple enumerative scheme would lead to



a time inefficient solution. However, the number of words in a memory module is

typically a power-of-two. A memory with word-count equal to a power-of-two pro

vides a regular structure and leads to an efficient design. Based on this assumption,

we present an efficient linear time algorithm to perform word mapping. Note that a

few generator based libraries ([VTI91][Tosh90][Casc92]) do provide memory mod

ules with a number of words not equal to the power-of-two. We can approximate

these memory word-counts to the largest power-of-two less than given memory

word-count. We are making the above assumption only for the target memory

modules; the source memory word-count is unrestricted.

An algorithm for word mapping

Algorithm 5.3.4 : Word mapping
INPUT: Source memory module, s; Target memory module set, T;

Cost measure, C.
OUTPUT: Word mapping of s.
1 for each t G T do

1.1 N(t) = 2", where n is the largest integer such that 2" < N{t);
2 end for;
3 sort T in decreasing word-count of its elements;
4 delete redundant elements from T;
5 best-map = (f)\
6 partiaLmap = cf);
7 word-left = N(s);
8 while word-left 0 do

8.1 curr-mem = next memory from T;
8.2 curr-word —N(cwrr_mem);
8.3 curr-map = ri££!:4=l£Zi"] curr-mem:

t 1 curr —WOTa • '

8.4 if (^{partial-map+curr-map) < C{hest-map) then
8.4.1 best-map = partiaLmap + curr-map]

8.5 end if;
8.6 if curr-mem is the last element in T or S{curr-map) == wordJeft then

8.6.1 wordJeft = 0;
8.7 else

8.7.1 partiaLmap = partiaLmap -f I wordJeft i curr-mem;
^ ^ ^ * ^CUTT—WOrdJ '

8.7.2 word-left = word-left - I i curr-mem:
•J J ^cuTT -wordJ '

8.8 end if;
9 end while;
10 return best-map;



Algorithm 5.3.4 describes a scheme to perform the task of word mapping

efficiently. The input to the algorithm consists of the source memory module s,

the target memory module set T and the user-given cost function C. The global

variables besLmap, partiaLmap, and wordJeft in this algorithm keep record of the

current best complete mapping, current partial mapping and the number of words

yet to be mapped respectively. The local variables in the while loop at Statement

8, namely curr.mem, curr^word and curr.map store the current target memory

module, its word-count and the partial mapping achieved using this curr_mem.

The algorithm begins with approximating the target memory word-count to

the largest power-of-two that is less than or equal to the memory word-count.

After sorting these memory modules in the decreasing order of their word-counts,

the algorithm deletes the redundant modules from T. A target memory module i,-

is redundant if it could be composed using other modules in T with smaller cost.

The major computation for the word mapping is performed in the while loop at

Statement 8 of the algorithm. The algorithm selects cMrr.mem, the next largest

memory module from T and generates two mappings:

• Acomplete mapping using the current partiaLmap and curr_mem (Statement

8.4). If the cost of this complete mapping is smaller than the current

best-map, then best-map is updated.

• A new partial mapping using partiaLmap and the maximum number of com

plete curr-mem that can fit in wordJeft.

If curr-mem is the last module in T or curr-map provides an exact fit for wordJeft,

the loop terminates by assigning zero to wordJeft. Otherwise, wordJeft is updated

with the number of words yet to be mapped. Finally, the algorithm returns the

current best mapping stored in best-map.

The run-time complexity of the algorithm is 0(m * log{m)), where m is the

number ofelements inT. The procedure at statement 4 requires 0{m*log{m))

iterations. The redundancy removal at Statement 4 can be performed in 0(m)



time. Finally, the while loop at Statement 8, in the worst case, iterates for m

times. The computation in each iteration can be performed in constant amount

of time. Thus the complexity of the whole algorithm is 0(m * logirn)). Note that

the algorithm would require linear run-time for sorted T.

An example

Figure 5.6 shows an application of the word mapping algorithm on an exam

ple. The source component in this example is a memory module from an indus

trial design [KaRo94]. The target memory modules are from the Toshiba library

[Tosh90]. The word-count, bit-width and gate-count for each memory module are

shown in Figure 5.6(a). We use an area measure approximated by the gate-count

as the cost function for the example. Furthermore, we approximate the cost of the

complete mapping with the sum of gate-counts of the composing target modules.

Note that each target memory module in this example has a word-count that is a

power-of-two and that all these modules are irredundant.^

Figure 5.6(b) shows intermediate results after each iteration of the while

loop in the Algorithm 5.6. In the first iteration we use tl and generate a complete

mapping (tl, tl) with cost 39816 and a partial mapping (tl) with cost 199008.

The next iteration generates another complete mapping (tl, t2) with a lower cost

30968. In the following iterations, we successively use the remaining target memory

modules. The process ends after the fifth iteration when the remaining words to

be mapped become zero. The optimal mapping is given by (tl, t2) with cost 30968

(shown in bold). Note that the number of iterations for an example is bounded by

the number of the target memory modules. Figure 5.6(c) shows the implementation

corresponding to the mapping (tl, t2). Along with the two modules tl and t2, the

implementation uses a 2-input 16-bit multiplexerand some small address decoding

logic (two inverters + an AND gate).

memory module is irredundant if it can't be synthesized using other memory modules with

smaller cost.



Parameters Target

Word-count

Bit-width

Gate count 19908 11060 6636 4434 2408 1300

Iteration

count

Curr_mem Best_ map PartiaL map Sizejeft

name word mapping cosi mapping cosi

t1 256 (11,11) 39816 (t1) 19908 112

12 128 (11,12) 30968 (t1) 19908 112

13 64 (11,12) 30968 (11,13) 26544 48

14 32 (11,12) 30968 (11,13,14) 30966 16

15 16 (t1,t2) 30968 (11,13,14,15) 33374 0



We conclude this section with the following observations. If all the target

memory modules have number of words equal to a power-of-two then:

• Our word mapping algorithm generates an optimal solution.

• Our algorithm is very efficient {linear time for target module set sorted by

size).

• Our scheme implements the address decoding logic with very little logic with

out using the "adder" logic.

5.3.6 The cost function

Taraet memorv modules

Dataout

Figure 5.7: Cost of a memory design

The memory mapping algorithms are guided by the cost of the generated

design. The cost of the synthesized source memory module is given by the com

bined cost of the various elements used in the design. We illustrate these elements

through an example shown in Figure 5.7, where the design consists of three com

ponents:



• Address decode logic, shown in the white box, consists of the logic that

translates the address lines of the source memory module into the address and

the enable lines of the target memory modules. In our mapping approach,

this logic is usually small, in the order of a few gates.

• Target memory modules, shown in the lightly shaded box, consists of an

array of target memory modules. These modules together satisfy the word-

count and the bit-width requirements of the source memory module. The

example in Figure 7 uses m*n modules.

• Output mux, shown in the black box, multiplexes the output data from

target memory modules. The number of inputs and the bit-width of the

multiplexer is given by the number of target memorymodules (m) used in the

word mapping and the bit-width of the source memory module respectively.

The cost of a memory design is given by the cumulative cost of the constituent

elements:

C{s) = C(address) -f C(target) -|- C(mux)

Here, C(address), C(target) and C(mux) refer to the cost of address decod

ing logic, the target memory modules and the output mux respectively. We refine

these terms to generate a specific cost measure.

• Area measure : The area measure for the address decode logic and the

output mux is given by the approximate area required by these two elements.

The area measure for the target memory modules is given by the sum of the

area of all the target memory modules used in the design:

m n

A(target) =
i=l j=l

Note that we have to use the same unit for the area measure (e.g., sq-micron

or gate-count) for the different elements of a memory design.



• Delay measure : The worst case delay path for the synthesized memory

goes through all the three components in the design. The delay measure for

the address decode logic and the output mux is given by the worst case delay

through these modules. The delay measure for the target modules is given

by the maximum access delay for all the modules used in the design:

D{target) = Max'̂ ^Max'̂ _^D{t(i,j))

Note that the cost of a memory design would also include the port mapping

and data routing cost. For the sake of simplicity, we ignore these costs in our cost

measure.

5.4 Memory Mapping Approach

Now we present the overall approach to the memory mapping problem. The

approach combines the various schemes presented in the last section to solve the

comprehensive memory mapping problem. Specifically, it uses the port mapping,

the bit-width mapping and the word mapping routines to build a complete memory

mapping algorithm. In this section, we first describe the basic assumptions under

lying our approach. Next we present a memory mapping algorithm and illustrate

the algorithm with an example.

5.4.1 Assumptions

Our memory mapping formulations make the following assumptions.

1. Each target memory module is of size equal to a power-of-two.

2. Only regularly structured memory composition is considered. In a regularly

structured memory composition all the target modules in a row have the

same size and all the modules in a column have the same bit-width (Figure

5.8).
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Figure 5.8: Two types of memory composition (a) Regular composition (b)
Irregular composition

3. The bit-width of the source memory module is small.

4. The port name mapping for the source and the target modules are perform

ed by the user.

5. The cost of a memory design does not include the port mapping and the data

routing cost.

6. The timing diagrams of the source and the target modules are compatible .

7. Delay of a memory module is given by the worst case access time.

These assumptions can be classified into three categories:

• Assumptions that are induced by current day design methodologies (e.g., 2,

3). Our algorithms are general; they perform well for the restricted problem

space induced by these assumptions.

• Assumptions that simplify the memorymapping problem with the assistance

of a user (e.g., 4).



• Assumptions that need to be addressed in order to have a comprehensive

solution to the general memory mapping problem (e.g., 2, 5, 6, 7).

Note that as a first step towards solving the complete memory mapping problem,

these assumptions are reasonable.

5.4.2 Memory mapping algorithm

Algorithm 5.4.1 describes the steps in the memory mapping algorithm. The

inputs to the system are the sourcememory module (s), the target memory module

set (T) and the cost function (C). The algorithm generates a mapping of s using

modules from T. The target memory module sets in this algorithm, namely Tp,

Tsize and store the list of modules after port constraint satisfaction, word map

ping and bit-width mapping respectively. Variables commonM, common-word

keep record of the list of common bits and word-counts for a set of target memory

modules. Variable Tcommon lists modules with common bit-widths or word-counts;

variables soLsize, soLbit and sol store complete solutions.

Algorithm 5.4.1 : Memory mapping algorithm
INPUT: Source memory module, s; Target memory module set, T;

Cost measure, C.
OUTPUT: Mapping of s with T.
1 Tp = Port constraints(s, T);
2 Tujord = Word mapping(s, Tp, C);
3 common-bit —Common bit-widths for modules in Tgize',
4 TcQyTfimon —{C'iC* ^ Tp and B(tj^ ^ common—bit'̂ if
5 soLword - Bit mapping(s, Tcommon, C);
6 Tbit = Bit mapping(s, Tp, C);
7 common-Word = Common sizes of modules in Tbu',
8 Tcommon — ^ 7p and S(t^^ ^ comTnon—Wovd'̂
9 soLbit = Word mapping(s, Tcommon, c);
10 sol = Min_cost(so/_word, soLbit)-,
11 sol = Port assignment(s, sol)-,
12 return sol.



The algorithm considers two solutions. In the first solution, it performs the

word mapping first followed by the bit-width mapping. In the second solution, it

performs the bit-width mapping followed by the word mapping. Finally, it chooses

the best out of these two solutions. The algorithm starts by selecting the subset of

modules from T that satisfies the port constraints (Step 1) specified by Equations

5.1, 5.2 and 5.3. Then it performs word mapping (Step 2). The first solution

is achieved by performing the bit-width mapping on the set of modules returned

from the last step that have common sets of bit-widths (steps 3-5). Similarly the

algorithm generates the second solution by performing the word mapping and the

bit-width mapping in the reverse order (Steps 6-9). The best solution is given

by the design with the minimum cost. The mapping is completed by performing

the port assignment on the best solution. The Algorithm 5.4.1 is log-linear with

respect to the number of modules used for word-count expansion and exponential

with respect to the number of the modules used for bit-width expansion.

An example

Figure 5.9 shows an example for memory mapping. The source memory mod

ule is a part of a medical image reconstruction [BaCM94] algorithm. There are

eight target memory modules (tl-t8) from the Toshiba [Tosh90] library. Figure

5.9(a) shows the word-count, the bit-width, the ports and the gate-count for these

memory modules. The source module and each of the target modules have single

read-write ports. The cost function for this example is an area measure approxi

mated by the equivalent gate-count.

Figures 5.9(b) and 5.9(c) trace the two paths through the memory mapping

algorithm. Figure 5.9(b) shows the intermediate results for the path that perform

word mapping followed by bit-width mapping. All the target modules in this

example satisfy the port constraints, as shown by the variable Tp in this figure.

The result of the word mapping on Tp is a two module (tl, tS) solution. The



Parameters Source

s t1 12 13

Target

14 15 16 17 18

Size 384 256 256 128 128 128 64 64 64

Bit-width 12 8 4 12 8 4 12 8 4

Ports 1 RW 1 RW 1 RW 1 RW 1 RW 1 RW 1 RW 1RW 1RW

Gate count 11562 7564 8680 6642 4636 5166 4182 3172

Tp = {t1,t2,13,14,15,16,17,18}
Tp = (11,12,13,14,15,16,17,18}

Tword = (11,13)
Tbil = (13)

Common_bi1 = {8, 4} Common_bi1 = {12}

Tcommon = (11,12,14,15,17,18}
Tcommon = (13,16}

soLword = (11,12,14,15)
soLbil = (13,13,13)

Gale-count = 2+30404+39 = 30445
Gale-count = 2+26040+42 = 26084

11

(256x8)
12

(256x4)

14

(128x8)
15

(128x4)

t3

(128x12)

t3

(128x12)

13
(128x12)

Figure 5.9: A memory mapping example with linear algorithm (a) Source and
target modules (b) Design with word mapping followed by bit-width mapping (c)
Design with bit-width mapping followed by word mapping
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Figure 5.10: Complete design for the memory mapping example

common set of bit-widths for the modules with word-count equal to the word-

count of tJ or tS is {8,4}. Thus, the following modules {tl, t2, t4, t5, tl, t8}

participate in the bit-width mapping. The final solution with this path is given by

the composition of {tl, t2, t4, t5) and the layout is shown in the bottom portion

of the Figure 5.9(b). The cost of this design is 30445 gates.

Figure 5.9(c) walks through the other path that performs the two tasks in the

reverse order: bit-width mapping followed by word mapping. The memory design

generated by the bit-width mapping algorithm uses a single module tS, since it has

an exact match to the bit-width (12) of the source module. There are only two

modules, namely {tS, t6} with bit-width equal to 12. The word mapping on this

set results in a design with three instances of tS. The layout of the resultant design

is shown at the bottom of Figure 5.9(c). The cost of this design is 26084 gates.

Thus, the second design is preferred. The complete structure for this design that

includes the address decode logic as well as the output mux is shown in Figure

5.10. The port assignment task is straight forward in this example, since there is a

one to one match between the ports of the source and the target memorymodules.



5.5 Experimental results

Library: Toshiba gate array

Example

Differential Heat
Release

(Ramachan.EDAC 94)

Neural Network Chip .
(Rose. ICCAD 94)

Interlace Scan
(Philips, CICC 91)

Medical Image
Reconstnjction

(Baiasa, ICCAD 94)

Design

256x8. 256x8
256x8, 256x8

256x8. 256x8
128x8, 128x8

256x6. 256X6
128x6,128x6

64x6,64x6, 64x6

Cost fn: Area

Mapping result

Run-time

%Dlffwrt . . %Diftwrt(2-nand) Exhaustive Exhaustive

1.1 -60.71

1.2 -14.28

1.4 -26.31

2.0 +17.64

2.2 +29.41c MPEG I
® (Thordarson, TR 95-8) 54x18

ft MPEG II 100V17
® (Thordarson. TR95-8) 12Bxi7 128x5. 128x6, 128x6 | 16383

Figure 5.11: Memory mapping result I

In this section we present a summary of memory mapping results from our

algorithm on several examples from the literature and compare these designs

against the ones produced by an exhaustivememory mapping algorithm. [JhD95b]

presents an extended version of these results.

Our experiments use source memory modules derived from various memory-

intensive designs reported in the literature as well as from industrial designs.

Specifically, we report mapping results for six examples in Figures 5.11 through

5.13 and for another four examples in Figure 5.14. [JhD95b] describes the source

designs for these memory modules. These examples cover wide variety of memory

modules both in terms of the source of the design as well as the size of the modules,

specifically with respect to the word-count and bit-width variation.

Each ofthe tables in Figures 5.11 through 5.14 describe the memory mapping

results generated by our mapping algorithms on a set of the source memory mod

ules. The first three columns in these tables describe the source memory module.



Library: Xilinx4000 rams

Example

Differential Heat
1 Release 469x16

(Ramachan.EOAC 94)

9 Neural Network Chip lenwo
^ (Rose.ICCAD94)

Interlace Scan
(Philips. CICC 91)

Medical Image
Recor^truction

(Balasa, ICCAD 94)

5 MPEG I 54*18
® (Thordarson. TR95-8)

C MPEG II 190V17
® (Thordarson, TR95-8) 128X17

Design

128x8, 128x8
128x8. 128x8
128x6, 128x8
64x8, 64x8
32x8. 32x8

128x6, 128x8
128x6, 128x8
64x8, 64x8
32x8, 32x8
16x8, 16x8

128x4, 128x8
128x4, 128x8
128x4, 128x8

32x4, 32x8, 32x8
32x4,32x8, 32x8

Mapping result

% Diff wrt
Exhaustive

128x4, 128x8, 128x8 107

Cost fn: Area

Run-time

% DIff wrt
Exhaustive

Figure 5.12: Memory mapping result II

For each source module, we list the name of the design from which the mem

ory module was extracted, the source of the design and the size of the memory

module. Columns 4 through 8 describe the mapping result. The fourth column

(labeled Design) lists the arrayed configuration of the target memory modules syn

thesized by our memory mapping algorithm; the fifth column displays the design

metric (Area, Delay or Price) and the seventh column presents the run-time (in

seconds) for our algorithm on a SUN Sparc Station 5. The sixth column reports

the percentage difference between the design metric for the results produced by

our mapping algorithm and an exhaustive algorithm.^ Similarly, the last column

reports the percentage difference between the run-time of our algorithm and the

exhaustive algorithm. In each table we also report the name of the target library,

the cost function used to generate the designs.

Figures 5.11 shows the mapping results for area-efficient designs generated

by our algorithm. These designs have been synthesized using the memory modules

®[JhD95b] describes an exhaustive memory mapping algorithm.



Library : Xilinx 4000 rams

Example

Differential Heat
1 Release 469x16

(Ramachan.EDAC 94)

» Neural Network Chip ^
^ (Rose. ICCAD94)

Interlace Scan
(Philips. cicc9l)

. Medical Image
^ Recor^struction 364x12

(Balasa. ICCAD 94)

(Thordarson, TR 95-8) I

e MPEG II -2a«l7
® (Thordarson. TR95-8) i4«xi/

Cost fn : Delay

Mapping result

Run-time
Design

(ns) %Diff wrt /„c)
Exhaustive

%Diff wrt
Exhaustive

32x4,32x4, 32x4. 32x4

32x4.'32x4,32x4, 32x4 31.90
16x4, 16x4, 16x4. 16x4
16x4, 16x4, 16x4, 16x4

32x4, 32x4, 32x4, 32x4

32x4. 32x4.32x4.32x4
16x4. 16x4, 16x4. 16x4

32x8, 32x8
32x8, 32x8

32x4, 32x8. 32x8
32x4, 32x8, 32x8

32x8, 32x8, 32x8
32x8. 32x8, 32x8
32x8. 32x8, 32x8
32x8. 32x8. 32x8

Figure 5.13: Memory mapping result III

taken from the Toshiba gate array library[Tosh90]. This library contains single

port RAMs with word-count varying in the range of 8 to 256 and bit-width in the

range of 4 to 8. We report the area of the mapped designs in terms of equivalent

2-input nand-gates. Figures 5.12 and 5.13 describe the mapping results using the

RAM macro modules of the Xilinx 4000 series FPGA[Xili93]. This library contains

a set of single port RAM modules with the word-count equal to 16, 32, 64, or 128

and the bit-width equal to 2, 4 or 8. Figure 5.12 reports the area-efficient designs,

whereas Figure 5.13 reports the delay-efficientdesigns generated by our algorithm.

We report area in terms of approximate number of CLBs (Configurable Logic

Blocks [Xili93]) for the resultant design. The delay for these designs represents the

worst case access delay in nanoseconds. Figure 5.14 lists the price-efficient mapping

results using the off-chip ROMs provided by Texas Instruments [Ti94]. The library

contains the following 6 modules : 32Kx8, 64Kx8, 128Kx8, 64Kxl6, 256Kx8 and

512Kx8. We report the dollar cost required to synthesize these designs.



Library: Tl roms

Example

Singular Value
1 Decomposition II 146590x16

(Balasa, ICCAD 94)

Singular Value
2 Decomposition III 103550x16

(Balasa, ICCAD 94)

« Im^e Processing
(Um. Prentice Hall 90)

Design

512lo(8. 512kx8

Cost fn: Price

Mapping result

Price Run-time

($)
% Diff wrt
Exhaustive

(MC) % Diff wrt
Exhaustive

16.36 0.00% 0.3 0.00

10.90 0.00% 0.4 +33.33

65.44 0.00% 0.3 0.00

65.44 0.00% 0.3 0.00

Figure 5.14: Memory mapping result IV

5.5.1 Analysis of experimental results

From the results in Figures 5.11 to 5.14, we observe that our approach to

memory mapping is quite comprehensive. Our approach can synthesize source

memory modules of varying complexity. These memories are of varying word-

count and bit-width. The size of the source memory modules in our examples

vary in the range of 972 bits (54x18) to IGMbits (lMxl6). These memorymodules

come from designs of varying complexity including image processing applications

and an industrial design of MPEG algorithm. In our experiments we have cov

ered three target libraries. These libraries include on-chip modules (Toshiba gate

array [ToshQO] and Xilinx 4000 RAM modules [Xili93]) as well as off-chip stand

alone memory modules (Texas Instruments ROMs [Ti94]). Each library contains

a varying number of memory modules. The memory modules in these libraries are

also of varying sizes. Starting from smaller modules of size 8x4 size in the Toshiba

gate array, the modules of TI ROMs are as big as 512Kx8. Our approach allows

the user to select the optimizing cost function. We currently support three cost

functions, namely Area, Delay and Price. Hence, our memory mapping approach

is quite general in the sense that it supports a wide variety of user selectable de

sign parameters such as the source component, the target library, the mapping



algorithm and the optimizing cost function. The mapping results in Figure 5.14

demonstrate that our mapping approach is applicable to off-chip modules as well.

From the tables in Figures 5.11 to 5.13, we observe that our approach gener

ates a wide variety of memory designs. These designs include regular structures,

where a memory array is built using a single memory module type (Example 1

in Figure 5.11) as well as irregular structures, where a memory array is built us

ing a set of different memory module types (Example 1 in Figure 5.12). We also

note that even for the same memory module, we get different designs as we vary

the cost function and the target library. For instance, consider the first example

(Differential Heat Release computation) in Figures 5.11 to 5.13. All of these three

mapping results are different. In other words, a different memory configuration is

generated for different optimizing cost functions and the target libraries.

Also, quite often the resultant designs are counter-intuitive. For instance,

consider Example 6 in Figure 5.11. The source memory module is taken from an

MPEG design and is of size 128x17. This has been synthesized with a row of

the following modules: 128x5, 128x6 and 128x6. We would expect a design that

uses modules with bit-widths that are powers-of-two such as 128x8, 128x8, 128x4;

however the area of this design is larger than the counter-intuitive design generated

by our algorithm. This illustrates the utility of our approach in generating a wide

variety of designs, often counter-intuitive ones, based on the cost function and the

algorithms.

The sixth column in these figures compares the quality of designs produced by

our approach against the ones generated by an exhaustive algorithm. Our designs

are quite close to ones generated by the exhaustive algorithm. Designs reported

in Figures 5.13 and 5.14 are with equal metric, whereas designs in Figure 5.11

are at most 18.40% worse and designs in Figure 5.12 are at most 8.08% worse in

area. The higher difference in the design metric for the results with the Toshiba

gate array library in Figure 5.11 is because this library contains few modules with

word-count not equal to a power-of-two. The exhaustive algorithm has performed



well by making an effective use of these modules. However, for libraries that

have restricted module sets with word-counts equal to a power-of-two (e.g., Xilinx

RAMs and Texas Instruments ROMS), our algorithm performs very well; most

of the designs have metrics equal to those generated by the exhaustive algorithm

(Figures 5.13 and 5.14).

If we analyze the run-time (the seventh column in these tables), we observe

that we have been able to generate these designs very quickly, in the order of a few

seconds. The run-time is independent of the cost function used for optimizing the

design. The last column in these tables compares the run-time of our algorithm

with the run-time of the exhaustive algorithm. We observe that the run-time of

our heuristic is comparable to the run-time of the exhaustive algorithm for the

examples reported. There are two reasons for this phenomenon. First, the figures

for run-time include the time to execute the mapping algorithm as well as the I/O

time which is dependent on various factors such as network conditions, file-server

status, etc. Because of such factors, the run-time varies with different executions

of an example on the same machine. This is one of the reasons why our heuris

tic sometimes requires longer run-times as compared to the run-times required by

the exhaustive algorithm. Thus, one should use the run-time figures with caution

for smaller examples. Secondly, the source examples presented in these tables are

relatively small in size. For examples withbigger word-counts, the exhaustive algo

rithm would require exponentially longer run-times, as compared to our heuristic

that solves the word-mapping problem with linear run-time complexity. In fact,

[JhD95b] reports an example that requires approximately 10 hours to generate a

design with the exhaustive algorithm, but which requires only 2.5 seconds with

our algorithm.



5.6 Summary

In this chapter, we presented a memory mapping scheme that implements

a source memory module with a set of target memory modules from a library.

The approach has applications in two domains: synthesizing the logical memories

generated by high-level synthesis and synthesizing a source memory from one li

brary using modules from another library (e.g., retargetting memory designs). Our

approach facilitates design reuse for memory subsystems. High-level library map

ping for memories could be used to synthesize on-chip as well as off-chip memory

modules.

We have identified and formulated three subproblems associated with the

memory mapping problem (port mapping, bit-width mapping and word mapping)

and composed these formulations into a complete memory mapping approach. We

combined these three formulations into an efficient memory mapping algorithm

that can be used for generating area-optimized, delay-optimized or price-optimized

designs. Our experimental results run on several industrial and literature-based

examples demonstrate that HLLM for memories can generate a wide variety of

cost-effective memory designs, often conter-intuitive ones, based on the user-given

cost function and the target library.



Chapter 6

GENUS and HLLM Environment

In this chapter, we first present the GENUS environment that implements the

generic RT component set presented in Chapter 3. Supplemented bythe model gen

erators, technology projectors and technology mappers, the environment presents

a comprehensive system for RT design. We then briefly describe a user-interface

for the HLLM system.

6.1 GENUS Environment

Figure 6.1 shows the structure of the GENUS environment. The core of the

GENUS environment is a set of RT level component generators. The automatic

model generators of GENUS system provide three kinds models: Functional mod

els, Delay models and Synthesis models. The Functional models and Delay models

are behavioral models used to validate a RT design using commercial simulators.

Synthesis models are used to refine the RT design design description into logic or

layout-level design. Technology projectors provide rapid estimates of generic com

ponent implementation in a specific technology to perform design space exploration

and tradeoff analysis at higher levels. Finally, the High-Level Library Afupper maps

a RT component onto technology specific RT components. The GENUS system

supports high-level design by providing a mechanism to validate its output as well

as to link the output with physical design. By providing a library ofreusable parts

along with a library mapper, GENUS supports design reuse as well.
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The GENUS environment has been implemented in "C" and contains ap

proximately 50,000 lines of code. An extensive programming library developed for

GENUS provides a set of routines to create, delete and query information regard

ing a specific component [JhD94a]. As shown by the solid line boxes in Figure

6.1, the component generators and the model generators have been implemented

completely. As shown by the dotted box, the technology projectors have not been

implemented within the GENUS environment, but the conceptual background as

well as the area-delay estimation models for two technologies have been devel

oped. The high-level library mappers form an independent system; they use the

RT component definitions provided by the GENUS environment.

6.2 Model Generation

Design Components Lines of
VHDL code

AM2901 ALU, Reg-file, Reg, Mux 1078

AM2910 ALU, Reg-file, Reg, Mux 854

CBInt ALU, Reg, Div, Mux 1311

Kalman ALU, Reg-file, Reg, Mux 1341

Clk-div ALU, Reg, Mux 476

Timer ALU, Reg, Mux 605

Figure 6.2: Behavioral VHDL simulation models

The GENUS environment provides both automatic simulation model genera

tion and automatic synthesis model generation for each component. The simulation

models correspond to behavioral VHDL processes representing functional behav

ior of the parameterized RT component. The user can also ask for a block-delay

model that generates a behavioral VHDL simulation model with a nominal delay



for each instantiated component. Since the RT components are generic and are

typically used in HLS tasks such as scheduling and allocation, this delay model

is often sufficient to support both the design task, as well as the ensuing task of

functional verification. The synthesis models for each RT component correspond to

Boolean logic equations in a standard form (EQN) for combinational components,

and sequentialized EQN for sequential components. These Boolean equations can

be used to synthesize generic components from logic-level primitives.

The VHDL simulation models are generated in the order of a few seconds;

Figure 6.2 shows that, even for small examples, the number of VHDL code lines

runs into the thousands. Automatic simulation model generation thus obviates

the burdensome task of VHDL code generation and validation, since these model

generators have already been validated and tested. The same situation holds for

automatic synthesis model generation.

6.3 Technology Projection

We perform technology projection for different libraries using closed form

functions to estimate the area and delay for a component in the generic library.

These area and delay models are functions of the parameters such as bit-width,

set-of-functions, etc. required to instantiate a specific component belonging to the

generator.

Onesignificant parameter for a generator is the component's bit-width, which

clearly has a significant impact on the estimation models. Tyagi [Tyag90] has de

veloped an information-theoretic model that relates a module's parameters (e.g.,

bit-width) with its performance metrics. Based on the communication between

n-bit slices of a component, he classifies some combinational components into cat

egories and provides a formulation of models for each category. These models



describe the asymptotic behavior of area and delay with respect to major param

eters of the generators. For example, both the area and delay of a ripple-carry

adder vary linearly with respect to the bit.width of the inputs. We use a similar

formulation for the primary factors of the area-delay models that account for the

major contribution towards the performance metrics of a component. We then use

a least square approximation method on a set of sample design implementations,

to determine the coefficients of the formulated estimation equations. The set of

components that are to be used for calculating the coefficients should be fairly

representative of all the possible components for a generator. We attempt to se

lect the set of components so as to avoid a bias towards any particular parameter

or any particular subset of values for a parameter. [JhDu92] presents a detailed

description of the technology projection approach.
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Figure 6.3: Aggregate error profile as compared to DTAS

We ran several experiments to test our models. We compared the estimates

generated by our model against the metrics derived from the design structures

generated by DTAS [Kipp91], LAST [KuRa91] and TELE [RaKu92]. The area
values provided by DTAS counts the number of equivalent two-input NAND gates
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Figure 6.4: Aggregate error profile as compared to LAST/TELE

used to implement the component. For a component's delay (measured in nanosec

onds), DTAS returns the worst-case delay for all paths through the design. LAST

and TELE provide area and delay values respectively, based on GDT 3// CMOS

standard cell technology.

Our experiments attempted to cover a wide range of possible component

implementations. We did this by generating parameter values randomly for each

component generator. The number and set of functions (for multi-function com

ponents) were also chosen randomly. For each such randomly chosen component,

we ran our models, and compared the results with an actual design generated

by above mentioned tools. We considered the following generators: Logic gates.

Multiplexer, Comparator, LU, Adder, ALU and Shift-register.

Figures 6.3 and 6.4 show the aggregate percentage error profiles across all the

generators in consideration; the detailed results for each generators can be found

in [JhDu92]. From Figure 6.3 we observe that with respect to DTAS roughly one-

third of the area and roughly half the delay data points exhibit an error of less than



two percent. After this huge concentration in the range of 0-2%, the frequency of
error tapers off as the error increases. For area, 11% percent of the test points have

error less than 10 percent and 95% test points have errors less than 16 percent.

For delay, the figures are 87% and 94% respectively. Figure 6.4 exhibits a similar

trend.

Since our estimation models use only a few additions, multiplications and

logarithmic operations, the area-delay estimates are generated very quickly (in
the order of microseconds). There is a significant improvement in the run-time as

compared to therun-time of DTAS and LAST/TELE. For example, DTAS requires

a run-time ofapproximately 8 minutes to generate and calculate area-delay values

for a 64-bit ALU[Kipp91]. The estimation time required by our approach is orders

of magnitude lower than the time required by DTAS. Thus, we tradeoff accuracy

of the metrics (i.e., ±10%) for real-time evaluation of the estimates.

6.4 HLLM User Interface

We now describe the graphical user-interface implemented for the HLLM

system. Figure 6.5 shows the structure of the HLLM system. The input to the

system are the source component, the target component or the library and the

mapping attributes. The mapping attributes include the optimizing cost function,

the specific algorithm to be used for mapping and the set of mapping rules. The

output of the system is a mapped design that uses one or more target components

along with some glue logic.

The user interface to the HLLM system consists of an X window [Youn94]
graphical front-end that assists a user to interact with the core of the HLLM

system. The interface allows a user to perform mapping for the two classes of

components discussed in the last two chapters (ALUs and memories). We briefly
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illustrate this user-interface with ALU and memory mapping front-end windows.

[JhD95a] provides a detailed description of the HLLM user-interface.

Figures 6.6 and 6.7 show thetop level windows for ALU and memory mapping

respectively. In these windows, the menu bar is at the top and contains two pull

down menus titled: Set parameter and Action. The Set parameter menu is used to

set the various design parameters before activating the actual mapping algorithm.

The Action menu is used to control the overall HLLM system. Figure 6.6 shows

a generic ALU mapping design where a source ALU is implemented with a target

ALU along with some surrounding glue logic. Similarly, Figure 6.7 shows a generic
memory mapping design where a source memory module has been implemented

with an array of target memory modules along with address decode logic and

multiplexer logic.
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•

Figure 6.7: Top level window for memory mapping

6.4.1 Setting design parameters

Before activating the actual HLLM mapping algorithm, a user needs to spec

ify values to the following parameters:



• Component type A user needs to select a component type out of the two

options: ALU and Memory.

• Source A user specifies the filename containing the description of the source

component. [JhD95a] describes the format for ALU and memory source

components.

• Target A user needs to specify the filename for the target component or

library. HLLM for ALU maps the source ALU on a target ALU, while HLLM

for Memory maps the source memory onto a set of memory modules from a

library. [JhD95a] describes the format for each of these with examples.

• Mapping rules HLLM for ALU requires a set ofmapping rules to implement

the missing functions in the source component. A user needs to specify the

filename containing the list of mapping rules to be used for ALU mapping.

[JhD95a] shows an example of sample mapping rules.

• Algorithm A user needs to select a mapping algorithm. Algorithm greedy

and dyn-prog could be applied on ALUs and algorithms linear and exhaustive

on Memories. The greedy algorithm generates a run-time efficient mapping,

whereas the dyn-prog (short for dynamic programming) algorithm generates

usually better mappings at the cost of longer run-times. Similarly, the lin

ear algorithm generates run-time efficient mappings, whereas the exhaustive

algorithm generates usually better mappings at the cost of potential expo

nential increase in run-time. Refer [JhD94b] and [JhD95b] for details of these

algorithms.

• Cost function Finally, the user needs to specify the cost function to guide

the mapping algorithm. He/she could choose either of the two cost functions,

namely area or delay to guide an ALU and memory mapping algorithm;

memory mapping supports an additional cost function: price.



6.4.2 Performing HLLM

The Run button of the Actions menu activates the mapping algorithm. It

asks for the filename to store the final result. While the system is performing the

mapping, it also displays run-time scripts specifying the progress in the mapping

process. Besides updating the progress in the mapping process, the script also

displays the design metrics for the ALU mapping result.

6.4.3 Displaying mapped design

The Displaybutton of the Action menu displays the final design. The output

design from the ALU mapping is a VHDL netlist of two components, namely the

target ALU component and the glue logic component. This VHDL description is

compatible with the Synopsys Design Compiler [Syno92] input; [Syno92] can be

used to optimize the glue logic. The result ofmemory mapping is an array of target

memory modules along with the address decode logic and the output multiplexers.

Finally, the design metric for the mapping result is displayed by clicking on the

Metric button under the Display button of the Action menu. The display shows

area, delay or price of the resultant design. [JhD95a] shows examples of mapping

results and design metrics for ALU and memory mapping.

6.5 Summary

In this chapter, we first presented the GENUS environment that provides a

comprehensive system for RT level design. We focused on the automatic model

generation technique for simulation and synthesis, as well as a technology projec

tion scheme to link physical design-level information using accurate on-line esti

mators for the area and delay of the RT component generators. The simulation

and synthesis model generators increase designer productivity, since the models



are generated automatically in the order of seconds via component parameters.

Furthermore, the model generators reduce design errors as compared to the te

dious process of manual model generation, since the generators are pretested and

encapsulated. Our estimation models can handle the area/delay contributed by

functional blocks as well as the total area/delay including the wiring. We have

demonstrated the estimation technique on both combinational and sequential RT

components with aggregate errors in the range of ±10%. Our model generators

are simple, fast and fairly accurate, and have been integrated with an existing

high-level synthesis system [RaGaOl].

We also presented a user-interface to the HLLM system. The interface in

cludes a graphical environment that assists a user in specifying the parameters for

HLLM, activating HLLM and finally displaying the mapping result. The GENUS

environment along with the HLLM system supports the demands of current day

design methodologies using high-level design as well as design reuse at the RT

level.



Chapter 7

Conclusion

pi =• '

7.1 Summary of Dissertation

In this dissertation, we have described high-level library mapping (HLLM), a
library mapping technique at the RT level. The technique is specially well-suited
to supplement the needs of the current day design methodologies using high-level
design and design reuse. HLLM supports high-level design by mapping its output
RT level design onto RT components from a technology specific library. Design
reuse is achieved by retargetting a RT level design across various RT libraries using
HLLM.

We introduced High-level library mapping, a library mapping technique that
is based on RT level functionality. High-level library mapping is well-suited for

mapping regularly-structured datapath components as well as memory modules.
We also discussed the design scenario supported by the HLLM approach and listed
the three tasks for the HLLM problem namely, RT library definition, HLLM for
mulation for datapath components and HLLM formulation for memory modules.

We described a generic RT library that forms the basis of HLLM. We demon

strated the comprehensiveness of the library by comparing it with various technol
ogy libraries and presented experimental results to demonstrate its efficacy. HLLM
uses the functional definitions of RT components provided by the the generic library



as a reference point to compare and contrast the source and the target component

and finally to map the source component onto the target component.

We applied HLLM technique on a commonly used datapath component class,

namely ALUs. We formulated the problem of HLLM for ALUs in terms of a source

ALU and a target ALU and presented an efficient algorithm to map the source ALU

onto the target ALU. We also presented the experimental results to demonstrate

the comprehensiveness as well as the efficacy of designs produced by the HLLM

for ALU approach.

We demonstrated the HLLM technique on memory modules as well. We for

mulated HLLM for memory in terms of a source memory module and a set of target

memory modules from a library. We decomposed the memory mapping problem

into three subproblems, namely bit-width mapping, word mapping and port map

ping and then combined these formulations into a linear time algorithm to solve

the complete memory mapping problem. We also presented experimental results

to demonstrate the efficacy of high-level library mapping approach for memories.

Finally, we presented the GENUS environment that implements the generic

library discussed in Chapter 3. The GENUS environment consists of a set of

generic component generators, various models generators, technology projectors

and technology mappers. The various models generated by GENUS support val

idation and synthesis of RT designs. The technology projectors rapidly generate

fairly accurate estimates, providing technology specific feedback to higher levels.

The High-level library mapper provides a link to lower levels by mapping GENUS

components to library specific components. We also presented a graphical user-

interface for the HLLM system. The user interface assists a user in specifying the

various design parameters, activating a mapping algorithm and finally displaying

the mapped design.



7.2 Summary of Contributions

The research described in this dissertation makes three fundamental con

tributions. First, it defines high-level library mapping, a novel library mapping
technique at RT level. Second, it presents efficient formulations of HLLM for a

representative datapath component. Finally, it presents efficient formulations of

HLLM for memory modules.

High-level library mapping is the first library mapping technique which maps
a RT component onto other RT component(s) of the same complexity. This is in

contrast to other library mapping approaches which first decompose the source

component into lower level cells and then perform technology mapping. Another

distinguishing feature of HLLM is that it uses RT level functional behavior of the

source and the target component. We defined a library of generic RT components
to facilitate this mapping process. Experimental results demonstrate that the

HLLM approach for datapath components outperforms the traditional logic level
library mapping approach in all the three design metrics : area, delay and runtime.

We used ALUs as a representative datapath component for illustrating HLLM
and presented efficient formulations of HLLM for ALUs. Based on the problem

characteristic of ALU mapping, we presented a polynomial time algorithm to per
form HLLM for ALUs. The experimental results demonstrate that HLLM for ALU

is a powerful technique, orders of magnitude better than the existing techniques
for reusing ALUs.

We also presented efficient formulations of HLLM for memories. Based on

domain specific knowledge of memory modules, we presented a linear algorithm to
perform word mapping for memories. Our experimental results demonstrate that

HLLM for memories can generate a variety of designs including several counter

intuitive ones quickly.



In summary, the HLLM approach described in this thesis elevates library

mapping from the logic to the RT level and facilitates design reuse of datapath

components and memories.

7.3 Future Directions

The HLLM approach in its current form could be extended in many direc

tions. Starting from the improvements in the domain of HLLM for ALUs and

memories, HLLM could be extended all the way up to include system level parts.

We discuss some of these possible extensions :

1. The HLLM formulations for ALUs and memories presented in this disserta

tion can be refined. Specifically, the assumptions listed in Chapters 4 and

5 can be relaxed. HLLM for ALU could be upgraded to include functions

that are not restricted to 2's complement representation as well as making

the target ALU more general. HLLM of memory assumes that the access

protocol of the source and target memory modules are compatible. The sys

tem could be upgraded to consider source and target modules with dissimilar

access protocols.

2. HLLM could be applied to other regularly structured datapath components,

both in the domain of combinational and sequential components. Counters,

shift-registers and barrel shifters are particularly good candidates for HLLM.

3. With respect to a complete RT design, a system that uses a combination of

logic level library mapping (LLLM) and HLLM can be developed. HLLM

performs efficient mapping for memorymodulesand regularly-structured dat

apath components; LLLM can handle the rest of the components in the RT

design, including controller circuit and the remaining datapath components.

4. In the long term, efforts could also be directed towards applying HLLM

on system level parts such as processor cores. Techniques for representing



system-level parts and effectively mapping between them need to be devel

oped.
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