Lawrence Berkeley National Laboratory

Recent Work

Title

THE COLOR OF LIQUID SULFUR

Permalink

https://escholarship.org/uc/item/1253523k

Authors

Meyer, B. Stroyer-Hansen, T. Jensen, D. et al.

Publication Date

1970-10-01

UCR L-19660 Preprint

RECEIVED

ANDVIORUSTANORY

1971

LIBRARY AND DOCUMENTS SECTION

THE COLOR OF LIQUID SULFUR

B. Meyer, T. Stroyer-Hansen, D. Jensen and T. V. Oommen

October 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

JCR L- 19660

LAWRENCE RADIATION LABORATORY UNIVERSITY of CALIFORNIA BERKELEY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Communication to the Editor, Journal of the American Chemical Society, Physical Chemistry Section

The Color of Liquid Sulfur

Sir:

At the melting point, liquid sulfur is yellow; at the boiling point it is dark red. The color change, which is demonstrated in every freshman class, is due to an apparently monotonous shift of the absorption edge towards the red and due to an increase of the visible absorption (Figure 1). While the accompanying viscosity change is well known and well understood the color change has drawn little scientific attention.

Only three spectral studies have been reported $^{3-5}$, and the latest view 5 is that the shift of the absorption edge is caused by thermal population of ground state vibrational modes of S_{α} .

We have studied the absorption spectrum of liquid sulfur in the temperature range between the melting point and 700°C. The temperature dependent shift of the red absorption edge is about 23.6 cm⁻¹ per degree.⁶ This shift is 10 times larger than the shift of the red absorption edge of S₈ in solution in the temperature range between 76°K and 25°C.⁶ The shift in the liquid is too large to be due to thermal population alone. Furthermore, the temperature dependent shift is only reversible if the liquid is very slowly cooled. Rapid quenching of the liquid to room temperature does not yield the absorption of S₈, as shown in Figure 2a, but it yields the spectrum in Figure 2b. The shoulder at 3600 Å is due to quenched, metastable polymeric sulfur.⁶ The formation, concentration and composition of polymers in

liquid sulfur are well established. 1,2 The spectrum of polymeric sulfur explains the apparently large shift in the spectrum of the liquid between the melting point and 300°C and the sudden increase of the shift at 160°C.

However, above 300°C, where the concentration of polymers decreases, the color of the liquid continues to darken. If boiling sulfur is quenched in liquid nitrogen, we obtain a red glass with the spectrum shown in Figure 2c. At about -80°C the red films convert into yellow polymeric sulfur. The quenching experiments prove that the spectrum of hot liquid sulfur is not due to thermal broadening of S₈ absorption alone, but due to superposition of the spectrum of S₈ with that of polymeric sulfur and that of the red species which absorb at 4000 Å and 5100 Å.

In order to identify the red species, we compared the spectrum of the liquid with that of the vapor at 17 torr and 450°C, Figure 2d. The structured absorption at 4000 Å and the continuum at 5100 Å were first reported in 1910; and later 3, assigned to either S, or S, this assignment has been confirmed by a study of the intensity of this system as a function of vapor pressure and temperature, and by comparison with the mass spectroscopic data 10,11 on the vapor composition. We have now recorded spectra with 34S, and determined that the electronic origin of the 4000 Å system lies at 4235 Å. If one allows for a solvent shift and considers the temperature difference, the Franck-Condon curve and the electronic origin agree very well with that of the absorption of frozen liquid sulfur.

In order to determine whether the absorption, and therefore the red color, was really due to S_3 or S_A , we decided to prepare small sulfur species in a low temperature matrix. Sulfur vapor is not a suitable source for the synthesis of S₃ or S₄, because it always also contains other species. 10,11 Instead we used the photolysis of S_3Cl_2 in an organic glass and in rare gas matrices. S₃Cl₂ was prepared from SCl₂ and liquid H₂S. 12 In this synthesis only chlorosulfanes with an odd number of sulfur atoms are formed, and SaCl is absent. 99% pure S₃Cl₂ can be obtained by vacuum distillation. A 10⁻⁴ molar solution of S₃Cl₂ in 1:2 isopentane-cyclohexane at 77°K, with the spectrum shown in Figure 2g, was photolyzed with a high pressure mercury arc. The spectrum of the photolysis products is shown in Figure 2e. Figure 2f shows the photolysis products of S₃Cl₂ in a krypton matrix at 20°K. The experimental techniques used in the preparation and handling of low temperature samples was similar to that described elsewhere. 13 The spectrum has a vibrational spacing, a Franck-Condon curve and an origin as expected for the cold gas species responsible for the absorption of sulfur vapor in Figure 2d. This indicates that the gas species absorbing at 4000 A is the same as that produced by photolysis of s_3^{cl} , and is s_3 , thiozone. The mechanism of the photolysis of S₃Cl₂ yielding thiozone seems to be analogous to that of the photolysis of S2Cl2, 14 which yields S2, and very little S₂Cl. Whether the continuous absorption at 5100 Å, which also occurs in frozen liquid, is due to S3 or S4 has not yet been determined.

The similarity among the matrix spectrum, the vapor spectrum at 450° C and that of quenched red sulfur indicates that hot liquid sulfur contains S_3 . S_3 and S_4 have similar thermal properties and always occur together. 10,11 Thus, hot liquid sulfur contains S_3 and S_4 .

We conclude that the color change upon heating of sulfur is due to formation of S_3 and S_4 . The optical density at 4000 Å and 5100 Å indicates that at the boiling point sulfur contains from 1 to 3% S_3 and S_4 .

Detailed data and analysis will be presented later.

Acknowledgement:

This work was partly supported by the National Science Foundation and the National Air Pollution Control Administration. Part of this work was performed under the auspices of the U. S. Atomic Energy Commission.

B. Meyer¹⁵
Chemistry Department, University of Washington and Lawrence Radiation Laboratory, University of California, Berkeley

and

T. Stroyer-Hansen, D. Jensen, and T. V. Oommen Chemistry Department, University of Washington Seattle, Washington

References:

- R. E. Harris, J. Phys. Chem. 74, 3102 (1970).
- 2) J. A. Poulis, C. H. Massen, A. Eisenberg and A. V. Tobolsky, J. Am. Chem. Soc. 87, 413 (1965).
- 3) M. Fukuda, Mem. Coll. Sci., Kyoto Imp. Univ. 4, 351 (1921).
- 4) P. Mondain-Monval, R. Job and P. Galet, Bull. Soc. Chim. 47, 545 (1930).
- 5) A. M. Bass, J. Chem. Phys. 21, 80 (1953).
- 6) T. V. Oommen, Ph.D. Thesis, University of Washington, Seattle, 1970.
- 7) J. Graham, Proc. Roy. Soc. A84, 311 (1910).
- 8) L. d'Or, Compt. Rend. Acad. Sci. France 201, 1026 (1935).
- 9) H. Braune and E. Steinbacher, Z. Naturforchg. 7a, 486 (1952).
- 10) J. Berkowitz and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).
- 11) D. Detry, J. Drowart, P. Goldfinger, H. Keller and H. Richert, Z. Phys. Chem. 55, 317 (1967).
- 12) F. Feher, K. Nansed and H. Weber, Z. Anorg. Allg. Chem. 290, 303 (1957).
- 13) L. Brewer, B. Meyer and G. D. Brabson, J. Chem. Phys. <u>43</u>, 3973 (1965).
- 14) B. Meyer and J. J. Smith, UCRL-report 18060 (1968).
- 15) To whom inquiries should be sent.

Figure Captions

Figure 1: Shift of red absorption edge of liquid sulfur.

Figure 2:

- a) Absorption of S₈ in methanol at 25°C.
- b) Absorption of **polymeric** sulfur in glycerin at room temperature.
- c) Absorption of boiling sulfur quenched in liquid nitrogen.

§3.

to the second and the second second

- d) Absorption of sulfur vapor at 450°C and 20 torr.
- e) Absorption of S₃Cl₂ photolyzed in a krypton matrix at 20°K.
- f) Absorption of S₃Cl₂ photolyzed in 1:2 isopentanecyclohexane glass at 77°K.
- g) S₃Cl₂ before photolysis.

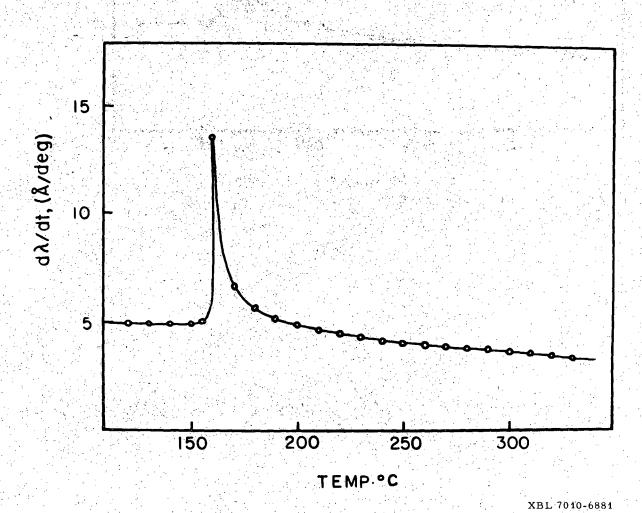


Fig. 1

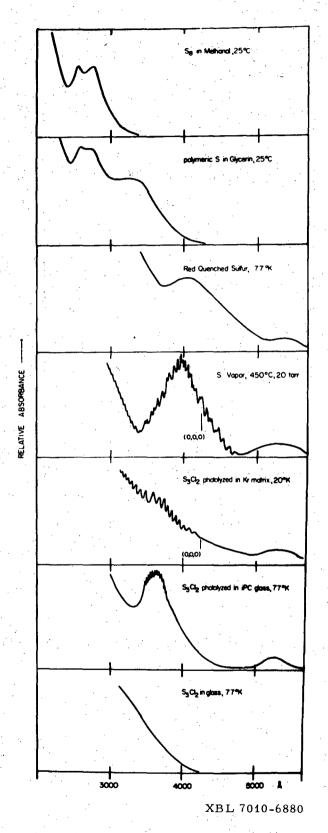


Fig. 2

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

TECHNICAL INFORMATION DIVISION LAWRENCE RADIATION LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720