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We sincerely appreciate the thorough review and insights of Dr. Huichia Chao and
colleagues [1] concerning our recent publication [2].

First, it is important to clarify that the MSG intake of 1.5 g/kg/day used in our rat
models is not equal to 90 g/60 kg BW/day as mentioned in the comment [1] because the
animal dose cannot be extrapolated to human equivalent dose (HED) by body weight. In
fact, an acceptable conversion dose from animal species to another should be normalized by
the body surface area (BSA) [3], and this suggests that the dose used in rats (1.5 g/kg/day)
in our study equals to 14.6 g/day in humans (Figure 1). Based on the bound form and free
form dietary glutamate intake estimated at 15 g/day [4] and the data on a single oral 10 g
MSG in healthy human [5], we are convinced that 14.6 g/day is not an unrealistic dose
in humans. As a highly polar material, one would anticipate the first-pass excretion and
sequestration of MSG. Scaling based on heart rate is a second commonly used technique
to compare doses. This method similarly suggests that the rat dose of MSG used is not an
unrealistic as a human comparison.
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the same authors reported the time dependent decline of phylum Verrucomicrobia over 4 
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tabolites after MSG consumption were observed in a classical kinetic experiment using 14C 
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that the observation in the 1971 work by Prosky and Odell of unchanged glutamate, lac-
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serum and reached the peak at 30 min and started to decline and finally disappeared after 
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Owen et al., 1978 also warrants a deeper discussion. In this study rats received MSG mixed 
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includes only limited hard data to support the conclusion. On the other hand, Table 2 

shows a higher incidence of focal mineralization beneath the epithelium of the renal pelvis 
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Second, the work by Insawang et al. is a cross-sectional human study that did not
evaluate the gut microbiota, but it remains one of very few epidemiological studies available
for daily MSG consumption [6], in which 2 g/day, about a half teaspoon/day, of MSG was
classified as a low dose of MSG consumption for Thailand. We agree with Peng et al. that
the effect of MSG on the human gut microbiota is limited by individual factors and should
be applicable only to the small number of participants consuming MSG at 2 g/day [7] and
should not be speculated for higher amounts of daily MSG intake [6]. Moreover, the same
authors reported the time dependent decline of phylum Verrucomicrobia over 4 weeks
of 2 g/day MSG consumption (Table 2) [7]. While we cannot accurately quantify the
impact of MSG on the gut microbiota, we are intrigued by the observation that Akkermansia
muciniphila within the phylum Verrucomicrobia accounts for 1–5% of the gut microbiota [8]
and plays a role in the gut barrier protection in obesity and diabetes [9–11], both associated
with MSG consumption in our previous works.

Third, we believe that MSG dietary glutamate is not involved in the biosynthesis of
TMA in the colon but may increase serum TMAO, the byproduct of TMA metabolism, as
reported in rats that received moderate and high salt intake [12] and in mice receiving a
high dose of MSG consumption corresponding to 17 g/day for a 70 kg man [13]. While this
evidence should not be overinterpreted, TMAO and TMA adversely impact the heart and
kidney health, and the possible role of high-dose prolonged MSG consumption should be
further investigated.

Fourth, we were probably unclear in describing the effects of high dose of dietary
glutamate on the liver metabolites and pointed to the 1971 work by Prosky and Odell.
While no major effects were observed in rat liver metabolites such as glutamate, lactate,
malate, and alpha-glycerophosphate, a significant change was demonstrated in aspartate.
We believe this supports our hypothesis [14]. On the same ground, changes in liver metabolites
after MSG consumption were observed in a classical kinetic experiment using 14 C tracing
and the data illustrated that the carbon-skeleton of MSG is converted to serum glucose,
lactate, aspartate and other amino acids [15]. We cannot rule out the possibility that
the observation in the 1971 work by Prosky and Odell of unchanged glutamate, lactate,
and malate may be due to the kinetic changes, since ingested glutamate increased in
serum and reached the peak at 30 min and started to decline and finally disappeared after
2 h. Although Stegink et al. in 1973 did not address liver tissue metabolites, it is well
documented that the hepatic gluconeogenesis is the major source of serum glucose.

Fifth, the argument that “long-term toxicological data at doses of up to 4% in the diet
for up to 2 years show no adverse effects of MSG/glutamate on every organ” based on
Owen et al., 1978 also warrants a deeper discussion. In this study rats received MSG mixed
with diet in different concentration (1, 2, 4 g%, w/w) for 104 weeks and the manuscript
includes only limited hard data to support the conclusion. On the other hand, Table 2
shows a higher incidence of focal mineralization beneath the epithelium of the renal pelvis
in the 4 g% MSG (male, 15/27; female, 29/32) compared to controls (male, 0/8; female,
3/8) at 104 weeks’ timepoint [16]. The same group investigated the effects of MSG on
the fitness of dogs based on body weight, behavior, ECG, ophthalmology, hematology,
blood chemistry and organ weight by mixing the MSG in their diet (2.5, 5, 10 g%, w/w) for
2 years [17]. Because limited data and no figures are available (except for the conclusion
in the text mentioning no obvious abnormal findings), we can only comment on the data
from Table 1 in Owen et al., 1978 [17]. Based on the data at 26 weeks, the 24 h urine volume
of MSG-treated animals was relatively higher compared to controls and started to decline
over time with exposure, especially in the 10% MSG group (Figure 2), thus suggesting that
10% MSG used for 2 years may indeed have an effect on kidney function.
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In conclusion, we are again thankful for the very insightful comments that allowed 

stimulated discussion on data extending from the origins of this MSG study and possibly 

added some helpful insight to the arguments. We remain convinced that, albeit human 

data are still awaited, low-dose MSG consumption may alter the gut barrier protective 

bacteria and high dose with long-term MSG consumption should be re-evaluated for the 

safety, especially when there is a high risk for kidney disease.  
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Figure 2. Urine output and sodium excretion in dogs fed with 10 g% MSG for 2 years compared to
the controls, modified from Owen et al., 1978 [17]; (A) urine output (B) sodium excretion in male
compared to control groups (n = 5, each), (C) urine output (D) sodium excretion in female compared
to control groups (n = 5, each).

In conclusion, we are again thankful for the very insightful comments that allowed
stimulated discussion on data extending from the origins of this MSG study and possibly
added some helpful insight to the arguments. We remain convinced that, albeit human
data are still awaited, low-dose MSG consumption may alter the gut barrier protective
bacteria and high dose with long-term MSG consumption should be re-evaluated for the
safety, especially when there is a high risk for kidney disease.
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