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ABSTRACT OF THE DISSERTATION 

 

The Physiological Basis of BOLD Functional MRI 

 

by 

 

Valerie Ewing McClintock Griffeth 

 

Doctor of Philosophy in Bioengineering with a Specialization in Multi-Scale Biology 

 

University of California, San Diego, 2013 

 

Professor Gabriel Silva, Chair 
Professor Richard Buxton, Co-Chair 

 

 Functional magnetic resonance imaging (fMRI) is an exciting technology, and 

researchers have used it to give us beautiful maps of the brain performing a multitude of tasks. 

A non-invasive tool that can be safely applied in humans, fMRI also has the potential to go 

beyond a simple mapping tool by providing insight into the physiology underlying neural 

activity, particularly the cerebral metabolic rate of oxygen (CMRO2), which is an indicator of 

the underlying neural activity. The blood oxygenation level dependent (BOLD) signal is the 

main fMRI signal, but a major concern with BOLD is the inability to quantitatively relate it to 

underlying physiological changes. This is because the BOLD signal depends not only on 

oxygen metabolism changes but also on cerebral blood flow (CBF) and the baseline state of the 

brain. However by performing simultaneous measurements of CBF and BOLD in response to a 
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stimulus and also in response to inhaled CO2 for calibration, quantitative measurements of 

CMRO2 can be made using a simple mathematical model to relate the data. One measure 

commonly reported is the ratio of the CBF change to the CMRO2 change, commonly known as 

the CBF-CMRO2 coupling parameter, n. In this work, I explore the physiological basis of the 

BOLD signal in situ by developing a detailed biophysical model of the BOLD signal and 

optimizing the simple mathematical model used for data analysis. I also present a new heuristic 

model of the BOLD signal that suggests a new, straightforward “ratio” method for the analysis 

of combined BOLD and CBF measurements.  

I applied the optimized simple model to study the effects of caffeine on the 

physiological response of the brain to a visual stimulus and found that caffeine increases the 

absolute CMRO2 change to the same stimulus by 61% suggesting increased neuronal 

excitability. Using the detailed biophysical method, I also demonstrate that the ratio method 

accurately determines when CBF-CMRO2 coupling in response to a stimulus differs between 

two stimuli using only the measured BOLD and CBF signals. Finally I demonstrate a new 

method for BOLD calibration that is more reliable than the inhaled CO2 method.



  

 

1 

INTRODUCTION 

Importance of the problem: Accurately interpreting BOLD fMRI 

Functional magnetic resonance imaging (fMRI) has had wide ranging impact on 

modern science in fields as diverse as medicine, neuroscience, psychology, and economics. 

Extraordinary pictures of brain activity produced by this technique have provided 

neurosurgeons with the ability to avoid functionally important areas of the brain during 

operations to remove tumors [1] while also producing fascinating insights, such as the 

conclusion that the brain processes social pain in a similar manner as physical pain [2]. 

However use of fMRI has been limited to mapping neural activity, while wider application of 

the technique has been hindered by the inability to precisely quantify signal changes in a 

physiological manner. So while the scientific literature on fMRI using the blood oxygenation 

level-dependent (BOLD) signal is growing rapidly, there remain difficulties in interpreting this 

complex signal. For this reason, the full potential of fMRI as a probe of altered brain function in 

disorders or in response to drugs has not been realized. 

The problem of interpreting the BOLD response in fMRI studies  

A major concern with fMRI is the inability to quantitatively relate the BOLD signal to 

the underlying physiological changes. The BOLD signal results from changes in local 

deoxyhemoglobin content [3], and so depends on the relative changes in cerebral blood flow 

(CBF), cerebral blood volume (CBV) and the cerebral metabolic rate of oxygen (CMRO2), and 

on the baseline metabolic state. This complexity of the signal leads to a fundamental problem in 

interpreting the magnitude of the BOLD response: for example, what does it mean if the 

magnitude of the BOLD response in the visual cortex is unchanged after an intervention such as 

caffeine? Does this mean caffeine does not change the neurological response to a visual 
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stimulus or is it that the BOLD response does not detect the combined changes of CBF and 

CMRO2? Because of this complexity, BOLD fMRI has had limited clinical applications to date, 

confined instead to mapping where CBF changes. While the complex sensitivity of the BOLD 

signal to CBF and CMRO2 creates difficulty in interpretation, it also offers the possibility of 

calculating changes in CMRO2 from combined BOLD and CBF measurements. This 

quantitative fMRI approach offers the potential to broaden fMRI from a mapping tool into a 

true probe of brain function in health and disease.  

Improving scientific knowledge: Significance of CMRO2  

Using changes in the BOLD signal as a gauge of changes in neural activity has often 

been proposed, but this correlation is not straightforward. Similarly one cannot simply interpret 

the BOLD response as a reflection of CBF, because it is strongly modulated by the CMRO2 

response. An additional complication is that different aspects of neural activity may separately 

drive changes in CBF and CMRO2. Still, fluctuations in CMRO2 likely provide a much more 

accurate reflection of neural activity than changes in CBF or the BOLD signal alone since 

aerobic metabolism of glucose is the primary metabolic fuel for energy production in the human 

brain [4]. Recent research has shown that changes in CMRO2 are expected to reflect the 

underlying energy requirement of evoked neural activity [5], which is primarily the energy cost 

of pumping ions against their gradient at neuronal synapses [6,7]. The ability to accurately and 

non-invasively measure CMRO2 is of importance as changes in cerebral metabolism have been 

associated with many common illnesses such as stroke, Alzheimer’s Disease, Parkinson’s 

disease, schizophrenia [8,9], depression [10], obsessive compulsive disorder [11], bipolar 

disorder [12,13], and alcohol abuse [14]. Therefore by improving our ability to non-invasively 

determine CMRO2 dynamics, we may also unlock the ability to greatly expand our knowledge 

of these diseases and our ability to treat them.  
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A new research paradigm: Quantitative fMRI 

In most fMRI experiments, the BOLD signal is not absolutely quantifiable and is 

relative to the baseline state of the brain. This creates difficulty when comparing the BOLD 

signal between conditions in which the baseline state changes, which may occur as the result of 

disease [15] or due to administration of a drug such as caffeine [16,17] or acetazolamide [18]. 

The relative and complex nature of the BOLD signal has limited the application of this 

technique to qualitative mapping of changes in blood oxygenation, while determining how 

neural activity changes between different conditions has been much more difficult to achieve 

reliably. The dual-echo spiral arterial spin labeling (ASL) pulse sequence [19] quantifies the 

BOLD signal by allowing direct measurement of the absolute transverse relaxation rate (R2
*), 

which is the physical parameter underlying the BOLD effect. Simultaneously, this pulse 

sequence also provides absolute measurements of CBF thereby permitting examination of 

changes in both the baseline state and evoked responses. By combining these simultaneous 

measurements of BOLD and CBF, the calibrated-BOLD experiment permits calculation of 

CMRO2 and quantitative comparisons of activation changes. The utility of this approach to 

studies of drugs and disease has been shown previously [16,18,20]. Here we will further the 

applications of quantitative BOLD fMRI through detailed modeling of the BOLD signal, by 

proposing new acquisition methods and analysis techniques, and finally by applying these 

advances to studies on the effects of caffeine and simple versus complex visual stimuli on the 

coupling of CBF and CMRO2. 

Conceptual changes: Tools for Quantitative fMRI 

The sensitivity of the BOLD signal to CBF, CBV, and CMRO2 creates some difficulty 

in interpreting the signal, but it also offers the possibility of estimating changes in CMRO2 

when measurements of BOLD and CBF are combined. The calibrated-BOLD approach 
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proposed by Davis et al. [21] does just this with the goal of estimating the CMRO2 change 

during brain activation; it combines measurements of BOLD and CBF responses to activation 

and hypercapnia while approximating CBV from CBF by a power-law relationship [22]. Yet the 

Davis model has been routinely criticized as being oversimplified.  

Results summary 

In my first three years of graduate work I developed a detailed biophysical model of the 

BOLD response (DBM) to address criticisms of the Davis model, examine how inaccurate this 

simple model could be under various conditions, and suggest possible improvements in order to 

make calculations of CMRO2 changes more accurate. Although we found that in most cases the 

Davis model is quite accurate, we were able to make minor improvements by optimizing the 

two associated parameters, α and β [17]. This change improved the ability of the Davis model to 

estimate changes in CMRO2 while maintaining the same mathematical form of the model. 

These refinements had little impact in typical regions of CBF-CMRO2 coupling, but significant 

impact on CMRO2 estimates associated with when changes in CBF and CMRO2 occur in 

opposite directions.  

I used this improved Davis model to analyze the effects of caffeine on the BOLD 

response. Although the BOLD response to a visual stimulus was not significantly altered by 

caffeine, the more detailed measurements with the combined ASL/BOLD acquisition showed 

that there were large underlying changes in both the baseline state and in the CMRO2 response 

to the stimulus, but that these factors tended to cancel, resulting in no change in the BOLD 

response [17]. In fact the baseline shift in physiology due to caffeine involved a decrease in 

CBF and an increase in CMRO2. This suggests that these methodological improvements will be 

essential in expanding calibrated BOLD to the study of drugs and diseases in which the 

coupling of CBF and CMRO2 may not be typical. 
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Using the detailed BOLD model, I have also developed a heuristic model of the BOLD 

response [23]. While this model performs as well as the Davis model when applied to 

calibrated-fMRI data, the real advantage of this model is that it provides a physiological basis 

for the ratio method, which is an approach for determining whether the neurophysiological 

response to two stimuli within the same ROI changes by comparing only measured BOLD and 

CBF signals. This approach is advantageous, because it does not require a separate experiment 

in order to determine a calibration parameter [23].  

I used this method to examine whether the neurophysiological response to a flickering 

checkerboard differs from the response to a more naturalistic and engaging stimulus such as 

brief movie clips in primary visual cortex. I found that while the coupling of blood flow and 

oxygen metabolism does not change between the stimulus types, the movie stimulus does 

provoke a more variable response when compared to the baseline state. I was the principal 

investigator and author on the projects thus far discussed. 

The DBM of the BOLD response has permitted further examination of the calibrated 

BOLD fMRI methodology. Currently one of two approaches is most commonly used to 

calculate the calibration parameter necessary to determine changes in the CMRO2 stimulus 

response from combined BOLD and CBF data: hypercapnia or hyperoxia respiratory challenge. 

In two recent publications, the limitations of these two approaches were examined and a new 

approach using the reversible transverse relaxation rate (R2') was proposed [24,25]. The results 

from the simulation study indicates that the new R2' calibration method works reasonably well 

[24]. Meanwhile the hyperoxia approach to calibration is unreliable, because hematocrit and 

baseline oxygen extraction fraction must be assumed, but variability in these parameters has a 

significant effect on the measurement. Hypercapnia calibration is the most reliable method 
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particularly when the venous blood volume change with activation is unknown. For these two 

manuscripts I was a supporting investigator and author. 

Further examination of the hyperoxia respiratory challenge using the DBM shows that 

rather than being a reliable measurement of the calibration parameter, hyperoxia challenge is in 

fact a good way to measure changes in venous cerebral blood volume (CBVv) and more 

specifically deoxyhemoglobin containing blood volume [26]. A previous analysis technique to 

relate BOLD signal changes to CBVv based on dynamic contrast agent experiments had 

significant uncertainty, but in a new analysis we found a direct relationship between the BOLD 

signal change and CBVv. For this manuscript I was a supporting investigator and author. 

In an additional application of the DBM, we recently developed a novel method for 

improving dynamic measurements of CBF and CMRO2 [27]. This technique makes it possible 

to test for changes in blood flow and oxygen metabolism coupling when the stimulus is 

unknown. Previous measurements of this coupling have relied on block design experiments in 

which measurements can be repeated then averaged to improve precision and decrease signal 

noise. This approach instead improves CBF measurement precision using the relationship 

between BOLD and CBF and information contained in simultaneously acquired BOLD and 

ASL signals in a method termed BOLD Constrained Perfusion (BCP) estimation. For this 

manuscript I was a supporting investigator and author. 

In total this work improves our understanding of fMRI and of the BOLD signal, which 

results from the complex interaction of the baseline brain state with changes in CBF, CBV and 

CMRO2. Notably a major limitation of measuring the BOLD signal alone is that the data is 

inherently qualitative, but by combining with additional measurements of CBF and the 
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calibration parameter we can quantitatively measure changes in CMRO2 and the coupling of 

blood flow and oxygen metabolism. 
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A theoretical framework for estimating cerebral oxygen metabolism changes using
the calibrated-BOLD method: Modeling the effects of blood volume distribution,
hematocrit, oxygen extraction fraction, and tissue signal properties on the
BOLD signal
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Calibrated blood oxygenation level dependent (BOLD) imaging, a technique used to measure changes in
cerebral O2 metabolism, depends on an accurate model of how the BOLD signal is affected by the mismatch
between changes in cerebral blood flow (CBF) and cerebral metabolic rate of O2 (CMRO2). However, other
factors such as the cerebral blood volume (CBV) distribution at rest and with activation also affect the BOLD
signal. The Davis model originally proposed for calibrated BOLD studies (Davis et al., 1998) is widely used
because of its simplicity, but it assumes CBV changes are uniformly distributed across vascular compartments,
neglects intravascular signal changes, and ignores blood-tissue signal exchange effects as CBV increases and
supplants tissue volume. More recent studies suggest that venous CBV changes are smaller than arterial
changes, and that intravascular signal changes and CBV exchange effects can bias estimated CMRO2. In this
paper, recent experimental results for the relationship between deoxyhemoglobin and BOLD signal changes
are integrated in order to simulate the BOLD signal in detail by expanding a previous model to include a tissue
compartment and three blood compartments rather than only the venous blood compartment. The simulated
data were then used to test the accuracy of the Davis model of calibrated BOLD, demonstrating that the errors
in estimated CMRO2 responses across the typical CBF–CMRO2 coupling range are modest despite the
simplicity of the assumptions underlying the original derivation of the model. Nevertheless, the accuracy of
the model can be improved by abandoning the original physical meaning of the two parameters α and β and
treating them as adjustable parameters that capture several physical effects. For a 3 Tesla field and a dominant
arterial volume change with activation, the accuracy of the Davis model is improved with new values of
α=0.14 and β=0.91.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Functional magnetic resonance imaging (fMRI) is widely used for
mapping spatial and temporal patterns of brain activity. The most
common measurement is the blood oxygenation level dependent
(BOLD) signal, which results from changes in local deoxyhemoglobin
content (Ogawaet al., 1993).When thebrain is activated, anunexpected

physiological phenomenon occurs: local cerebral blood flow (CBF)
increases much more than the cerebral metabolic rate of oxygen
(CMRO2) (Fox and Raichle, 1986), decreasing both local oxygen
extraction fraction and local deoxyhemoglobin content. Deoxyhemo-
globin is paramagnetic and createsmagneticfielddistortionswithin and
around blood vessels, thereby decreasing theMR signal. Thus decreased
blood deoxyhemoglobin content results in the basic BOLD effect of
increased MR signal with neural activation. However, interpreting
relative levels of BOLD signal change in terms of neural activity is
difficult due to the BOLD signal's complex dependence on changes in
cerebral blood volume (CBV) in addition to CBF and CMRO2. Although
this sensitivity of the BOLD signal to multiple factors creates some
difficulty in interpreting the signal, it also offers the possibility of
estimating changes in CMRO2 when BOLD and CBF measurements are
combined.

The calibrated-BOLD approach proposed by Davis et al. (1998) does
just this; it combines measurements of CBF and BOLD responses to

NeuroImage 58 (2011) 198–212

Abbreviations: BOLD, (blood oxygenation level dependent); CBF, (cerebral blood
flow); CMRO2, (cerebral metabolic rate of oxygen); CBV, (cerebral blood volume); fMRI,
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neural activation and hypercapnia stimulation with the goal of
estimating the CMRO2 change during brain activation. Changes in O2

metabolism are important as they are expected to reflect the underlying
energy requirement of evoked neural activity (Lin et al., 2010). This
multimodal imaging approach combining BOLD and CBFmeasurements
requires a theoretical framework that accurately describes how the
BOLD signal depends on changes in CBF, CMRO2 and CBV. The Davis
model is onesuch framework andhas beenused innearly all subsequent
applications of calibrated BOLD. As originally derived, this nonlinear
model essentially describes the extravascular signal change with the
assumption that it depends on both the change in venous oxygenation
and the change in venous CBV. These changes in turn are related to
alterations in CBF and CMRO2 in an equation involving two parameters,
α and β. The parameter βwas originally meant to describe a nonlinear
MR signal dependence on venous oxygenation, reflecting the idea that
deoxyhemoglobin has a weaker effect on the signal change in the
smallest vessels compared to larger veins because of the effects of
diffusion (Ogawa et al., 1993). Similarly, the parameter αwasmeant to
be the exponent in a power law relationship between blood flow and
venous blood volume. Finally, there is an overall scaling parameter M,
typically determined by a separate hypercapnia experiment, that
depends on the amount of deoxyhemoglobin present in the baseline
state and details of the image acquisition. The calibration step with
hypercapnia uses the same model to determine M, and requires two
assumptions: hypercapnia changes CBF but not CMRO2 (Chen and Pike,
2010; Jones et al., 2005; Sicard and Duong, 2005) and CBV has the same
dependence on CBF in the activation and hypercapnia experiments.

However, the Davis model is potentially oversimplified: it only
considers extravascular signal changes and leaves out intravascular
contributions to the BOLD signal (Boxerman et al., 1995); it neglects the
possibility that changes in deoxyhemoglobin containing CBV (capillary
and venous) may be proportionally smaller than the arterial CBV
changes (Chen and Pike, 2009a; Hillman et al., 2007; Kim et al., 2007;
Kim and Kim, 2006); and volume exchange effects were neglected,
ignoring the possibility that differences in the intrinsic signal between
blood and tissue may change the overall signal upon neural activation
(Buxton et al., 2004; Leontiev and Buxton, 2007; Obata et al., 2004). To
clarify theassumptions involved,we retainα as aparameter in theDavis
model, but define the exponent representing the relationship between
CBV and CBF as ϕ. The original assumption setting α=ϕ=0.38 based
on experiments in non-human primates (Grubb et al., 1974) assumes
that CBV changes are proportionally equal for all blood compartments.
The secondparameterwas assumed to beβ=1.5, based onMonte Carlo
simulations of only the extravascular signal dependence on deoxyhe-
moglobin at 1.5 T (Davis et al., 1998).

Previous models of the BOLD effect have sought to address these
deficiencies. Buxton et al. (1998),with corrections and improvements by
Obata et al. (2004), incorporated intravascular signal changes and
volume exchange effects by modeling the BOLD signal change as a
volume-weighted sum of signal from two compartments: intravascular
(venous) andextravascular.More recentmodels havedirectly addressed
the issue of relating CBV changes to CBF by incorporating direct
measurements of CBV in calculating CMRO2 (Donahue et al., 2009; Lin
et al., 2008; Lu et al., 2004). These studies used the VASO technique to
measure changes in total CBV, but this approach requires two additional
assumptions: (1) an absolute baseline CBV value must be assumed to
derive the fractional change in CBV necessary for use in theDavismodel,
and (2) the venousCBV change is assumed to be proportional to the total
CBV change measured with VASO. Moving beyond steady-state
modeling of BOLD, other approaches have sought to incorporate
transient dynamics of CBV (Kim and Kim, 2010b), deoxyhemoglobin
(Mandeville et al., 1999), and CMRO2 (Buxton, 2010; Hyder et al., 2010)
or explain the coupling and uncoupling of CBF and CMRO2 (Friston et al.,
2000; Zheng et al., 2010) that underlies the BOLD signal.

The focus of this work was to model the steady-state BOLD signal
and examine how it can be combined with measurements of CBF in

order to calculate CMRO2 more accurately. To do so, we followed the
approach taken by Uludag et al. (2009) in which the Obata–Buxton
model (Buxton et al., 1998; Obata et al., 2004) was expanded to not
only include intravascular signal changes but also volume exchange
effects. We did not linearize the model, because we were concerned
that intravascular signal changes are actually quite large and would
therefore violate the linearization assumption. Based on the knowl-
edge that the BOLD signal is primarily a result of changes in the local
deoxyhemoglobin content, we modeled the BOLD response as the
volume-weighted sum of signals from four compartments: an
extravascular tissue compartment and three blood compartments
separated into arteries, capillaries and veins to allow for differences in
the blood volume distribution between the three blood compart-
ments at baseline (ωa,c,v) and the fractional changes with activation
(ϕa,c,v). This detailed analytic steady-state BOLD prediction model
(the “detailed model”) allows for arbitrary changes in CBF and CMRO2

as well as arbitrary coupling of CBV and CBF. We do not explicitly
examine transient aspects of the BOLD signal, and instead focus on
approximate steady-state conditions, corresponding to typical cali-
brated BOLD applications using block design stimulus presentations.
Furthermore, we make no assumptions about the relationship
between CBF and CMRO2 responses. Instead, CBF and CMRO2 are
varied independently allowing examination of the full range of BOLD
effects. Finally within our model, we include the ability to alter
hematocrit (Hct), baseline O2 extraction fraction (OEF0), echo time
(TE), the intrinsic intravascular to extravascular signal ratio (λ), the
intrinsic extravascular signal decay rate (R2E* ), and arterial O2

saturation (SAO2) in order to more accurately model the BOLD effect
and increase our understanding of the relationship between BOLD,
CBF and CMRO2.

We addressed the following questions using the detailed model:

1. By allowing α and β to be free parameters, can the Davis model be
optimized to improve its performance in calculating changes in
oxygen metabolism?

2. How large are the errors in oxygen metabolism calculations
associated with using the Davis model (with either the original
or with optimized values for the parametersα and β), and do these
errors vary for different coupling ratios of CBF and CMRO2 changes?

3. How sensitive are CMRO2 calculations to variations of the
physiological state, particularly the blood volume distribution at
baseline and the balance of arterial and venous CBV changes with
activation?

4. If the assumptions underlying the hypercapnia calibration exper-
iment (no effect on CMRO2 and the same relationship between CBF
and CBV as during neural activation) are incorrect, how will this
impact calculations using the Davis model?

Our primary finding is that despite the oversimplifications of the
Davis model, the same mathematical form of the Davis model with
corrections to α and β adequately captures the behavior of the much
more complex physiology described by the detailed model. The classic
Davis model is reasonably accurate for most activation experiments in
which both CBF and CMRO2 increase in parallel, without optimization of
α andβprovided thatM is accuratelymeasured.However, studies of the
response to drugs such as caffeine have shown more divergent effects,
lowering CBF and possibly increasing CMRO2, which leads to inaccura-
cies in calculations by the original Davis model. Parameter optimization
improves the accuracy of the Davis model across the full range of
potential CBF and CMRO2 responses. By permitting α and β to be free
parameters, though, their physical interpretation becomes complicated
in that they no longer correspond to their original meaning. While
variation of many of the physiological parameters has a strong effect on
the magnitude of the BOLD response, this effect is adequately captured
in the scaling parameter M, so that Davis model estimates of CMRO2

change remain relatively accurate evenwith fixedα and β. The primary
physiological parameters for which this is not true are related to CBV,
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both the baseline distribution between compartments and the balance
between arterial and venous changes. Additional errors due to
assumptions about the hypercapnia calibration are largest when the
CBF change is much larger than the CMRO2 change. These results
emphasize the necessity of accurately determining how CBV distributes
with activation and also the importance of measuring M values
accurately for each subject. In this paper, our focus is on the Davis
model, and its ability to calculate CMRO2 changes from BOLD and CBF
data, because the Davis model is particularly well-suited for the
calibrated BOLD experiment. In future studies, we will examine the
effects of hypoxia and the accuracy of other models in predicting the
BOLD signal.

Theory

TheDavismodel for calibrated-BOLD is presented and the associated
assumptions are analyzed. A detailed four-compartment model for the
BOLD response is developed and implemented using Matlab. Note that
upper casevariables describe absolutequantities (e.g., F is CBF, the blood
inflow to the arteriolar compartment in units of ml blood/ml tissue-sec,
and Va is the arteriolar blood volume fraction in units of ml blood/ml
tissue), while lower case variables represent the same quantity
normalized to its baseline value (e.g., f and va are dimensionless and
equal to 1 at rest). Similarly, Δ denotes an absolute change while δ
specifies a percent change from the baseline state.

The Davis model

With this nomenclature in mind, the Davis model relates f and
normalized CMRO2, r, to the percent change in the BOLD signal (δS)
using the following equation:

δS = M 1−fα
r
f

! "β# $
ð1Þ

As originally derived, the mathematical form in the brackets
represents the idea that the signal is modulated both by changes in the
volume of blood containing deoxyhemoglobin (modeled with the first
term in f relating CBV to CBF by a power law) and also by the magnetic
susceptibility of the blood (modeled by the second term in r and f).

The r/f term models the susceptibility effect due to a change of
deoxyhemoglobin concentration in the venous blood. The parameter β
was introduced based on Monte Carlo simulations of water molecule
diffusion aroundmagnetized vessels to describehow the signal depends
on the susceptibility. This dependence is expected to differ between
large and small vessels because of the effects of diffusion on the
extravascular signal change near the smaller vessels. The typical value
used is β=1.5 (Davis et al., 1998), although it has been argued that the
value should be reduced at higher magnetic field strengths (Boxerman
et al., 1995; Chiarelli et al., 2007b; Ogawa et al., 1993).

The thirdparameter,M, essentially lumps together a number of effects
that modulate the magnitude of the BOLD response, including aspects of
local brain physiology and image acquisition parameters. In particular,M
varieswith the amount of deoxyhemoglobin present in the baseline state.
It is typically calculated from an additional experiment using combined
BOLD and CBF measurements obtained in response to hypercapnic
stimulation. This assumes there is no change in CMRO2 (r=1) and that
CBVwith activation (AC) andwith hypercapnia (HC) changes in the same
way in response to CBF changes (ϕHC=ϕAC) as noted above.

Development of a detailed model of the BOLD response

The calibrated BOLDmethodology depends on an accurate model of
how the BOLD signal is related to the mismatch between CBF and
CMRO2, which is often expressed as the coupling parameter, n, defined
as the ratio of the fractional changes (e.g., a 50% increase in CBF

accompanied by a 20% increase in CMRO2would be n=2.5). Themodel
presented here, following the approach by Uludag et al. (2009),
separates the signal into four compartments: one extravascular and
three intravascular. Previous models have included multiple compart-
ments to varying degrees (Blockley et al., 2009; Donahue et al., 2009;
Obata et al., 2004). The Davis model considers only the extravascular
compartment, neglects blood volume exchange effects, and assumes
CBV changes are uniformly distributed across vascular compartments.
The Obata model (Obata et al., 2004) explicitly includes both
intravascular and extravascular components, however it only includes
exchange effects with venous CBV thereby neglecting significant
changes occurring in the arterial vasculature. More recent models
examined effects of both arterial and venous compartments on the
BOLD signal, but neglected effects of the capillary compartment
(Donahue et al., 2009; Lin et al., 2008). These models also do not
account for differing dependencies of arterial and venous CBV on CBF,
variable baseline distribution of CBV, differences in the intravascular to
extravascular proton density, and baseline extravascular signal decay
rate constant (R2E* ).

The basic signal equation for the detailed model is derived in the
Appendix with the result shown in Eqs. (2) and (3):

δS = H 1−VIð Þe−TE⋅ΔR#
2E + εAVAe

−TE⋅ΔR#
2A + εCVCe

−TE⋅ΔR#
2C + εVVVe

−TE⋅ΔR#
2V

h i
−1

ð2Þ

where

H = 1= 1−VI;0 + εAVA;0 + εCVC;0 + εVVV ;0

% &
ð3Þ

Here, V denotes the volume fractions of the individual compartments
(E=extravascular, I= intravascular, A=arterial, C=capillary, andV=
venous). Baseline is denoted by the subscript “0” (V0). Theparameter ε is
the signal ratio at baseline of an intravascular volume to extravascular
volume (e.g. εv is the signal ratio in the experiment between equal
volumes of venous blood and extravascular tissue). TE is the echo time of
theMRmeasurement, andΔR#

2 is the change in theMR signal relaxation
rate with the stimulus for each of the four compartments, three
intravascular and one extravascular.

Volume fractions were determined by examining a range of total
baseline intravascular volume fractions (VI,0) and fractional distribu-
tions (ω) as shown in Table 1. Changes in total CBV were modeled as in
Grubb et al. (1974) by assuming a power law relationship to CBF with
exponent ϕ. Distributions of ΔCBV to the compartments containing
deoxyhemoglobinwere calculated separately using different exponents
(ϕc and ϕv) for capillary and venousΔCBV respectively. Ranges of ϕ and
ϕvwere examinedwhileϕcwas assumed to be half ofϕv reflecting small
changes in capillary CBV (Stefanovic et al., 2008). Arterial ΔCBV was
calculated as the remainder of total ΔCBV after subtraction of capillary
and venous ΔCBV. Next, a range of hemoglobin saturations (SO2) was
studied for each vascular compartment: venous O2 saturation (SVO2)
was calculated from SAO2 across a range of f, r, and OEF0; capillary O2

saturation (SCO2) was calculated as a weighted sum of SAO2 and SVO2.
Values of R2* for the blood and tissue compartments were calculated
based on relationships from the literature,which incorporate the effects
of Hct, SO2, baseline OEF and CBF. Eqs. (2) and (3) thereby allow us to
simulate the BOLD signal across a wide range of physiological states.

Simulations and results

Following the outline presented in Fig. 1, we determined a set of
typical physiological values for the detailedmodel inputs (Table 1), and
used this simulation to optimize the Davis model parameters α and β.
Next, we used the detailed model to simulate changes to the BOLD
activation and hypercapnia responses as the physiological parameters
vary. The focus of the simulations was to test the accuracy of CMRO2
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estimates from the calibrated BOLD experiment using the Davis model,
although the effect of different physiological parameters (e.g., hemat-
ocrit) on the BOLD response is interesting in itself. Here, we are
essentially asking the question of whether the simple calibration step
accurately captures the variability of the BOLD response due to variation
in particular physiological parameters.

Producing simulated BOLD data for a standard subject

For imaging parameters, we assumed a 3 T systemwith TE=32 ms.
For the standard subject, the total intravascular volume fraction at rest
was assumed to be VI,0=0.05 (Roland et al., 1987). The fractional
distribution of CBV at baseline (ω) between arteries, capillaries and
veinswas assumed to beωa=0.2,ωc=0.4 andωv=0.4 consistentwith
intra-cortical measurements of CBV distribution (Weber et al., 2008).
The exponent relating f to total vwas assumed to beϕ=0.38 (f=vϕ) as
in Grubb et al. (1974). The venous CBV was assumed to change by a
smaller fraction than the total CBV change, with the exponent ϕv=0.2
relatingnormalized venous volume (vv) to f (Chen and Pike, 2009a). The
capillary volume change exponent was assumed to be half of ϕv

(ϕv=0.1) (Stefanovic et al., 2008). Arterial∆CBVwas then calculated to
be the remainder of total ΔCBV resulting in an effective ϕa=1.1 at
f=1.5.

Venous oxygenation at baseline was determined from Eq. (A7)
(Appendix) assuming SAO2=98% (Schutz, 2001) and OEF0=0.4

(Marchal et al., 1992). Activation SVO2 was determined across a range
of f and r using Eqs. (A6) and (A7) (Appendix). Capillary oxygen
saturationwas calculated from SAO2 and SVO2 usingEq. (A8)withκ=0.4
effectively giving a slightly greater weight to venous blood (Tsai et al.,
2003). Hct was set to 0.44, and the baseline tissue relaxation rate
constant (R2E* ) was assumed to be 25.1 s−1 based on previous 3 T
studies from our group (Perthen et al., 2008). Changes in R2* were
calculated using Eqs. (A9) and (A10). Table 1 includes the full list of
standard parameter values and resulting intermediaries such as values
of R2* associated with each compartment.

The intravascular to extravascular intrinsic signal ratio was experi-
mentally determined using a GE Signa Excite 3-T whole-body system
with a body transmit coil and an 8-channel receive-only head coil. Two
subjects were imaged using a high-resolution flow-compensated
spoiled-GRASS protocol with TR/TE/α=4000ms/5.4 ms/10°. Images
were viewed using AFNI (Cox, 1996). Intravascular measurements were
taken from the sagittal sinus while extravascular measurements were
taken from the visual cortex graymatter. The spin density ratio was then
calculated from the signal ratio to be 1.15. This fraction allows calculation
of the intrinsic intravascular to extravascular signal ratio using Eq. (A2)
(Appendix). For arteries, capillaries and veins, this resulted in intrinsic
signal ratios of εA=1.30, εC=1.02, and εV=0.50 (Table 1). With these
values, volumeexchangeeffectswill add to theBOLDresponse for arterial
changes, subtract from the BOLD response for venous changes, and have
little effect for capillary changes.

Table 1
Parameters defining the standard physiology. Values without a marker are assumed. Values marked with † are calculated using the assumed values in the detailed model at
δCBF=50% and δCMRO2=20%.

Variable Standard value (range tested) Description

TE 32 ms (20–40 ms) Echo time
VI,0 0.05 (0.01–0.15) Total blood volume fraction at baseline (Roland et al., 1987)
ωa 0.2 Arterial fraction of baseline total blood volume (Weber et al., 2008)
ωc 0.4 (0.6–0.2) Capillary fraction of baseline total blood volume (Weber et al., 2008)
ωv 0.4 (0.2–0.6) Venous fraction of baseline total blood volume (Weber et al., 2008)
ϕ 0.38 (0.3–0.65) Grubb's constant relating CBF to total CBV (Grubb et al., 1974)
ϕc 0.1 (0–0.33) Exponent relating CBF to capillary CBV (Stefanovic et al., 2008)
ϕv 0.2 (0–0.65) Exponent relating CBF to venous CBV (Chen and Pike, 2009a)
Va(t) 0.016 †Arterial blood volume with activation
Vc(t) 0.021 †Capillary blood volume with activation from Grubb relation and ϕc

Vv(t) 0.022 †Venous blood volume with activation from Grubb relation and ϕc

OEF0 0.4 (0.25–0.65) Resting oxygen extraction fraction (Marchal et al., 1992)
κ 0.4 Fraction of capillary blood considered to be “arterial” (Tsai et al., 2003)
SAO2 0.98 Arterial oxygen saturation (Schutz, 2001)
SCO2 0.74 †Capillary oxygen saturation at baseline (Eq. (A8))
SVO2 0.59 †Venous oxygen saturation at baseline (Eqs. (A6) and (A7))
Hct 0.44 (0.25–0.65) Resting hematocrit of arteries and vein (Gustard et al., 2003)
Hctc 0.33 (0.19–0.49) †Resting hematocrit of capillaries calculated from Hct (Sakai et al., 1985)
A⁎ 21.2 s−1 †Constant term in quadratic dependence of intravascular R2⁎ on Hct for arteries

and vein (Zhao et al., 2007)
AC
⁎ 19.7 s−1 †Constant term in quadratic dependence of intravascular R2⁎ on Hct for

capillaries (Zhao et al., 2007)
C⁎ 174.7 s−1 †Quadratic term in quadratic dependence of intravascular R2⁎ on Hct for arteries

and vein (Zhao et al., 2007)
CC⁎ 142.7 s−1 †Quadratic term in quadratic dependence of intravascular R2⁎ on Hct for

capillaries (Zhao et al., 2007)
R2A⁎ (0) 21.3 s−1 †Resting arterial rate of signal decay (Eq. (A5)) (Zhao et al., 2007)
R2C⁎ (0) 28.9 s−1 †Resting capillary rate of signal decay (Eq. (A5)) (Zhao et al., 2007)
R2V⁎ (0) 50.9 s−1 †Resting venous rate of signal decay (Eq. (A5)) (Zhao et al., 2007)
R2E⁎ (0) 25.1 s−1 Resting extravascular rate of signal decay (Perthen et al., 2008)
ΔR!

2A 0 s−1 †Change in arterial signal decay rate with activation (Eq. (A9))
ΔR!

2C −3.1 s−1 †Change in capillary signal decay rate with activation (Eq. (A9))
ΔR!

2V −10.2 s−1 †Change in venous signal decay rate with activation (Eq. (A9))
ΔR!

2E −0.4 s−1 †Change in extravascular signal decay rate (Eq. (A10): (Ogawa et al., 1993)
λ 1.15 (0.9–1.3) Intravascular to extravascular spin density ratio determined experimentally
εa 1.30 †Ratio of baseline intravascular arterial to extravascular signal (Eq. (A2))
εc 1.02 †Ratio of baseline intravascular capillary to extravascular signal (Eq. (A2))
εv 0.50 †Ratio of baseline intravascular venous to extravascular signal (Eq. (A2))
γ 2.68×108 Gyromagnetic ratio of protons
Δχ 2.64×10−7 Susceptibility of fully deoxygenated blood (Spees et al., 2001)
B0 3 T Magnetic field strength
SO2,off 0.95 Blood saturation for equal tissue–blood susceptibility (Spees et al., 2001)
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Optimization of the Davis model

Numerical simulations
For this standard set of parameters, the detailed 4-compartment

model was used to calculate the BOLD signal for arbitrary changes in
CBF (f) and CMRO2 (r) (Fig. 2a). In the current simulations, f was
varied from 0.7 to 1.8 and r was varied from 0.8 to 1.4. BOLD
hypercapnic calibration was simulated for f=1.6 and r=1 (marked
by ‘x’ on Fig. 2); this is a typical CBF change measured for 5% CO2

inhalation (Ances et al., 2009; Perthen et al., 2008). Optimization of α
and β of the Davismodelwas performed by normalizing the simulated
BOLD data to the simulated hypercapnic BOLD signal. The Davis model
equation was similarly normalized to this hypercapnia (subscript HC)
value of δSHC and fHC=1.6 thereby eliminating the scaling parameter,
M (Fig. 1d). Using the Matlab function fmincon, non-linear parameter
optimization of α and β was performed using this simulated and
normalized BOLD signal associated with the standard subject. Fitting
was performed across the entire δCBF–δCMRO2 plane thereby making
α and β insensitive to specific values and coupling ratios of blood flow
and oxygen metabolism.

Simulation results
The optimized values of α=0.14 and β=0.91 are designated the

“optimized”parameterswhile the original valuesofα=0.38andβ=1.5
are designated the “classic” parameters. The Davis models associated
with these parameters are similarly notated. The BOLD surfaces
predicted with the Davis model using the optimized and classic

parameter values are shown in Fig. 2b and c. The classic Davis model
predicts a modest systematic difference in the BOLD signal while the
optimized Davis model produces a signal nearly identical to that of the
detailedmodel.We also performed this optimization ofα andβ for large
ranges of the detailed model inputs: ϕv=0–0.65, ωv=0.2–0.6,
R2E* =15–45 s−1, λ=0.9–1.3, Hct=0.25–0.65, and OEF0=0.25–0.65
(Fig. 3). Of these physiologic variables, the best-fit value of α shows the
strongest dependence on ϕv (Fig. 3a) while β shows the strongest
dependence on ωv (Fig. 3b). The fitted α and β showed somewhat
weaker dependence on tissue properties andbaseline deoxyhemoglobin
content (Fig. 3c–f). Optimizedα is approximately linearly dependent on
these parameters. Simultaneously, β shows quadratic dependence on
baseline CBV distribution (ωv) and linear dependence on ϕv, the tissue
parameters (R2E* and λ), and the baseline deoxyhemoglobin content
parameters (Hct and OEF0). α and β are much less dependent on the
other inputs to the detailed model (see supplementary data, Fig. S1).

Error in δCMRO2 calculations associated with the Davis model α and β

Numerical simulations
Given the classic and optimized values for α and β, we then tested

the primary question related to the calibrated BOLD experiment: how
large are the errors in estimationof CMRO2 changewhenusing theDavis
model, and does this depend on the particular combination of CBF and
CMRO2 changes? For the second part of the question, we were
particularly interested in three combinations of CBF/CMRO2 coupling,
which we can characterize by the coupling ratio n: δCBF/δCMRO2. The

Fig. 1. Work flow diagram showing development and implementation of the detailed model. (a) A standard physiological set was defined including blood volume fractions,
hemoglobin content and saturation, tissue properties and signal acquisition parameters (Table 1). (b) Following the approach used by Uludag et al. (2009), a detailed four-
compartment model was developed (Appendix). (c) BOLD data were generated using this detailed model. (d) The BOLD signal simulated for the standard reference physiology was
normalized to the signal at fHC=1.6 and rHC=1.0 (δSHC). This is the simulated hypercapnia (HC) signal. The Davis model equation was similarly normalized in order to reduce the
number of free parameters from three including M down to two (α and β). (e) Non-linear parameter optimization was performed using the Matlab function fmincon. The BOLD
signal produced by the optimized Davis model is now shown. (f) By analyzing BOLD data generated using the detailed model, the efficacy of the Davis model was determined by its
ability to calculate CMRO2 changes accurately.
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first is in the region n=2.5 (δCBF=50%, δCMRO2=20%), correspond-
ing to activation results in a number of calibrated BOLD studies using the
classic Davis model (Perthen et al., 2008; Stefanovic et al., 2004). The
second is n=5 (δCBF=50%, δCMRO2=10%), a higher ratio that some
PET studies have found (Ito et al., 2005). The third was motivated by
studies of the effects of caffeine, which lowers CBF and raises CMRO2

(δCBF=−25%, δCMRO2=30%, n=−0.8) (Griffeth et al., 2011). In
these simulationswe assumed that hypercapnia changes only CBF, with
no effect on CMRO2. To simulate the calibrated BOLD experiment, M
values for both the classic andoptimizedDavismodelswere determined
using Eq. (1) and theBOLDresponse from thedetailedmodel at fHC=1.6
and rHC=1.0 (marked with an ‘x’ in Fig. 2a). This results in values of
M=11.1 and M=14.9 for the classic and optimized Davis models
respectfully. Using these values forM, The two Davis models were then
compared in their ability to accurately predict δCMRO2 from the
simulated BOLD and CBF data by comparing the percent error from
actual δCMRO2. Errors in δCMRO2 estimates by both models were
determined using Eq. (4):

ξ =
δCMROEstimated

2 −δCMRODetailed
2

δCMRODetailed
2

ð4Þ

Simulation results
Errors in estimated δCMRO2 are displayed across the δCBF–δCMRO2

plane in Fig. 4. Note that both δCMRO2 and ξ are percentages, although

δCMRO2 is the percent change in absolute CMRO2 while ξ is the percent
error relative to theactualpercentchange (e.g., if true δCMRO2 is 10%and
the estimated δCMRO2 is 15%, the percent error is ξ=50%). Errors for
specific combinations of δCBF and δCMRO2 are listed in Table 2. It is clear
that the classic Davis model using α=0.38 and β=1.5 systematically
underestimates δCMRO2 (Fig. 4a and Table 2, column 1). Along the
coupling parameter contours of n=2.5 and n=5, this underestimation
is close to −10%. Specifically for n=2.5 (δCBF=50% and
δCMRO2=20%), the classic Davis model underestimates δCMRO2 by
−9.8% such that it reports a change of 18.0%when it is actually 20%. Even
for a much larger value of the coupling parameter such as n=5.0
(δCBF=50% and δCMRO2=10%), the Davis model is only −6.9% in
error. Yet, the optimized model improves the accuracy of CMRO2

calculations. For δCBF=50% and δCMRO2=20%, the Davis model with
optimizedparameters predicts δCMRO2=19.7% (ξ=−1.3%)while for a
higher coupling of δCBF=50% and δCMRO2=10%, the optimizedmodel
returns δCMRO2=9.8% (ξ=−2.5%). For the region with decreased CBF
(−25%) but increased CMRO2 (30%) the error using the classic model
was ξ=−38.0% while with the optimized model it was reduced to
−1.2%.

Error in δCMRO2 calculations due to physiological variation

Numerical simulations
The previous simulations showed that the Davis model with

optimized α and β works well for estimating δCMRO2 for the
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Fig. 2. Simulated BOLD response using the three models (detailed, classic Davis and optimized Davis). Dashed lines correspond to δCBF=0% and δCMRO2=0%. Solid lines represent
the coupling parameters n=1.3, n=2.5, and n=5. The line for n=1.3 is approximately where the BOLD signal is 0. The ‘x’ marks the assumed response for an ideal hypercapnia
calibration experiment. (a) BOLD response simulated by the detailed model. (b) BOLD response simulated by the classic Davis model. The contours are similar, although there is a
very slight difference in the slope, and a general underestimation of the BOLD signal most apparent in the bottom right corner where flow is decreased and O2 metabolism is
increased. (c) BOLD response simulated by the optimized Davis model closely matches the simulation by the detailed model. (d) Normalized BOLD signals at n=2.5 for the three
models. Normalizing the BOLD signal to the simulated hypercapnia BOLD signal removes dependence on M in the Davis models and shows that the classic Davis model (green)
underestimates the BOLD signal. In contrast, the optimized Davis model (red) fits the simulated data from the detailed model (blue) very well.

203V.E.M. Griffeth, R.B. Buxton / NeuroImage 58 (2011) 198–212

 
Figure 1.2. Simulated BOLD response using the three models (detailed, classic Davis and optimized Davis). 
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physiological parameter set defined in Table 1. In practice there is likely
to be substantial variation of these parameters across subjects even for a
healthy population. As described in section 3.2, we found that the
optimal values ofα andβ do depend on these physiological parameters,
and in a typical experiment there will not be sufficient information
available to adjust the values ofα and β. The important question for the
calibrated BOLD method is then: if we adopt the values of α and β
optimized for our “best guess” at the underlying physiology (Table 1),
how large are the errors in the estimate of δCMRO2 if these physiological
parameters vary? To assess the errors in the estimation of δCMRO2 we
varied the value of each physiological parameter in the detailed model
and then simulated the calibrated BOLD experiment to measure
δCMRO2 with either the classic or optimized Davis models. The
physiological parameters were varied over the following ranges:
ϕv=0–0.65, ωv=0.2–0.6, R2E* =15–45 s−1, λ=0.9–1.3, Hct=0.25–
0.65,OEF0=0.25–0.65,VI,0 (0.01–0.1),ϕ (0.3–0.65), TE (20–40ms), and

λ (0.9–1.3). A range for ϕc (0–0.3)was also examined but found to have
little effect on calculations of δCMRO2. Therefore, ϕc was assumed to be
equal to half of ϕv consistent with small changes to capillary volume
during activation. Simulated hypercapnia calibration was repeated for
each variation in order to calculate M; note the classic value of M is
similar to what is typically calculated for experimental data using the
Davis model (Fig. 5). The impact of the physiological variations was
assessed for two scenarios of combined CBF and CMRO2 change: n=2.5
and n=−0.8 simulating the effects of caffeine. Both of these
combinations were analyzed with the two Davis models to determine
how accurate themodels' estimates of δCMRO2 would be, i.e. how close
to δCMRO2=20% or 30% (Table 2).

Simulation results
For n=2.5, varying ϕv in the range of 0–0.65 has the largest impact

onδCMRO2estimateswith theclassicmodel estimating δCMRO2=15.0–
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Fig. 3. Dependence of Davis model α and β on CBV distribution, tissue properties, and hemoglobin content and saturation. ‘x’marks the location defined by the standard parameter set
whereα=0.14andβ=0.91are thebest-fit values. Physiological inputs to thedetailedmodelwith thehighest impacton the calibratedBOLDexperimentwerevaried inpairs to determine
their effect on optimization of the Davis modelα and β. (a) CBV distribution at baseline (ωv) has only a small impact on optimization ofα while CBV distributionwith activation (ϕv) has
the biggest effect on optimizedα. The relationship between α and ϕv is mostly linear based on the spacing of contour lines especially for ϕvb0.4 andωvb0.4. (b) Variation inωv has the
largest effect on the optimizedβ. This relationship ismorenonlinear since the spacing of the contour lines grows asωv increases.ωv has amuchsmaller impactonω. (c–d)Tissueproperties
R2E* andλhave a smaller impact on optimization ofα andβ. The relationship between these tissue properties and theparameters appears to bemostly linear. (e–f)Hematocrit and baseline
oxygen extraction fraction are shown to have an even smaller effect on α and β.
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Figure 1.3. Dependence of Davis model α  and β  on CBV distribution, tissue properties, and hemoglobin content and saturation. 
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30.0% and the optimized model estimating δCMRO2=16.2–34.2%
(Fig. 6a). Variations in δCMRO2 calculations produced by Hct, ωv, and
R2E* were secondary, while the smallest impacts on δCMRO2 calculations
were produced by altering VI,0 and ϕ (see supplementary data, Table S1
for exact ranges). This was despite very large ranges of VI,0 (0.01 to 0.1
while literature values are typically about 0.05) and ϕ (0–0.65). At n=
−0.8,ϕv again had a significant influence. However, at this combination
of δCBF and δCMRO2, R2E* in the range of 15–45 s−1 produced the largest
variancewhileωv in the range 0.2–0.6 also had a sizeable effect (Fig. 6b).
Meanwhile, the impact ofλ andOEF0was greater than that ofHct and TE.
ϕ still had very little impact.

As it was determined that the venous CBV change (ϕv) had the
biggest impact on the accuracy of the Davis model, we more closely
examined how variations in ϕv affected the Davis model for the cases of
ϕv=0, 0.2, 0.38, and 0.65. Again, the hypercapnia experiment was
simulated using BOLD data from the detailed model to calculate M for
each case. We then analyzed the simulated BOLD data associated with
the standard subject across the δCBF–δCMRO2 plane for each value ofϕv

using the two Davis models. Using Eq. (4), we calculated the percent
error associatedwith eachpoint in the f–rplane (Fig. 7). As expected, the
optimized Davis model fits best at ϕv=0.2, but overestimates changes
in CMRO2 if ϕv=0.38 or 0.65, and underestimates changes in CMRO2

when ϕv=0. Although not shown, the classic Davis model fits the
simulated data for ϕv=0.38 somewhat better but is still not as accurate
as the optimized model at ϕv=0.2.

To address the finding by Lin et al. (2008) that ϕ=0.65 with
activation, we examined in more detail how this would affect δCMRO2

calculations.We repeated the process used to produce Fig. 7 for both the
classic and optimized Davis models but set ϕ=0.65 rather than
ϕ=0.38 and combined this with the same four values of ϕv. The images
forϕ=0.65arenot shown, since they arepractically identical to those in
Fig. 7 (ϕ=0.38). Thiswas expected due to theminimal impactϕ had on
δCMRO2 calculations as shown in Fig. 6. This suggests that the venous
volume change, rather than the overall volume change, is the key
physiological parameter that determines the accuracy of the Davis
model estimates of δCMRO2.

Potential error in δCMRO2 calculations associated with hypercapnia
calibration

Numerical simulations
The hypercapnia calibration process assumes that inhalation of

low levels of CO2 (typically ~5%) does not affect CMRO2 in the brain. In
calculations up to this point, we assumed our method of calibration
was accurate, but more recent experiments on hypercapnia calibra-
tion suggest that inhalation of 5% CO2 decreases CMRO2, with recent
estimates giving this decrease between−13% and−26% (Bolar et al.,
2010; Xu et al., 2011) for CBF changes of 55% and 32% respectively. To
simulate this, we calculated the hypercapnic BOLD signal from the
detailed model simulation for fHC=1.6 and rHC varied from 0.8 to 1.1,
but we calculated M from Eq. (1) assuming rHC=1. Additionally, the
dependence of CBV on CBF may differ between neural activation and
hypercapnia (Chen and Pike, 2010). To simulate this error, we took
the hypercapnic BOLD signal from the detailed model simulation for

Table 2
Error in δCMRO2 and n as calculated by the classic and optimized Davis models for the standard subject as defined in Table 1.While the optimized Davis model is best for all couplings
of δCBF and δCMRO2, the classic Davis model with the true value ofM also produces reasonable estimates of δCMRO2 around n=2.5 and n=5.0. Calculations using the classic Davis
model parameters with a biasedM (as might be determined from a hypercapnia calibration) are also given, and at n=2.5 this model is also quite accurate. However, the classic Davis
model with the biased M is not accurate for n=5.0 or n=−0.8. Even the classic model with the true M is not accurate for n=−0.8.

Classic α and β Optimized α and β Classic α and β

BiasedM (rHC=0.9)

Typical functional activation (fMRI): (n=2.5) δCMRO2=18.0% δCMRO2=19.7% δCMRO2=21.0%
δCBF=+50% ξ=−9.8% ξ=−1.3% ξ=5.1%
δCMRO2=+20% n=2.8 n=2.5 n=2.4

Typical functional activation (PET): (n=5.0) δCMRO2=9.3% δCMRO2=9.8% δCMRO2=13.9%
δCBF=+50% ξ=−6.9% ξ=−2.5% ξ=38.9%
δCMRO2=+10% n=5.4 n=5.1 n=3.6

Typical response to caffeine (fMRI): (n=−0.8) δCMRO2=18.6% δCMRO2=29.6% δCMRO2=12.7%
δCBF=−25% ξ=−38.0% ξ=−1.2% ξ=−57.7%
δCMRO2=+30% n=−1.3 n=−0.8 n=−2.0
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Fig. 4. Percent error (ξ) in δCMRO2 calculations using the classic and optimized Davis model parameter sets. (a) Using the classic Davis model, δCMRO2 is consistently
underestimated as indicated by the turquoise areas along the n=2.5 and n=5 coupling parameter lines. (b) The optimized parameters ofα=0.14 and β=0.91 producemuchmore
accurate estimates of δCMRO2 across the entire expanse examined. This is apparent from the green coloring across the majority of the δCBF–δCMRO2 plane corresponding to zero
error. Errors around δCMRO2=0 are artifacts of division by a small number.
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Table 1.2. Error in δCMRO2 and n as calculated by the class and optimized Davis models for the standard subject as defined in Table 1. 

Figure 1.4. Percent error (ξ) in δCMRO2 calculations using the class and optimized Davis model parameter sets. 
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fHC=1.6 and rHC=1.0 but varied ϕvHC from 0 to 0.4. Again, we
analyzed this signal using Eq. (1) to calculate M but still using
α=0.14 and β=0.91, which were optimized for ϕvHC=0.2.

Simulation results
For the standard subject, the trueM for the classic Davis model was

determined to be 11.1%, but if hypercapnia calibration decreases CMRO2

by −10% (rHC=0.9) the scaling parameter would be overestimated
(M=13.3%). We repeated the calculation of δCMRO2 for this biased M
using the classicDavismodel at the three values ofn (2.5, 5.0 and−0.8).
We found the error in δCMRO2 to be remarkably small at n=2.5 and
δCMRO2=20% (21.0%, ξ=5.1%) such that the systematic error in M
tends to correct systematic error in the classic α and β. At n=5.0 and

δCMRO2=10%, this is not the case. This value ofM leads to large error in
δCMRO2 (13.9%, ξ=38.9%) and underestimate of n=3.6 (Table 2). At
n=−0.8 and δCMRO2=30% instead of correcting the error associated
with the classic α and β, the hypercapnia M magnified the error and
grossly underestimated δCMRO2 (12.7%, ξ=−57.7%) (Table 2). Errors
associated with biases due to both non-iso-metabolic hypercapnia
calibration and concurrent variation of all other input parameters as in
the previous section followed a similar systematic pattern of error
(supplementary data, Table S1). The errors in δCMRO2 for different
degrees of CMRO2 change with hypercapnia are shown in Fig. 8a.

If the relationship between CBV and CBF between activation and
hypercapnia experiments changes, this also leads to bias in M. One
study suggested thatϕvHC is less thanϕv due to activation (0.15 versus

Fig. 5. Range ofM for classic and optimized Davis models as input parameters vary. (The parameters are: Hct=hematocrit, OEF0=baseline O2 extraction fraction, VI,0=baseline CBV
fraction, ωv=baseline venous CBV fraction, ϕv=exponent relating venous CBV changes to CBF, TE=echo time, λ=intravascular to extravascular spin density ratio, R2E* =intrinsic
extravascular signal decay rate, and ϕ=exponent relating total CBV changes to CBF.) Values for M associated with the standard physiology for the two models are classic M=11.1
and optimizedM=14.9. Note the gradient of the bars corresponds to the ranges of the input parameters; the lowest values of the inputs are associated with the dark end of the bars
and the highest values are associated with the light end of the bars. Specifically note the large variation in M due to VI,0. Also as expected doubling TE approximately doubles
calculated M. There is much smaller variation in M for ϕv, but sizeable variation in M due to Hct, OEF0, and ωv, consistent with the dependence of M on baseline deoxyhemoglobin-
containing blood volume and deoxyhemoglobin concentration. Finally, the tissue relaxation rate constant, R2E*, also has a noticeable impact on M as expected.

Fig. 6. Range of error in estimated δCMRO2 due to single parameter variation. The nine input parameters to the detailed model again were altered around the standard values in
Table 1 (see Introduction or Fig. 5 caption for parameter definitions). (a) At n=2.5 (δCBF=50%) the classic Davis model shows a systematic underestimation of δCMRO2 from the
true value of 20.0% to 18.0% (ξ=−9.8%). The optimized Davis model yields a more accurate estimate of δCMRO2. Altering ϕv has the largest impact on the Davis model estimation
(classic: 15.0–30.0%, max ξ=50.1% and optimized: 16.2–34.2%, max ξ=71.0%). Variations in Hct, ωv, and R2E* also have sizeable although much smaller effects on both models (see
Table S1 for exact ranges). Variations due to VI,0, TE, and ϕ are exceptionally small and are accounted for by the scaling parameter. The pattern of error at n=5.0 is similar to the
pattern of error for n=2.5. (b) In the case of n=−0.8, ωv and baseline R2E* have the largest effect on δCMRO2 calculations followed by OEF0, λ, and ϕv. The other parameters all also
have a larger impact on δCMRO2 calculations around this coupling of CBF and CMRO2 suggesting that the mathematical form of the Davis model is not as reliable in this area of CBF–
CMRO2 coupling.
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Fig. 7. Percent error in δCMRO2 calculations using the optimized Davis model parameters (α=0.14 and β=0.91) as the venous CBV change with activation (ϕv) is varied. (a) For
ϕv=0, none of the total ΔCBV is distributed to the veins or capillaries. In this case the optimized Davis model underestimates CMRO2. (b) As noted, recent research suggests ϕv is
lower than total ϕ such that some δCBV distributes to the capillaries and veins, but most goes to the arteries. This plot is identical to Fig. 2b, and as expected due to the parameter
optimization it shows that the modified Davis model provides a more accurate estimate of δCMRO2 when most CBV distributes to the arteries. (c) When ϕv=0.38, ΔCBV distributes
equally to all compartments, and in this case the optimized Davis model overestimates CMRO2. (d) If venous CBV changes are much larger, such that ϕv=0.65, the optimized Davis
model grossly overestimates δCMRO2. This is consistent with the findings of Lin et al. (2008).
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Fig. 8. Systematic error in δCMRO2 calculations using the optimized Davis model due to errors in assumptions related to the effects of hypercapnia. Dashed lines represent true
δCMRO2. rHC is the normalized change in δCMRO2 due to hypercapnia (HC), normally assumed to be zero. ϕvHC is the exponent relating venous CBV to CBF for HC, normally assumed
to be equal to the corresponding value for activation (0.2 in these calculations). (a) Deviation from the assumption that hypercapnia is iso-metabolic produces large errors in δCMRO2

calculations. A decrease in cerebral O2 metabolism with hypercapnia as some studies suggest will result in M being overestimated. This results in CMRO2 being overestimated for
n=2.5 (green) and n=5.0 (blue) and underestimated for n=−0.8 (red). Interestingly when using the classic Davis model, Table 2 (column 3) shows that this bias inM allows for
some correction due to the bias introduced by the classic parameters. (b) If the relationship between CBV and CBF between activation and hypercapnia experiments changes, this
also leads to bias in the estimation of CMRO2. One study suggested that ϕvHC is less than ϕv due to activation (0.15 versus 0.23 respectively) (Chen and Pike, 2010). Again, this would
overestimate δCMRO2 calculations associated with n=2.5 and n=5.0 and underestimate δCMRO2 for n=−0.8.
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0.23 respectively) (Chen and Pike, 2010). If this is the case, then this
would again lead to M being overestimated (M=11.4%). This error is
much lower than the error associated with rHC=0.9, although it
would result in δCMRO2 calculations associated with n=2.5 and
n=5.0 also being overestimated while for n=−0.8 δCMRO2 will be
underestimated (Fig. 8b).

Discussion

The calibrated BOLD method introduced by Davis and colleagues
(Davis et al., 1998) offers one of the best noninvasive tools currently
available for measuring changes in oxygen metabolism in the human
brain with good spatial and temporal resolution. Estimating the
fractional CMRO2 change between two states (e.g., baseline/activation
or pre/post drug administration) requires three things: measurement
of both the CBF and BOLD signal differences; a mathematical model of
how the BOLD response depends on δCBF and δCMRO2; and a
calibration experiment to determine an overall scaling factor for the
BOLD response (M). Here, we examined the accuracy of these latter
two requirements as they relate to the Davis model. This simple
model describes the BOLD response as a function of δCBF and δCMRO2

with three parameters:M, α and β. It has become the standard model
for the calibrated BOLD experiment, with α and β assumed to have
fixed values of α=0.38 and β=1.5. M is determined from a
hypercapnia experiment, with the assumption that mild hypercapnia
alters CBF but not CMRO2. In this paper we have analyzed the accuracy
of the Davis model with a specific focus on the expected errors in the
estimate of δCMRO2 in the calibrated BOLD experiment. We
developed a detailed analytical four-compartment model of the
BOLD signal for a magnetic field strength of 3 T that includes a
number of physiological parameters that could potentially affect the
BOLD response, including hematocrit, oxygen extraction fraction,
cerebral blood volume, and the distribution of blood volume changes
between arterial and venous vessels as CBF changes.

Our detailedmodel of the BOLD response is an expanded version of
other modeling approaches, which have sought to improve upon our
physiologic understanding of the dependence on changes in blood
volume and deoxyhemoglobin (Blockley et al., 2009; Buxton, 2009;
Lin et al., 2008; Obata et al., 2004; Stephan et al., 2007; Uludag et al.,
2009). However, the waywe have used themodel in the current study
is somewhat different. Although the detailed model is much more
complete than the simple Davis model, models such as this are
difficult to adapt directly to the calibrated BOLD experiment because
there are too many unknown variables. The power of the Davis model
is its simplicity, with many potential physiologic sources of variability
lumped into a single scaling parameter M that is measured
individually. Despite the number of physiological variables that affect
the BOLD signal, the surface of BOLD signal as a function of δCBF and
δCMRO2 is relatively smooth, so it is plausible that a simpler
mathematical form such as the Davis model can provide a reasonably
accurate approximation. To that end, we improved the Davismodel by
allowing α and β to be free parameters and performing non-linear
parameter optimization to find the values that best fit the BOLD signal
generated by the detailed model. By generating simulated data for a
wide range of physiological conditions, wewere able to test the ability
of the Davis model, with either the classic or optimized values of α
and β, to accurately calculate changes in δCMRO2. We examined the
impact of both variations in the underlying physiology and systematic
errors related to the assumptions about the effects of hypercapnia in
the calibration experiment. In analyzing such errors it is important to
note that they are not uniform for all combinations of δCBF and
δCMRO2, and here we looked in detail at three values of the coupling
ratio n (δCBF/δCMRO2): n=2.5 and n=5, corresponding to a range of
values reported for stimulus responses, and n~−0.8, a value we
recently found for the effects of caffeine (lowered CBF but raised
CMRO2).

The key results are as follows:

1. The simulated data from the detailed model predict an M value
close to what is typically observed, supporting the assumptions
and parameter values underlying the model.

2. The Davis model fits this simulated data very well if α and β are
allowed to be free parameters, although this requires that one
abandon the physical meaning of these parameters as they were
originally derived.

3. If there is physiological variation from the standard physiology used
to optimizeα and β, then the error expected in δCMRO2 calculations
is largest for variation in the venous CBV at baseline and the venous
CBV change with activation.

4. If hypercapnia reduces CMRO2, or produces smaller the venous
volume changes for the sameCBF relative to activation, then δCMRO2

will be overestimated for the activation response but underestimated
for the caffeine response.

These results are discussed in detail below.

The Davis model scaling parameter is simulated well by the detailed
model

For the values of α and β optimized to the standard physiology
defined in Table 1, the classic Davis model analysis of the simulated
data results inM=11.1%. In comparison, using the classic parameters
and correcting for TE, a sampling of published hypercapnia M values
range from 7.0 to 14.1 (Chiarelli et al., 2007b; Hoge et al., 1999; Mark
et al., 2011; Perthen et al., 2008; Stefanovic et al., 2006). This
demonstrates that the detailed model reasonably simulates the BOLD
signal. The simulations also show that the exact value of M varies
significantly with variation of the baseline physiological parameters,
particularly those parameters affecting total baseline deoxyhemoglo-
bin including Hct, OEF0, VI,0 and ωv (see Fig. 5), emphasizing the
importance of experimentally measuring M in the calibrated-BOLD
experiment. In fact, variation in published M values may be due to
physiological variation between subjects and regions of interest.
Particularly, regional variation in baseline CBV fraction (VI,0) (Chugh
et al., 2009) may account for differences in M between the motor
cortex and visual cortex in the above referenced papers. For this
reason, using a theoretical estimate of M for a standard set of
physiological conditions is likely to introduce significant error in the
estimation of CMRO2 (Lin et al., 2008).

Optimization of Davis model parameters, α and β improves fit to
simulated data

Despite the restrictive assumptions that went into its derivation,
the errors in the estimate of δCMRO2 using the classic Davis model are
modest for most activation experiments. The classic Davis model with
an accurately determined M systematically underestimates δCMRO2

by about −10% (see Fig. 4). Even for a much higher value n=5.0, the
Davis model with the true M value underestimates δCMRO2 by only
−6.9%. However, for more unusual combinations of CBF and CMRO2

change the errors can be quite a bit larger. For example, for n=−0.8
(increased CMRO2 but decreased CBF) the error balloons to −38.0%.
Using the parameter values α=0.14 and β=0.91, optimized for the
standard set of physiological parameters defined in Table 1, these
errors are reduced, particularly for n=−0.8 where the optimized
Davis model returns an error of only −1.2%.

A CBF/CMRO2 coupling ratio described by n=−0.8 may at first
glance seem physiologically unreasonable, but in fact such changes
may occur in response to a drug, as we recently found for caffeine. In
that study, δCBF was found to decrease by −27% (Perthen et al.,
2008). Combined with analysis of the BOLD signal using the classic
parameters and a hypercapnia calibratedM, a trend toward increased
CMRO2 was found (δCMRO2=13.3%, p=0.067). Yet further analysis
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of this data using the optimized model parameters and hypercapnia
calibrated M revealed a significant metabolism increase due to
caffeine (δCMRO2=21.8%, p=0.030) (Griffeth et al., 2011). If the
hypercapnia calibration is in error (see discussion below), with
hypercapnia actually lowering CMRO2, the true CMRO2 change with
caffeine may be as high as 30%.

As a consequence of this approach of optimizing α and β, we can
neither identify α as simply the exponent relating CBV to CBF, nor can
we strictly relate R2* to deoxyhemoglobin concentration using β as in
the original derivation of the Davis model. Instead, α and β are
effectively capturing several sources of variation arising in the detailed
model, and they should just be regarded as fitting parameters. Keeping
this in mind, optimal values of α and β depend on the physiologic
parameters chosen for the standard state. For example, we included in
our standard state the finding that relative CBV changes are larger for
arteries than for capillaries and veins (Hillman et al., 2007; Kim et al.,
2007; Chen and Pike, 2009a). Our finding of α=0.14 after parameter
optimization is consistentwith this smaller venous CBV change (smaller
ϕv), but α is still not equal to ϕv implying that it is dependent on other
parameters as well. Indeed, baseline CBV distribution and tissue
properties also have large impacts on α and β (Fig. 3). As more data
becomes available on the true nature of the physiology, this figure will
allow for α and β to be appropriately adjusted. For example, this figure
shows that α is most affected by and tracks linearly with ϕv such that
when the assumed value of this parameter is increased, the optimizedα
determined by this process of non-linear parameter optimization also
increases (e.g. ϕv=0.38 produces an optimizedα=0.24 and β=0.84).

Similarly, in the original Davismodel derivation,βwasused to relate
extravascular R2E to the concentration of deoxyhemoglobin, which is
proportional to the ratio of O2 fractions in activation and baseline. This
ratio in turn is equal to the ratio r/f. Classically, the exponentβdepended
on the diameter of the vessels involved in signal creation, with β=1 for
large vessels and β=2 for small vessels (Ogawa et al., 1993). In the
Monte Carlo simulations performed by Davis et al. (1998), β was
determined to be 1.5 for B0=1.5 T. At 3 T, the large vessel component of
the susceptibility difference will dominate such that β at 3 T should be
smaller (Boxerman et al., 1995; Chiarelli et al., 2007b). Fig. 3 shows that
the optimized value of β is affected by a variety of CBV and tissue
parameters. Combined with the finding that α tracks with but is not
equal to ϕv, this confirms that the Davis model is an oversimplification
that does not model influences of the BOLD signal in a straightforward
manner. Instead, the two parameters of the Davis model effectively
capture multiple factors affecting the BOLD signal beyond what they
were originally intended to model. Therefore, one should avoid using
experimentally determined values of ϕv and β within the Davis model
and instead perform more detailed parameter optimizations that
capture the full range of physical and physiological factors that affect
the BOLD signal.

Variation in CBV distribution has largest effect on the accuracy of the
Davis model

Given the optimized values ofα andβ for the state defined in Table 1,
it is important to determine the errors in δCMRO2 that will result when
this model is applied but the underlying physiology differs from this
standard state. Despite the limitations of the Davismodel, the fact that it
relies on a calibration step tomeasure the variable scaling parameter,M,
gives it a distinct advantage as this potentially allows for the absorption
of many variable baseline factors, such as VI,0, TE, Hct and OEF0. That is,
variation of a physiological variable that only scales themagnitude of the
BOLD response, regardless of the exact values of δCBF and δCMRO2, will
not affect the estimate of δCMRO2 provided M is accurately measured.
For example, Fig. 6 shows that VI,0, Hct, TE and ϕ do not have a large
impact on δCMRO2 calculations. Even large variations in VI,0 cause only
small deviations in the range of calculated δCMRO2 (Supplementary
data, Table S1).

The physiological parameters that are not captured well byM, and
so are likely to produce the largest errors in the estimation of CMRO2

changes, are the venous CBV at baseline, the venous CBV change, R2E*,
and to a lesser extent OEF0. These parameters may vary with brain
region, stimulus type or duration, between subjects, and in health and
disease. For example although Rostrup et al. (2005) found the
relationship between changes in CBF and CBV to be constant across
the brain, other groups have found variation in regional baseline CBV
(Chugh et al., 2009) and in the temporal dynamics of CBV distribution
in vessels as they dilate in response to a stimulus (Kim and Kim,
2010b). There is also evidence of CBV changing with disease (Guckel
et al., 2007). In addition to differences in CBV, regional differences
have been found in OEF0 and R2E* (He and Yablonskiy, 2007), and
inter-subject differences have been found in baseline CBF (Ances et al.,
2009).

To address this physiologic variation, we varied the basic
parameter values over wide ranges and calculated the error in
estimated δCMRO2. The change in venous CBV with activation (ϕv) is
the most important factor in reliably estimating δCMRO2 around
n=2.5. Recent research has suggested that arterial changes dominate
venous change (Chen and Pike, 2009a; Hillman et al., 2007; Kim et al.,
2007; Kim and Kim, 2006), but additional studies are needed to
precisely quantify the relationship between venous CBV and CBF.
Particularly, it is important to define how CBV changes are distributed
dynamically, whether this changes with stimulus duration and type,
and whether the relationship between CBV and CBF depends on brain
region (Kim and Kim, 2010a,b). Any of these considerations could
alter ϕ and/or ϕv thereby affecting optimization of the Davis model
parameters and CMRO2 calculations.

For n=2.5, baseline venous volume fraction (ωv) is secondarily
important while for n=−0.8 accurate knowledge of ωv and R2E*
becomesmuchmore significant, evenmore so than ϕv. In this regime of
strong uncoupling (decreased CBF with increased CMRO2), baseline
CBV, intravascular to extravascular spin density ratio, and baseline
oxygen extraction also have sizeable although smaller effects on
δCMRO2 calculations (Fig. 6b). Aswith ϕv, additional research is needed
to confirm thenormal rangeofOEF0,VI,0, andλ. However, it is possible to
measure R2E* and λ in individual subjects and may soon be possible to
reliably measure OEF0 using MR techniques (Chen and Pike, 2009b; Lu
and Ge, 2008; Qin et al., 2011). As our knowledge of these values
increases, we will be able to increase the accuracy of our model.

The importance of an accurate knowledge of ϕv is emphasized in
Fig. 7,which shows how accurate the optimizedmodel is asϕv increases
from 0 to 0.2, 0.38 and 0.65. The Davis model optimized for ϕv=0.2
estimates δCMRO2 very well at this value but overestimates δCMRO2 if
ϕv=0.38 or 0.65, and underestimates δCMRO2 for ϕv=0. We also
examined the effect of setting total ϕ=0.65 as found by Lin et al. using
VASO (2008) and found it has little effect compared to ϕ=0.38 if
ϕv=0.2 remains unchanged. However if this volume change is
distributed equally to the compartments such that ϕv=0.65, then the
optimized Davis model will overestimate δCMRO2 in agreement with
the results of Lin et al. (2008) and mirroring Fig. 7d. Yet, the VASO
technique used in the study of Lin et al. specificallymeasures changes in
total CBV rather than venous CBV. Therefore to apply VASO data to the
Davis model, it must be assumed that venous CBV changes in the same
way as total CBV. Furthermore, a value for baseline CBV must be
assumed in order to translate absolute volume changes into fractional
changes,whichare necessary for calculating the power-law relationship
between CBF and CBV. Both assumptions may lead to ϕv being
overestimated. Specifically, experimental findings of larger changes on
the arterial side donot support the large venous CBV changes associated
with ϕv=0.65, although more experiments are needed to confirm this.
A previous study also examined whether the assumption that venous
CBV changes are similar to total CBV changes would affect CMRO2

calculations (Kim et al., 1999). This study reported that the effects are
minimal as long as a multiplicative term involving deoxyhemoglobin
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and volume changes is small. However, this may not be the case in all
activation experiments, and furthermore this model assumes that
changes in R2* are small and only includes venous blood volume,
neglecting the effects of arterial and capillary blood volume.

Violations of hypercapnia calibration assumptions lead to errors in M
and δCMRO2

In our initial calculations, we assumed that we could accurately
measure M in order to explore the effects of physiologic variation.
Recent research has suggested methods other than hypercapnia for
more reliably measuring M. This is an active area of research, although
one method gaining popularity is hyperoxia (Chiarelli et al., 2007b;
Mark et al., 2011). To this point, though, most calibrated BOLD
experiments have used hypercapnia to measure the scaling parameter
M by assumingCMRO2 is not changed by CO2 inhalation (Chen and Pike,
2010; Jones et al., 2005; Sicard and Duong, 2005), but there is some
controversy about this assumption (Kliefoth et al., 1979; Xu et al., 2011;
Zappe et al., 2008). If hypercapnia in fact decreases CMRO2 then this
process would tend to overestimate M. At larger values of CBF–CMRO2

coupling, this produces large errors in δCMRO2 calculations and
underestimates n. Interestingly, this underestimation of n is larger for
bigger values of n. This may account for some of the discrepancies
between fMRI and PET data in studies reporting larger values of n. For
example, one PET study found values of n between 5 and 6 in the
somatosensory cortex (Fox and Raichle, 1986) while an fMRI experi-
ment found values closer to n=3–4 (Chiarelli et al., 2007a). One area of
CBF–CMRO2 coupling particularly sensitive to M is decreased CBF and
increased CMRO2 as produced by caffeine. Here, overestimates ofMwill
tend to underestimate δCMRO2, and it is in this area that error in bothM
and the parameters α and β have the largest impact on δCMRO2

calculations (Fig. 4).
Another assumption of hypercapnia calibration is that CBV changes

in different compartments are the same for activation and hypercapnia.
As Fig. 8 shows, error due todifferences in relative CBV changes between
activation and hypercapnia followed a pattern similar to violations of
the iso-metabolic assumption. If ϕvHC is less than ϕv (Chen and Pike,
2010), then M and δCMRO2 will be overestimated. If ϕvHC is more than
ϕv, then the opposite pattern of errors is apparent. Even with the
systematic error in M due to changes in CBV distribution and δCMRO2

with hypercapnia, the Davis model is surprisingly accurate, especially
close to n=2.5. This is likely due to the calibration process. Even with
the inaccuracies of calibration, some self-correction of errors occurs
when the same, albeit incomplete, model is used to analyze both the
hypercapnia and activation data.

Future work

In this paper we have used the detailed model of the BOLD effect to
assess and improve the accuracy of the calibrated BOLD method. The
detailed model can also be used to address more basic questions of
which physiological changes dominate the BOLD effect. Total deox-
yhemoglobin, influenced by blood volume and concentration, is the
most important factor. Previous models have included to different
degrees separate terms for CBV (to model exchange effects) and
deoxyhemoglobin concentration in blood (to model the intrinsic signal
changeof blood). Thedetailedmodel includes theseeffects andothers as
above, and it can be used to evaluate additional models (Buxton, 2009;
Obata et al., 2004; Stephan et al., 2007).

Finally, an area of future application of the detailed model is to
analyze potential errors in CMRO2 determination when hyperoxia is
used for calibration. Hyperoxia was introduced as an alternative to
hypercapnia as a way to avoid uncertainties due to the iso-metabolic
assumption of the hypercapnia calibration, and because hyperoxia is
more tolerable than hypercapnia (Chiarelli et al., 2007b). However, the
hyperoxia calibration makes some additional assumptions such as

baselineOEF, and the impact of these assumptions canbe testedwith the
current model. The hyperoxia approach also does not have the same
self-correcting behavior as hypercapnia. The difference is that hyper-
capnia and activation both involve CBF changes and associated
assumptions about how CBV is altered. In contrast when using
hyperoxia calibration, only the activation part of the experiment
depends on the CBF change, and hyperoxia just manipulates deoxyhe-
moglobin content. For this reason, calibrated BOLD using hyperoxia is
likely to be more sensitive to inaccuracies in the modeling of how CBV
depends on CBF. All of these effects will be evaluated with the detailed
model in future work.

Conclusions

The detailedmodel of the BOLD response developed here provides a
theoretical framework for analyzing a number of questions related to
the interpretation of the BOLD response. Here,we focused on improving
the accuracy of the calibrated BOLD method to estimate changes in
CMRO2. Despite the simplicity of the Davis model, and the restrictive
assumptions of the original derivation, the mathematical form of the
model nevertheless provides a reasonably accurate approximation for
this complex phenomenon. The accuracy of the model is improved by
using optimized values of the parameters α and β calculated from the
detailed model. It is important to recognize, though, that the optimized
parameter values no longer correspond to the physiological effects they
were originally introduced to model and should be treated simply as
fitting parameters. As new experimental data becomes available,
particularly an accurate understanding of the venous CBV change with
activation, these optimized values can be revised based on the
calculations presented here for the detailed model.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.05.077.
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Appendix A

The MR signal is a volume-weighted average of signals from
extravascular and intravascular compartments (Buxton et al., 1998;
Obata et al., 2004), andwe assume that contributions from the different
compartments combine linearly. The intravascular component can be
further segmented into arterial, capillary and venous compartments
denoted by the subscriptsA,C andV respectively. The subscript Idenotes
the sum of all intravascular compartments. The subscript E denotes the
extravascular compartment. We use the subscript 0 to denote the
baseline state. Here we are assuming a static model, but ultimately we
will apply thismodel dynamically, requiring amore detailed knowledge
of how thedifferent compartments changeover time. S is the total signal
while SE,A,C,V is the signal intensity of a voxel containing only the
designated component, and VE,A,C,V is the corresponding volume fraction
of that component. The net signal is then:

S = VESE + VASA + VCSC + VVSV ðA1Þ

The intrinsic signal for each compartment can be modeled as an
exponential decay dependent on the transverse relaxation rate, R2,
and the signal at the theoretical TE=0, which in general will depend
on the spin density and the longitudinal relaxation time constant T1.
Assuming T1 does not change with activation, such that the signal at
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TE=0 does not change, then the following equality is formed
describing the intrinsic signal ratio of blood:

ε A;C;Vð Þ =
S A;C;Vð Þ;0

SE;0
= λ

e−TEiR#
2 A;C;Vð Þ

e−TEiR#
2E

ðA2Þ

λ is the effective intravascular to extravascular spin density ratio, or
the signal ratio when TE=0, and this was assumed to have the same
value for each of the intravascular compartments. The value of λ was
determined experimentally to be 1.15 (Producing simulated BOLD data
for a standard subject section). Since BOLD is a fractional signal change,
it can be expressed as δS = S−S 0ð Þ

S 0ð Þ = ΔS
S 0ð Þ. Noting VE=1−VA−VC−

VV=1−VI, it follows that:

δS = H 1−VIð Þe−TE⋅ΔR#
2E + εAVAe

−TE⋅ΔR#
2A + εCVCe

−TE⋅ΔR#
2C + εVVVe

−TE⋅ΔR#
2V

h i
−1

ðA3Þ

Where

H = 1 = 1−VI;0 + εAVA;0 + εCVC;0 + εVVV ;0

! "
ðA4Þ

The intravascular transverse relaxation rate constants were approx-
imated for each compartment using a quadratic model dependent on
Hct and SO2 (Silvennoinen et al., 2003; Zhao et al., 2007):

R#
2 = A# + C# 1−SO2ð Þ2

where

A# = 14:87⋅Hct + 14:686

C# = 302:06⋅Hct + 41:83

ðA5Þ

The dependence of A* and C* on Hct was approximated using a
linear fit of the experimental data for 3 T reported in Zhao et al.
(2007).

The oxygen extraction fractionwith activationwas calculated from
the normalized CBF and CMRO2, which are variable inputs to the
detailed model:

OEF = OEF0
r
f

ðA6Þ

Oxygen saturation for the venous compartment was determined
from the arterial saturation and the oxygen extraction fraction:

SVO2 = SAO2−OEF⋅SAO2 ðA7Þ

Capillary oxygen saturation (SCO2) was calculated as an average of
arterial and venous values with weighting κ:

SCO2 = κ⋅SAO2− 1−κð Þ⋅SVO2 ðA8Þ

In calculating ΔR#
2 values, the A* terms cancel leaving dependence

on Hct through C* as well as SO2 from both the baseline and activation
states. The second term denoted by the subscript 0 is associated with
the baseline state.

ΔR#
2 A;C;Vð Þ = C# 1−S A;C;Vð ÞO2

! "2− 1−S A;C;Vð ÞO2;0

! "2
# $

ðA9Þ

Note that SO2 decreases from arteries to capillaries to veins, while
capillary Hct is also 76% of the arterial value (Sakai et al., 1989).

Extravascular R2* change was treated as a linear combination of the
contributions from each of the vascular compartments calculated
separately as determined by Ogawa et al. (1993). In general, R2* is the
sum of two components: the transverse relaxation rate in the presence
of fully oxygenated blood (R2) and the signal relaxation rate due to local

field inhomogeneities including the effects of deoxygenated blood (R′2).
When calculating R#

2, R2 remains constant and therefore cancels leaving
only the difference in R′2 (ΔR#

2 = R′2 tð Þ−R′2 0ð Þ), which was previously
estimated using Monte Carlo simulations of water proton intravoxel
phase dispersion. These experiments demonstrated that depending on
vessel size, R#

2 has either a linear or quadratic dependence on main
magnetic field strength B0, Hct, and SO2 as well as purely linear
dependence on blood volume fraction (V) (Ogawa et al., 1993):

ΔR#
2E A;C;Vð Þ =

4π
3

Δχ⋅Hct⋅γ⋅B0 V A;Vð Þ jSO2;off−SA;VO2j
! "

−V A;Vð Þ;0 jSO2;off−SA;VO2;0j
! "h i

0:04 Δχ⋅Hct⋅γ⋅B0ð Þ2 VC jSO2;off−SCO2j
! "2−VC;0 jSO2;off−SCO2;0j

! "2
# $

8
>><

>>:

ðA10Þ

Note that Δχ is the susceptibility of blood with fully deoxygenated
blood, γ is the gyromagnetic ratio of protons, and SO2,off is the O2

saturation that produces nomagnetic susceptibility difference between
blood and tissue. Total extravascular ΔR2* is then the sum of these three
blood compartment contributions.
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Supplementary Information 

 

Supplementary Figure S1.1.9. Dependence of Davis model α and β on VI,0, λ, TE, ϕ.  

Optimization of Davis model parameters α and β was performed using the Matlab fmincon 
function. (a-d) Davis model a has a negative correlation to λ and a weak positive correlation to ϕ 
while not showing a strong dependence on VI,0 or TE. (e-h) Davis model β has a negative 
correlation to VI,0, λ and TE and a positive correlation to ϕ. 
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Supplementary Figure S2.1.10. Percent error (ξ) in δCMRO2 calculations using the classic 
and optimized Davis model parameter sets but with biased M.  

The hypercapnia calibration is often criticized for its assumption that 5% CO2 inhalation does 
not change oxygen metabolism. Recent experiments have shown that this calibration method 
may in fact decrease CMRO2 by 10%. If this is the case, M will be biased resulting in biased 
calculations of δCMRO2 as shown. (a) δCMRO2 appears to be correctly determined close to 
n=2.5 by the classic Davis model with M biased as noted. (b) The optimized parameters of 
α=0.14 and β=0.91 combined with a biased M produce accurate estimates of δCMRO2 around 
n=1.3.  
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CHAPTER 2  

A simplified model for the blood oxygenation level dependent (BOLD) effect for 

estimating brain oxygen metabolism changes 

Abstract 

Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is 

a common technique in the study of brain function. The BOLD signal is sensitive to the 

complex interaction of physiological changes including cerebral blood flow (CBF), cerebral 

blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of 

quantitative fMRI methods is to combine BOLD imaging with other measurements (such as 

CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an 

accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic 

changes; the most commonly used of these is the Davis model. Here, we propose a new 

nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD 

signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The 

model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 

3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for 

comparing combined BOLD and CBF data from two different stimulus responses to determine 

whether CBF and CMRO2 coupling differs. The method does not require a calibration 

experiment or knowledge of parameter values as long as the exponential parameter describing 

the CBF-CBV relationship remains constant between stimuli. The method was found to work 

well for 1.5 and 3T, but is prone to systematic error at 7T. If more specific information 

regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model 

the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models 
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work well over a reasonable range of blood flow and oxygen metabolism changes but are less 

accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 

increases. 
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Introduction 

Functional magnetic resonance imaging (fMRI) is commonly used to map patterns of 

brain activation based on blood oxygenation level dependent (BOLD) signal changes [1]. A 

neural stimulus rapidly causes a large increase in cerebral blood flow (CBF) that is not matched 

in magnitude by the change in the cerebral metabolic rate of oxygen (CMRO2) [2]. This 

mismatch, defined as the coupling ratio n (ΔCBF/ΔCMRO2), leads to an increase in blood 

oxygenation that in large part determines the magnitude of the BOLD response. The coupling 

ratio is of interest because it is not constant but rather depends on factors such as brain region, 

stimulus type, aging and alterations in the baseline state due to drugs such as caffeine [3-8]. The 

current paradigm for examining variability in n relies on the Davis model [9] to analyze 

combined BOLD and CBF data from two stimulus response experiments along with data from 

an additional calibration experiment. This is a complicated data acquisition, and the analysis is 

further complicated by the mathematical form of the Davis model, which tends to obscure an 

underlying simplicity in the relationship between BOLD, CBF and CMRO2 [10].  

Davis and colleagues introduced this model for the BOLD effect using it as the 

foundation for the calibrated BOLD method, and this work remains the basis for calibrated 

BOLD studies today [9]. In the Davis model the BOLD signal is a nonlinear function of 

fractional changes in CBF and CMRO2, multiplied by a scaling parameter M. The factor M is a 

lumped parameter, which includes many variables that could scale the BOLD signal and 

depends on both aspects of the physiological baseline state (oxygen extraction fraction, venous 

blood volume, and hematocrit) and also on parameters of the data acquisition (magnetic field 

strength and the echo time) [10,11]. The essence of the calibrated BOLD method is that this 

scaling parameter, M, is measured in a separate experiment. In the original Davis method and 

still the most commonly used approach [12-22], the calibration experiment to calculate M 
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utilizes inhalation of a hypercapnic gas mixture to elicit BOLD and CBF responses with the 

assumption that CO2 alters CBF but not CMRO2 [23,24].  

However, the original derivation of the Davis model neglected intravascular signal 

changes and volume exchange effects associated with changes in cerebral blood volume (CBV), 

including changes on the arterial side that are thought to be the dominant site of CBV changes 

[25,26]. Recently we developed a detailed biophysical model of the BOLD signal (DBM) [10], 

which includes all of these additional effects while also specifically modeling effects related to 

arterial, capillary and venous blood volume changes with activation. While this model is too 

detailed to apply routinely in the calibrated BOLD experiment because many of the 

physiological parameters are unknown, it provides the solid theoretical framework necessary for 

relating the underlying metabolic and hemodynamic changes to the measured signals.  

We previously used this DBM to test the accuracy of the Davis model when applied to 

the analysis of calibrated BOLD data, finding that errors in the estimated CMRO2 change were 

surprisingly modest given that important components of the BOLD effect were neglected in the 

original derivation [10]. Effectively, the Davis model parameters were providing an 

approximate description of the factors that were left out, beyond the parameters’ original 

definition in the model, and thus complicating their interpretation in physiological terms. In 

addition, the choice of parameter values had a relatively weak effect on the accuracy of the 

estimated CMRO2 change, provided the model employed was used consistently to calculate 

both M from the hypercapnia experiment and also the CMRO2 change from the activation 

experiment. This observation suggested that the Davis model may be more complicated than it 

needs to be (despite the fact that important effects were missing from its original derivation). 

This prompted us to look for a model that would be both simpler mathematically and that would 
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explicitly include the effects left out of the Davis model allowing straightforward parameter 

interpretation. 

Here we present a new, heuristic model of the BOLD response that is a pure nonlinear 

function of CBF scaled by a lumped factor, which includes the CBF/CMRO2 coupling ratio n. 

Inspired by the simple mathematical form of this new model, we present a straightforward 

“ratio method” to test whether the blood flow-oxygen metabolism coupling ratio is the same for 

two stimuli using only a comparison of the BOLD and CBF response ratios. This method is 

independent of model parameters assuming they remain consistent across experimental states, 

and it does not rely on an additional calibration experiment. The reliability of the new method 

was tested using the DBM [10] and as a demonstration the model was used to analyze data from 

a recent study of visual stimulus contrast [27]. Application of this technique will expand our 

understanding of why the mismatch between blood flow and oxygen metabolism occurs by 

simplifying the approach for detecting variations in the coupling ratio for different stimuli from 

combined BOLD and CBF data. 

When quantitative information about the CMRO2 change is necessary, the heuristic 

model can also be used in the same way as the Davis model to analyze calibrated BOLD data. 

To examine the accuracy of the heuristic model in this application, we again used the DBM to 

simulate measurements of both stimulus responses and calibration responses for different 

combinations of physiological states. This assessment was complementary to our previous 

examination of the Davis model as we again compared the results against the “true” CMRO2 

change from the DBM [10]. This analysis demonstrates that the heuristic model has comparable 

accuracy to the Davis model.  
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Methods and Results 

Modifications to the detailed biophysical model of the BOLD signal 

 The DBM includes effects of intravascular and extravascular signal changes, hematocrit 

(Hct), baseline oxygen extraction fraction (E0), blood volume fractions for different vascular 

compartments, changes in these volumes as CBF changes, tissue signal properties and imaging 

parameters [10]. In the current work, an additional feature in which the arteries are split into two 

compartments (large arteries - A and arterioles - a) was added in order to allow for partial 

oxygen desaturation of the arterioles. For simplicity, the second arteriolar compartment was 

modeled as equal in size to the fully saturated compartment with their sum comparable in size to 

previous modeling for the total arterial compartment. Desaturation occurring in the arteriolar 

compartment was modeled as a weighted average of arterial and venous hemoglobin saturation 

(Table 1, σ=0-0.2).  

 To permit modeling of the effect of hyperoxia on the BOLD signal, we also updated the 

DBM to calculate compartmental oxygen saturation from oxygen partial pressures using the 

Severinghaus equation [28]. The arterial oxygen concentration was calculated first followed by 

the venous oxygen concentration using the E0 and Eq (10-13) from Chiarelli et al. [29]. Venous 

oxygen saturation was then calculated using linear interpolation of the Severinghaus equation. 

Arteriolar saturation was calculated as noted in the previous paragraph and capillary saturation 

was calculated also using a weighted average of arteries and veins [10]. 

 We also expanded the DBM to simulate the BOLD signal at 1.5T and 7T, since the 

original model was only for 3T. This required adjusting the DBM to include magnetic field 

specific echo time (TE) and baseline extravascular signal decay rate (R2
* ) (Table 2) [30]. 

Intravascular signal decay rates were again determined using a quadratic model fit to data 
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relating intravascular R2
*  to oxygen saturation. At 1.5T hematocrit-dependent values were 

calculated according to Silvennoinen et al. [31]. At 7T data from Blockley et al. [32] was used 

to determine intravascular R2
*  dependence on oxygen saturation independent of hematocrit. 

Changes in extravascular signal decay rates are linearly dependent on B0, which was already 

included in the model [1]. Calculations of oxygenation and blood volume were performed as 

published previously [10]. 

 

Simple BOLD signal models 

The new model, as derived in Appendix A, is: 

  BOLD %( ) = A 1−1 f( ) 1−α v −1 n( )  (1) 

Important terms in this model include the scaling parameter (A), CBF in the active state 

normalized to its value in the baseline state (f), the ratio of fractional changes in CBF and 

CMRO2 (n), and the exponent relating the CBF change to the venous CBV change (αv). One 

additional parameter of importance is r, which is CMRO2 in the active state normalized to its 

value in the baseline state and is related to n and f through n=(f-1)/(r-1). In the following we 

refer to Eq. (1) as the heuristic model, because it clearly shows the basic physiological factors 

that affect the BOLD response: it is driven by the CBF change, but strongly modulated by both 

the venous CBV change and the CBF/CMRO2 coupling ratio. The parameter αv is from the 

Grubb relationship, which relates the normalized venous CBV change (v) to f through the 

equation v = f α v . For calculations using the heuristic model, we set αv=0.2 as determined by 

Chen and Pike [33].  
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The two underlying assumptions of the heuristic model discussed and illustrated in the 

Appendix are: (1) The fractional BOLD signal change is directly proportional to the absolute 

change in total dHb content in a voxel (simulations for 1.5T, 3T and 7T are shown in Figure A1 

and Supporting Figures S2-3); and (2) the fractional change in tissue concentration of total dHb 

is equal to the fractional change of venous dHb (Figure A2). Figure A3 examines the 

relationship between changes in CBF and CMRO2 in comparison to changes in both the BOLD 

signal and dHb content. At first glance, these assumptions appear to be too restrictive for the 

full complexity of the BOLD response, so we used the DBM to explore the errors in these 

assumptions and the ultimate effect of using the heuristic model for estimation of CMRO2 

changes, which is discussed below. 

Of note in the heuristic model is the non-linear dependence of the BOLD signal on the 

CBF change, which is reflected in the term incorporating f. This term reflects the ceiling effect 

on the BOLD response: very large increases in CBF will tend to produce the largest BOLD 

signals as 1/f and 1/n approach zero (Eq. B2). Physically this corresponds to a clearance of dHb 

from the vasculature. For changes in CBF approaching zero (f=1), the BOLD response is a 

linear reflection of the fractional CMRO2 change as shown in Appendix B (Eq. B7): 

BOLD %( ) = A 1− r( ) . 

The second term in the heuristic model relates the BOLD signal change to n while also 

incorporating the dependence of CBV on CBF. This term reflects that the largest BOLD signal 

will result from a large n, when the saturation of hemoglobin is maximized through a much 

lower oxygen metabolism change relative to the blood flow change (e.g. hypercapnia) 

[24,34,35]. This term also reflects that smaller changes in venous CBV relative to CBF (smaller 

αv) will lead to larger BOLD signal changes. The physical interpretation of this is that a smaller 

increase in dHb containing blood volume leads to a larger BOLD signal, because any increase 



  

 

37 

in volume will increase the dHb content of a voxel in opposition to the oxygen extraction 

fraction decrease, which dominates the BOLD signal change. 

For comparison, the Davis model expressed in the same terms is: 

 BOLD %( ) = M 1− f α−β f −1
n

+1⎛
⎝⎜

⎞
⎠⎟
β⎡

⎣
⎢

⎤

⎦
⎥  (2) 

The Davis model has two parameters, α and β, and the original values for these parameters as 

applied to 1.5T BOLD data were α=0.38 and β=1.5 [9]. In this analysis, we set α=0.2, consistent 

with recent data indicating that most blood volume change occurs in the arterioles [25,26,33]. 

As originally derived in the Davis model, β relates blood oxygenation to transverse relaxivity 

and is dependent on magnetic field strength (B0). Recent studies based on previous modeling of 

this relationship have proposed adjusting β to reflect this B0 dependence using the following 

values: β=1.5 at 1.5T, β=1.3 at 3T and β=1 at 7T [9,36,37]. We refer to the Davis model with 

these parameter values as the B0-adjusted Davis models (e.g. the 1.5T-adjusted Davis model).  

We have also proposed previously treating α and β as free parameters in the Davis 

model, and designate the Davis model using these parameters as the B0-“free parameter” Davis 

models [10]. This approach attempts to provide the best fit to the surface of BOLD change as a 

function of CBF and CMRO2 change using the mathematical form of the Davis model, but 

divorcing the parameters a and b from their original physical definitions. The process of fitting 

these parameters involves assuming our best guess of the physiology (Tables 1 and 2) in order 

to simulate the BOLD signal for CBF changes between -40% and 80% and CMRO2 changes 

between -20% and 40%. We then normalized both the Davis model and the simulated data using 

an idealized hypercapnia simulation (ΔCBF=60% and ΔCMRO2=0%). This removes the scaling 

parameter, M, from the equation leaving only α and β to be fitted. We discuss the impact of 
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these parameters in a later section while listing their values here: α=0.1 and β=1 at 1.5T, α=0.13 

and β=0.92 at 3T, and α=0.3 and β=1.2 at 7T. These values are perhaps counterintuitive, but 

when treating α and β as free-parameters they lose their physiological meaning and instead 

simply provide the best fit of the model to the simulated data given the physiological 

assumptions. In other words our values for α should not be used as an indication of the 

relationship between CBV and CBF, and our values for β should not be used to describe the 

relationship between the magnetic susceptibility due to deoxyhemoglobin and R2
* . In addition 

to the Davis model parameter set noted above, we also examined the impact of fixing β=1, 

which makes the form of the Davis model more analogous to that of the heuristic model.  

 

The ratio method 

 The form of the heuristic model suggests a new method for analyzing combined BOLD-

CBF data independent of the scaling parameter in order to determine whether n changes for 

responses to different stimuli from the same baseline state without requiring a calibration 

experiment. Because the flow response term is separate from the coupling ratio term, we can 

use Eq. (1) to directly compare whether two stimulus responses have the same flow-metabolism 

coupling. Denoting one stimulus as a reference (“ref”) and the comparison stimulus as “x”, we 

first create a null hypothesis that n is the same for the two stimuli (nx=nref). Taking the ratio of 

Eq. (1) for the two stimulus responses makes a specific prediction for a nonlinear combination 

of measured BOLD and CBF responses that is independent of the model parameter values: 

 BOLDx BOLDref = 1−1 fx( ) 1−1 fref( )  (3) 
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This method assumes that both A and αv remain constant between the two stimulus responses. 

Under these conditions the exact values of A and αv are not needed because this ratio is 

independent of the model parameters. Differences in n can then easily be detected using a sign 

rank test or similar statistical analysis comparing the measured BOLD ratio with the ratio 

predicted by the non-linear CBF terms for equal values of n in Eq (3).  

To test the accuracy of this new method, we employed the DBM to simulate BOLD and 

CBF responses for a reasonable range of physiological and imaging parameters (Tables 1 and 2). 

A reference data set with nref=2 was produced and compared to nx=1.8, nx=2 and nx=2.2 at 1.5T, 

3T and 7T (Fig. 1A-C). These values of n are typical for fMRI activation experiments 

[7,9,11,18,27,38-40]. Data sets for each value of n contained 10,000 simulations. Previously 

published combined BOLD and CBF data associated with changes in visual stimulus contrast 

[27] were then examined using this method (Fig. 1D). A sign rank test was used to determine 

whether the flow ratio was statistically different than the BOLD ratio with results for p noted. 

This approach works well for 1.5T and 3T (Fig. 1A-B) as stimulus responses with 

values of nx not equal to nref are shown to have BOLD ratios that diverge from the non-linear 

CBF ratio. Additionally when nx = nref, the BOLD ratios are shown to be approximately equal to 

the non-linear CBF ratios reflected in the blue dots falling along the dashed line of identity. This 

is most apparent on the inset histograms taken from additional simulations for which the non-

linear CBF ratio was fixed to 0.5: at 1.5T there is a very small tendency to underestimate the 

BOLD ratio when nx = nref, but there is good separation between the data otherwise (Fig. 1A). 

Similarly at 3T the blue dots representing nx = nref fall equally on either side of 0.5 and are 

separated from the data representing both nx > nref and nx < nref (Fig. 1B). In certain cases, this 

method can also be used to make inferences about changes in CMRO2: when nx > nref but 

ΔCBFx < ΔCBFref, then ΔCMRO2,x must also be less than ΔCMRO2,ref. Similarly when nx < nref 
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but ΔCBFx > ΔCBFref, then ΔCMRO2,x must also be more than ΔCMRO2,ref. Note that when 

1−1 fx( ) > 1−1 fref( )  then ΔCBFx > ΔCBFref. 

This approach is less reliable at 7T where the BOLD signal is more sensitive to changes 

in dHb (Fig. 1C). Specifically, the ratio method fails by predicting a difference in nx from nref 

when no difference exists as reflected in the blue dots deviating from the line of identify. In the 

case that ΔCBFx is less than ΔCBFref, there is a tendency for this method to predict an increase 

in nx relative to nref, and when ΔCBFx is greater than ΔCBFref, there is a tendency for this 

method to predict a decrease in nx relative to nref. From the inset histogram, this deviation of the 

data from the predicted BOLD ratio of 0.5 designated by the black bar is clearly apparent (Fig. 

1C). 

We also tested whether the coupling of CBF and CMRO2 impacts the effectiveness of 

the ratio method. As suggested by the form of the heuristic model, the ratio method is most 

sensitive to 1/n. By testing different values of n, we found that for positive coupling of CBF and 

CMRO2 the ratio method is most effective when differences in 1/n are greater than 0.05. For 

n=2, this corresponds to n=1.8 or n=2.2. For n=4, this corresponds to n=3.3 or n=5 (Supporting 

Fig. S1). We examined a wide range of both positive and negative values of n, and included in 

Supporting Figure S1 n=-1 corresponding to a decrease in CBF and an increase in CMRO2. A 

general pattern emerged from simulations across a broad range of coupling parameter values 

showing that the ratio method breaks down close to a coupling of n=1.3, which is frequently 

associated with the null point of the BOLD signal (data not shown). Specifically at 1.5T and 3T, 

the ratio method appears to fail for 0.75<n<1.5. The limits at 7T extend somewhat higher such 

that the model fails for 0.75<n<2.25. In addition to this limitation on the range of n that can be 

examined, these tests also revealed a systematic bias in the predicted BOLD signal ratio. For 
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positive n, any difference between the BOLD ratio and non-linear CBF ratio less than 0.02 

should be viewed with caution and outside the ability of the ratio method to discriminate. For 

example, if the non-linear CBF ratio predicts a BOLD ratio of 0.5, any BOLD ratio between 

0.48 and 0.52 should be considered to have the same n. For negative n, this difference is 0.04. 

These biases are likely due to error inherent to the use of the relatively simple heuristic model to 

describe the full complexity of the BOLD signal. 

Having confirmed the accuracy of the ratio method for simulated data at 3T, we applied 

this approach to a study of 9 subjects comparing different levels of visual stimulus contrast [27]. 

Consistent with the results from the previous analysis using the Davis model, we found that the 

response to 1% contrast has a lower n than the response to 100% contrast (p<0.01) (Fig. 1D). 

The BOLD ratios at 4% and 9% contrast also fall below the prediction by the CBF ratios, but 

the results do not reach statistical significance. Assuming nref=2.3 at 100% contrast consistent 

with a previous calibrated-BOLD study [22], these ratio differences translate to n values of 1.66, 

2.14 and 2.25 (with associated Cohen-d statistics of 0.6, 1.04 and 1.71) respectively.  

 

Simulating the calibrated-BOLD experiment 

Next we simulated a calibrated-BOLD experiment to compare the heuristic model to the 

B0-adjusted Davis model [9] for accuracy in determining the CMRO2 change at 3 magnetic field 

strengths. To examine the effects of various parameters on calculations of the CMRO2 change, 

we used two ranges for n (n=2 and  n=-1). Activation studies typically show increases in both 

CBF and CMRO2 with n about equal to 2 [18,22,40]. In contrast, we found that caffeine as a 

stimulus decreased CBF and increased CMRO2, with n about equal to -1 [7]. To determine the 

effectiveness of the simple models, this comparison required three steps: (1) using the detailed 
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model to simulate the hypercapnia response assuming ΔCBF=60% and ΔCMRO2=0%, (2) using 

the detailed model to simulate the stimulus response with n=2 (%ΔCBF=50% 

and %ΔCMRO2=25%) or the caffeine response with n=-1 (%ΔCBF=-25% 

and %ΔCMRO2=25%), and (3) using the B0-adjusted Davis model and the heuristic model to 

analyze this data in order to calculate the CMRO2 change in response to either the simulated 

stimulus or caffeine experiments. Inputs to the detailed model were varied individually over the 

ranges specified in Tables 1 and 2 to determine the effect on ΔCMRO2 calculations. Parameters 

other than the one specified were kept constant at the best guess values.  

Figure 2 presents deviations from the DBM simulated CMRO2 response when using the 

simple models at 1.5T, 3T and 7T. These results demonstrate that %ΔCMRO2 calculated using 

the heuristic model is consistent with %ΔCMRO2 produced by the Davis model. It shows that 

even for variation in multiple physiological inputs to the DBM (Tables 1 and 2), the heuristic 

model with αv=0.2 [33] predicts changes in CMRO2 comparable to predictions by the B0-

adjusted Davis model at 1.5T, 3T and 7T. These simple models are both quite accurate at the 

typical coupling ratio of n=2, and at 3T there is a small underestimation bias of -6.4% error by 

the heuristic model compared to -2.1% for the Davis model (Fig. 2B).  Both models are most 

sensitive to differences in αv, reflecting the impact of ΔCBF and venous ΔCBV coupling. If αv 

is allowed to vary across a range of 0.1-0.3 within the DBM while the assumptions about αv in 

the heuristic and Davis models are kept constant, then the 3T-adjusted Davis model will 

predict %ΔCMRO2 between 22.2% and 29.6% (for a true value of 25%, with a maximum error 

of 18.4% of that 25% change in CMRO2) while the heuristic model predicts %ΔCMRO2 

between 21.5% and 28.5% (maximum error of ±14.0%). These results are consistent with the 

pattern found previously using slightly different values for α and β in the Davis model [10]. At 

1.5T the same pattern of underestimating the CMRO2 change at n=2 was found: for the 1.5T-
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adjusted Davis model the underestimation bias was -4.5% and for the heuristic model the bias 

was -13.3% (Fig. 2A). At 7T the basic models both overestimate %ΔCMRO2 with overall bias 

percent errors of 7.7% using the heuristic model and 2.9% using the Davis model (Fig. 2C). 

These patterns of bias due to parameter variation are consistent when values of n up to 6 

(%ΔCBF=60%) are examined (not shown). 

These basic models are less accurate when used to analyze changes associated with 

caffeine consumption (Fig. 2D-F), which we modeled in the DBM as a -25% CBF decreases 

and 25% CMRO2 increase. This is a slightly extreme test case of CBF/CMRO2 coupling 

changes due to caffeine, since previous findings estimated a smaller CMRO2 increase for this 

level of CBF decrease [7]. At both 1.5T and 3T, the models systematically underestimate this 

simulated change in CMRO2. For example at 3T, the B0-adjusted Davis model calculates a 

CMRO2 increase of only 17.7% (error of -29.2%) while the heuristic model calculates 18.8% 

(error of -24.8%) (Fig. 2E). Of note at this value of flow-metabolism coupling, the Davis and 

heuristic models at 3T and 7T are most sensitive to variation in baseline dHb content as 

determined by ωv and E0, and less sensitive to changes in blood flow-blood volume coupling, αv. 

At 1.5T the simple models are most sensitive to the intravascular/extravascular proton density 

ratio (λ) followed by tissue R2
*  while showing less overall sensitivity to parameter variability. 

At 7T the heuristic model is more accurate with an error bias of -1.6% while the Davis model 

overestimates %ΔCMRO2 with an error of 15.2%. For this combination of B0, CBF and CMRO2, 

the magnitude of error bars is also much larger suggesting greater sensitivity to changes in dHb 

at 7T. 

We also used this method of simulating the calibrated BOLD experiment to examine 

the efficacy of these simple models over a larger range of CBF and CMRO2 combinations while 

keeping other physiology constant at our best guess (Tables 1 and 2). We included in this 
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comparison the Davis model with β=1 (Fig. 3). As an example at 3T and for our best guess of 

the physiology, the simulated hypercapnia BOLD signal was 4.6% for a 60% CBF increase 

producing the following estimates of the scaling parameters: B0-adjusted, MHC=11.4%; fixed 

β=1, MHC=14.6%; and heuristic model AHC=15.3%. For an activation resulting in %ΔCBF=25% 

and %ΔCMRO2=10%, the BOLD signal was 1.3%, and in this case the estimates of the CMRO2 

change with activation were: 10.3% for the B0-adjusted Davis model, 9.3% for the fixed β=1 

Davis model, and 9.7% for the heuristic model. We also tested the impact of treating α and β as 

free fitting parameters within the Davis model to minimize error in CMRO2 calculations, and 

using this model ΔCMRO2 was estimated to equal 10.0%. 

Most apparent from Figure 3 is the performance similarity of these models at different 

field strengths. Although subtle differences between the models exist, they all appear to 

function reasonably well for positive coupling of CBF and CMRO2 changes, particularly at 3T. 

Across all field strengths, the B0-“free parameter” Davis models perform the most consistently 

while the B0-adjusted Davis models also perform well. While we had expected the heuristic 

model to perform with the most similarity to the Davis model with β=1, it in fact shares 

similarity to both the B0-adjusted and β=1 Davis models. Notably, most of the models have 

difficulty correctly determining a CMRO2 change when it is associated with a decrease in CBF, 

as in changes associated with caffeine consumption. The exception to this are the free parameter 

Davis models and surprisingly the heuristic model at 7T (Fig. 3D, H, J, L). The drawback to the 

free parameter Davis model is that it requires one to discard physiological meaning for the 

parameters α and β. Furthermore values for α and β would need to be updated as new 

information affecting the DBM becomes available. Specifically α no longer corresponds to 

blood volume changes alone, so updating the model as new information about the true venous 

CBV values becomes available is more complicated. Note this is also clear from the values of α 
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and β at 3T, which differ slightly from those published previously due to the inclusion of a 

desaturated arteriolar compartment here [10].  

 

Calibrated BOLD analysis of experimental data 

Using these two simple models, we examined experimental data by reanalyzing 

CMRO2 changes in response to a visual stimulus pre- and post-caffeine as well as changes due 

to caffeine alone [7,22]. This data set was acquired on a GE Signa Excite 3T whole-body 

system using a spiral dual-echo ASL PICORE QUIPSS II pulse sequence [41]. Responses to 

20s blocks of an 8Hz flickering checkerboard were measured pre- and post-caffeine. For 

complete details of the experiment see Perthen et al. [22]. Results were compared to the same 

data published previously so that in addition to the heuristic model we examined ΔCMRO2 

calculations by the original Davis model (α=0.38 and β=1.5), 3T-adjusted Davis model (α=0.2 

and β=1.3), and fitted free parameter Davis model (α=0.13 and β=0.92).  

Results from this analysis using these models are shown in Table 3. The estimated 

values of CMRO2 were similar for all the models with slight systematic differences consistent 

with the simulations in Figures 2 and 3. The small differences in %ΔCMRO2 predictions reflect 

the similarity of these models in calculating changes in CMRO2 when both blood flow and 

metabolism increase. In contrast, the models diverge when calculating the CMRO2 response to 

caffeine alone (n≈-1). While the 3T free parameter model calculated a CMRO2 change of 21.7%, 

the heuristic model found 17.1%, the 3T-adjusted Davis model found 15.7%, and the original 

Davis model calculated 13.3% (Table 3). We anticipate that the free parameter values are most 

accurate in this area of CBF-CMRO2 and that the other models all underestimate the CMRO2 

change for caffeine. This is consistent with our previous findings [10].  
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Scaling parameters and limits of the Davis and heuristic models 

The above tests comparing the simple models have focused on the effects of 

physiological variation in properties such as CBV and hematocrit, and we can think of estimates 

of the scaling parameter (M or A) as the fitted value that best approximates the BOLD signal 

behavior over the defined physiological range. However, it is useful to also consider the limits 

implied by these mathematical expressions because the scaling parameter is often described in 

physical terms as the maximum possible BOLD signal produced when all dHb has been 

eliminated [9]. By this interpretation, one could in principle determine the scaling factor by 

extreme physiological manipulations to eliminate deoxyhemoglobin. This raises the basic 

question of whether these simple models remain accurate under these extreme physiological 

conditions. That is, is the scaling parameter in the model best thought of as an absolute 

physiological variable or as a fitting parameter that adjusts the mathematical form to be accurate 

over a normal physiological range?  

To address this question we considered the limiting forms of the simple models and 

compared them with the limits calculated from the DBM. This is a somewhat subtle question 

because the elimination of dHb can be accomplished through two basic paths: a dramatic 

increase of CBF (perhaps augmented with hyperoxia), or a reduction of absolute CMRO2 to zero. 

We considered both scenarios with the DBM. First we modeled the elimination of dHb based on 

the carbogen-10 experiments by Gauthier et al. [42] allowing CBF to increase by 200%, slightly 

more than their finding of 160% produced using combined visual stimulus with 10% 

hypercapnia. We then combined this increase in CBF with an increase in arterial oxygen partial 

pressure (PaO2) up to 600 mmHg consist with about 90% inspired O2 [29]. We also included a 
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simulation with ΔCBF=100% (f=2) and PaO2=390 mmHg to mimic the actual findings from the 

carbogen-10 experiments [42]. No literature was found on the relationship of CBV to CBF as 

blood flow increases beyond typical physiological measurements to provide an empirical basis 

for modeling such effects within the DBM, so here we kept αT and αv constant at 0.38 and 0.2 

respectively [33,43]. Second, to simulate oxygen metabolism cessation, the CMRO2 input to the 

DBM was simply decreased to zero without altering CBF or any other input. While not 

physiologically plausible, this simulation mimics complete removal of all dHb without altering 

CBV. 

Note that one complexity of extending the DBM to these extreme physiological cases is 

that we model the intravascular and extravascular susceptibility difference as being minimized 

at a hemoglobin saturation of 95% rather than 100% (SO2,off=95%) based on the work of [44]. 

Specifically, this assumes that the susceptibility of tissue is equal to the susceptibility of plasma 

(an assumption that needs to be tested experimentally). This results in the maximum BOLD 

signal occurring at a hemoglobin saturation less than 100%. Since we are after a calibration 

factor that reflects a constant relationship between the BOLD signal and hemoglobin saturation, 

we chose to extrapolate to the theoretical maximum BOLD signal at 100% SvO2 by projecting 

from the inflection point using the inverted slope of the BOLD signal for SvO2 greater than 95% 

(Fig. 4, dashed line). We modeled these mechanisms using the DBM and plotted BOLD vs. 

venous hemoglobin saturation (SvO2) in order to determine the most appropriate definition for 

the scaling parameters (Fig. 4).  

At 1.5T the combined hyperoxia with CBF increase appears nearly identical to 

elimination of CMRO2 as both approach a limit of 8.9%. At higher magnetic field strengths, 

these cases diverge as the increase in CBF leads to the displacement of tissue volume for blood 

volume, which has a smaller contribution to the signal at higher B0. At 3T, elimination of 
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CMRO2 results in a maximum signal of 13.2% while combined hyperoxia-CBF increase 

produces a signal of 12.5%. The simulated carbogen-10 experiment at 3T resulted in a signal of 

8.0%, which is close to the actual finding of 7.5%. The difference between dHb elimination 

methods is even larger at 7T: decreasing CMRO2 results in a maximum signal of 24.7%, but 

combined hyperoxia-CBF increase produces a maximum signal of 18.9%. The difference at 7T 

was expected, because increased CBF leads to increased CBV replacing tissue volume without 

contributing to the BOLD signal at the higher magnetic field strength [45]. 

The limits of the Davis and heuristic model can also be examined for these two 

conditions with interesting differences arising. At very large values of CBF the heuristic model 

predicts a signal that is less than the maximum BOLD signal: A(1-αv) (Appendix B, Eq. B2) 

while the Davis model predicts that the BOLD signal will simply equal M. At 1.5T and 3T, 

Figure 4 suggests this decrease is too aggressive since in the DBM simulations αv was assumed 

to equal 0.2, but at 7T the heuristic model appears to more accurately reflect behavior at this 

limit.   

When absolute CMRO2 is reduced to zero (r=0), the heuristic model predicts 

dependence of the BOLD signal on both CBF and αv: BOLD %( ) = A 1−α v ⋅ ΔCBF CBF( )  

(Appendix Eq. B3). When the CBF change is small as in Figure 4, this limit becomes the 

scaling parameter, A. Under the same circumstances, the Davis model reduces to M with no 

dependence on αv or CBF.  

These results show that the maximum BOLD signal therefore is dependent on how 

elimination of dHb is achieved, and for both simple models there are discrepancies between the 

value of the scaling parameters and the physical limits of reducing deoxyhemoglobin. For this 

reason, it is better to think of the scaling parameter as a fitted value that makes the equations 
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accurate over a normal physiological range, rather than having a more absolute meaning as the 

maximum possible BOLD change.  

 

Ethics Statement 

 The institutional review board at the University of California San Diego approved the 

study of human subjects in the previously published work [22,27], and written informed consent 

was obtained from all participants. 

 

 

Discussion 

In this study, we revisited basic modeling of the BOLD signal and derived a new 

simplified model that has heuristic value in clearly showing the physiological factors that affect 

the BOLD signal. The heuristic model demonstrates the non-linear dependence of the BOLD 

signal on cerebral blood flow found in previous studies [46,47], directly incorporates the flow-

metabolism coupling parameter, n, and also incorporates the dependence of venous CBV on 

CBF through αv. It was inspired by work with the much more detailed model [10], which 

appeared to produce a very smooth BOLD dependence on CBF and CMRO2 suggesting that the 

parameters α and β of the Davis model may be over-fitting the data. The form of the heuristic 

model suggests a new method comparing BOLD signal ratios to non-linear ΔCBF ratios in 

order to determine whether flow-metabolism coupling varies with the stimulus. Using the 

previously developed DBM [10], we demonstated the effectiveness of the ratio method while 
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also showing that the accuracy of the heuristic model is comparable to the Davis model when 

applied in the calibrated BOLD experiment.  

 

Ratio Method 

The new approach to analyzing combined BOLD and CBF data is straightforward and 

relies only on measured data to determine whether n varies with the stimulus (i.e. different 

levels of visual stimulus contrast, frequencies of finger tapping, or level of drug administration). 

As an example, we used the method to reanalyze a previous study investigating how n varies 

with the contrast of a visual stimulus. In the original analysis the conclusion that n varies with 

stimulus contrast was based on many repeated tests using the Davis model with different values 

for M, α and β. Here using the ratio method, the same conclusion is reached in a more 

straightforward manner. It is not apparent from the Davis model that the comparison of the 

BOLD signal ratio to the non-linear CBF response ratio would work, but it is readily apparent 

from an examination of the heuristic model, which separates the CBF response from the 

coupling parameter term. An additional application of the ratio method could be in the study of 

brain diseases with altered vascular responses. For example in diseases resulting in reduced 

blood vessel compliance, increasing stimulus intensity may not result in the same increase in the 

CBF response seen in normal subjects resulting in a constant or decreasing n rather than 

increasing n.  

There are two limitations of this method: both the scaling parameter and the 

relationship between CBF and CBV changes (αv) must remain constant across the comparison. 

The requirement on the scaling parameter to remain constant essentially limits the technique to 
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a common region of interest and baseline state. For example, it is not possible using this method 

to compare flow-metabolism coupling in the visual cortex to that in the motor cortex.  

An additional limitation emerges at 7T. Simulations using the DBM confirm that the 

approach works well for 1.5T and 3T with the non-linear CBF ratio accurately predicting the 

BOLD signal ratio in all cases (Fig. 1A-B), but at 7T the relationship between the ratios is not a 

reliable prediction of changes in n. Specifically if the n-values are in fact the same for two 

stimuli, the ratio method at 7T would incorrectly show that the stimulus with the stronger CBF 

response had a smaller value of n. Thus although the heuristic model works reasonably well 

when calculating %ΔCMRO2 from calibrated BOLD data at all magnetic field strengths (Fig. 2 

and 3), the ratio method is unreliable at 7T. A much smaller bias is evident at 1.5T, but this 

deviation from identity is small as demonstrated from the inset histogram (Fig. 1A). 

 

Calibrated-BOLD using the heuristic model 

As performed previously for just the Davis model, it is possible to calculate stimulus 

associated changes in CMRO2 using the heuristic model when BOLD and CBF measurements 

are combined with a hypercapnia calibration. To test this we simulated both an ideal 

hypercapnia calibration as well as an activation experiment using the DBM demonstrating that 

both the heuristic model and the B0-adjusted Davis model produce reasonable estimates of 

ΔCMRO2 (less than 15% error) for positive changes in CBF and CMRO2 (Fig. 2A-C). At 1.5T 

and 3T both models slightly underestimate changes while they overestimate changes in CMRO2 

at 7T. As previously reported [10], the parameter having the largest impact on CMRO2 

calculations by both models and across B0 is αv, emphasizing the importance of accurately 

determining the venous CBV-CBF relationship for future calibrated BOLD studies. In terms of 
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the effect of other physiological parameters, an interesting standout at 1.5T is λ, which is the 

intravascular/extravascular proton density ratio. This alters the intravascular to extravascular 

signal intensity, a factor that is more important at lower B0 where the intravascular signal due to 

lower intravascular signal decay rates has a relatively greater impact than at 3T and 7T. At 7T 

another interesting standout is αT, which emphasizes the importance of total CBV changes at the 

higher magnetic field when deoxygenated blood generates a relatively weak signal so that 

increases in blood volume displace tissue without contributing to the BOLD signal leading to an 

overall signal decrease. Not shown here, the same pattern of error is found when using the B0-

“free parameters” in the Davis model, which is consistent with previous findings [10]. 

 While both models are reasonably accurate for cases in which both CBF and CMRO2 

increase, the models are less accurate when CBF and CMRO2 changes are in opposition (Fig. 

2D-F). Specifically for the Davis model, the B0-adjusted values of β underestimate ΔCMRO2 at 

1.5T and 3T while overestimating it at 7T. The heuristic model also does not perform well at 

1.5T and 3T in this region of CBF-CMRO2 coupling, but interestingly it is much more accurate 

at 7T. This is consistent with findings in Figure 3 examining a broad range of CBF-CMRO2 

coupling for our best guess of physiology. Application of these models to experimental data 

showed a similar pattern of CMRO2 changes estimated for a visual stimulus response with the 

simple models in agreement with the exception of the original Davis model (α=0.38 and β=1.5), 

which estimated a smaller CMRO2 response (Table 3). Also consistent with the simulations, the 

caffeine CMRO2 responses calculated by the basic models were more dissimilar: the original 

Davis model produced the lowest estimate, the B0-adjusted Davis model and the heuristic model 

produced slightly higher estimates, and the free parameter Davis model produced the highest 

estimate (Table 3). The inaccuracy of the Davis model for this region of CBF and CMRO2 

coupling has been noted previously and can be overcome by treating α and β both as free 
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parameters in the Davis model then fitting to DBM simulations [10]. The drawback to this 

approach is that the parameters lose their physiological meaning and must be refitted when new 

information becomes available. 

Examining a full complement of CBF and CMRO2 changes, Figure 3 also shows that 

fixing β=1 decreased accuracy of the Davis model for the most common region of CBF-CMRO2 

coupling while there was also unexpected improvement in the region of CBF decrease and 

CMRO2 increase. Although β=1 simplifies the Davis model in line with the simplicity of the 

heuristic model, it is still not obvious that the ratio method would work due to the interaction of 

the CBF and CMRO2 terms.  

 

The scaling parameter and additional comparison of the simple models 

When simple models of the BOLD effect are used, the physical meaning of the scaling 

parameter (i.e., its relationship to underlying physiological variables) can become blurred. Here 

we considered the question of whether the scaling parameter is literally the maximum BOLD 

signal change that would occur if all of the deoxyhemoglobin was removed, or whether it 

functions as a fitting parameter that differs based on the mathematical form of the particular 

simple model, adjusting each to fit the data over the normal physiological range. From Figure 4, 

it is apparent that the maximum BOLD signal depends on whether dHb is eliminated by 

increasing CBF or decreasing CMRO2. Additionally while the limit of the Davis model in both 

cases is M, the limit of the heuristic model is either A when CMRO2 goes to zero or A(1-αv) 

when CBF approaches infinity. Finally both simulations and experimental data show that 

hypercapnia determined values of the scaling parameter depend not only on the simple model 

used but also on the values of the parameters α, β and αv [7,10]. Therefore to maximize 
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accuracy of the simple models and avoid ambiguity introduced by making the scaling parameter 

equivalent to the maximum BOLD signal, it is better to determine the scaling parameter from a 

calibration experiment, thereby providing a good fit of the simple models to the physiologically 

reasonable range of CBF and CMRO2 changes.  

Our simulations provide further evidence of this: although the B0-adjusted Davis MHC is 

smaller than the heuristic model AHC at 3T, both simple models estimate CMRO2 changes well 

(Fig. 2 and 3). Furthermore the difference in MHC between the original and free parameter Davis 

models published previously [10] suggests strong covariance between the scaling parameter 

(M), α, and β in the Davis model. It is through the calibration process that the simple models 

become self-correcting, emphasizing that the value of the scaling parameter depends on the 

model used to calculate it rather than on the maximum BOLD response.  

 

Future applications 

 A potentially useful feature of the heuristic model is that if the variation of n over time 

during an activation experiment is relatively small, the BOLD response becomes simply a 

scaled version of a pure non-linear function in CBF. In models relating the BOLD response to 

underlying physiology (e.g., as a component of dynamic causal modeling [46]), the ambiguities 

due to the baseline state and the CBF/CMRO2 coupling ratio are combined into a single scaling 

parameter, simplifying the treatment of the forward model from neural responses to measured 

BOLD responses.  

 As shown recently, the heuristic model is also useful for improving the precision of the 

CBF response when simultaneous measurements of BOLD and CBF are acquired [48]. By 

isolating dependence of the BOLD signal on the non-linear CBF response, the unknown 
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parameters A, αv and n that modulate the BOLD signal can be combined into a single factor. 

This property relating the underlying CBF fluctuations simply to the BOLD signal is used by 

the BOLD-Constrained Perfusion (BCP) method to dramatically improve the estimate of CBF 

fluctuations. Specifically, the heuristic model is used as a constraint in the minimization of the 

cost function, which incorporates the measured BOLD signal, the measured CBF signal, the true 

underlying BOLD and CBF signals, and noise.  

 

Conclusions 

 The heuristic model was inspired by work with the detailed BOLD model and a desire 

to develop a simple analysis for detecting changes in flow-metabolism coupling from combined 

BOLD and blood flow data. The heuristic model is advantageous over previous models, because 

it simplifies the dependence of the BOLD signal on blood flow and flow-metabolism coupling 

and in doing so suggests the ratio method for analysis of combined BOLD and CBF data. This 

approach works very well at 1.5T and 3T, but does not appear to work at 7T when it predicts a 

change in n when no change is present. It is remarkable to note that when applied to calibrated 

BOLD data the heuristic model with only one fixed parameter has accuracy similar to the Davis 

model with parameters adjusted for the magnetic field strength. At 1.5T, 3T and 7T, the 

heuristic model produces consistent results for ΔCMRO2 at n=2, although they are slightly less 

accurate than the B0-adjusted Davis model. This small difference is balanced by greater 

accuracy of the heuristic model when applied to a simulated analysis of the response to caffeine 

particularly at 7T, which is a somewhat surprising result given the simplicity of the heuristic 

model. 
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Figure 2.1. The ratio method for analysis of combined BOLD (δS) and CBF data.  

The DBM was used to simulate BOLD data from changes in CBF and set values of n. 10,000 
simulations were performed using the ranges for the model inputs noted in Tables 1 and 2.  The 
data was compared to a reference of nref=2. Inset histograms show the distribution of δS ratios 
for a non-linear CBF ratio of 0.5. At 1.5T (A) and 3T (B), the ratio method separates the data 
well while predicting nx=nref data will fall along the line of identity. At 7T (C), the ratio method 
does not perform as well, particularly for nx=nref for which the data deviates from the line of 
identity. (D) Application of the ratio method to data examining the effect of visual stimulus 
contrast on the coupling of CBF and CMRO2 in 9 subjects. 100% contrast flickering 
checkerboard was used as the reference with results showing that 1% contrast has a significantly 
lower n. 
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Figure 2.2. Heuristic vs. B0-adjusted Davis model applied to the calibrated BOLD 
experiment: Estimating %ΔCMRO2 calculation bias due to variability in physiological 
parameters.  

Eleven input parameters to the detailed model were varied around reasonable values as defined 
in Tables 1 and 2 while other parameters were held constant at the best guess of physiology. 
The activation and ideal hypercapnia experiments were simulated for each of these 
physiological states at (A,B) 1.5T, (C,D) 3T and (E,F) 7T. The true CMRO2 change with 
activation is shown as a dashed line, while the bars showing the range of calculated values is 
shaded from dark to light for increasing values of the associated physiological parameter. Davis 
model parameters α and β were adjusted for B0 as noted in the figure. In the heuristic model, 
αv=0.2 across all B0. (A,C,E) Accuracy of the models at n=2 (%ΔCBF=50%) and variable B0. 
(B,D,F) Accuracy of the models at n=-1 (%ΔCBF=-25%) and variable B0. Note values for α and 
β in the Davis model are consistent for each B0. 



  

 

58 

 

Figure 2.3. Absolute error in ΔCMRO2 calculations.  

Simulated calibrated BOLD calculations were made for the best guess of physiology and 
imaging parameters noted in Tables 1 and 2. (A-D) Calculations in the absolute ΔCMRO2 error 
are shown at 1.5T for the 1.5T-adjusted Davis model, the heuristic model, the Davis model with 
α=0.2 and β=1, and the free parameter Davis model with α and β fitted as noted. Similar 
calculations are shown for 3T (E-H) and 7T (I-L). 
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Figure 2.4. Simulating the maximum BOLD signal through dHb elimination.  

The maximum BOLD signal results from complete elimination of dHb, which can be 
accomplished by increasing CBF, decreasing CMRO2 and/or increasing PaO2. Here the BOLD 
signal is shown as a function of SvO2 at (A) 1.5T, (B) 3T, and (C) 7T. Three mechanisms of 
dHb reduction are included: hyperoxia combined with CBF increase (blue), CBF increase only 
(green) and CMRO2 cessation (red). Also included is a simulation for ΔCBF=100% and 
PaO2=390mmHg consistent with findings from Gauthier et al. [42]. 
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Table 2.1. Input parameters to the detailed model. 

Variable Description Best 
Guess 

Reasonable 
Variation 

V0 Total baseline CBV fraction 0.05 0.03-0.07 
ωA Arterial fraction of baseline CBV 0.1 0.05-0.15 
ωa Arteriolar fraction of baseline CBV 0.1 0.05-0.15 
ωv Venous fraction of baseline CBV 0.4 0.2-0.6 
αT Grubb’s constant relating total CBV to CBF 0.38 0.25-0.55 
αv Exponent relating venous CBV to CBF 0.2 0.1-0.38 
Hct Resting hematocrit 0.44 0.37-0.5 
E0 Resting oxygen extraction fraction 0.4 0.3-0.5 

σ Fraction of arteriolar blood reflecting venous 
saturation 0.1 0-0.2 

PaO2 Arterial partial pressure of oxygen 104 mmHg n/a 
λ Intravascular to extravascular spin density ratio 1.15 0.9-1.3 

 

Table 2.2. Input parameter to the detailed model that are sensitive to B0. 

Variable Description Best Guess Reasonable Variation 
  1.5T 3T 7T 1.5T 3T 7T 

R2E
*  

Resting 
extravascular  
signal decay  
rate 

11.6 s-1 25.1 s-1 35 s-1 9-14 s-1 20-30 s-1 28-42 s-1 

TE Echo time 50 ms 32 ms 25 ms 40-60 ms 20-40 ms 15-35 ms 
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Appendix A 

Derivation of the new model  

 Both the heuristic model and the Davis model are highly simplified 

mathematical expressions trying to capture a complex phenomenon. The main text 

describes tests of the accuracy of these simpler models against the DBM, which reflects 

our current knowledge of the BOLD signal and is the bottom-line test of the simpler 

models. Nevertheless, it is important to consider the basic ideas that motivated the 

proposed heuristic model, which can be derived from two assumptions. Neither of these 

assumptions is strictly true, and the DBM is used here to test each of these assumptions 

as the parameters in Tables 1 and 2 are varied.   

Assumption 1: The fractional BOLD signal change is directly proportional to the 

absolute change in total deoxyhemoglobin (dHb) content in a voxel with slope 

m:  

 BOLD %( ) = −m ⋅ Δ dHb  (A1) 

Here, dHb  (“dHb content”) is total dHb per unit voxel volume and is dependent on 

both hemoglobin oxygen saturation and blood volume. dHb 0  is the dHb content in the 

baseline state. For our best guess of the physiology (Tables 1&2), this value is 0.11 

mmol of dHb per liter of tissue volume assuming a hemoglobin monomer molecular 

weight of 16.1 kDa. In the seminal work of Ogawa and colleagues [1], they used Monte 

Carlo simulations to show that this assumption is true for the extravascular signal 
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change due to larger vessels for which diffusion is not important. Here using the 

detailed model, we tested whether this is still a reasonably accurate assumption when 

non-linear effects due to intravascular signal changes and extravascular signal changes 

around capillaries are incorporated; for 10,000 random combinations of %ΔCBF (-50% 

to 80%) and %ΔCMRO2 (-30% to 50%), we examined the relationship between BOLD 

and dHb  using our best guess of the physiology while also systematically varying 

these parameters as defined in Tables 1 and 2 (Appendix Fig. A1). We looked at the 

effects of varying baseline CBV fraction (V0), the fraction of this CBV considered to be 

venous (ωv), the coefficient relating venous CBV to CBF (αv) and echo time (TE). We 

also examined whether a reasonable amount of combined variation in these parameters 

as defined in Tables 1 and 2 would have a different effect (App. Fig. A1D). Supporting 

Figures S2 and S3 show these simulations for 1.5T and 7T. The linearity of all these 

results suggests that Eq. (A1) is a reasonable assumption. This leads to the BOLD 

equation: 

 
BOLD %( )

A
= −

Δ dHb
dHb 0

 (A2) 

Note, though, that the curves in Figure A1, while supporting an overall linear variation, 

have a certain thickness to them, indicating the limitations of this assumption. We 

consider the source of this effect below. In addition to those input parameters to the 

detailed model noted, we examined the others listed in Table 1; these results are not 

shown but are consistent with the first assumption. 
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Assumption 2: The fractional change in tissue concentration of total dHb is equal 

to the fractional change of venous dHb:  

 Δ dHb
dHb 0

=
Δ dHb v

dHb v,0

 (A3) 

Tests of this assumption using the DBM (in parallel to its use in producing Appendix 

Figure A1) are shown (Appendix Figure A2), suggesting that this assumption is 

accurate as well. We also examined the effect of varying the other parameters listed in 

Tables 1 and 2 (results not shown) without finding any noticeable effect on this 

relationship. 

The first assumption defines the basic relationship between the BOLD signal 

and dHb, and the second assumption provides the link to the physiological parameters. 

We define f, v, and r respectively as CBF, venous CBV and CMRO2 normalized to their 

baseline state values. Also E and E0 are the oxygen extraction fractions in the active and 

baseline states such that E=dHb/Hb. Since in most cases E/E0 = r/f (from the definition 

of CMRO2 with the notable exception of hyperoxia), the normalized change in venous 

dHb is: 

 
Δ dHb v

dHb v,0

= ΔCBV
CBV0

⋅ ΔE
E0

= v ⋅r
f

−1 (A4) 

Combining equations [A2-A4], the BOLD equation becomes: 

 BOLD %( ) = M 1− v ⋅r
f

⎛
⎝⎜

⎞
⎠⎟

 (A5) 
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We posit that the normalized change in CMRO2 (ΔR/R0) and the normalized 

change in CBV (ΔV/V0) are small enough to justify first order approximation while the 

normalized change in CBF (ΔF/F0) is too large for such an approximation: 

 
1− v ⋅r

f
= 1− 1

f
1+ ΔV

V0

⎛
⎝⎜

⎞
⎠⎟

1+ ΔR
R0

⎛
⎝⎜

⎞
⎠⎟

           ≈1− 1
f

1+ ΔV
V0

+ ΔR
R0

⎛
⎝⎜

⎞
⎠⎟

 (A6) 

Defining the coupling parameter n=(f-1)/(r-1) such that ΔR R0 = 1 n ⋅ ΔF F0  

and substituting for the approximation ΔV V0 =α v ⋅ ΔF F0 , which is the linearization of 

v = f α v  leads to the following, which can be rearranged: 

 

1− v ⋅r
f

= 1− 1
f

1+α v
ΔF
F0

+ 1
n
⋅ ΔF
F0

⎛
⎝⎜

⎞
⎠⎟

           ≈
1+ ΔF F0( )F0

1+ ΔF F0( )F0

− F0

1+ ΔF F0( )F0

− α v ⋅ ΔF
1+ ΔF F0( )F0

− ΔF
n 1+ ΔF F0( )F0

           ≈ ΔF F0

1+ ΔF F0

− α v ⋅ ΔF F0

1+ ΔF F0

− ΔF F0

n 1+ ΔF F0( )

           ≈ 1+ ΔF F0

1+ ΔF F0

− 1
1+ ΔF F0

⎛
⎝⎜

⎞
⎠⎟

1−α v −1 n( )

           ≈ 1−1 f( ) 1−α v −1 n( )

 (A7) 

The new model of the BOLD signal is therefore: 

 BOLD %( ) = A 1−1 f( ) 1−α v −1 n( )  (A8) 

 As noted above, the primary source of error in this model likely arises from the 

thickness of the lines in Figure A1. While the overall behavior of the curves is linear, 
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the width of the curves contradicts the assumption that no change in Δ dHb  produces 

no change in the BOLD signal. Specifically, a non-zero BOLD signal may occur even if 

there is no change in dHb content when an increase in CBF both decreases the blood 

concentration of dHb and also increases venous CBV. This would result in no 

extravascular signal change, but the decrease in dHb blood concentration would still 

produce a positive intravascular BOLD signal. Additionally there is exchange of blood 

and tissue volumes, which contributes to the signal change. For these reasons, a 

measured BOLD signal change could occur even when there is no change in total dHb 

content. The magnitude of this effect at 3T is illustrated (Appendix Figure A3) by 

showing curves of constant BOLD signal produced by the DBM in the plane of CBF 

and CMRO2 changes with the best guess of the values for the physiological variables 

(Tables 1 and 2). Plotted with the curves of the BOLD signal is the curve of constant 

total dHb content, which departs from the null line of the BOLD signal as the CBF and 

CMRO2 changes increase.  
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Appendix B: Limits of the simple models 

Maximizing the BOLD signal through elimination of dHb 

In order to maximize the BOLD signal in a particular subject, all dHb present in 

the baseline state must be eliminated. This can occur through increases in CBF or 

decreases in CMRO2. These limits of the simple models are examined in order to 

elucidate their relationship to the maximum BOLD signal. The limits of the Davis 

model are straightforward. In the case of an infinite CBF change, the f α−β  term goes to 

zero: 

 BOLD %( ) = M 1− f α−βrβ( )
                = M

 (B1)  

When CMRO2 approaches zero (r=0), the same solution is found such that in both 

instances the Davis model scaling parameter is equivalent to the maximum BOLD 

signal. 

 The heuristic model is also straightforward for the case of an infinite CBF 

change as both the 1/f and 1/n terms go to zero: 

 
BOLD %( ) = A 1−1 f( ) 1−α v −1 n( )
                = A 1−α v( )

 (B2) 

In the case that CMRO2 approaches zero, the solution is slightly more complicated and 

depends on CBF, however if ΔCBF is small the limit simply becomes A:  
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BOLD %( ) = A 1−1 f( ) 1−α v −1 n( )

                = A f −1
f

⎛
⎝⎜

⎞
⎠⎟

1−α v −
r −1
f −1

⎛
⎝⎜

⎞
⎠⎟

                = A f −1
f

−α v
f −1
f

+ 1
f

⎛
⎝⎜

⎞
⎠⎟

                = A 1−α v 1−1 f( )⎡⎣ ⎤⎦
                = A 1−α v ⋅ ΔCBF CBF( )
                = A

 (B3) 

 

The limit of the heuristic and Davis models as ΔCBF approaches zero 

Starting with the Davis model and assuming changes in CBF and CMRO2 are 

small, substitutions can be made for f1 and n: 

 

BOLD %( ) = M 1− ΔR
R0

+1
⎛
⎝⎜

⎞
⎠⎟

β⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                = M 1− β ⋅ ΔR
R0

−1
⎛
⎝⎜

⎞
⎠⎟

                = M ⋅β ⋅ ΔR
R0

 (B4)  

Starting with the heuristic model, substitutions can be made for f and n as follows: 

 BOLD %( ) = A 1− F0
F0 + ΔF

⎛
⎝⎜

⎞
⎠⎟
1−α v −

F0 ⋅ ΔR
R0 ⋅ ΔF

⎛
⎝⎜

⎞
⎠⎟

 (B5) 

For small changes in flow, we can find the limit of the flow term using a first order 

approximation since the inverse of 1+x where x is a small number is 1-x. Additionally, 
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a number divided by ΔF as this term approaches zero will go to infinity overwhelming 

the finite 1-αv term: 

 
BOLD %( ) = A 1− F0

F0 + 1+ ΔF F0( )
⎛

⎝⎜
⎞

⎠⎟
1−α v −

F0 ⋅ ΔR
R0 ⋅ ΔF

⎛
⎝⎜

⎞
⎠⎟

                = A 1− 1− ΔF F0( )⎡⎣ ⎤⎦ − F0 ⋅ ΔR
R0 ⋅ ΔF

⎛
⎝⎜

⎞
⎠⎟

 (B6) 

Solving for the BOLD signal leaves the following relationship: 

 BOLD %( ) = −A ΔR
R0

 (B7) 
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Appendix Figure A1.2.5. Relationship between the BOLD signal change and the total 
change in dHb content ( Δ dHb ) at 3T.  

Scatter plots were produced by independently varying ΔCBF (-50% to 80%) and ΔCMRO2 (-
30% to 50%) within the specified ranges. Purple curves are identical in all subplots with the 
exception of (D) and represent the best guess physiological case (Tables 1 and 2). (A) For the 
best guess of physiological parameters, the relationship between the BOLD signal and Δ dHb  

is linear, but there is a finite width to the curve. In this case, dHb 0 = 0.11 mmol of dHb per 
liter of tissue. For ΔBOLD between -3% and 3%, a fit to this line gives ΔBOLD(%)=-
138* Δ dHb . Inset is a histogram of ΔBOLD probability distribution around 

Δ dHb = 0±0.025 mg/mL (i.e., variation in the BOLD signal that could result when there is 
no change in net tissue dHb). (D) Allowing a wider and still reasonable distribution of 
physiology (Tables 1 and 2, Reasonable Variation) produced more scatter in the relationship 
between ΔBOLD andΔ dHb . For ΔBOLD between -3% and 3%, a fit to this line gives 

ΔBOLD=-133*Δ dHb . Inset is a histogram of ΔBOLD probability distribution around 

Δ dHb = 0±0.025mg/mL. The remaining panels show how the curve changes when one of the 
physiological variables is altered:  (B) varying baseline CBV fraction; (C) varying baseline 
venous and capillary CBV fractions; (E) varying the exponent relating CBF and venous CBV; 
(F) altering TE. 
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Appendix Figure A2.2.6. Relationship between the normalized venous change and 
normalized total change in dHb contents.  

Scatter plots were produced as in Fig. A1 by independently varying ΔCBF (-50% to 80%) and 
ΔCMRO2 (-30% to 50%) within the specified ranges. Purple curves are identical in all subplots 
with the exception of (D) and represent the best guess physiological case (Tables 1 and 2). (D) 
Combined variation of the parameters within the reasonable ranges (Tables 1 and 2). The only 
physiological variable that created a slight deviation from the identity line is the venous flow-
volume relationship expressed as αv (E). 
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Appendix Figure A3.2.7. Comparing zero BOLD response to zero change in total dHb 
content.  

This plot of the BOLD response as a function of changes in CBF and CMRO2 was generated 
using our best guess of the physiological inputs to the DBM model at 3T (Tables 1 and 2). The 
color scale represents the BOLD signal as a percent change. The dot-dash line represents 
Δ dHb = 0  while the solid orange line represents ΔBOLD=0%. For positive changes in CBF 

and CMRO2, Δ dHb = 0  is shown to be associated with a small positive BOLD signal. This 
is due to the intravascular effects of dHb: although the increase in CBV and decrease in dHb 
concentration combine to produce no change in total dHb content and no change in the 
extravascular signal, the intravascular signal decay rate decreases due to the decrease in dHb 
concentration. 
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Supplementary Information 

 
Supplementary Figure S1.2.8. The ratio method for analysis of combined BOLD (δS) and 
CBF data: effects of different n.  

The DBM was used to simulate BOLD data from changes in CBF and set values of n. 10,000 
simulations were performed using the ranges for the model inputs noted in Tables 1 and 2. The 
data was compared to a reference of nref=-1 or nref=4 at B0=1.5T, 3T and 7T. Inset histograms 
show the distribution of δS ratios for a CBF ratio of 0.5. (A,C,E) For nref=4  at 1.5T (A) and 3T 
(C), the ratio method appears to work well, although the data is slightly more difficult to 
distinguish, which is expected due to the decreased sensitivity of the BOLD signal to n at higher 
values of n. At 7T (E), the approach is again biased when nx=nref. At all three field strengths, the 
ratio method separates the data well for nref=-1, although there is bias in the nx=nref data. (B,D,F).  
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Supplementary Figure S2.2.9. Relationship between the BOLD signal change and the total 
Δ dHb  at 1.5T.  

Scatter plots were again produced by independently varying ΔCBF and ΔCMRO2. (A) For the 
best guess of physiology, the relationship between the BOLD signal and Δ dHb  is linear, but 
again there is a finite width to the curve. For ΔBOLD between -3% and 3%, a fit to this line 
gives ΔBOLD(%)=-96*Δ dHb . The inset is a histogram of ΔBOLD probability distribution 

around Δ dHb =0±0.025 mg/mL is similar to that at 3T As expected, the BOLD signal shows 
weaker dependence on the change in dHb content than at 3T (B-F). 
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Supplementary Figure S3.2.10. Relationship between the BOLD signal change and the 
total Δ dHb  at 7T.  

(A) For the best guess of physiology, the relationship between the BOLD signal and Δ dHb  
is linear with a tighter distribution than at 3T or 7T. For ΔBOLD between -3% and 3%, a fit to 
this data gives ΔBOLD(%)=-207*Δ dHb . As expected, the BOLD signal shows stronger 
dependence on the change in dHb content than at 3T (B-F). 
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Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the
working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although
widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and
pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due
to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural
activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked
changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual
measurement of blood flow and BOLD responses to overcome these limitations and show that these two
sources of modulation work in opposite directions following caffeine administration in healthy human
subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism
after caffeine consumption led to a decrease in baseline blood oxygenation and were expected to increase the
subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61%
increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that
BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes,
indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of
underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measure-
ment of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in
which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a
stimulus may be altered.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool
to localize metabolic activity and blood flow changes resulting from
brain activity. It is widely used for mapping spatial and temporal
patterns of neural activity in fields as diverse as neuroscience,
psychology, and economics, but fMRI has not lived up to its promise
in the field of medicine. Although there are a number of potential
clinical applications of fMRI, they have thus far been limited because
of the complexity of the BOLD response. The BOLD signal results from
changes in local deoxyhemoglobin content (Ogawa et al., 1993),
which depends on the relative changes in cerebral blood flow (CBF)

and the cerebral metabolic rate of oxygen (CMRO2). The primary
physiological phenomenon underlying the BOLD response is that CBF
increases much more than CMRO2 with neural stimulation, reducing
the local deoxyhemoglobin content and increasing the MR signal.

The magnitude of the BOLD signal depends strongly on two
additional factors: (1) the exact balance of the changes in CBF and
CMRO2,whichhaveopposite effects on the change inbloodoxygenation,
and (2) how much deoxyhemoglobin is present in the baseline state
(Buxton, 2010). This complexity of the signal leads to a fundamental
problem in interpreting the magnitude of the BOLD response: for
example, if themagnitude of theBOLD response in the hippocampus to a
standard memory task is altered in disease or after administration of a
drug, howshould this be interpreted? Suchafindingcouldmean that the
neural response to the stimulus is altered, but it could also be due to
disease- or drug-related chronic changes in the baseline state (Ances
et al., 2009; Brownet al., 2003; Fleisher et al., 2009) or altered couplingof
the CBF and CMRO2 responses to the stimulus (Ances et al., 2008). The
inability of BOLD-fMRI to disentangle these possible effects underlying
changes in the BOLD response amplitude is the primary limitation to a
broader application of fMRI as a quantitative probe of brain function.
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Adding quantitative measurements of CBF based on arterial spin
labeling (ASL) methods can help to untangle these confounding
effects in threeways. First, ASL techniques provide information on CBF
in the baseline state and on how CBF changes with activation. Second,
the ASL measurement is more stable in the face of scanner drift, so
that it is possible to measure changes in activity between two states
widely separated in time (Borogovac et al., 2010; Wang et al., 2003).
Third, while the complex sensitivity of the BOLD signal creates
difficulty in interpretation, it also offers the possibility of calculating
changes in CMRO2 when BOLD and CBF measurements are combined.
The calibrated-BOLD approach proposed by Davis et al. (1998) utilizes
this additional measurement of CBF to estimate the CMRO2 change
during brain activation, and offers the potential to broaden fMRI from
a mapping tool into a true probe of brain function in health and
disease.

In this paper, we show how a quantitative fMRI approach can be
used to more fully assess how a drug alters both baseline CBF and
CMRO2 and the CBF and CMRO2 responses to a standard stimulus. A
quantitative methodology requires simultaneous measurements of
CBF and BOLD responses and improved temporal stability of the BOLD
response. The dual-echo spiral ASL pulse sequence (Wong et al., 1998)
addresses these requirements by providing both CBF and BOLD time
series (Fig. 1). In addition, quantification and comparison of BOLD
signals widely separated in time is made possible through measure-
ment of the absolute transverse relaxation rate (R2*), which is the
physical parameter underlying the BOLD effect. Using this method-
ology we examined the effect of caffeine as a model drug affecting
both baseline neurophysiology and the neural response to a simple
visual stimulus.

Caffeine, part of the methylxanthine family of chemicals, acts as a
non-selective antagonist of adenosine receptors, especially types A1,
A2A, and A2B (Fredholm et al., 1999; Pelligrino et al., 2010). Typically
adenosine acts to inhibit release of excitatory neurotransmitters at A1

receptors. By blocking these receptors the inhibitory activity is lifted,
thereby increasing neuronal firing rate (Dunwiddie andMasino, 2001;
Fredholm et al., 1999). In addition, adenosine acts as a vasodilator
through A2A and A2B receptors located on blood vessels, and by
blocking these receptors caffeine decreases CBF (Kusano et al., 2010;
Pelligrino et al., 2010). This dual action of caffeine on both neural
activity and blood flow through different regulatory mechanisms
leads to the physiological uncoupling of CBF and CMRO2, whichmakes
caffeine an ideal drug for studying how changes in both CBF and
CMRO2 affect the BOLD response.

Several studies have found that caffeine reduces baseline CBF
(Cameron et al., 1990a; Field et al., 2003; Mathew and Wilson, 1985),
while studies on how caffeine affects the BOLD response to a stimulus
have yielded conflicting results (Laurienti et al., 2003; Liau et al., 2008;
Mulderinket al., 2002). In comparison, there is relatively little information
available on how caffeine affects CMRO2. A recent study combining CBF
and BOLD response measurements found that the coupling ratio of the

CBF and CMRO2 stimulus responses (n=δCBF/δCMRO2) decreased after
caffeine administration (Chen and Parrish, 2009b), and another study
from the samegroup founddifferent dose-dependent effects on the BOLD
andCBF responses (Chen and Parrish, 2009a). Yet,wewere unable tofind
a study specificallymeasuring the combined effect of caffeine on baseline
CMRO2 and the evoked CMRO2 response to a stimulus. This would
provide a greater understanding of how caffeine affects neural metabo-
lism. One study in preterm infants using indirect calorimetry found that
caffeine increased total body oxygen consumption (Bauer et al., 2001)
while another study in preterm infants demonstrated reduced cerebral
oxygenation after administration of caffeine (Tracy et al., 2010). How
these studies translate to cerebral oxygen metabolism in adults is
unknown.

For the current study, an analysis of the baseline effects of caffeine
on CBF and CMRO2 in these data was previously reported (Perthen
et al., 2008), while here we present an integrated analysis of the
modulations of both the baseline state and the evoked responses
incorporating a new model for the BOLD response. Our primary
findings were: 1) that caffeine produced a significant uncoupling in
the baseline state, reducing CBF while increasing CMRO2; and 2) that
caffeine significantly increased the absolute CMRO2 response to the
visual stimulus. These effects are consistent with the inhibition of the
dual action of adenosine, which lowers CBF while increasing neural
excitability. This raises baseline CMRO2 and increases the CMRO2

response to the stimulus. However, despite these large physiological
changes, the standard BOLD response to the stimulus was unaltered
by caffeine, emphasizing the limitations of BOLD-fMRI alone to detect
the underlying physiological changes.

Methods

The study was performed on ten healthy adults reporting
moderate daily caffeine intake (100–250 mg) who had abstained
from caffeine consumption for at least 12 h prior to study participa-
tion. The institutional review board at the University of California San
Diego approved the study, and written informed consent was
obtained from all participants. Two functional scans were performed
in each of the pre- and post-caffeine states. The functional scans
consisted of four blocks of a black and white checkerboard flashing at
8 Hz for 20 s alternating with 60 s of a small stationary white square
on a gray background. After the pre-caffeine functional scans, two
7-min (3-min of CO2) hypercapnia scans were performed for
calibration of the CMRO2 calculations (Table 1). Subjects were then
removed from the scanner and given a 200 mg caffeine tablet. After
30 min, subjects were placed back into the scanner and the scan
protocol was repeated without the hypercapnia scan.

Using a spiral dual-echo ASL PICORE QUIPSS II (Wong et al., 1998)
pulse sequence, we simultaneously measured the CBF and BOLD
responses to a strong visual stimulus before and after administration
of caffeine. ASL was used to directly measure CBF by magnetically
labeling arterial water with an applied RF pulse. The tagged water was
allowed to flow into the slice of interest followed by tagged image (T)
acquisition. A control image (C) was acquired by repeating this
sequence without magnetically tagging the water. Signal acquisition
occurred at two echo times (TE) every 2.5 s (TE1=2.9 ms and
TE2=24 ms). Surround average and difference time courses were
computed using the weighting shown in Fig. 1.

Statistical analysis of the functional data was performed using a
general linear model (GLM) approach similar to the method used in
Perthen et al. (2008). An active visual cortex ROI was defined as voxels
exhibiting CBF activation in the first echo difference data of the
concatenated functional scans. The desired ROI size was set to 250±
25 voxels for both the pre- and post-caffeine runs. The minimum
acceptable correlation coefficient was decreased until this ROI size
was established with the additional requirement that voxels were
included in the ROI only if there were two neighboring voxels that

Fig. 1. Experimental design for acquisition of simultaneous BOLD and CBF data showing
stimulus pattern with a 60 s baseline followed by 4 cycles of 20 s of stimulus/60 s of rest
and a final 30 s of rest. Tag and control images are alternated each TR (2.5 s), during
which two echoes are acquired (TE1=2.9 ms and TE2=24 ms). For each echo, the
surround average and surround difference of the tag and control images are calculated
as shown in order to produce average and difference time courses for each echo as
shown in Supplementary Fig. S1.
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Figure 3.1. Experimental design for acquisition of simultaneous BOLD and CBF data showing stimulus pattern with a 60 s baseline followed by 4 cycles of 20 s of stimulus/60 s of rest and a final 30 s of rest. 
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were also above the correlation coefficient cutoff. The intersection of
the pre-caffeine ROI and post-caffeine ROI was taken for each subject
resulting in variable size of the CBF ROI between 100 and 167. The
minimum CBF correlation coefficient varied between subjects from
0.11 to 0.28. Analysis was limited to voxels exhibiting a minimum
signal to noise ratio of 100 and minimum CBF signal of 30% of the
mean baseline CBF to preferentially increase the likelihood of gray
matter over white matter inclusion in the ROI. For summary statistics,
the baseline was averaged over the 10 s prior to the start of the
stimulus and the stimulus response was averaged over the last 10 s of
the stimulus. To test whether our method of ROI determination biased
our results, we also analyzed our data using a combined BOLD/CBF
ROI.

The surround average signal (A) of the tag and control images was
calculated for each subject at the two echo times and averaged across
the ROI (Supplementary Fig. S1). This was then used to measure the
change in the apparent R2* by modeling the average signal as A(t)=
A0(t)e− TE ⋅R2*(t). The source of the BOLD response is the dependence of
R2* on blood oxygenation, but the problem that usually confounds the
interpretation of slow modulations of the BOLD response is that A0 is
sensitive to scanner drifts. The direct calculation of R2* minimizes this
source of error. For display and analysis, we calculated an equivalent
BOLD response with A0 removed as in Perthen et al. (2008) using the
definition δBOLD tð Þ = e−TE2⋅R#

2 tð Þ−1 where δBOLD is the percent
change in the BOLD signal. Surround subtraction produces a net
signal that is proportional to the arterial spins delivered to the voxel
(Liu andWong, 2005), and quantification of this signal in absolute CBF
units was performed as described in Perthen et al. (Chalela et al.,
2000; Perthen et al., 2008).

To calculate CMRO2 from normalized CBF and BOLD data, the Davis

model (Davis et al., 1998) was used: δS = M 1−f α
r
f

! "β
" #

. This model

describes the BOLD response as a function of the normalized
(activation/baseline) values of CBF (f) and CMRO2 (r). Hypercapnic
calibration was performed as described in Perthen et al. (2008) to
determine the scaling parameter, M, which is the maximum BOLD
response associated with the calibrated BOLD Davis model equation
(Davis et al., 1998). This scaling parameter was then used to determine
normalized CMRO2 from which we calculated δCMRO2. The central
assumption of this calculation is that mild hypercapnia does not alter
CMRO2, so thatM can be calculated from themodel using themeasured
CBF and BOLD responses to hypercapnia (Chen and Pike, 2010; Jones
et al., 2005; Sicard and Duong, 2005). To test whether bias in M would
affect our conclusions, we also analyzed our data with M±30%.

In addition to determining M, values for the parameters α and β
must be assumed. The conventional values of these exponential
parameters are α=0.38 and β=1.5 based on the original develop-
ment by Davis et al. (1998). However, we recently revisited the
question of the accuracy of the Davis model with a more detailed four
compartment model of the BOLD response that includes effects left
out of the original derivation, including omission of the intravascular
signal compartment and volume exchange effects as CBV changes, as
well as the assumption that CBV changes are uniformly distributed
across vascular compartments (Griffeth and Buxton, submitted for
publication).

With this analysis we found that the mathematical form of the
Davis model provides a good fit to the BOLD response predicted by the
detailed model as a function of changes in CBF and CMRO2 if α and β
are allowed to vary from their conventional values. We found best-fit
values of α=0.14 and β=0.91 using non-linear parameter optimi-
zation of the Davis model to simulated data produced by the detailed
BOLD model. These values of α and β may seem counterintuitive
when viewed in the context of the original derivation of the Davis
model, but one should keep in mind that these values represent the
best fit to a more complex model of the BOLD response that includes
effects the Davis model was not originally intended to describe.

Therefore the original biophysical meaning of these parameters
should not be imposed on the new optimized parameters. To test
whether the assumption of these parameter values affects the results
of the study, we also analyzed our data with α=0.38 and β=1.5.

All the BOLD, CBF, and CMRO2 responses were expressed as a
percent change from the pre-caffeine baseline and are denoted as
δBOLD, δCBF, and δCMRO2. This allowed us to measure changes in the
baseline state and also to compare in an absolute fashion the evoked
responses pre- and post-caffeine. In addition, for comparison with
previous studies where this was not possible we also expressed each
response as a fraction of the immediately preceding baseline value.

Results

Table 1 shows the mean CBF, R2* and BOLD responses to 5% CO2

inhalation along with the calculatedM values for the two sets of Davis
model parameters. The fractional BOLD and CBF time courses for
hypercapnia are provided in the Supplementary data (Fig. S2).

Using the dual-echo ASL sequence, surround average and
difference data were determined for each TE from the alternating
tag and control images and averaged over the region of interest
(ROI) as shown for one subject in Fig. 2. To show the applicability of
this technique to single subjects, curves for absolute CBF and R2* are
shown for one subject in Fig. 3. Group averages over the baseline
and stimulus time points are included in Table 2. Using the CBF ROI,
baseline CBF was reduced (pre=82.6±4.4 ml/100 ml/min versus
post=59.9±3.5 ml/100 ml/min, pb0.001) following caffeine ad-
ministration. The absolute ΔCBF response to the visual stimulus
was also reduced post-caffeine (pre=42.0±2.6 ml/100 ml/min
versus post=33.7±2.2 ml/100 ml/min, p=0.033). Baseline R2*
was increased post-caffeine (24.4±1.1 s−1 versus 27.1±1.2 s−1,
pb0.001) while R#

2 in response to the visual stimulus was not
significantly affected by caffeine (Fig. 4b, pre=−0.50±0.4 s−1

versus post=−0.51±0.03 s−1, p=0.67).
Fig. 4 shows the effect of caffeine on the stimulus-evoked response

relative to the pre-caffeine baseline in the top row and relative to the
baseline immediately preceding the stimulus in the bottom row. All
results are shown as percent change from their respective baselines.
All numerical values reported here for the CMRO2 change are steady
state values calculated from the average values of CBF and BOLD on
the plateau of the baseline and the response using the optimized
steady-state Davis model of the BOLD effect. Without the ability to
directly measure changes in the baseline BOLD and CBF, the
conventional analysis as displayed on the bottom row does not reveal
the full extent of physiological modulation by caffeine (Figs. 4d–f). In
fact with the conventional analysis, the effects of caffeine on the
evoked responses to the stimulus were modest, with no change in the
BOLD response, an insignificant change of 9.3% (p=0.38) in the
evoked CBF response, and a 34% (p=0.01) increase in the CMRO2

response (Table 3).

Table 1
Response to hypercapnia. Mean (one s.e.m.), *pb0.01, **pb0.001, measured in the pre-
dose caffeine hypercapnia experiment and calculated M values. Note the M denoted as
‘optimized’ refers to use of the new values of α and β and ‘classic’ refers to use of the
original values of α and β in the Davis model (Davis et al., 1998). All significance values
indicate a significant difference from zero.

Response to hypercapnia (standard error)

CBF ROI

δCBF (%) 29.5 (8.3)* p=0.006
ΔR2* (s−1) −0.73 (0.14)**
δBOLD (%) 1.78 (0.33)**
M, optimized (%) 11.9 (1.7)**
M, classic (%) 8.47 (1.2)**

811V.E.M. Griffeth et al. / NeuroImage 57 (2011) 809–816

 

Table 3.1. Response to hypercapnia. 



  

 

84 

In contrast, the full quantitative analysis (Figs. 4a–c) showed four
large effects of caffeine: a 27% (pb0.001) decrease in baseline CBF, a
22% (p=0.030) increase in baseline CMRO2, a 61% (pb0.001) increase
in the absolutemagnitude of the CMRO2 response to the stimulus, and
a 20% (p=0.036) decrease in the absolute magnitude of the CBF
response (Table 3). The time courses illustrated in Fig. 4 for CMRO2

should be taken as approximate because they were calculated by
assuming that the steady-state model can be applied dynamically, but
this may not be accurate (Buxton et al., 2004).

The importance of the increase of the stimulus-evoked CMRO2

response is that it was not matched by a corresponding increase of the
CBF response. The coupling of CBF and CMRO2 responses can be
described by an empirical index n, defined as the dimensionless ratio
of the fractional changes in CBF and CMRO2. In this experiment, n
significantly decreased with administration of caffeine (pre=1.96±
0.06 versus post=1.60±0.03, pb0.001) in agreement with previous
findings (Chen and Parrish, 2009b). Even though the changes in
pre-caffeine and post-caffeine n appear small, they represent significant
changes in underlying physiology. These decreases ofn are evident even
for individual subject data (Supplementary data, Fig. S3).

To test whether the choice of ROI biased our results, we also used an
ROIdetermined fromthe intersection of voxels exhibitingCBF activation
and BOLD activation (as determined from the second echo average
data). This produced very similar results: a 27% (pb0.001) decrease in
baseline CBF, a 10% (p=0.23) increase in baseline CMRO2 that did not
reach significance, a 52% (pb0.001) increase in the absolute magnitude
of the CMRO2 response to the stimulus, and a 23% (p=0.042) decrease
in the absolute magnitude of the CBF response. In the combined
BOLD/CBF ROI, the couplingparameterswere systematically higher due
to a systematically higher BOLD response and lower CMRO2 response.
However, caffeine ingestion still resulted in lower n (pre=2.32±0.08

versus post=1.78±0.05, pb0.001). Full results are given in the
Supplementary data.

We also examined whether the choice of α and β would affect the
results by using the parameters from the original Davismodel,α=0.38
and β=1.5. This resulted in a systematic decrease in calculated
δCMRO2 but did not change our main conclusion that caffeine
decreases n by increasing the CMRO2 response (54%, pb0.001) and
decreasing the CBF responses to the visual stimulus. Baseline CMRO2

also increased with a trend toward significance (13.3±6.4%, p=0.067)
(Supplementary data, Table S4).

Since the assumption that hypercapnia does not change CMRO2

has been challenged (Kliefoth et al., 1979; Xu et al., 2011; Zappe et al.,
2008), we tested whether our conclusions depend on the exact value
of M. We repeated the analysis assuming a fixed value for M of ±30%
of the average M from the hypercapnia experiment. This range
brackets the results from a number of similar studies (Ances et al.,
2008; Chiarelli et al., 2007; Hoge et al., 1999; Liau and Liu, 2009; Mark
et al., 2011; Stefanovic et al., 2006) after adjusting for TE, α and β.
Even with these large variations in M, we found that caffeine still
decreased n by increasing the CMRO2 response to the stimulus (Table
S5). Baseline CMRO2 also increased post-caffeine for different values
of M with M=8.3% resulting in a strong 42% (p=0.006) increase in
baseline CMRO2 whileM=15.4% resulted in a trend toward increased
CMRO2 (Table S5).

Discussion

Fluctuations in oxygenmetabolismmay in fact provide amuchmore
accurate reflection of neural activity than changes in the BOLD signal
alone since aerobic metabolism of glucose is the primary metabolic fuel
for energy production in the human brain. Recent research has shown
that changes in CMRO2 are expected to reflect the underlying energy
requirement of evoked neural activity (Lin et al., 2010), which is
primarily the energy cost of pumping ions against their gradient at
neuronal synapses (Attwell and Iadecola, 2002; Attwell and Laughlin,
2001). The importance of accurately and non-invasively measuring
CMRO2 is emphasized by the many common psychiatric and neurolog-
ical diseases demonstrating changes in CMRO2 such as schizophrenia
(Gur et al., 1987; Hoyer and Oesterreich, 1975), depression (Videbech
et al., 2001), bipolar disorder (Brooks et al., 2006; Yatham and Maj,
2010),Alzheimer's (Ishii et al., 1996), chronic traumatic encephalopathy
(Zauner et al., 2002), and epilepsy (Greene et al., 2003). Therefore by
improvingour ability to non-invasively determineCMRO2dynamics,we
will also unlock the ability to expand our knowledge of these diseases
and, potentially, our ability to treat them. The current study demon-
strates that a dual-echo calibrated-BOLD approach provides the
capability of quantitatively assessing physiological changes in the

Fig. 2. CBF-based activation map for a single subject, showing correlation coefficients
calculated using the general linear model. Regions of interest (ROIs) were determined
by thresholding the activation maps as described in the text.
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Fig. 3. Single cycle CBF and R2*. Black bar shows stimulus period of 20 s. a, Absolute CBF
was calculated from echo 1 and echo 2 difference data for a single subject. b, Absolute
R2* was calculated from average echo 1 and echo 2 data for a single subject.

Table 2
Absolute CBF and R2*. Mean (one s.e.m., *pb0.001), absolute values of CBF and R2*
measured in the pre- and post-caffeine experiments (10 subjects). ‘Baseline’ is
averaged over the 10 s prior to the start of the stimulus during which a gray
background with a white square in the middle was presented. The ‘stimulus’ response
was averaged over the last 10 s of the stimulus and denotes the steady state response to
the flashing checkerboard visual stimulus. Significance for the pre-caffeine stimulus
response and the post-caffeine baseline shift were tested against the pre-caffeine
baseline. Significance for the post-caffeine stimulus response was tested against the
post-caffeine baseline.

Absolute CBF and R2*

CBF ROI

CBF (ml/100 ml/min) R2* (s−1)

Pre-caffeine (baseline) 82.6 (4.4) 24.4 (1.1)
Pre-caffeine (stimulus) 124.6 (5.2)* 23.9 (1.1)*
Post-caffeine (baseline) 59.9 (3.5)* 27.1 (1.2)*
Post-caffeine (stimulus) 93.6 (4.8)* 26.6 (1.2)*
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Figure 3.2. CBF-based activation map for a single subject showing correlation coefficients calculated using the general linear model. 

Figure 3.3. Single cycle CBF and R2*. 

Table 3.2. Absolute CBF and R2* values.
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brain in response to a drug, including both baseline changes and
alterations in the response to a standard stimulus.

While CBF is a physiological measurement of direct interest, R2* is
primarily of interest as a means to estimate CMRO2 changes using
hypercapnic calibration and a mathematical model of the BOLD effect
(Davis et al., 1998). Typically, CMRO2 changes are calculated relative to
the baseline immediately preceding the stimulus. After administration
of a drug, this relative CMRO2 response could change either with a shift
in the baseline CMRO2 or with modulation of the absolute evoked
CMRO2 response to the stimulus. A novel feature of our analysis is that
we were able to refer all changes pre- and post-caffeine to the pre-
caffeine baseline state, which is possible because CBF and R2* are both
relatively robust absolute values that allow for increased inter-study
reliability as they are not affected by slow signal changes due to
scanner drift. In this way we were able to measure both changes in the

baseline state and also the ratio of the absolute evoked CMRO2

responses to the stimulus.
The primary new finding of this study was that the absolute

evoked CMRO2 response to the stimulus was ~61% larger post
caffeine, while the absolute CBF response decreased by ~20%. This
divergence of CBF and CMRO2 responses to the stimulus was also
evident in the baseline shifts due to caffeine. Baseline CMRO2

increased by ~22% due to caffeine, consistent with previous studies
in rats showing a 15% increase in cerebral glucose utilization after
10 mg/kg caffeine administration (Nehlig et al., 1984). Also consistent
with previous studies, we found a significant reduction in baseline CBF
by ~27% (Cameron et al., 1990b; Field et al., 2003; Laurienti et al.,
2003; Mathew and Wilson, 1985). With the more conventional
analysis, taking each response as a fractional change from its own
preceding baseline condition, this combination of changes led to a
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Fig. 4. Fractional changes in BOLD, CBF and CMRO2 relative to either the pre-caffeine baseline (a–c) or relative to the baseline immediately preceding the stimulus (d–f). Blue time
courses are pre-caffeine. Red time courses are post-caffeine. Black bars indicate the stimulus period of 20 s. Error bars indicate±s.e.m. At baseline, error is considered relative to 0.
Evoked response s.e.m. is considered relative to mean baseline shown. Percent changes from the pre-caffeine baseline: a, the BOLD baseline was shifted post-caffeine (change of
−6.27±1.1%, pb0.001), while the BOLD response to the visual stimulus was not significantly different (change of −3.64±7.3%, p=0.63). b, There was a large overall decrease in
the baseline CBF (−26.9±3.5%, pb0.001) and in the fractional δCBF response post-caffeine (−20.3±8.2%, p=0.036). c, In contrast to the baseline CBF decrease, there was a trend
for increased baseline CMRO2 (+21.8±8.4%, p=0.030), and the δCMRO2 response to the visual stimulus was dramatically increased (60.7±9.5%, pb0.001) post-caffeine.
Conventional analysis showing percent changes relative to the baseline preceding the stimulus: d, baseline shifts are no longer apparent, and the BOLD response to the visual
stimulus remained unchanged (pre=1.20±0.09 versus post=1.23±0.07, p=0.67). e, When considered relative to the baseline preceding the stimulus, the fractional δCBF
response increased slightly relative to the pre-caffeine response (9.28±10.2%, p=0.38). f, Similarly, the fractional δCMRO2 response also increased (34.0±10.7%, p=0.01) but less
so than when considered relative to the pre-caffeine baseline.

Table 3
Fractional percent changes in CBF, BOLD, and CMRO2. Nomenclature for ‘baseline’ and ‘stimulus’ is explained in the caption for Table 2. All significance values indicate a significant
difference from zero except the values of n for which the post-caffeine n was compared to the pre-caffeine n. ‘Response percent change’ refers to the percent change in the post-
caffeine stimulus response compared to the pre-caffeine stimulus response (‘a percent of a percent’).

Fractional changes (standard error) (*pb0.05, **pb0.001)

δCBF (%) δBOLD (%) δCMRO2 (%) n

Relative to pre-caffeine baseline (CBF ROI)
Pre-caffeine (stimulus) 52.1 (4.4)** 1.20 (0.09)** 26.7 (2.3)** 1.96 (0.06)
Post-caffeine (baseline) −26.9 (3.5)** −6.27 (1.1)** 21.8 (8.4)*, p=0.030
Post-caffeine (stimulus) 41.5 (3.2)** 1.15 (0.06)** 42.9 (3.6)**
Response percent change −20.3 (8.2)*, p=0.036 −3.64 (7.3), p=0.63 60.7 (9.5)**

Conventional analysis relative to immediately preceding baseline (CBF ROI)
Post-caffeine (stimulus) 57.0 (3.6)** 1.23 (0.07)** 35.8 (2.3)** 1.60 (0.03)**
Response percent change 9.28 (10.2), p=0.38 2.96 (6.7), p=0.67 34.0 (10.7)*, p=0.01
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reduction in the coupling ratio, n, of CBF and CMRO2 responses to the
visual stimulus, consistent with the finding of Chen and Parrish
(2009b).

Of interest is that the large physiological changes found in this
study in both the baseline state and in the response to the stimulus
were not reflected in the BOLD response because they have opposing
effects. The post-caffeine drop in baseline CBF with a corresponding
increase in CMRO2 required increased extraction of oxygen and
consequently a higher level of deoxyhemoglobin in this baseline state,
which acted to increase the magnitude of the evoked BOLD response
post-caffeine. On the other hand, the CMRO2 change evoked by the
stimulus was much larger after caffeine administration while the CBF
change was slightly smaller, and this reduced the magnitude of the
BOLD response.

Previous results for the effect of caffeine on the evoked BOLD and
CBF responses are mixed. For example, Chen and Parrish (2009a)
found an increase in the fractional CBF response post-caffeine, and
many groups have found the mean BOLD response to be increased
(Behzadi and Liu, 2006; Chen and Parrish, 2009a; Morton et al., 2002;
Mulderink et al., 2002) while others have found the peak BOLD
response to be unchanged (Liu et al., 2004) or highly variable between
subjects (Laurienti et al., 2003). Differences from the results of Chen
and Parrish (2009a) are of particular interest due to the similarity of
their approach. Both studies found that caffeine reduced the ratio of
blood flow to oxygen metabolism changes in response to a visual
stimulus, but themajor difference in the current approach is use of the
dual-echo acquisition, which allows for absolute quantification of R2*
and CBF rather than only relative quantification. This is most apparent
in Fig. 4: the relative approach only allows for production of panels d–f
while the dual-echo technique allows production of panels a–c. The
latter panels also show the baseline shifts and permit comparison of
the magnitudes of the absolute BOLD, CBF and CMRO2 responses. The
importance of this is emphasized when comparing the CBF results in
Figs. 4b and e. Examining Fig. 4e, there is a small although insignificant
increase in the relative response of CBF to the stimulus post-caffeine
(9.3±10.2%, p=0.38) similar to the results from Chen and Parrish
(2009a). Yet when referred to the same baseline as in Fig. 4b, this
insignificant increase becomes a significant decrease in the absolute
CBF response.

Apparent inconsistencies in the literature regarding the effects of
caffeine on the BOLD response might be explained by the current
findings of opposing effects due to increased baseline deoxyhemoglobin
combined with a decreased coupling ratio n post-caffeine. Depending
on the particular set of subjects chosen and experimental conditions, it
is easy to imagine this balance shifting to produce variable changes in
the BOLD response. This potentially variable balance of opposing effects
may also underlie the differential dose dependence of the CBF and BOLD
responses for different levels of caffeine administration found by Chen
and Parrish (2009a).

Our study involved subjects who were all moderate daily caffeine
consumers who had not consumed any caffeine for at least 12 h before
the study. For this reason, it is more accurate to view this group as
recovering from caffeine withdrawal during imaging. The relatively
high baseline CBF pre-caffeine in these subjects (Table 2) suggests
that adenosine or adenosine receptor levels had adjusted to the
subjects' regular levels of caffeine consumption. Abstaining from
caffeine increased activation of the adenosine system in these subjects
elevating baseline CBF and suppressing baseline CMRO2. With typical
daily caffeine restored, baseline CBF was reduced to a level consistent
with non-caffeine consuming controls (Rack-Gomer et al., 2009)
while CMRO2was increased, also presumably to amore typical level. A
similar experiment to the current one with caffeine-naïve subjects
could yield significantly different results, and is an important area for
future work.

A potential limitation of the current work is that the derived
estimates of CMRO2 response depend on the accuracy of the Davis

model (Davis et al., 1998) for the relationship between the BOLD
response and changes in CBF, cerebral blood volume (CBV) and
CMRO2. Potential limitations include the following possibilities: that
the model is oversimplified, leaving out potential contributions to the
BOLD signal; that themodel does not adequately capture the effects of
CBV change, particularly if CBV changes are primarily arterial; and
that the hypercapnia calibration experiment may decrease baseline
CMRO2, contrary to the assumption of the calibrated-BOLD method
(Buxton, 2010). In a recent modeling study we considered each of
these limitations in detail (Supplementary data, Table S4), and
developed a detailed mathematical model of the BOLD signal against
which we compared the Davis model (Griffeth and Buxton, submitted
for publication). Our primary finding was that despite the limitations
of the original Davis model the mathematical form works well as a
description of how the BOLD response varies as CBF and CMRO2 are
changed. However, because this simple form now describes effects
that were not included in the original derivation of the Davis model,
such as intravascular signal changes, the parameters should be treated
as simply fitting parameters without any specific physical meaning.
We used these optimized parameters for the primary estimates of
CMRO2 change reported here. To test whether these assumptions
strongly affected the conclusions, we reanalyzed the data with the
conventional Davis model parameters and found similar results
(Supplementary data, Table S4). It is notable that while the factors
listed above modify the absolute values of the estimated CMRO2

changes, the primary conclusion that caffeine increases the stimulus-
evoked change in CMRO2 is not changed. However due to the
non-linear nature of the Davis model, the optimized parameters have
a larger effect on calculations of CMRO2 changes due to caffeine alone.
While the classic Davis model parameters produce a trend for
increased post-caffeine baseline CMRO2, using the optimized param-
eters the increase was significant.

These small uncertainties in the exact values for CMRO2 are less
important than the broader implications that this study has for fMRI
based on the BOLD effect. In this study, the BOLD response was
insensitive to the physiological effects of an administered drug despite
large changes in both the baseline state and the stimulus-evoked
metabolic response. Combined with previous studies finding strong
variation of the BOLD response with the baseline state (Brown et al.,
2003) or with the CBF/CMRO2 coupling ratio (Ances et al., 2008; Lin
et al., 2008), these data support the general conclusion that the BOLD
response should be interpreted with caution as a quantitative
reflection of the underlying physiological changes. Our results also
demonstrate that the quantitative approach used here, measuring
both baseline and evoked response changes, can resolve many of the
ambiguities of the BOLD response alone. The key element that makes
this possible is the measurement of absolute CBF and R2* (Fig. 3 and
Table 2). This approach will be useful for evaluating drug effects, and
also for studies in disease populationswhere the baseline statemay be
altered due to the disease process itself or to medications.

Our results also have implications for our basic understanding of
the connections between neural activity, blood flow and energy
metabolism. The increase in the absolute magnitude of stimulus-
evoked change in CMRO2 suggests an increase in the overall evoked
neural response, and yet this increase was not fully reflected in the
CBF response. One possible explanation is that changes in CBF are not
directly tied to CMRO2 changes. Instead, CBF is driven in a feed-
forward manner by agents released by neural activity (Attwell and
Iadecola, 2002; Hamel, 2006) or through activation of astrocytes
(Iadecola and Nedergaard, 2007; Koehler et al., 2009). In contrast,
CMRO2 adjusts as needed to meet the energy requirements of the
evoked neural response.

This picture of CBF and CMRO2 driven in parallel, potentially by
different aspects of neural activity, opens the theoretical possibility that
the balance of CBF and CMRO2 changes may vary depending on specific
aspects of the neural activity change (e.g. input activity vs. evoked
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response, bottom-upvs. top-downmodulation, etc.).Our current results
provide an example of this variability in the coupling of CBF and CMRO2

revealing that the CMRO2 response to the visual stimulus is increased
post-caffeine, which is consistent with caffeine increasing neuronal
excitability. The failure of CBF to respondas strongly post-caffeinemight
be due to the inhibition of the vasodilatory effects of adenosine by
caffeine. Another possibility is that CBF is more strongly driven by the
initial input stage of the neural response rather than the full ongoing
evoked response. This is also consistent with the idea of feed-forward
neurovascular coupling. Further experimentswill be needed to evaluate
these possibilities.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.04.064.
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Supplementary Information 

Data from a single subject averaged across the ROI is shown as the surround average (A) 

and surround subtraction (D) of echoes one and two (Fig. S1). This shows the reliability of this 

method for individual subjects and demonstrates the first step in the process of converting raw 

MRI signal data into CBF and R2
* . Time courses of the fractional BOLD and CBF time courses 

during hypercapnia are also shown (Fig. S2). Data from the two minutes prior to hypercapnia 

stimulation was averaged for the baseline and from the last two minutes of stimulation for the 

hypercapnia response. This resulted in the average values listed in Table 1 and allowed for 

calculation of M. 

In developing BOLD fMRI into a clinical tool, two concerns are reliability and 

reproducibility. To address the concern of inter-subject variability and reproducibility, we 

examined the effects of caffeine on individual subjects, and found that for nine out of ten 

subjects the coupling ratio of evoked changes in blood flow and oxygen metabolism was 

decreased suggesting very good reproducibility even for individual subjects (Fig. S3). 

There are three major issues involving the reliability of the calibrated-BOLD method for 

calculating CMRO2 using the Davis model. These criticisms are that the model is 

oversimplified, leaving out potential contributions to the BOLD signal such as intravascular 

signal changes [1] and volume exchange effects [2-4]; that the model does not adequately 

capture the effects of CBV change, particularly if CBV changes are primarily arterial as more 

recent studies suggest [5-8]; and that the hypercapnia calibration experiment may decrease 

baseline CMRO2, contrary to the assumption of the calibrated-BOLD method, thereby 

overestimating M [9]. Addressing the last criticism, we determined how deviations in M from 

our calculated mean value of 11.9±1.7% using the optimized parameters (Table 1) would affect 

our CMRO2 calculations by allowing M to vary ±30%. Table S4 shows the results for the visual 
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stimulus response both pre- and post-caffeine, the effect on the coupling parameter, n, and how 

caffeine affects baseline CMRO2 alone. Even with these large variations in M, the post-caffeine 

δCMRO2 response increased with caffeine administration, and n decreased. 

In order to address the inaccuracies of the Davis model [10], we developed a detailed 

model of the BOLD response [11]. This model includes effects of intravascular and 

extravascular signal changes, hematocrit (Hct), oxygen extraction fraction (OEF), and blood 

volume distribution. We used this detailed model to test and improve the accuracy of the Davis 

model [10] used for the estimation of CMRO2 with a calibrated-BOLD methodology. The 

original Davis model is widely used, but it assumes CBV changes are uniformly distributed 

across vascular compartments, and neglects intravascular signal changes and volume exchange 

effects as CBV changes. More recent studies suggest that venous CBV changes are smaller than 

arterial changes [5,12], and that intravascular signal changes and CBV exchange effects can 

bias estimated CMRO2 [1,3]. The scaling factor, M, measured during hypercapnic calibration, 

absorbs many of the variable factors that affect the BOLD response, and the essential question 

for the calibrated BOLD experiment is whether these factors also affect the basic mathematical 

form of the model.  

We tested this by developing a much more complete BOLD model similar to Uludag et 

al. [13] to simulate hypercapnia and activation BOLD data for many combinations of CBF and 

CMRO2 responses. We then tested the accuracy of δCMRO2 estimates by analyzing the 

simulated BOLD data with the Davis model. Using reasonable estimates for the input 

parameters (Hct=0.44, baseline OEF=0.4 [14], O2 saturation=0.99, baseline CBV 

fraction=0.047 [15], distribution of 20-40-40% arterial-capillary-venous of vascular volumes 

[16], and Grubb parameter αv=0.2 [5] for venous volume changes), the variation of the BOLD 

signal with changes in CBF and CMRO2 was captured by the Davis model by allowing α and β 

to vary independently. The best fit of the simulated data was found with α=0.14 and β=0.91. 
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Using the classic Davis model parameters for comparison, we calculated changes in the 

CMRO2 response pre- and post-caffeine with results presented in Table S4 under “Classic Davis 

Model.” These results show an increase in the evoked CMRO2 response to the visual stimulus 

post-caffeine when using either model, i.e. the classic Davis model or the optimized model the 

includes the effects of intravascular signal changes, volume exchange effects and arterial CBV 

changes. Note that both the optimized parameters and a lower M value (consistent with a 

CMRO2 decrease during hypercapnia) give larger relative changes in CMRO2 then suggested by 

the classic parameters. Additionally although the classic parameters do not reveal a significant 

shift in CMRO2 due to caffeine alone, the optimized parameters do reveal an increase. This 

large effect of using the optimized parameters for the effect of caffeine alone is due to the non-

linearity of the BOLD model in the area of the caffeine effect (decreased CBF and increased 

CMRO2). 

We also examined the effects of selecting ROI based on the intersection of BOLD and 

CBF ROIs selected as described in the main text. BOLD activation was defined as voxels 

exhibiting activation in the second echo average data of the concatenated functional scans. Size 

of the combined BOLD-CBF ROI varied between 60 and 152. The minimum CBF correlation 

coefficient for these voxels varied between 0.09 and 0.19; the minimum BOLD correlation 

coefficients varied between 0.19 and 0.56. Results from this analysis are presented for the 

hypercapnia calibration in Table S1 and for the activation experiment in Tables S2 and S3. 

These tables are analogous to Tables 1-3 in the main text. 
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Supplementary Figure S1.3.5. Dual echo, single subject surround average and surround 
difference time courses of one subject averaged across all cycles averaged and across the 
ROI.  

Thick black bars show stimulus period of 20 s. a, Echo 1 surround difference signal reflects the 
typical signal used to determine CBF. b, Echo 1 surround average signal varies minimally. c, 
Echo 2 surround difference signal demonstrates that the signal at this echo is biased by CBF. d, 
Echo 2 surround average signal is the typical BOLD signal and reflects a response to the visual 
stimulus. 
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Supplementary Figure S2.3.6. Fractional changes in (a) BOLD and (b) CBF in response to 
hypercapnia.  

Black bars indicate hypercapnia period of 180 s. Error bars for evoked response indicate ± s.e.m. 
Mean baseline was determined from the first 110 s of recorded data. Mean responses were 
determined over the second and third minutes of hypercapnia. 
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Supplementary Figure S3.3.7. Individual CBF/CMRO2 coupling parameter values (n). 

Scatter plots of dCBF versus δCMRO2 for single cycle data showing decrease in n with caffeine 
administration is consistent even for individual subjects. One subject showed an increase in n, 
which is possibly due to a difference between the 200 mg caffeine tablet administered and 
normal daily caffeine consumption for this subject.  
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Supplementary Table S1.3.4. Response to hypercapnia in the combined BOLD/CBF ROI. 

Mean (one s.e.m., *p<0.01, **p<0.001), measured in the pre-dose caffeine hypercapnia 
experiment and calculated M values. Note the M denoted as ‘optimized’ refers to use of the new 
values of a and b and ‘classic’ refers to use of the original values of a and b in the Davis model 
[10]. 

 BOLD/CBF ROI 

δCBF (%) 28.0 (7.7)* 

ΔR2* (s-1) -0.83 (0.13)** 

δBOLD (%) 2.02 (0.33)** 

M, optimized (%) 13.4 (1.2)** 

M, classic (%) 9.6 (0.82)** 
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Supplementary Table S2.3.5. Absolute CBF and R2* in the combined BOLD/CBF ROI.  

Mean (one s.e.m., *p<0.001), absolute values of CBF and R2* measured in the pre- and post-
caffeine experiments (10 subjects). Nomenclature for ‘baseline’ and ‘stimulus’ are explained in 
the caption for Table 2. Significance for the pre-caffeine stimulus response and the post-caffeine 
baseline were tested against the pre-caffeine baseline. Significance for the post-caffeine 
stimulus response was testing against the post-caffeine baseline.  

 BOLD/CBF ROI 

 CBF (ml/100 ml/min) ΔR2* (s-1) 

Pre-caffeine (baseline) 82.8 (4.4) 23.2 (0.88) 

Pre-caffeine (stimulus) 122.9 (4.7)* 22.5 (1.0)* 

Post-caffeine (baseline) 60.5 (2.9)* 25.4 (0.83), p=0.002 

Post-caffeine (stimulus) 91.9 (4.3)* 24.7 (0.82)* 
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Supplementary Table S4.3.7. Alternate analyses effects on δCMRO2 (%).  

Effect of using the classic Davis model parameters to evaluate the dCMRO2 response in percent 
change (mean ± one s.e.m., *p<0.05, **p<0.001). All significance values were tested against 
zero except for the coupling parameter, n, for which the post-caffeine n was compared to the 
pre-caffeine n. “Response percent change” refers to the percent change in the post-caffeine 
stimulus response compared to the pre-caffeine stimulus response (“a percent of a percent”). 
Note our conclusion regarding the increase in CMRO2 evoked response with caffeine to the 
visual stimulus is not changed.  even with large changes in M as the “Response percent change” 
is always significantly increased. 

 

 

 

 

 

 

 

 

 Optimized Davis Model Classic Davis Model 

Pre-caffeine (stimulus) 26.7 (2.3)** 23.4 (2.0)** 

Post-caffeine (baseline) 21.8 (8.4)*, p=0.030 13.3 (6.4), p=0.067 

Post-caffeine (stimulus) 42.9 (3.6)** 35.9 (2.6)** 

Response percent change: 60.7 (9.5)** 53.7 (7.6)** 

Pre-caffeine n 1.96 (0.06) 2.24 (0.06) 

Post-caffeine n 1.60 (0.03)** 1.78 (0.04)** 
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Supplementary Table S5.3.8. Alternate analyses effects on δCMRO2 (%). 

Effect of varying M on calculations of the δCMRO2 response in percent change (mean ± one 
s.e.m., *p<0.05, **p<0.001). All significance values were tested against zero except for the 
coupling parameter, n, for which the post-caffeine n was compared to the pre-caffeine n. Note 
our conclusion regarding the increase in CMRO2 evoked response with caffeine to the visual 
stimulus is not changed even with large changes in M as the “Response percent change” is 
always significantly increased. 

 

 Optimized Davis Model M=8.3% M=15.4% 

Pre-caffeine  
(stimulus) 26.7 (2.3)** 20.0 (2.0)** 30.3 (2.6)** 

Post-caffeine  
(baseline) 21.8 (8.4)*, p=0.030 41.7 (11.8)* p=0.006 11.2 (6.8), p=0.13 

Post-caffeine  
(stimulus) 42.9 (3.6)** 46.1 (4.9)** 41.2 (3.1)** 

Response percent  
change: 60.7 (9.5)** 131.3 (20.6)** 35.7 (6.6)** 

Pre-caffeine n 1.96 (0.06) 2.67 (0.15) 1.72 (0.03) 

Post-caffeine n 1.60 (0.03)** 1.75 (0.06)** 1.52 (0.02)*, 
p=0.001 



  

 

100 

Acknowledgements 

Chapter 3, in full, is a reprint of the material as it appears in Neuroimage 2011. Griffeth, 

VEM and Buxton, RB (2011). Prospects for quantitative fMRI: investigating the effects of 

caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. 

Neuroimage 57: 809-816. The dissertation author was the primary investigator and author of 

this paper.  

 



  

 

101 

 References (Supplementary) 

1. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, et al. (1995) The 
intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-
weighted studies in vivo. Magn Reson Med 34: 4-10. 

2. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to 
brain activation. Neuroimage 23 Suppl 1: S220-233. 

3. Obata T, Liu TT, Miller KL, Luh WM, Wong EC, et al. (2004) Discrepancies between 
BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon 
model to the interpretation of BOLD transients. Neuroimage 21: 144-153. 

4. Leontiev O, Buxton RB (2007) Reproducibility of BOLD, perfusion, and CMRO(2) 
measurements with calibrated-BOLD fMRI. Neuroimage 35: 175-184. 

5. Chen JJ, Pike GB (2009) BOLD-specific cerebral blood volume and blood flow changes 
during neuronal activation in humans. NMR Biomed 22: 1054-1062. 

6. Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, et al. (2007) Depth-resolved 
optical imaging and microscopy of vascular compartment dynamics during somatosensory 
stimulation. Neuroimage 35: 89-104. 

7. Kim T, Hendrich KS, Masamoto K, Kim SG (2007) Arterial versus total blood volume 
changes during neural activity-induced cerebral blood flow change: implication for BOLD 
fMRI. J Cereb Blood Flow Metab 27: 1235-1247. 

8. Kim T, Kim SG (2006) Quantification of cerebral arterial blood volume using arterial spin 
labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med 55: 1047-
1057. 

9. Zappe AC, Uludag K, Oeltermann A, Ugurbil K, Logothetis NK (2008) The influence of 
moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex 
18: 2666-2673. 

10. Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: 
mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834-1839. 

11. Griffeth VEM, Buxton RB. Modeling the effects of changes in hematocrit, O2 extraction 
fraction, and blood volume distribution on the BOLD signal and estimates of CMRO2 change 
with a calibrated BOLD model; 2010. 

12. Kim T, Kim SG (2010) Cortical layer-dependent arterial blood volume changes: improved 
spatial specificity relative to BOLD fMRI. Neuroimage 49: 1340-1349. 

13. Uludag K, Muller-Bierl B, Ugurbil K (2009) An integrative model for neuronal activity-
induced signal changes for gradient and spin echo functional imaging. Neuroimage 48: 150-165. 



  

 

102 

14. Marchal G, Rioux P, Petit-Taboue M-C, Sette G, Travere J-M, et al. (1992) Regional 
cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch 
Neurol 49: 1013-1020. 

15. Roland PE, Eriksson L, Stone-Elander S, Widen L (1987) Does mental activity change the 
oxidative metabolism of the brain? J Neuroc 7: 2373-2389. 

16. Weber B, Keller AL, Reichold J, Logothetis NK (2008) The microvascular system of the 
striate and extrastriate visual cortex of the macaque. Cereb Cortex 18: 2318-2330. 



  

 

103 

CHAPTER 4  

Effect of watching a complex movie on blood flow and oxygen metabolism coupling 

 

Abstract 

 Direct attentional modulation evokes a blood flow response with a relatively large 

oxygen metabolism response in comparison to an unattended stimulus, which evokes a much 

smaller metabolic response. However the effect of a naturalistic stimulus in comparison to a 

simple repetitive stimulus on blood flow and oxygen metabolism coupling is less clear. 

Combined blood flow and oxygenation measurements provide the best tool for investigating 

modulations of the flow-metabolism relationship. We measured the human visual cortex 

response to two contrast levels of a radial flickering checkerboard in comparison to the response 

to free viewing of brief movie clips. We found no difference in the coupling between the movie 

stimulus and the flickering checkerboards employing two different methods: a standard analysis 

using the Davis model and a new analysis using a heuristic model dependent only on 

measureable quantities. This finding suggests that the attentional modulation with this study 

design was not sufficient to provoke a change in the coupling or that the design disrupted the 

cognitive processes underlying response to a more natural stimulus. 
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Introduction 

A fascinating characteristic of neural activity is the divergent physiological responses of 

cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO2). The brain’s 

typical response to a stimulus involves a much greater CBF response than CMRO2 response, 

and this is an essential component underlying the blood oxygen level dependent (BOLD) 

functional MRI (fMRI) signal. The ratio of the CBF and CMRO2 responses is known as the 

coupling parameter, n=%ΔCBF/%ΔCMRO2. The fact that CBF increase so much more than 

CMRO2, by some measures as much as five to six times [1,2], suggests that these responses 

while in parallel are actually driven by separate mechanisms. For instance, neural activity may 

increase CBF in a feed forward mechanism while CMRO2 is simply a measure of the evoked 

neural response reflecting increased metabolism and energy requirement. If this is the case, 

changes in the type of neural activity or changes in the driving force behind the neural response 

could lead to changes in the coupling ratio. In order to examine this hypothesis, we tested 

whether an engaging naturalistic stimulus would affect the neurophysiological response and the 

coupling parameter differently than a typical flickering checkerboard stimulus.  

There is extensive literature examining the neurophysiologic response to flickering 

checkerboards at different frequencies, luminance and with different colors [2-5], but the 

literature is sparser on how flow and metabolism in the visual cortex change in response to a 

more natural and complex stimulus. One study using a James Bond movie as a stimulus found 

that functional segregation of the brain is preserved even when many features must be processed 

simultaneously [6]. Other studies have found a significant level of voxel-by-voxel 

synchronization between individuals while watching a movie [7,8] suggesting that these 

patterns of regional brain activation are preserved between subjects. Yet another study 

measured CBF with continuous arterial spin labeling (CASL) and concurrent BOLD imaging to 
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measure responses as subjects were freely watching a cartoon movie [9]. In this study, they 

found that CBF changes dominant BOLD changes in multiple areas of the brain including the 

visual cortex. However, they did not examine changes in the coupling of flow and oxygen 

metabolism, instead focusing the advantages of ASL over BOLD imaging for detecting slow 

variations in brain function over long time periods. 

In this experiment, we focused on determining how CBF and CMRO2 respond to free 

viewing of brief movie clips in comparison to fixation on a flickering checkerboard. Previous 

research has show variation in n to different stimuli. For example, n increases with increasing 

stimulus intensity [10] and decreases with increased attention to the stimulus [11]. Additionally, 

different coupling ratios have been found to exist in different areas of the brain. For example, 

lower n has been found in the visual cortex in comparison to the lentiform nuclei [12], the 

somatosensory cortex [13], and the supplementary motor area [14]. Differences in n have also 

been found between the motor and visual cortices, although results in these areas are conflicting 

[14,15]. 

In this study, we compared the brain’s response to free viewing of a complex and 

engaging movie stimulus versus fixation on two contrast levels of a simple flickering 

checkerboard (10% and 40%) in order to test if the differences in these stimuli would create a 

difference in the coupling parameter. It was our hypothesis that the more complex movie 

stimulus would lead to recruitment of additional higher brain regions that would produce 

positive feedback on the visual cortex, increasing neural activity and CMRO2. In turn, this 

would lead to a reduction in the coupling parameter. We did not find this to be the case as there 

was no significant difference in the coupling of blood flow and oxygen metabolism between the 

movie and the flickering checkerboards. 
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Methods 

 The study was performed on 15 healthy adults who had abstained from caffeine for at 

least 12 hours prior to study participation. The institutional review board at the University of 

California, San Diego approved the study, and written informed consent was obtained from all 

participants. Two scan sessions including three functional runs and one functional localizer 

were performed on each subject. The functional runs consisted of four 20 s blocks of activation 

with 55 s periods of baseline. Activation periods cycled between movie clips from Earth: The 

Biography (BBC Video) along with 10% and 40% black-white contrast 8 Hz flickering radial 

checkerboards such that each stimulus type had a total of four blocks of activation. Baseline 

consisted of a gray background with luminance normalized to that of the flickering 

checkerboards. Subjects were asked to fixate on a black cross in the middle of the screen during 

the baseline and flickering checkerboard tasks. The functional localizer consisted of alternating 

20 s blocks of activation with 20 s periods of baseline. Activation periods alternated between 

clips from Earth: The Biography and 100% black-white contrast 8 Hz flickering radial 

checkerboards. 

 Using a spiral dual-echo ASL PICORE QUIPSS II [16] pulse sequence, we 

simultaneously measured the CBF and BOLD responses to these stimuli. ASL was used to 

directly measure CBF by magnetically labeling arterial water with an applied RF pulse. The 

tagged water was allowed to flow into the slice of interest followed by tagged image (T) 

acquisition. A control image (C) was acquired by repeating this sequence without magnetically 

tagging the water. Signal acquisition occurred at two echo times (TE) every 2.5 s (TE1=9.1 ms 
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and TE2=30 ms). Surround average and difference time courses were computed for each TE as 

in Griffeth et al. [17]. 

 Statistical analysis of the functional data was performed using a general linear model 

(GLM) approach. An active visual cortex region of interest (ROI) was defined as voxels 

exhibiting CBF activation in the first echo difference data of the functional localizer run. The 

desired ROI size was set to 100±10 voxels and was achieved by decreasing the acceptable per-

voxel P-value from 0.01 until the ROI passed this threshold. Voxels were also required to be in 

clusters of a size consistent with the whole cluster passing a significance threshold of α≤0.05 

determined using AFNI AlphaSim [18]. Four scan sessions from three subjects were eliminated 

as the number of voxels did not reach this threshold. Five addition scan sessions in three 

subjects were eliminated due to poor BOLD correlation scores in the functional runs despite 

good correlations in the localizer run. Analysis was limited to voxels exhibiting a minimum 

signal to noise ratio of 200 and a minimum CBF signal of 40% of the mean baseline CBF to 

preferentially increase the likelihood of gray matter over white matter inclusion in the ROI. For 

summary statistics, the baseline was averaged over the 10 s prior to the start of the stimulus and 

the stimulus response was averaged over the last 10 s of the stimulus. To test whether our 

method of ROI determination biased our results, we also analyzed our data using a combined 

BOLD/CBF ROI, which produced no differences in the significant results. 

 The change in the apparent rate of signal decay, R2
* , was calculated from the surround 

average signal (A) of the tag and control images by modeling the average signal as 

A(t) = A0 (t)e
−TE ⋅R2

* (t ) . The source of the BOLD response is changes in blood oxygenation, 

which results in changes in R2
* , but the problem that usually confounds the interpretation of 

slow modulations of the BOLD response is that A0 is sensitive to scanner drifts. To minimize 
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this source of error, we directly calculated R2
* . For display and analysis, we calculated an 

equivalent BOLD response with A0 removed as in Perthen et al. [19] using the definition 

%ΔBOLD(t) = e−TE2 ⋅ΔR2
* (t ) −1  where %ΔBOLD is the percent change in the BOLD signal due 

to the stimulus. Surround subtraction produces a net signal that is proportional to the arterial 

spins delivered to the voxel [20], and quantification of this signal in absolute CBF units was 

performed as described previously [19,21]. 

 To calculate CMRO2 from normalized CBF and BOLD data, the Davis model [22] was 

used: %ΔBOLD = M 1− f α r
f

⎛
⎝⎜

⎞
⎠⎟

β⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. This model describes the BOLD response as a function 

of the normalized (activation/baseline) values of CBF (f) and CMRO2 (r). Values for the 

parameters α=0.14 and β=0.91 were taken from a more detailed four compartment model of the 

BOLD response that includes effects left out of the original derivation including intravascular 

signal changes, volume exchange effects due to variation in blood volume, and unequal 

distribution of blood volume changes between vascular compartments [23]. The scaling 

parameter, M, was assumed to be 11.9% as calculated from hypercapnia calibration using 

similar subjects in Griffeth et al. [17]. To test whether bias in the parameters α, β or M would 

affect our conclusions, we also analyzed our data with M±30% and the original Davis model 

parameters of α=0.38 and β=1.5 (using M=8.5%). All BOLD, CBF, and CMRO2 responses were 

expressed as a percent change from the pre-stimulus baseline and are 

denoted %ΔBOLD, %ΔCBF, and %ΔCMRO2. 

 To more directly examine the effects of different stimuli on the coupling of CBF and 

CMRO2, we used a heuristic model that was recently published [24]. This model maintains the 

non-linear dependence of the BOLD signal on flow, reduces the number of parameters from 
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three to two, and directly incorporates the coupling parameter, n. This simple model was 

inspired by work with the much more detailed model [23], which appeared to produce a very 

smooth BOLD surface suggesting that the parameters α and β of the Davis model may be over-

fitting the data. This new equation is: %ΔBOLD = A 1−1 f( ) 1−1 n( )
 
where f is the 

normalized CBF change. The power of this new model is that the coupling of CBF and CMRO2 

expressed as n can be directly compared without knowing the scaling parameter A. Instead, by 

creating a null hypothesis that n is the same for two stimulus types, the ratio of the two BOLD 

signals becomes: 

%ΔBOLD
%ΔBOLDref

=
1−1 f( )
1−1 fref( )  

By performing a two-tailed paired t-test comparing the left and right sides of this equation, this 

hypothesis can be tested. If these ratios are significantly different, then the coupling parameter 

between the two stimulus types is different. 

 

Results 

 We measured the BOLD and CBF responses to short movie clips and flickering 

checkerboards at both 10% and 40% contrast (Fig. 1). The BOLD response to the 10% contrast 

(0.86±0.1%) was lower than the responses to both the 40% contrast (1.3±0.1%, p<0.001) and 

the movie stimulus (1.2±0.1%, p<0.001). Although the BOLD response was slightly lower from 

40% contrast to the movie stimulus, the difference was not significant (p=0.076). The CBF 

response was also significantly increased from 10% contrast (23.4±3.3%) to both the movie 
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stimulus (31.3±1.8%, p=0.02) and to 40% contrast (36.7±2.3%, p=0.001). Additionally, the 

increase in the flow response from the movie stimulus to 40% contrast was significant (p=0.05). 

 Using the optimized Davis model, we also calculated the CMRO2 responses to the three 

stimulus types (Fig. 2). We found a significant increase in the CMRO2 response from 10% 

contrast (9.5±2.0%) to 40% contrast (13.9±1.7%, p=0.03), although there was not a significant 

difference in comparison to the movie stimulus (11.6±1.1%, p=0.26). The difference between 

the movie stimulus and 40% contrast was also not significant (p=0.14). Varying the scaling 

parameter M±30% resulted in large changes in CMRO2, but this did not affect the relationship 

of CMRO2 between the states with the exception that for a much lower M=8.3% the statistical 

significance of the increase in %ΔCMRO2 from 10% to 40% contrast disappears. Using the 

original Davis model, the values of %ΔCMRO2 are similar: 10% contrast=8.5±1.8%, 40% 

contrast=12.3±1.5%, and movie clips=10.3±1.0%. The only statistical difference is between the 

two levels of contrast (p=0.03). 

 To examine the difference in 40% contrast checkerboard and the movie stimulus more 

closely, we plotted 1/n (%ΔCMRO2/%ΔCBF) for the movie stimulus versus 1/n for 40% 

contrast for each full scan acquired. 1/n has less variability than n as %ΔCMRO2 is sometimes a 

small number. All points fall close to the equality line suggesting there is no difference between 

the two stimulus types (Fig. 3). We confirmed this using a two-tailed paired t-test (p=0.97). 

There is also no statistical difference in 1/n between the 10% contrast checkerboard and the 

other two stimuli. 

We also tested whether there may be a difference in the flow-metabolism coupling 

using the simplified model introduced above. We created a null hypothesis that there is no 

difference in the coupling parameter between the movie stimulus and the 40% contrast. We 
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tested this hypothesis by taking the ratio of the BOLD signals and CBF signals as the scaling 

parameter A and also the n term cancel under this assumption. Again, we found no difference in 

these ratios that fell close to the equality line (p=0.77, Fig. 4). 

 

Discussion 

We found there is no difference in the flow-metabolism coupling for brief movie clips 

compared to a 40% contrast flickering checkerboard. Additionally, these two stimuli produced 

comparable levels of flow response. Figure 1 comparing the BOLD and CBF response between 

these stimulus types shows that they appear to follow similar coupling parameter lines as 

determined by the optimized Davis model (with M=11.9%). We demonstrated this more 

conclusively with two different methods comparing flow-metabolism coupling: Figure 3 

compares values of 1/n calculated using the Davis model and Figure 4 examines the variations 

in the BOLD and flow signal between the two states using a new simplified model. These 

results do not support our hypothesis that increased attention to the movie stimulus would result 

in top-down modulation of neural activity producing stronger modulation of CBF and CMRO2 

than BOLD. Comparison of the 10% contrast to the 40% contrast also showed no significant 

difference in the coupling, although there is a trend for a higher 1/n with the 40% checkerboard 

consistent with previous studies examining effects of varying contrast levels on 

neurophysiology [10]. 

Previous research on attentional modulation of BOLD, CBF and CMRO2 informed our 

hypothesis that free viewing of movie clips would alter the coupling of CBF and CMRO2 in 

comparison to fixation on a 40% contrast checkerboard. As the movie is a more engaging task, 

we hypothesized that an increased level of attention to the movie would result in increased 
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neural activity and larger modulation of CMRO2 in comparison to CBF thereby altering flow-

metabolism coupling. Previous research has shown that neurons increases their firing rate in 

response to a stimulus when it is attended [25-27], yet in fMRI studies there is only a moderate 

attentional modulation of the BOLD signal [28-32]. Interpretation of these results is difficult, 

because of the intrinsic complexity of the BOLD signal. Increased CBF drives out 

deoxyhemoglobin thereby increase the BOLD signal while increased CMRO2 produces 

deoxyhemoglobin and decreases the BOLD signal.  

In a previous experiment also comparing concurrent measurements of CBF and BOLD, 

it was found that the CBF response was much greater than the BOLD response in the visual 

cortex during free viewing of a movie stimulus [9]. However, this study used a movie clip of 6.5 

minutes. For a stimulation this long in duration, it has been noted that there is lower sensitivity 

of BOLD contrast compared to CBF contrast [33] making it difficult then to determine CMRO2 

response. In contrast, the current experiment optimized the sensitivity of the BOLD response 

using a block design and optimal scan parameters (dual-echo acquisition). The draw back of this 

experimental design is that it could potentially disrupt the cognitive process that occurs in 

response to a natural situation, yet another reason we may not have measured a difference in the 

flow-metabolism coupling. 

It is also possible that the indirect attentional modulation due to the greater inherent 

interest of the movie clips was not enough to alter the coupling. In comparison another 

experiment by our group that directly and purposefully altered attention found that attention 

resulted in increased modulation of CMRO2 and decreased the coupling ratio n [34]. In the 

current experiment, subjects were told to freely watch the movie while during the flickering 

checkerboard they were told to fixate on a cross in the middle of the screen. In may be that this 
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required fixation commanded a similar level of attention as the movie stimulus even if the 

movie clips were of greater interest. 

 

Conclusions 

Contrary to our hypothesis, there is no difference in the coupling in the visual cortex 

between free viewing of brief movie clips and fixation on a flickering checkerboard. It is 

possible that the attentional modulation was not sufficient to provoke such a modulation or that 

the study design disrupted the cognitive processes underlying response to a more natural 

stimulus.  
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Figure 4.1. BOLD plotted against CBF for the three stimulus types.  

Crossbars represent standard error of the mean for CBF (horizontal) and BOLD (vertical). Lines 
for 1/n plotted using the Davis model with M=11.9%. The three stimulus types bracket the line 
corresponding to n=2.5.  
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Figure 4.2. CMRO2 plotted against CBF for the three stimulus types. 

Crossbars represent standard error of the mean for CBF (horizontal) and CMRO2 (vertical). 
Lines for 1/n plotted using the Davis model with M=11.9%. The three stimulus types bracket 
the line corresponding to n=2.5.  
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Figure 4.3. Comparison of CMRO2-CBF coupling between 40% contrast flickering 
checkerboard and free viewing of movie clips for each scan session using 1/n calculated 
from the Davis model.  

The solid black line denotes equality. Note the data parallels the equality line demonstrating that 
there is no statistical difference in the flow-metabolism coupling between the two states. 



  

 

117 

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

1.2

(1−1/f)/(1−1/fref)

%
6

BO
LD

/%
6

BO
LD

re
f

Ratio method analysis

 

 

n>nref

n<nref

reference (40% contrast)
movie
10% contrast

 

Figure 4.4. Comparison of CMRO2-CBF coupling between 40% contrast flickering 
checkerboard and free viewing of movie clips for each scan session using the ratio method. 

The solid black equality line represents the null hypothesis that n is the same between the two 
states. Note the data parallels this line demonstrating that there is no statistical difference in the 
flow-metabolism coupling between the two states. Error bars represent the standard error of the 
mean. 
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CHAPTER 5  

Applications of the detailed BOLD model: testing the utility of gas-inhalation and 
optimizing the signal-to-noise ratio of the cerebral blood flow measurement 
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Section A: A review of calibrated BOLD methods 

 

A review of calibrated blood oxygenation
level-dependent (BOLD) methods for the
measurement of task-induced changes in brain
oxygen metabolism
Nicholas P. Blockleya*, Valerie E. M. Griffethb, Aaron B. Simonb and
Richard B. Buxtona,c

The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood
flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of
the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction
and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and
robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique
was developed to address these issues. However, the methodology is complex and its full promise has not yet been
realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still
to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of
this methodology are presented. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: review; calibrated BOLD; oxygen metabolism; respiratory challenge

INTRODUCTION

The introduction of blood oxygenation level-dependent (BOLD)
contrast in the early 1990s heralded a revolution in functional
neuroimaging (1–4) that led to the widespread application of
functional MRI (fMRI) to map patterns of activation in the human
brain. However, the BOLD response to task-related activation is a
complex function of underlying changes in cerebral blood flow
(CBF) and cerebral metabolic rate of oxygen consumption
(CMRO2). This is characterised by a disproportionate increase in
CBF relative to the accompanying increase in CMRO2 generated
by increased neuronal activity (5). It is important to note, however,
that the relative changes in CBF and CMRO2 alone do not deter-
mine the amplitude of the BOLD response. The scaling of
the BOLD response is also determined by the baseline physiolog-
ical state of the individual under examination. This baseline is
determined by the total amount of deoxyhaemoglobin present
in the voxel, which is a function of the subject’s haematocrit
(Hct), baseline oxygen extraction fraction (OEF) and baseline
cerebral blood volume (CBV). As these physiological variables are
typically unknown in an fMRI experiment, it is not possible to
interpret the BOLD signal in a quantitative manner.
Combining a BOLD response measurement with an additional

measurement of CBF, acquired with an arterial spin labelling
(ASL) experiment, provides a more quantitative insight into the
underlying physiological changes. However, this still does not
provide sufficient information to estimate CMRO2, because of
the unknown baseline state variables. The calibrated BOLD
approach seeks to measure this baseline condition through a
calibration experiment (6). When combined with measurements
of CBF and BOLD acquired during a stimulation experiment,

the percentage change in CMRO2 during the stimulation can
be measured. The development and evolution of calibrated
BOLD methods have been reviewed recently by Pike (7).

Although BOLD fMRI alone is essentially a qualitative index of
brain activity, the calibrated BOLD method offers the potential
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to make fMRI into a quantitative probe of brain physiology with
the promise of an expanded clinical role. The methodology is
complex, however, and this promise has not yet been realised.
In this review, we discuss the theoretical underpinnings of
calibrated BOLD, and issues regarding this theory that still need
to be resolved. We also review aspects of practical implementa-
tion and reported applications of this methodology.

THEORETICAL UNDERPINNINGS
Physiology of the BOLD response

The interpretation of the relative changes in the BOLD signal in
terms of metabolic activity is much more difficult than merely
mapping its location, because the BOLD signal depends on CBF,
CBV and CMRO2 in a complex manner (Fig. 1). Together, these
parameters determine the amount of deoxyhaemoglobin present
in the imaging voxel. This is important as haemoglobin exists in
two forms: paramagnetic deoxyhaemoglobin and diamagnetic
oxyhaemoglobin (8). The deoxyhaemoglobin concentration
within the blood is therefore the major determinant of its
magnetic susceptibility, in turn altering the MR signal both within
the vessel and around it (1). At rest, arterial blood is nearly fully
oxygenated with approximately 40% of the oxygen extracted
during its transit across the capillary bed (9,10). This creates a
significant amount of deoxyhaemoglobin in the venous and
capillary vessels. If, during neural activation, OEF remained
constant, the deoxyhaemoglobin concentration would be
unchanged, and only small changes in the MR signal would occur
as a result of volume exchange effects (11). Fortunately for the
neuroimaging community, neural activation is accompanied by a
much larger increase in CBF than in CMRO2 (5), resulting in a
disproportionate increase in blood oxygenation. As the deoxyhae-
moglobin concentration of the blood is decreased, the MR signal
is increased, giving rise to the classic positive BOLD response
(12). Changes in CBV add to this complexity by altering the total
amount of deoxyhaemoglobin in the voxel and also through

volume exchange effects, whereby the intravascular blood volume
replaces extravascular tissue volume. The establishment of a firm
understanding of the relationship between the BOLD signal and
the underlying neurophysiology, including CBF, CBV and CMRO2,
remains a challenging yet vital task for the accurate interpretation
of fMRI studies.

Modelling the BOLD response

A key component of the calibrated BOLD method is an accurate
mathematical model describing how the BOLD signal depends
on the underlying physiological changes. We first describe the
standard model that typically has been used for the calibrated
BOLD method, together with the calibration methods that have
been proposed, and then consider some of the potential issues.
The Davis model was originally derived as a basic biophysical

model of the dependence of the BOLD signal on changes in
deoxyhaemoglobin content (6). The paramagnetic nature of
deoxyhaemoglobin results in a large susceptibility difference
between deoxygenated blood vessels and the diamagnetic
tissue surrounding them. This difference in susceptibility results
in microscopic magnetic field gradients outside of the vessels,
which enhance the rate of decay of tissue protons that experi-
ence them. Theoretical and Monte Carlo numerical analyses of
the extravascular change in R2

* resulting from this effect (dR2
*)

have shown that it is a function of venous CBV (CBVv, V0)
and the blood concentration of deoxyhaemoglobin ([dHb]0)
(13–15). This latter parameter is proportional to the product of
Hct and the resting OEF (E0). The effect of dR2

* can be intuitively
described as the signal difference between the normal resting
deoxyhaemoglobin content and the case in which all of the
deoxyhaemoglobin has been removed:

dR!2 ¼ kV0 dHb½ $b0 ; where dHb½ $0 / E0Hct [1]

The constant k incorporates several properties of brain tissue,
including vessel geometry, magnetic field strength and the

Stimulus Brain Activity

CBV

CBF

CMRO2

BOLD

Baseline

Hct
E0
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Figure 1. The blood oxygenation level-dependent (BOLD) response is a complex signal. Basic sensory stimuli elicit an increase in neural activity,
resulting in an increase in the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2). CBF increases to a larger degree
than CMRO2, and also leads to a local increase in the cerebral blood volume (CBV). The amplitude of the resulting BOLD response is not only dependent
on these changes, but also on the baseline physiological state. This baseline is determined by the blood haematocrit (Hct), resting oxygen extraction
fraction (OEF) and CBV. An increase in CBF causes an increase in the BOLD signal, whereas increases in venous CBV (CBVv) and CMRO2 cause a decrease.
Typically, the CBF effect is dominant, creating a positive BOLD response. The maximum BOLD signal change is determined by the baseline physiological
state and increases with increasing Hct, OEF and CBV.
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Figure 5.1. The blood oxygenation level-dependent (BOLD) response is a complex signal. 
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susceptibility difference between blood and tissue. The value of
b is described as being dependent on the diameter of the blood
vessels involved as a result of diffusion effects around the
smallest vessels, with b = 1 for larger vessels (venules and larger
draining veins) and b = 2 for capillaries (13). Davis et al. (6)
performed Monte Carlo simulations to determine an average
value of b given the distribution of vessel sizes in the brain,
and suggested a value of 1.5 for experiments at 1.5 T.
The BOLD signal change can be expressed in terms of the

change in R2
* between activated and rest states (ΔR2*), where V

and [dHb] are CBVv and the deoxyhaemoglobin concentration
in the activated state, respectively:

ΔR!2 ¼ kV dHb½ $b % kV0 dHb½ $b0 [2]

For small changes in ΔR2*, this can be linearised (16):

ΔS
S0

¼ e%TEΔR!2 % 1 & %TEΔR!2 [3]

Substituting for ΔR2* in Equation [3] leads to:

ΔS
S0

¼ TEkV0 dHb½ $b0 1% V
V0

dHb½ $
dHb½ $0

! "b
" #

[4]

This equation describes the basic extravascular physiological
changes underlying the BOLD response, including the effect of
baseline deoxyhaemoglobin content. This baseline effect is
incorporated in a constant M ¼ TEkV0 dHb½ $b0 , representing
the maximum signal change, sometimes known as the ceiling
effect (17).
Traditionally, the measurement of CBV has proved difficult;

therefore, in calibrated BOLD, this is generally inferred from
measurements of CBF. This assumes a power law relationship
CBV= k'CBFa, where a = 0.38 is the classic value assumed from
the early work of Grubb et al. (18). Following Fick’s principle
(CMRO2 = Ca'CBF'E), Equation [4] can be rewritten in terms of
CBF and CMRO2:

ΔS
S0

¼ M 1% CBF
CBF0

! "a%b CMRO2

CMRO2;0

! "b
" #

[5]

This is more commonly written in terms of CBF and CMRO2

normalised to baseline values: f and r, respectively. Here, the frac-
tional change in the BOLD signal (ΔS/S0) is given the symbol ds:

ds ¼ M 1% f a%brb
# $

[6]

This classic Davis model demonstrates the basic dependence of
the BOLD response on CBF, the physiological maximum BOLD
signal change M and changes in CMRO2.
Although the parameter a in the Davis model has a relatively

straightforward interpretation in terms of venous volume change,
the parameter b is more complicated and has led to some
confusion. In the original derivation, the physical motivation for
b> 1 was the physics of how localised magnetic susceptibility
differences create R2

* depending on whether diffusion is important
(b=2, capillaries) or unimportant (b=1, veins) (13). However, the
Davis model only takes into account extravascular signal changes

and, as such, ignores contributions from the intravascular signal
change. This contribution could be significant as R2

* of blood
increases quadratically with increasing deoxygenation of haemo-
globin (19–21). At magnetic field strengths below 3.0 T, the
intravascular signal from the veins represents an important fraction
of the BOLD signal and is estimated to be approximately 57% at
1.5 T and approximately 36%at 3.0 T (11). At 7.0 T, the venous signal
is negligible in extravascular BOLD-weighted images. However, the
effect of deoxygenated capillary blood becomes increasingly
important at this field strength and contributes to the increased
specificity of spin echo fMRI (22). Fortunately, the Davis model
can be adapted to correct for the intravascular signal. Taking b> 1
provides a mathematical form that captures the basic effect
produced by intravascular signal changes because it means that
theBOLDresponsedoesnot dependonlyon total deoxyhaemoglo-
bin (i.e. V[dHb]). As a simple example of the expected effect of
intravascular signal changes, let us suppose that activation induces
an increase in blood oxygenation (decreased [dHb]) with an
increase in CBVv (V) which perfectly balances to create no change
in total deoxyhaemoglobin: will there be a BOLD signal change?
We might expect the extravascular BOLD effect to be minimal
because total deoxyhaemoglobin does not change, but we would
expect an intravascular BOLD effect because the intrinsic blood
concentration of deoxyhaemoglobin is reduced. Because b> 1,
the Davismodel predicts a BOLD response for this scenario. Simula-
tions with a much more detailed model of the BOLD response,
includingmixed effects of both small and large vessels, have found
that the Davis model is reasonably accurate despite the limitations
of the original derivation. It has also been shown that, if the
parameters a and b are treated simply as fitting parameters, the
predictions of the detailed model can be approximated more
closely with reduced values of a and b. Nevertheless, the original
values are reasonably accurate (23). It is important to note,
however, that the parameter b captures multiple effects, and
should not be interpreted in the way in which it was originally
introduced. Other models have sought to directly incorporate
intravascular signal changes (24) and measurements of CBV (25),
but thesemethods still rely on the basic Davismodel. The quantita-
tive BOLDmethod developed by Yablonskiy and colleagues (26,27)
uses a similar contrastmechanism to calibrated BOLD, but does not
rely on the Davis model. In the quantitative BOLD model, the
extravascular BOLD signal is effectively modelled by b=1.
However, b> 1 is not required to model the intravascular signal
as this is an explicit part of the quantitative BOLD model.

The calibrated BOLD method is motivated by the mathemati-
cal form of Equation [6], which illustrates the fundamental
complexity of the BOLD signal. Even if the values of a and b
are assumed to be constant across subjects, there still remains
uncertainty in the value of M. Because this parameter captures
a number of aspects of the baseline physiological state, which
are variable and unknown in most studies, it must be deter-
mined individually for a quantitative determination of the
CMRO2 change. It should be noted that, if M is known, a
combined measurement of BOLD and CBF signals in response
to a stimulus makes it possible to measure the fractional CMRO2

change from Equation [6]. The goal of the calibration part of the
experiment is to measure M.

Hypercapnia calibration

The administration of a hypercapnic gas mixture to the subject is
used to elicit a CBF response and concomitant BOLD signal
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change with the assumption that only CBF is changed, with
CMRO2 unaffected (6). This gas mixture typically consists of 5%
carbon dioxide, 21% oxygen and 74% nitrogen (6). Simultaneous
measurements of CBF and BOLD during such a challenge are
then combined with the Davis model Equation [6] to estimate
the calibration parameter M:

Mhc ¼
ds

1" f a"brb
[7]

Subscript ‘hc’ is used to differentiate this formulation from that of
the other calibrationsdescribedbelow. Constantsa andb represent
flow/volume coupling (18) and the relationship between blood
oxygenation and the BOLD signal (13), respectively. Modern
practice sets the value of a as 0.2 based on measurements of CBVv
change, the vascular compartment that underlies the BOLD
response (28). Similarly, b is chosen to be 1.3 for experiments at
3.0 T (29). The usual assumption that CMRO2 is not alteredby hyper-
capnia corresponds to r=1.

As an alternative to gas administration, hypercapnia calibration
has also been performed by means of a breath-hold. Similar
changes in the arterial partial pressure of CO2 (PCO2) have been
reported, but also result in a reduced arterial PO2 (30). Whether
such a stimulus has an effect on resting CMRO2 is an unknown
and complex issue. For a realistic breath-hold duration, only mild
hypoxia is experienced, which may be at least partially compen-
sated by increases in PCO2 (31). Reasonable values for Mhc have
been measured (30,32), with breath-holds of greater than 15 s
duration also having been shown to be very reproducible (33).
However, an altered arterial PO2 may confound these estimates
by producing an additional arterial signal weighting not present
in artificially induced hypercapnia.

Hyperoxia calibration

With the hypercapnia approach to calibration, the idea is to
measure the BOLD signal when CBF is varied by a known
amount, but CMRO2 is constant. In the hyperoxia approach, the
goal is to measure the BOLD signal when venous oxygenation
is changed by a known amount, but both CBF and CMRO2

remain constant. In hyperoxia calibration, air with an enhanced
oxygen level is administered to the subject (34). Hyperoxic gas
mixtures containing between 25% (29) and 100% (34) oxygen
have been reported in the literature. Because arterial haemoglo-
bin is nearly fully saturated in normoxia, the extra inhaled O2 is
carried as dissolved gas in plasma. Because of this extra O2

delivered to tissue, the venous haemoglobin oxygen saturation
will increase slightly, producing a BOLD signal change. In the
ideal experiment, CBF does not change during the inhalation of
the hyperoxic gas mixture, meaning that measurements of CBF
are not required to calculate M. Here, we use subscript ‘ho’ to
differentiate the hyperoxic calibration parameter. For constant V,
Equation [4] leads to Equation [8]:

Mho ¼
ds

1" 1þ Δ dHb½ %
dHb½ %0

! "b [8]

The value of b takes the same definition as for hypercapnia
calibration, leaving only the fractional change in deoxyhaemo-
globin concentration (Δ[dHb]/[dHb]0) to be determined. This is
achieved using a model of the oxygen-carrying capacity of the

blood and measurements of the end-tidal oxygen partial
pressure (PETO2). These measurements are used to infer the
arterial partial pressure of oxygen (PaO2) after taking into
account the alveolar–arterial oxygen gradient and assuming that
arterial blood is well equilibrated with gas in the alveoli (34). [For
details on how to perform such calculations, see Xu et al. (35).]
This latter assumption relies on healthy lung function for its
validity. At normoxia, oxygen is mostly carried bound to haemo-
globin, with only a small amount dissolved in plasma. The
amount of oxygen carried by arterial blood is determined by
PaO2, which is linearly related for plasma (ePaO2) and nonlinearly
related by the oxygen dissociation curve for haemoglobin
saturation (SaO2). This latter component can be approximated
by the following relation (36):

SaO2 ¼
1

23400
PaO2ð Þ3þ150PaO2

þ 1
[9]

As a result of the sigmoidal form of Equation [9], an increase in
PaO2 caused by hyperoxia causes only a slight increase in SaO2.
However, an increase in PaO2 results in a much larger increase
in the amount of oxygen carried by the plasma, such that, during
hyperoxia, the plasma contributes to a greater degree to the
total delivery of oxygen than during normoxia. As blood passes
through the capillary bed, the extraction of the excess oxygen
in plasma offsets the extraction of oxygen bound to haemoglo-
bin, so that, overall, the venous haemoglobin saturation
increases. Regardless of the increase in oxygen carried by arterial
plasma, the amount of oxygen carried by venous plasma remains
small, as the venous partial pressure (PvO2) is low. Therefore, the
assumption that PvO2 is negligible should not result in a large
error, allowing Δ[dHb]/[dHb]0 to be estimated as:

Δ dHb½ %
dHb½ %0

¼ f Hb½ %ΔSaO2 þ eΔPaO2

f Hb½ % 1" SaO2 1" E0ð Þð Þ " ePaO2 1" E0ð Þ [10]

where f is the oxygen-carrying capacity of haemoglobin
(1.34mL O2/g Hb), e is the solubility coefficient of oxygen in
plasma (0.0031mL O2/dL/mmHg) and ΔSaO2 and ΔPaO2 are the
changes in these parameters as a result of hyperoxia relative to
normoxia. For the calculation of Mho, the haemoglobin concen-
tration ([Hb]) is assumed to be 15 g Hb/dL (29,34) and the resting
OEF (E0) is assumed to be 0.3 (29). Essentially, these assumed
values amount to a strong assumption that the venous deoxy-
haemoglobin concentration in the baseline state is the same
for all brain regions and all subjects. However, as [Hb] is related
to Hct (Hct ( 0.03 ) [Hb]), which is known to vary amongst sub-
jects, this may be a source of error. In addition, this value of OEF
is lower than the value of 0.4 generally reported (10), and OEF
may well vary across the brain, particularly in disease. Unfortu-
nately, CBF has been observed to decrease during hyperoxia
(37). In this case, an additional measurement of CBF can be used
to perform a correction for this effect (34):

Mho ¼
ds

1" f a Δ dHb½ %
dHb½ %0

þ r
f

! "b [11]

Here, Δ[dHb]/[dHb]0 reflects changes in the venous deoxyhae-
moglobin concentration resulting from an increase in PaO2, and
r/f accounts for changes that result from an alteration of CMRO2

or CBF. It is assumed that CMRO2 does not change during
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hyperoxia (r= 1). Although there is still debate about the validity
of this assumption, the change in CMRO2 is generally thought to
be small (34,38).

R20 calibration

Although calibration can be performed without the administra-
tion of gases by asking the subject to hold his or her breath, it
is also possible to calibrate the BOLD response without
performing any respiratory manipulation at all, thereby avoiding
physiological confounders, such as changes in CBF and CMRO2.
One way to achieve this is by estimating the baseline deoxyhae-
moglobin content through a measurement of the relaxation
properties of brain tissue (39,40). More specifically, the sensitivity
of different aspects of transverse relaxation to deoxygenated
blood vessels within brain tissue is exploited to make this
possible. Transverse relaxation can be separated into processes
that may be refocused by a spin echo and those that cannot,
where R2 is the irreversible relaxation and R2

* is the sum of the re-
versible and irreversible decay. The difference between these
quantities is R20 (reversible relaxation alone). This parameter is
sensitive to magnetic field inhomogeneity from several sources
that act at different length scales. The macroscopic scale
represents distances that are greater than the voxel dimension
and result from differences in susceptibility at boundaries,
e.g. the air–tissue interface. At the opposing extreme, the
microscopic scale represents processes that occur at the atomic
and molecular level. The space between these scales is defined
as the mesoscopic scale. Importantly, at this scale, deoxygenated
blood vessels cause local magnetic field inhomogeneities in the
tissue. The magnitude of these fields, and hence their effect on
the MR signal, is proportional to the deoxyhaemoglobin content
of the voxel.
As a motivation for the use of R20 to estimateM, we note that if

all of the effects underlying the BOLD response were reversible
with a spin echo, then dR2

* in Equation [1] (the change in R2
*

caused by the presence of deoxyhaemoglobin) would be R20.
From this, it follows that M is simply TE multiplied by R20 in the
baseline state:

MR0 2 ¼ TEkV0 dHb½ #b0 ¼ TER
0
2 [12]

Again, the subscript ‘R20’ is used to differentiate this definition of
M from the two previous definitions. It is interesting to note that,
in this definition, a value of b is not required as it is inherent in
the measurement of R20. As an additional benefit, this method
does not alter resting CMRO2 or CBF, as may be the case with
hypercapnia or hyperoxia. The central problem with this general
argument, however, is that the effects leading to ΔR2* are not all
reversible. The diffusion-dependent simulations of Ogawa (13)
suggest that both reversible and irreversible components exist,
and perhaps, more importantly, intravascular signal changes at
long refocusing intervals are expected to be largely irreversible.
Nevertheless, simulations with a detailed model of the BOLD
response suggest that these other effects approximately scale
with R20 in the baseline state (40). However, R20 is also sensitive
to the macroscopic field inhomogeneity caused by air–tissue
susceptibility gradients in the head. To be a viable calibration
method, the effects of this large-scale field inhomogeneity must
be removed from the measurement of R20 in order to accurately
estimate the baseline physiological state.

PRACTICAL IMPLEMENTATION
Multimodal imaging: combining measurements of BOLD
and CBF

Calibrated BOLD relies on an inherently multimodal approach to
imaging. Although the complexity of the BOLD response creates
difficulties for the interpretation of the experimental results,
when combined with measurements of CBF (and/or CBV) this
complexity becomes an advantage. This combination allows
changes in CMRO2 to be investigated given a suitable mathe-
matical framework (6,17,25). Measurements of CBF can be made
using a range of ASL techniques. The specific details of the
ASL method will not be covered here, as they are covered
elsewhere in this special issue, but issues relevant to calibrated
BOLD are discussed.

Although, initially, ASL and BOLD data were acquired in
separate experiments (6), it is now far more common to acquire
both within the same experiment. This is achieved in one of two
ways: interleaved or single shot. In the interleaved method, the
ASL and BOLD data are acquired from separate excitations, e.g.
ASL tag image, BOLD image, ASL control image, BOLD
image (16,30,34). The benefit of this approach is that images
can be acquired at the optimal TE for each of the modalities.
For ASL, the shortest attainable TE should be used (41), whereas
it has been shown that the BOLD response is maximised when
TE = T2* (42). However, as this is a combination of two
experiments, the ultimate temporal resolution is reduced, with
a minimum around 4.5 s (30). The single shot method enables
a higher temporal resolution by acquiring both ASL and BOLD
from the same excitation (29,43–47). ASL and BOLD signals are
disentangled by performing a surround subtraction or addition,
respectively (48–50). In the simplest implementation of this
method, a single echo is used with a TE selected as a trade-off
between the optimal ASL or BOLD TE (29,45,47). However, a dual
echo approach is recommended, giving more accurate CBF and
BOLD measurements, as well as a greater degree of indepen-
dence between datasets (43,44,51).

The term ‘arterial spin labelling’ applies to a collection of
techniques developed to isolate and quantify the component
of the MR signal that is derived from inflowing arterial blood
delivered to capillary beds within the image voxel. The model-
ling of this signal can be performed to quantify local perfusion,
more commonly referred to as ‘CBF’ (41). Many different
perfusion-sensitive techniques have been created since the
development of the first ASL method in 1992 (52), and each
possesses a unique set of features designed to address one or
more challenges associated with the measurement of CBF. These
techniques can be broken down into two categories: pulsed ASL
(PASL) (53) and continuous ASL (CASL) (52). Currently, the
PASL technique is most commonly used in calibrated BOLD
experiments, although CASL methods are seeing a resurgence
with pseudo-continuous ASL (PCASL) methods (54). In the
context of calibrated BOLD, it is important to consider several
systematic errors that must be accounted for if accurate
measurements of CBF are to be made. Of particular importance
are the tagging efficiency, alterations to the T1 of blood and
accounting for transit delays. These sources of error have differ-
ent implications for PASL and CASL techniques. In the latter case,
we only consider PCASL, as CASL is rarely used in practice.

The tagging efficiency describes the effectiveness of a tagging
pulse (or pulse train) at producing a bolus of blood with fully
inverted magnetisation. This is an assumed value within the
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model used to quantify perfusion, required for the accurate
measurement of CBF in physiological units (41). However, for
calibrated BOLD, a measurement of absolute CBF is not neces-
sary, as fractional changes are the only requirement of the Davis
model Equation [6]. Therefore, as long as the tagging efficiency
is constant throughout the experiment, its precise value is no
longer important. A decreased tagging efficiency will, however,
result in reduced signal-to-noise ratio in the acquired data. This
assumption is valid for PASL techniques, but may be problematic
for PCASL, which relies on a flow-driven inversion and is therefore
dependent on the velocity of blood in the arterial blood vessels at
the tagging location (55). Undermost experimental conditions, this
velocity will remain fairly constant; however, under hypercapnia, a
large increase in blood velocity within the internal carotid and
vertebral arteries has been observed (55). It has been suggested
that this will result in a reduced tagging efficiency, which will lead
to a reduced fractional change in CBF.

The T1 of arterial blood is similarly important in the quantification
ofCBF, and is assumed tobe constant (41). Again, ingeneral, this is a
fair assumption, except under hyperoxia, where T1 is known to be
shortened by the presence of paramagnetic oxygen within the
plasma (56,57). If this reduction in T1 is not accounted for in the
analysis, the expected flow reduction will be overestimated (37).
This problem will affect both PASL- and PCASL-based techniques.

Finally, a key requirement of any ASL sequence is to produce a
bolus of tagged blood with a well-defined temporal width and to
ensure that the timing of the sequence allows for all of the
tagged blood to be delivered to the tissue by the time images
are acquired (48). An important problem in meeting this latter
requirement is the variability of the transit delay time of arterial
blood: the time required for blood to move from the tagging
plane to the capillaries of the imaging voxel. The goal in an
ASL experiment is to create a well-defined bolus of tagged blood
and to wait a sufficiently long time for that bolus to clear from
the large arteries and be delivered to the microvasculature
within the image voxel. If the time between tagging and
imaging is too short (i.e. an insufficiently long inversion time),
regional CBF will be inaccurately measured. This will lead to an
overestimation of CBF if tagged blood remains in the arterial
macrovasculature. However, if the large vessel blood signal is
suppressed, most commonly by the application of diffusion
weighting, CBF will be underestimated, as not all of the tagged
bolus has been delivered to the tissue at the time of imaging.
In addition, the transit delay is not uniform across the brain,
requiring that this variability must be accounted for in multislice
imaging (58,59). This effect has the potential to affect both PASL
and PCASL techniques.

Multimodal imaging: incorporating measurements of CBV

The incorporation of a measurement of CBV removes the
assumptions about CBF/CBV coupling, but is complicated by
the need to measure the volume change within the vascular
compartment that underlies the BOLD response, primarily CBVv.
Techniques to measure CBV (60) predate both BOLD (1) and ASL
(52) techniques. However, typically, they are sensitive to the total
blood volume, i.e. the sum of arterial, capillary and venous
volumes. In humans, these methods include gadolinium-based
contrast agent techniques (61,62), as well as endogenous
contrasts, such as vascular space occupancy (VASO) (63). Unfor-
tunately, it has been shown that, during the active condition,
arterial volume changes are proportionately larger than venous

changes (64–66), and hence these techniques have the potential
to overestimate the contribution of CBVv to the BOLD response.
Formerly, it was assumed that the majority of blood volume

change occurs in venous vessels (12,67). This motivated some
researchers to incorporate a measurement of CBV into their
calibrated protocol using the VASO technique (25,68). This
provides a very elegant protocol, as it is possible to measure
CBF, CBV and BOLD in a single experiment using a combined
pulse sequence (69). However, the data of Lin et al. (25) suggest
that a = 0.62, given a 68% increase in CBF and a 38% increase in
CBV. This is consistent with positron emission tomography (PET)
measurements of CBF/CBV coupling, where a = 0.64 was
measured for total CBV in cortical grey matter (70). A larger value
of a is consistent with a larger increase in CBV relative to CBF,
which we would expect to be the case if arterial blood volume
changes dominate.
To address this issue, new methods have been developed to

specifically measure CBVv. The venous refocusing for volume
estimation (VERVE) method has been used to measure CBF/CBVv
coupling during neuronal activation (28) and in response to a
hypercapnia challenge (71). However, this method is not easily
incorporated into an ASL–BOLD pulse sequence and hence
cannot be acquired simultaneously. CBVv has also been measured
using hyperoxia as a contrast agent (72,73), and has recently been
incorporated into a calibrated BOLD measurement (74).
Similar to VERVE, this method cannot be simultaneously
acquired alongside ASL and BOLD data, as it requires BOLD-
weighted data acquired at normoxia and hyperoxia. Finally,
a new technique based on the principles of the VASO
method has been developed to selectively image arterial
CBV, known as inflow-based VASO (75). In combination
with conventional VASO, this technique allows CBVv to be
estimated, but is critically dependent on accurate quantification
in both methods.

Respiratory challenges

Hypercapnia and hyperoxia calibrations require the administra-
tion of gases to the subject, breath-holding excepted. There
are many ways in which respiratory challenges can be
performed, but they can largely be placed into two categories:
those that present a gas with a fixed composition and those that
target a specific end-tidal partial pressure of carbon dioxide
(PETCO2) or oxygen (PETO2). The former methods benefit from
experimental simplicity, whereas the latter provide greater
repeatability across sessions and between subjects. A brief
summary of both approaches is now presented.
The fixed inspired hypercapnia challenge is typified by the use

of a non-rebreathing mask connected to a large gas reservoir
(Fig. 2a). A non-rebreathing mask ensures that the subject
breathes in the prescribed CO2 concentration. However, such a
system does not control for the large difference in ventilatory
response observed across the population (76). This can lead to
large differences in PETCO2 across subjects. Periods of normocap-
nia are interleaved with periods of hypercapnia in a block design
by switching between room air and a premixed gas mixture. As
noted above, hypercapnia calibration typically utilises a 5%
CO2–21% O2–74% N2 mixture (6), but other variations have also
been employed. A lower 4% CO2–21% O2–75% N2 mixture is
used by some to mitigate the effects of any accompanying
CMRO2 reduction (30), whereas much higher 10% CO2–90% O2

carbogen mixtures have also been used to provide a more direct
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measurement of M by attempting to increase CBF to such a
degree that deoxyhaemoglobin is completely washed out in
order to produce the maximum possible BOLD signal (51).
With a fixed inspired hyperoxia challenge, a non-rebreathing

mask is normally replaced with a standard venturi mask, or a
nasal cannula (Fig. 2b). In both cases, 100% O2 from a pressurised
source is delivered to the mask/cannula, where it mixes with air
entrained from the room, resulting in an O2 concentration of
approximately 50%. Interleaved blocks of normoxia and hyperoxia
are achieved by switching off the oxygen source during normoxia,
causing the subject to breathe room air through holes in the
mask, and re-establishing flowing oxygen during hyperoxic
periods. In a similar manner to the fixed inspired hypercapnia
challenge, the final PETO2 is dependent on each individual’s
ventilatory response to the hyperoxic gas mixture.
There are two end-tidal targeting methods currently in use

with MRI that rely on either feedback (77,78) or feedforward
(79) algorithms coupled to a computer-controlled gas mixer.
Basically, the feedback method works by analysing the gas
composition of the preceding breath of a subject and adjusting
the composition of the inflowing fresh gas to force the end-tidal
value towards the targeted value in the following breath. Hence,
this method is often referred to as ‘dynamic end-tidal forcing’.
This method requires fast gas analysers, and gas mixing must
be performed close to the subject in order for rapid changes in
composition to be made (Fig. 3a). The feedforward method relies
on a model of alveolar gas exchange and the principles of
sequential gas delivery. The inspired gas composition required
to reach the targeted end-tidal value is determined prior to the
start of the experiment. Gases are mixed outside of the magnet
room and conveyed over gas lines to a sequential gas delivery
mask worn by the subject (Hi-Ox80, VIASYS Healthcare, Yorba
Linda, CA, USA) (Fig. 3b). However, this method requires values
for each subject’s metabolic rates of CO2 production and O2

consumption. These can be estimated from a look up chart,
and are often refined by performing several test runs. For
hypercapnia, calibration changes in PETCO2 between 3 and
9mmHg have been performed, whereas, for hyperoxia, changes
in PETO2 between 140 and 340mmHg have been used (29). The
advantage of using an end-tidal targeting method is that this
targeted PETCO2/O2 level is independent of each subject’s

ventilatory response, unlike fixed inspired challenges, giving rise
to reduced intersession and intersubject variability (80,81).

Relaxometry

There are two main ways to measure R20. Both methods exploit
an asymmetric spin echo (ASE), but differ in how the images
are acquired. We refer to these methods as single shot ASE (82)
and gradient echo sampling of spin echo (GESSE) (26). The ASE
experiment is a modification of the spin echo experiment, in
which a 180! refocusing pulse is applied at TE/2 and the signal
is acquired at TE. In the ASE experiment, the signal is still
acquired at TE, but the 180! pulse is shifted in time by t/2. This
results in a spin echo being formed at TE – t, and hence the
signal is acquired with additional R20 weighting. However, it
will also include additional signal decay as a result of the
macroscopic magnetic field inhomogeneity, leading to the
attenuation factor F, which is similarly a function of t:

SASE ¼ S0e#TER2e#tR
0
2F tð Þ [13]

For a linear through-plane gradient under the assumption of a
square slice profile, this attenuation factor can be described by
a sinc function (26):

F tð Þ ¼ sin tΔo=2ð Þ
tΔo=2

[14]

where Δo is the frequency difference across the voxel. This is a
function of the gradient (Gz) and the slice thickness (Δz), where
g is the gyromagnetic ratio for hydrogen.

Δo ¼ gGzΔz [15]

Therefore, care must be taken to account for the macroscopic
field inhomogeneity. This is typically achieved by acquiring a
high-resolution field map, calculating the derivative in the slice
direction and correcting the intensity data using Equations
[13]–[15] (26,27,83).

For single shot ASE, images are acquired using echo planar
(82) or spiral (84) imaging techniques (Fig. 4a). Multiple
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Figure 2. Schematic diagrams of the apparatus typically used to generate a fixed inspired hypercapnia challenge (a) and a fixed inspired hyperoxia
challenge (b). In (a), a manually actuated valve enables the inspired gas to be switched between room air and a 5% CO2–air mixture, whereas, in
(b), during baseline subjects breathe room air through holes in the mask and hyperoxia is induced by allowing 100% O2 to flow into the mask. Mixing
with entrained room air reduces the inspired fraction of oxygen to approximately 50%.
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experiments are performed with different values of t, whilst
keeping TE constant. As a constant TE leads to constant R2
weighting Equation [13], R20 is easily measured by plotting SASE
versus t. However, correction for the magnetic field inhomoge-
neity can only be performed by acquiring a field map in a
separate imaging experiment.

At first glance, the image acquisition for the GESSE technique
may seem to be remarkably similar. The switched gradient of
the echo planar imaging sequence is retained, but rather than
playing a blipped phase encode prior to each k-space line
traversal, phase encoding is applied before the switched gradient
and is incremented with each repetition of the whole sequence.
Multiple shots are therefore required to cover the whole of k
space. In this way, it is akin to a multi-echo spin warp sequence
with the addition of spin echo refocusing (85). Lines of k space
with the same effective TE are grouped together and
reconstructed to form many images with a short interecho
spacing. Unlike single shot ASE, both TE and t are varied simulta-
neously, requiring that both R2 and R20 be fitted. There are two
ways of achieving this: simultaneous fitting of R2 and R20 using
Equation [13] (26) or fitting for R2 first, then R20 (86). In the latter
method, pairs of echoes either side of the spin echo are divided
to remove R20 weighting and plotted versus 2t to measure R2.
On removing the R2 effect from the original data, R20 can be
measured. Despite a more complicated fitting procedure, the data
generated by the GESSE experiment can also be used to produce
a field map without increasing the acquisition time (83,87). This
can then be used to correct for the magnetic field inhomogeneity.

Finally, the temporal characteristics of the signal decay must
also be considered when measuring R20. It has been shown that,
for small values of t, i.e. at points close to the spin echo, the
signal decay is quadratically exponential, whereas, at longer t, it
reverts to the more usual monoexponential decay (14). This
behaviour is a result of the susceptibility difference between
deoxygenated blood within blood vessels and the surrounding
tissue. This results in magnetic field gradients in tissue causing
additional signal decay of tissue protons, and is the origin of the
extravascular BOLD signal. This regime can be avoided by choos-
ing values of t ≥ 1.5 tc, where tc is dependent on the geometry of

the vessels (4/3), the gyromagnetic ratio of hydrogen (g), the
magnetic field strength (B0), the susceptibility difference between
purely deoxygenated blood and tissue (Δo) and the venous blood
oxygen saturation (Y):

tc ¼
1

4
3 pgB0Δw 1" Yð Þ

[16]

Typical values predict tc to be of the order of 20ms at 1.5 T and
10ms at 3.0 T (14). Hence, at 3.0 T, only data with t > 15ms
should be used for the calculation of R20.

POTENTIAL SOURCES OF ERROR
Hypercapnia calibration

Hypercapnia calibration relies on the assumption that hypercap-
nia is an isometabolic stimulus, i.e. it does not alter CMRO2.
Hence, in Equation [7], r is assumed to be unity. However,
recently, it was observed that the inhalation of a 5% CO2 mixture
causes an appreciable reduction in resting metabolism (88).
Using a combination of the T2 relaxation under spin tagging
(TRUST) method and phase contrast flow measurements, a
13.4% drop in CMRO2 was measured. This is consistent with
intracortical recordings that show a reduction in spontaneous
neuronal activity during hypercapnia (89). In this case, inhalation
of a 6% CO2 mixture resulted in an approximately 15% reduction
in multiunit activity. It must be noted, however, that the blood
CO2 levels reached in these artificially ventilated animal experi-
ments will be higher than those expected in free-breathing
humans, as humans are able to increase their ventilation rate
and lower their PCO2. Conversely, measurements using a suscep-
tometry-based oximetry method did not observe any change in
CMRO2 in response to a 5% CO2 challenge (90). A recent study
with magnetoencephalography (MEG) found a fractional
decrease in MEG power in the gamma band of 11% with the
inhalation of 5% CO2 in humans (91). Assuming that this
translates to an equal fractional reduction in CMRO2, the authors

100% O2

Air

CO2 mix

O2 mix

Rapid Gas
Analysers

Gas Sample
Line

Gas Sample
Line

Non-rebreathing
Mask

Sequential Gas
Delivery Mask

Computerised
Gas Blender

(a) Feedback Respiratory Control (b) Feedforward Respiratory Control

Figure 3. Schematic diagrams of the automated respiratory challenge apparatus currently in use with feedback (a) and feedforward (b) algorithms.
The feedback algorithm works by analysing the gas composition of the preceding breath and adjusting the composition of the inflowing fresh gas
to force the subject’s end-tidal values towards the targeted values in the following breath. The feedforward algorithm works by calculating the required
gas composition to reach the given target end-tidal values using a model of alveolar gas exchange prior to the start of the experiment.
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Figure 5.3. Schematic diagrams of the automated respiratory challenge apparatus currently in use with feedback and feedforward algorithms. 
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estimated the degree to which the assumption of isometabolism
with CO2 inhalation affects the estimates of CMRO2 change.
The question of the degree of CMRO2 reduction with mild

hypercapnia requires further study, but this is an important
concern for the accuracy of the hypercapnia calibration. Reduced
resting CMRO2 would lead to an overestimated Mhc value and, in
turn, an overestimated stimulus-evoked CMRO2 change. To
estimate the magnitude of this error, we can substitute standard
literature values into Equation [7], assuming r=1 (no CMRO2

change) or r=0.87 (13% reduction in CMRO2). With a true Mhc of
6.4%, a flow change caused by hypercapnia of 44% [cf. ref. (29)]
and a/b = 0.2/1.3, the value of Mhc is predicted to be 35%
overestimated. Given a 1.2% stimulus-evoked BOLD response
and accompanying 48% flow change, this results in an approxi-
mately 5% overestimation of the stimulus-evoked CMRO2 change.
As a result of the nonlinear form of the Davis model, this error

could vary considerably for different conditions, i.e. different
BOLD/CBF changes, values of a and b, etc.

Hyperoxia calibration

It has also been observed that hyperoxia may alter resting CMRO2

(38). In this work, a 10% reduction in CMRO2 was observed in
response to a 50% O2 mixture. However, stimulus-evoked CMRO2

changes have been shown to be unaltered by the inhalation of
100% O2 (92), and PET data acquired in patients with traumatic
brain injury showed no change in resting CMRO2 (93).

Assuming, for the sake of argument, that CMRO2 is reduced
during hyperoxia, then Mho will be overestimated in the calibra-
tion experiment. In turn, this will cause the stimulus-evoked
CMRO2 change to be overestimated. The same approach as for
hypercapnia calibration can be used to estimate this error with
a hyperoxic r=0.9. Following the data analysis approach of Mark
et al. (29) and using their measured Mho value of 5.2% as truth,
we found that Mho was overestimated by 53%. This results in
an 8% overestimate of the change in CMRO2. These estimates
include the same caveats as mentioned for hypercapnia.

In addition to the assumption of isometabolism, hyperoxia-
calibrated BOLD requires strong assumptions about the baseline
physiology of the subject. In order to calculate the change
in deoxyhaemoglobin concentration (Δ[dHb]/[dHb]0) using
Equation [10], values for the total haemoglobin concentration
([Hb], approximately equivalent to Hct/0.03) and OEF (E0) are
required. The former is standardly assumed to be 15g Hb/dL
(Hct ! 0.45) (29,34), whereas the latter is assumed to be 0.3 (29).
This value of OEF is lower than generally reported values of 0.4
in the PET literature (10). Recent simulations have shown that
these assumed values do not enable hyperoxia calibration to
account for differences in physiological baseline across the
population (40). Figure 5 propagates these errors through to
the measurement of the stimulus-evoked CMRO2 change for
three different levels: 10%, 20% or 30% increase in CMRO2.
Random combinations of the variables Hct, E0 and Vi (total CBV)
were selected from the following ranges: Hct = 0.37–0.50,
E0 = 0.3–0.55 and Vi = 0.01–0.10. Each point in Fig. 5 represents
one of these combinations, with corresponding BOLD responses
and M values calculated for each combination [see ref. (40) for
further details]. The effect of this variability on the standard
hyperoxia calibration approach can be seen in Fig. 5a. It is
not possible to distinguish different lines of CMRO2 change,
apart from very low CBF changes. In contrast, when the values
of Hct and OEF are known, and can be substituted into
Equation [10], this variability is drastically reduced (Fig. 5b).
For comparison, Fig. 5c displays the simulation for hypercapnia
calibration in which assumptions about baseline physiology
are not required. Unfortunately, information about local OEF
is not easy to obtain, even though the systemic Hct is easily
measured from a sample of the subject’s blood. Whole brain
measurements of OEF can be made using the TRUST technique
by measuring the oxygen saturation of blood in the sagittal
sinus (94). Local information regarding vessel geometry and
CBVv can then be retained by substituting this information into
Equation [10], although spatial information will inevitably be
lost because of the use of a global value of OEF.

Finally, as noted above, the presence of paramagnetic oxygen
in plasma causes a reduction in blood T1 that confounds the
estimation of CBF using ASL. This effect has additional implica-
tions for BOLD measurements using rapid gradient echo
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Figure 4. Pulse sequence diagrams for the most common asymmetric
spin echo (ASE) methods: (a) single shot ASE; (b) gradient echo sampling
of spin echo (GESSE). The methods look very similar, but differ in the way
in which phase encoding is applied. For the single shot approach, phase
encoding is incremented between k-space traversals in the frequency
encode direction using a phase encoding blip. The GESSE method takes
a multi-shot approach in which phase encoding is applied prior to the
switched frequency encoding gradient. Each lobe of this gradient
produces multiple echoes with the same phase encoding. This phase
encoding is then incremented across repetitions to fully sample k space.
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imaging. However, typically, the repetition time of ASL/BOLD
acquisitions is greater than 2.4 s, where such T1 effects will
be insignificant.

R20 calibration

Although R20 calibration does not require assumptions of isometa-
bolism or physiological baseline, it is sensitive to macroscopic
field inhomogeneity. This residual field distortion is caused by
susceptibility differences within the head, i.e. at the nasal
sinuses, where tissue and air have very different susceptibilities.
The resulting ASE signal Equation [13] therefore suffers an
additional attenuation (F) which is dependent on the magnitude
of the magnetic field gradient across the slice and the value of
t. This is evidently a potential source of error in R20 calibration
and could lead to an overestimation of MR02 and the stimulus-
evoked CMRO2 change. Assuming MR02 = 6.4% [i.e. equivalent to
Mhc in ref. (29)] would require an R20 value of 2.14 s–1 given the
standard BOLD-weighted TE of 30ms Equation [12]. Taking a
typical frequency difference across a voxel of 20 s–1 (40), this
would increase R20 to 2.64 s–1. Consequently,MR02 is overestimated
by 24% and the stimulus-evoked CMRO2 change by 3%. This
estimation is based on the same BOLD and CBF changes as used
for the other calibrations, and is subject to the same provisos.

As a consequence of acquiring MR02 in the resting condition, it
is likely that it will be underestimated with respect to Mhc. This is
a result of the use of a 180! radiofrequency pulse and its
efficiency at refocusing the dephasing of protons surrounding
vessels of different scales. This effect is characterised by two
regimes: static dephasing and motional narrowing. In the former
regime, protons are considered to be static with respect to
deoxygenated blood vessels. Under this condition, the amount
of phase accrued before and after the refocusing pulse is equal
but opposite in sign, enabling the signal to be refocused. In
practice, to satisfy this condition, the proton must only diffuse
a small distance relative to the diameter of the blood vessel to
retain its spin history. However, in the motional narrowing
regime, the diffusion length of the proton is large compared with
the vessel diameter and, as such, will sample a large number of
different field gradients. In this case, the spin history of the
proton is lost and the signal cannot be recovered. Equation [1]

models this effect through the parameter b, with b = 1 for static
dephasing and b = 2 for motional narrowing. The transition
between these regimes occurs around a diameter of approxi-
mately 7 mm, with capillaries below this threshold and venules
and larger draining veins above it. In addition, the motional
narrowing regime is at play within the vessels in which proton
diffusion lengths are greater than the diameter of the deoxyhae-
moglobin-containing red blood cells. Therefore, we expect to be
missing extravascular signal contributions from capillaries and
intravascular signals from blood. Following the simulation
methodology of Blockley et al. (40), we can calculate this
underestimate for a reasonable range of physiological variability:
Hct = 0.37–0.50, E0 = 0.3–0.55 and Vi = 0.01–0.10. Figure 6 plots
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Figure 5. Simulation of the effect of baseline physiological variability on two calibration methods. (a) Using the standard approach to hyperoxia calibration
results in a high degree of uncertainty in the resultantmeasurement of the cerebral metabolic rate of oxygen consumption (CMRO2) because of the use of an
assumed haematocrit (Hct) and resting oxygen extraction fraction (OEF). The blood oxygenation level-dependent (BOLD) signal change normalised by the
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Figure 6. Simulation of blood oxygenation level-dependent (BOLD)
scaling parameter M for the hypercapnia and R20 calibration methods.
As a result of the effect of diffusion around capillaries, the spin echo
refocusing pulse is unable to recover signal lost to dephasing around
these vessels. Therefore, R20 calibration will give a value of M that is lower
than that measured using hypercapnia. Further simulations suggest that
the required scaling between these methods is relatively stable across
different physiological baseline conditions.
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the results of the generation of M values for each random com-
bination of physiological parameters. Although MR02 tracks line-
arly with Mhc, it is not directly proportional. Fitting to this data
reveals that the value of MR02 is only approximately 75% of Mhc.
However, simulations to assess the variability of this scaling with
variations in physiology have shown this value to be relatively
stable (40).
Finally, R20 calibration assumes that deoxyhaemoglobin is the

dominant source of paramagnetism in the brain (95). However,
the presence of another source of paramagnetism is not sufficient
to confound the use of R20 as a calibration. The geometry of the
inclusion determines its effect on R20, with maximal effect when
the length scale of the deposit is in the static dephasing regime.
This dimension is approximately equivalent to a cylinder with a
radius of 7mm, but falls away rapidly with reduced radius (15).
There are two main conditions in which an elevated R20 has been
measured as a result of paramagnetic deposits: Parkinson’s
disease and brain haemorrhage. Parkinson’s disease is known to
result in increased deposition of iron in the substantia nigra,
consisting of neuromelanin granules and iron-filled Lewi bodies
(96). This has been shown to result in elevated R20 measurements
(97). Brain haemorrhage causes bleeding into the extravascular
space and the production of haemosiderin, leading to an increase
in R20 (98). Care must be taken when performing R20 calibration in
individuals with these conditions. Other brain iron sources, such as
ferritin and transferrin, have sufficiently small dimensions such
that they do not exhibit an R20 effect as a result of motional nar-
rowing. For example, changes in R2 are measured in Alzheimer’s
disease, but changes in R20 have not been reported, suggesting
that iron inclusions in this disease are in the motional narrowing
regime. Further work is required to examine other diseases in
which iron is thought to be deposited for their effect on R20, such
as multiple sclerosis, Huntington’s disease, neuroferritinopathy
and Friedrich’s ataxia.

CBF/CBV coupling

In general, changes in CBV are inferred from measurements of
CBF in the calibrated BOLD experiment (6). This is achieved by
assuming a power law relationship between CBF and CBV based
on the animal work performed by Grubb et al. (18); hence, the
exponent is often referred to as the Grubb constant a:

υ ¼ f a [17]

Here v and f are the normalised changes in CBV and CBF.
Grubb et al. measured a to be 0.38. Recently, work based on
measurements of CBVv, the vascular compartment that underlies
the BOLD response, have caused this value to be revised to
between 0.18 and 0.23 (28,71). However, these values only
represent the mean coupling ratio and, in practice, there could
be substantial variation across subjects. A recent simulation
study examined the sensitivity of the Davis model to the value
of a, alongside other physiological parameters (23). Although a
was not the largest driver of variation inM, it was shown to cause
the largest error in the estimate of the change in CMRO2. Further
simulations showed that this error was not as large for hypercap-
nia calibration as for hyperoxia and R20 calibrations (40). This is
presumably a result of the inclusion of a in both the calibration
Equation [7] and CMRO2 estimation Equation [6] steps of hyper-
capnia calibration, leading to some compensation for inaccura-
cies in the value of a.

APPLICATIONS
Coupling of CBF and CMRO2

A number of studies have investigated the variability in the
coupling of CBF and CMRO2. This is often characterised by the
parameter n, the ratio of the fractional changes in CBF and
CMRO2:

n ¼ f " 1
r " 1

[18]

One study investigating the reproducibility of calibrated BOLD
studies found that the value of n was more reproducible than
the values of the CBF and BOLD responses themselves, consis-
tent with the idea that a subject’s response to the same stimulus
could vary day to day, but the CBF/CMRO2 coupling ratio is more
stable (99). In comparing different reported values of n, it is
important to keep in mind the potential biases in these measure-
ments related to the estimate of M (43,100): for given CBF and
BOLD responses to a stimulus, if M is overestimated, n will be
underestimated.

Studies measuring n in motor and visual areas have found
values in the range 2–4, with perhaps a trend for higher values
in motor areas (6,16,43,99,101–103). Two studies in subcortical
regions both found n< 2 (104,105). These studies also empha-
sise that the BOLD response is sensitive to the value of n when
n~ 2. For example, n was found to be reduced in basal ganglia
structures when compared with visual cortex (105). Although
the basal ganglia BOLD response to a complex finger-tapping
task was about seven times weaker than the visual cortex BOLD
response to a visual task, the ratio of the CMRO2 response was
only around two-fold weaker. This effect was not caused by
differences in M, but rather to a modest change in n, from
approximately 1.7 in the basal ganglia to approximately 2.3 in
the visual cortex. This illustrates that the relative magnitudes of
the BOLD responses are a poor quantitative guide to the
magnitudes of the underlying physiological changes. To date,
there have been a few studies of CBF/CMRO2 coupling in
deactivations (102,106,107), but this remains an area that
requires further exploration.

More recently, the effect of stimulus strength was investigated
by varying the contrast of a simple visual stimulus; it was found
that, within the same region of visual cortex, n increased with
increasing stimulus contrast (108). Similarly, a change in n with
the frequency of the visual stimulus has been reported based
on PET measurements (109) and, more recently, using calibrated
BOLD (110). In another recent study looking at the effects of
attention, it was found that n was substantially larger when a
stimulus was attended compared with when it was unattended
(111). Finally, a few promising studies have begun to look at
CBF/CMRO2 coupling during resting state spontaneous activity
(112,113), and this is another area of future growth.

In short, the interesting idea suggested by calibrated BOLD
studies is that the coupling ratio n is not fixed, and can vary
depending on the neural activity evoked. This basic uncoupling
is consistent with current ideas about the drivers of CBF and
CMRO2 changes in response to neural activity. Although the
CMRO2 response may simply reflect the energy cost of the
evoked neural activity, the fast CBF response associated with
fMRI signals is thought to be driven directly by neural signalling
itself (114), with the astrocytes as intermediaries (115,116),
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and not by the energy metabolism change. This may be a feed-
forward response, increasing CBF in anticipation of a need for
increased CMRO2 in order to prevent a decrease in tissue oxygen
(17,117). The important bottom line, however, is that the
variation of n, even in the healthy brain, has a substantial effect
on the BOLD response, justifying more routine application of
the calibrated BOLD methodology.

Prior to the introduction of calibrated BOLD methods, PET
methods were used to measure the CBF/CMRO2 coupling ratio
under different stimulus conditions. However, the early results
measured by both techniques revealed a discrepancy. For
example, the seminal PET study of Fox and Raichle (5) with
somatosensory stimulation found n~ 5, whereas the pioneering
calibrated BOLD studies of Davis et al. (6) and Hoge et al. (16)
found n~ 2–3 in visual cortex. However, subsequent PET studies
have found a broader range of n [including n~2 in visual cortex
(118)]. At this point, it is unclear whether there is a systematic
difference between the methodologies (17,25) and, in part, the
variability may reflect the true variability across the brain and
with different stimuli, as discussed below.

Pharmacological confounders of the BOLD response

The potential effect of drugs on the BOLD response is one of the
most important confounding effects that must be addressed
when performing fMRI studies in disease populations. Any drug
that alters baseline CBF, CMRO2 or, plausibly, even Hct could
alter M. In an early study of the effect of acetazolamide, a
carbonic anhydrase inhibitor, a modest increase in baseline
CBF (~20%) was observed and an associated larger decrease in
the BOLD response (~35%) to a simple finger-tapping task
(119). This strong effect on the BOLD response is consistent
with the expected reduction in M caused by a 20% increase in
baseline CBF with no change in baseline CMRO2. Similarly, the
effect of indomethacin on CBF and CMRO2 has been investigated
using calibrated BOLD (120). Indomethacin is a nonsteroidal anti-
inflammatory drug commonly used to reduce fever, pain and
stiffness. Baseline CBF was observed to decrease following
indomethacin administration, and the CBF and BOLD responses
to a finger-tapping task were reduced (46% and 22%, respec-
tively) when compared with the pre-drug responses. The CMRO2

response, as calculated using the Davis model (6), did not
change between the pre- and post-drug states, which was inter-
preted as evidence that indomethacin has a purely vasoactive
effect on the brain. However, in this analysis, changes in CBF
and BOLD were calculated with respect to the resting condition
of the respective pre- or post-drug trials. It was shown later that,
when these changes were calculated with respect to the resting
condition of pre-drug trials, baseline CMRO2 and the CMRO2

response to stimulus were also reduced by indomethacin (121).
This led to the alternative interpretation that indomethacin
could have a primary effect on CMRO2, with an associated
coupled change in CBF.

Caffeine provides a useful pharmacological test of the
calibrated BOLD methodology (44,45,122). It is a vasoconstrictor
within the brain (123) and acts as an antagonist of adenosine
receptors (124). Adenosine is an inhibitor of excitatory neural
activity; therefore, the blocking of adenosine receptors by
substances such as caffeine should result in the disinhibition of
affected neurons. Experiments examining the effect of caffeine
on the BOLD response have yielded conflicting results
(123,125,126), with a number of studies reporting a reduction

in baseline CBF (127–129). Calibrated BOLD, therefore, offers a
way to disentangle the multiple effects that give rise to these
results. Initial experiments confirmed a reduced baseline CBF
(44,45) and an increased M value following caffeine administra-
tion (45). This latter finding is consistent with increased oxygen
extraction at rest as a result of a decrease in CBF. However, both
of these studies measured BOLD and CBF relative to their pre-
stimulus baselines. This approach does not take into account
the baseline shifts in absolute CMRO2 and CBF, and led to the
belief that CBF was more strongly affected than CMRO2 by
caffeine (44). More recently, the data of Perthen et al. (44) were
revisited with a view to accounting for changes in baseline
(122). This was achieved by quantifying the ASL data in physio-
logical units and calculating R2

* from dual-echo BOLD-weighted
data. Both measures are relatively robust absolute values,
enabling pre- and post-caffeine data to be referred to the pre-
caffeine baseline. This analysis showed a reduced CBF baseline,
as before, and a smaller CBF response to stimulus. In addition,
a trend towards increased baseline CMRO2 was observed and a
significant increase in the absolute CMRO2 response to stimulus
was found. These results offer a possible explanation for previous
inconsistencies in the literature. The observed changes in CBF
and CMRO2 have opposing effects on the BOLD response, and
it is easy to imagine the balance between them shifting to
produce variable changes in the BOLD response.

Effects of ageing on the BOLD response

The use of calibrated BOLD in studies of ageing can help to
disentangle the multiple effects at play. In one study, the effect
of ageing on the stimulus-evoked response in the visual cortex
was investigated (130). Hypercapnia calibration combined with
a visual stimulus experiment was performed in two groups:
younger (age, 21–35 years) and older (age, 45–60 years). Older
subjects were observed to have lower baseline CBF in the visual
cortex, but decreased values of M. This is somewhat paradoxical,
as we would expect that reduced baseline CBF should increase
oxygen extraction, leading to a larger value of M. However, a
reduced M value could occur if CMRO2 were also to decrease
with CBF. During neural activation, the BOLD response was
observed to decrease with age, but CBF and CMRO2 were
unaffected. This corresponds to a constant CBF/CMRO2 coupling
with age.
A further study of ageing used hyperoxia calibration with the

aim of improving subject comfort and tolerance (47). In contrast
with the previous study, this work examined the effect of ageing
using a cognitive task rather than a basic visual stimulus. Unlike
the study using a visual stimulus, the BOLD response was
observed to increase with age in cognitive areas, but the CBF
response did not. As the task was cognitive, performance
accuracy data enabled the older subject group to be split into
low- and high-performing groups. This further subdivision of
the group revealed that the difference in BOLD, CBF and CMRO2

responses to stimulus were not significant between young and
old high-performing groups. However, the BOLD and CMRO2

responses of young versus old low-performing groups were
significantly different. These results suggest that the CBF/CMRO2

coupling ratio (n) of the older high-performing group is not that
different from that of the young group, but that the older low-
performing subjects have an increased value of n. Further work
is evidently required in the field of ageing to account for baseline
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changes in CMRO2, and to confirm the reduction hypothesised
by Ances et al. (130).

Measurement of resting CMRO2 using calibrated BOLD

The next step in the development of calibrated BOLD has led
researchers to consider its use for the measurement of the
absolute resting CMRO2 (131,132). It has always been clear that
M contains information about baseline CMRO2 because of its
dependence on the resting OEF, but a means to disentangle its
contribution to M has not existed until recently. Two methods
have been proposed and both hinge on the idea of estimating
M by two independent methods: hypercapnia and hyperoxia.
Both also rely on the sensitivity of the hyperoxia method to
Hct and baseline oxygen extraction (see section on Potential
sources of error). However, they differ in the way in which OEF
is estimated from the data. When this measurement of oxygen
extraction is combined with CBF data, baseline CMRO2 can be
estimated via Fick’s law.
The method of Bulte et al. (132) uses Equation [7] to calculate

Mhc, substitutes this value into Equation [8] and then rearranges
for Δ[dHb]/[dHb]0. For the ideal hyperoxia experiment, this gives:

Δ dHb½ "
dhb½ "0

¼ 1$ ds
Mhc

! "1
b

$ 1 [19]

where ds is the signal change caused by hyperoxia challenge.
Given a measurement of Hct, Equation [10] can be rearranged
to provide a measurement of OEF. The method proposed by
Gauthier et al. (131) takes a subtly different approach. They
previously proposed a generalised calibration model (GCM)
suitable for calibration experiments with any combination of
hypercapnia and/or hyperoxia (51). A single equation, based on
Equation [4], can then be used to estimate M for a respiratory
challenge with any combination of CO2 and/or O2:

ds ¼ M 1$ f a
dHb½ "
dHb½ "0

# $b
" #

[20]

The GCM enables [dHb]/[dHb]0 to be calculated:

dHb½ "
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@
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B

[21]

where CaO2 is the amount of oxygen carried by arterial blood
during the respiratory challenge and at baseline (subscript 0).
All other parameters are as defined in the section on Theoretical
underpinnings. Part A of Equation [21] deals with changes in ox-
ygenation caused by a change in flow, whereas part B models
changes caused by a change in PaO2. This equation enables M
to be determined as a function of OEF (E0). Gauthier et al. (131)
plot the hypercapnic and hyperoxic M values for the full range
of OEF. The intercept of these lines then defines the local OEF
of the subject under examination. It is interesting to note that
hypercapnia calibration only requires part A of Equation [21]
and, for plausible values of OEF, can be reduced to 1/f. In this
case, the methods of Gauthier et al. (131) and Bulte et al. (132)
are mathematically equivalent. However, the use of GCM enables
alternative calibration gases to be used, such as carbogen (5%
CO2, 95% O2) (131).

There is one caveat related to this novel application of
combined hypercapnia and hyperoxia calibrations that deserves
comment. In deriving the modelling equations, we followed the
historical development of the Davis model, which led to an
expression for M as the particular lumped set of parameters in
Equation [4]. However, we know that this form was derived by
considering only extravascular signal changes, and more recent
modelling indicates that intravascular signal changes and
volume exchange effects play a significant role. For this reason,
Equation [4] does not capture all of the effects that contribute
to M. Nevertheless, this is not a problem in applying the
Davis model for standard calibrated BOLD with hypercapnia
calibration, as long as these other effects basically track with
the extravascular effects, and more detailed modelling supports
this (23). Put another way, the exact form of M in terms of the
underlying physiological variables is never used in the hypercap-
nia-calibrated method; the scaling parameter M is simply
measured. However, the combined hyperoxia and hypercapnia
methods appear to require that Equation [4] is accurate, which
is problematic given current modelling studies. This is an issue
that requires further investigation.

SUMMARY AND FUTURE DIRECTIONS

The calibrated BOLD approach is beginning to mature as it has
been adopted by a growing number of investigators. The
technique has enormous potential to make fMRI quantitative,
and to significantly improve the study of disease populations
and the measurement of drug effects. In comparing responses
in these applications, BOLD fMRI alone cannot distinguish
between variations in the CBF response, CBF/CMRO2 coupling
(n) or the baseline state (M) (133). Calibrated BOLD offers the
promise to resolve these ambiguities and to provide quantitative
measurements of basic physiological variables. Nevertheless,
there are still questions that need to be resolved and which
deserve further investigation.

How large and how reproducible are the CMRO2 changes
with moderate hypercapnia?

The literature is variable on this question, and more experiments
are needed to quantify this effect, particularly with regard to
regional variation in the brain. If a given level of CMRO2

reduction can be assumed, the hypercapnia calibration can be
improved with an assumed value of r in Equation [7].

Is hyperoxia reliable for calibration?

The theoretical analysis suggests that the calibration is very
sensitive to the assumed value of OEF. Although OEF at rest is
relatively uniform in the healthy brain (134), this assumption
could be problematic in studies of disease or drug effects.

Can the R20 method yield robust measurements?

This depends in part on the technical issue of correcting for the
effects of large-scale field gradients on R20. In addition, R20 does
not capture all of the effects associated with the BOLD signal
change, as described above. For this reason, the derived
estimate of M needs to be scaled up. Theoretical calculations
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suggest that this scaling is relatively stable in the face of variable
physiology (40), but direct experimental comparisons between
the calibration methods are needed.

How much does CBVv change with activation?

This remains one of the most important confounding effects in
the calibrated BOLD method. An advantage of the hypercapnia
method is that it is less sensitive to the assumed change,
because it is involved in the calibration experiment as well
[although it is still important to consider whether the CBV change
is different for hypercapnia and neural activation (135)]. The other
two methods, however, do not involve CBV changes in the calibra-
tion, and it is thus critical to determine whether the assumed CBV
change during neural stimulation is accurate. Further experimen-
tal work to determine the CBVv change is needed.

Can we apply steady-state models to dynamic changes?

One of the most exciting possibilities of the calibrated BOLD
method is to provide a way to measure, for the first time, the
dynamics of CMRO2 (136). A central question for future investiga-
tions is how our models need to be modified to make them
accurate for dynamic changes.

Acknowledgements
NPB would like to thank Alex Gardener, Michael Kelly, Tom Okell
and Daniel Bulte for useful discussions during the preparation of
this manuscript.

REFERENCES
1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance

imaging with contrast dependent on blood oxygenation. Proc. Natl.
Acad. Sci. USA 1990; 87: 9868–9872.

2. Ogawa S, Tank DW, Menon RS, Ellermann JM, Kim SG, Merkle H,
Ugurbil K. Intrinsic signal changes accompanying sensory stimula-
tion: functional brain mapping with magnetic resonance imaging.
Proc. Natl. Acad. Sci. USA 1992; 89: 5951–5955.

3. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM,
Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R. Dynamic
magnetic resonance imaging of human brain activity during primary
sensory stimulation. Proc. Natl. Acad. Sci. USA 1992; 89: 5675–5679.

4. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course
EPI of human brain function during task activation. Magn. Reson.
Med. 1992; 25: 390–397.

5. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood
flow and oxidative metabolism during somatosensory stimulation in
human subjects. Proc. Natl. Acad. Sci. USA 1986; 83: 1140–1144.

6. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional
MRI: mapping the dynamics of oxidative metabolism. Proc. Natl.
Acad. Sci. USA 1998; 95: 1834–1839.

7. Pike GB. Quantitative functional MRI: concepts, issues and future
challenges. Neuroimage 2012; 62: 1234–1240.

8. Pauling L, Coryell CD. The magnetic properties and structure of the
hemochromogens and related substances. Proc. Natl. Acad. Sci. USA
1936; 22: 159–163.

9. Marchal G, Rioux P, Petit-Taboué MC, Sette G, Travère JM, Le Poec C,
Courtheoux P, Derlon JM, Baron JC. Regional cerebral oxygen
consumption, blood flow, and blood volume in healthy human
aging. Arch. Neurol. 1992; 49: 1013–1020.

10. Perlmutter JS, Powers WJ, Herscovitch P, Fox PT, Raichle ME.
Regional asymmetries of cerebral blood flow, blood volume, and
oxygen utilization and extraction in normal subjects. J. Cereb. Blood
Flow Metab. 1987; 7: 64–67.

11. Uludağ K, Müller-Bierl B, Uğurbil K. An integrative model for neuronal
activity-induced signal changes for gradient and spin echo functional
imaging. Neuroimage 2009; 48: 150–165.

12. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxy-
genation changes during brain activation: the balloon model.
Magn. Reson. Med. 1998; 39: 855–864.

13. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM,
Ugurbil K. Functional brain mapping by blood oxygenation level-
dependent contrastmagnetic resonance imaging. A comparisonof signal
characteristics with a biophysical model. Biophys. J. 1993; 64: 803–812.

14. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in
magnetically inhomogeneous tissues: the static dephasing regime.
Magn. Reson. Med. 1994; 32: 749–763.

15. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast
due to intravascular magnetic susceptibility perturbations. Magn.
Reson. Med. 1995; 34: 555–566.

16. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investiga-
tion of BOLD signal dependence on cerebral blood flow and oxy-
gen consumption: the deoxyhemoglobin dilution model. Magn.
Reson. Med. 1999; 42: 849–863.

17. Buxton RB. Interpreting oxygenation-based neuroimaging signals:
the importance and the challenge of understanding brain oxygen
metabolism. Front Neuroenerg. 2010; 2: article 8.

18. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of
changes in PaCO2 on cerebral blood volume, blood flow, and
vascular mean transit time. Stroke 1974; 5: 630–639.

19. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl
PCM. Comparison of the dependence of blood R2 and R2

* on oxygen
saturation at 1.5 and 4.7 Tesla. Magn. Reson. Med. 2002; 49: 47–60.

20. Zhao JM, Clingman CS, Närväinen MJ, Kauppinen RA, van Zijl PCM.
Oxygenation and hematocrit dependence of transverse relaxation
rates of blood at 3T. Magn. Reson. Med. 2007; 58: 592–597.

21. Blockley N, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA.
Field strength dependence of R1 and R2* relaxivities of human whole
blood to prohance, vasovist, and deoxyhemoglobin. Magn. Reson.
Med. 2008; 60: 1313–1320.

22. Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G,
Kim SG, Urbil KM, Hu X. Spin-echo fMRI in humans using high spatial
resolutions and high magnetic fields. Magn. Reson. Med. 2003; 49:
655–664.

23. Griffeth VEM, Buxton RB. A theoretical framework for estimating
cerebral oxygen metabolism changes using the calibrated-BOLD
method: modeling the effects of blood volume distribution, hemat-
ocrit, oxygen extraction fraction, and tissue signal properties on the
BOLD signal. Neuroimage 2011; 58: 198–212.

24. Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, Buxton RB.
Discrepancies between BOLD and flow dynamics in primary and
supplementary motor areas: application of the balloon model to
the interpretation of BOLD transients. Neuroimage 2004; 21: 144–153.

25. Lin AL, Fox PT, Yang Y, Lu H, Tan LH, Gao JH. Evaluation of MRI models
in the measurement of CMRO2 and its relationship with CBF. Magn.
Reson. Med. 2008; 60: 380–389.

26. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility-
related effects in a tissue matrix. Phantom study. Magn. Reson.
Med. 1998; 39: 417–428.

27. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cere-
bral deoxygenated blood volume and oxygen extraction fraction:
default state. Magn. Reson. Med. 2007; 57: 115–126.

28. Chen JJ, Pike GB. BOLD-specific cerebral blood volume and blood
flow changes during neuronal activation in humans. NMR Biomed.
2009; 22: 1054–1062.

29. Mark CI, Fisher JA, Pike GB. Improved fMRI calibration: precisely
controlledhyperoxicversushypercapnicstimuli.Neuroimage,2011;
54:1102–1111.

30. Bulte DP, Drescher K, Jezzard P. Comparison of hypercapnia-based
calibration techniques for measurement of cerebral oxygen metab-
olism with MRI. Magn. Reson. Med. 2009; 61: 391–398.

31. Siesjö BK. Brain energy metabolism. Wiley & Sons, Chichester, UK,
1978, format: xii, p. 607: ill.; 24 cm.

32. Kastrup A, Krüger G, Glover GH, Moseley ME. Assessment of cere-
bral oxidative metabolism with breath holding and fMRI. Magn.
Reson. Med. 1999; 42: 608–611.

33. Magon S, Basso G, Farace P, Ricciardi GK, Beltramello A, Sbarbati A.
Reproducibility of BOLD signal change induced by breath holding.
Neuroimage 2009; 45: 702–712.

34. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration
method for quantitative BOLD fMRI based on hyperoxia. Neuroimage,
2007; 37: 808–820.

N. P. BLOCKLEY ET AL.

wileyonlinelibrary.com/journal/nbm Copyright © 2012 John Wiley & Sons, Ltd. NMR Biomed. (2012)

14

 



  

 

137 

35. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia
on cerebral blood flow, blood oxygenation, and oxidative metabo-
lism. J. Cereb. Blood Flow Metab. 2012; doi: 10.1038/jcbfm.2012.93

36. Severinghaus JW. Simple, accurate equations for human blood O2
dissociation computations. J. Appl. Physiol. 1979; 46: 599–602.

37. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion
response to hyperoxia. J. Cereb. Blood Flow Metab. 2007; 27: 69–75.

38. Xu F, Liu P, Lu H. Effect of graded O2 challenge on vascular and
metabolic parameters. Proc. Int. Soc. Magn. Reson. Med. 2011; 19: 765.

39. Fujita N, Matsumoto K, Tanaka H, Watanabe Y, Murase K. Quantitative
study of changes in oxidative metabolism during visual stimulation
using absolute relaxation rates. NMR Biomed. 2006; 19: 60–68.

40. Blockley N, Griffeth VEM, Buxton RB. A general analysis of calibrated
BOLD methodology for measuring CMRO2 responses: comparison of a
new approach with existing methods. Neuroimage, 2011; 60: 279–289.

41. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR.
A general kinetic model for quantitative perfusion imaging with
arterial spin labeling. Magn. Reson. Med. 1998; 40: 383–396.

42. Posse S, Wiese S, Gembris D, Mathiak K, Kessler C, Grosse-Ruyken ML,
Elghahwagi B, Richards T, Dager SR, Kiselev VG. Enhancement of
BOLD-contrast sensitivity by single-shot multi-echo functional MR
imaging. Magn. Reson. Med. 1999; 42: 87–97.

43. Leontiev O, Dubowitz DJ, Buxton RB. CBF/CMRO2 coupling measured
with calibrated BOLD fMRI: sources of bias. Neuroimage, 2007; 36:
1110–1122.

44. Perthen JE, Lansing AE, Liau J, Liu TT, Buxton RB. Caffeine-induced
uncoupling of cerebral blood flow and oxygen metabolism: a
calibrated BOLD fMRI study. Neuroimage, 2008; 40: 237–247.

45. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity
and coupling between cerebral blood flow and oxygen metabo-
lism. Neuroimage, 2009; 44: 647–652.

46. Ances BM, Vaida F, Ellis R, Buxton RB. Test–retest stability of
calibrated BOLD-fMRI in HIV! and HIV + subjects. Neuroimage,
2011; 54: 2156–2162.

47. Mohtasib RS, Lumley G, Goodwin JA, Emsley HCA, Sluming V, Parkes LM.
Calibrated fMRI during a cognitive Stroop task reveals reduced meta-
bolic response with increasing age. Neuroimage 2012; 59: 1143–1151.

48. Wong EC, Buxton RB, Frank LR. Implementation of quantitative
perfusion imaging techniques for functional brain mapping using
pulsed arterial spin labeling. NMR Biomed. 1997; 10: 237–249.

49. Liu TT, Wong EC. A signal processing model for arterial spin labeling
functional MRI. Neuroimage 2005; 24: 207–215.

50. Lu H, Donahue MJ, van Zijl PCM. Detrimental effects of BOLD signal
in arterial spin labeling fMRI at high field strength. Magn. Reson.
Med. 2006; 56: 546–552.

51. Gauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD. Elimina-
tion of visually evoked BOLD responses during carbogen inhalation:
implications for calibrated MRI. Neuroimage 2011; 54: 1001–1011.

52. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging.
Magn. Reson. Med. 1992; 23: 37–45.

53. Kim SG. Quantification of relative cerebral blood flow change by
flow-sensitive alternating inversion recovery (FAIR) technique:
application to functional mapping. Magn. Reson. Med. 1995; 34:
293–301.

54. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven
inversion for arterial spin labeling using pulsed radio frequency
and gradient fields. Magn. Reson. Med. 2008; 60: 1488–1497.

55. Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, Lu H.
Estimation of labeling efficiency in pseudocontinuous arterial spin
labeling. Magn. Reson. Med. 2010; 63: 765–771.

56. Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of
oxygen inhalation on relaxation times in various tissues. J. Magn.
Reson. Imaging 1997; 7: 220–225.

57. Silvennoinen MJ, Kettunen MI, Kauppinen RA. Effects of hematocrit
and oxygen saturation level on blood spin–lattice relaxation. Magn.
Reson. Med. 2003; 49: 568–571.

58. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion
using a single subtraction (QUIPSS and QUIPSS II). Magn. Reson.
Med. 1998; 39: 702–708.

59. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice
TI1 periodic saturation: a method for improving accuracy of quanti-
tative perfusion imaging using pulsed arterial spin labeling. Magn.
Reson. Med. 1999; 41: 1246–1254.

60. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton
RB, Chao YS, Wedeen VJ, Brady TJ. Dynamic imaging with lanthanide

chelates in normal brain: contrast due to magnetic susceptibility
effects. Magn. Reson. Med. 1988; 6: 164–174.

61. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff
RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. Functional mapping
of the human visual cortex by magnetic resonance imaging.
Science, 1991; 254: 716–719.

62. Pears JA, Francis ST, Butterworth SE, Bowtell RW, Gowland PA. In-
vestigating the BOLD effect during infusion of Gd-DTPA using rapid
T2* mapping. Magn. Reson. Med. 2003; 49: 61–70.

63. Lu H, Golay X, Pekar JJ, van Zijl PCM. Functional magnetic reso-
nance imaging based on changes in vascular space occupancy.
Magn. Reson. Med. 2003; 50: 263–274.

64. Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG. Relative changes of
cerebral arterial and venous blood volumes during increased
cerebral blood flow: implications for BOLD fMRI. Magn. Reson.
Med. 2001; 45: 791–800.

65. Hillman EMC, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J,
Bacskai BJ, Dale AM, Boas DA. Depth-resolved optical imaging and
microscopy of vascular compartment dynamics during somatosen-
sory stimulation. Neuroimage, 2007; 35: 89–104.

66. Kim T, Hendrich KS, Masamoto K, Kim SG. Arterial versus total blood
volume changes during neural activity-induced cerebral blood flow
change: implication for BOLD fMRI. J. Cereb. Blood Flow Metab.
2007; 27: 1235–1247.

67. Mandeville JB, Marota JJ, Kosofsky BE, Keltner JR, Weissleder R,
Rosen BR, Weisskoff RM. Dynamic functional imaging of relative
cerebral blood volume during rat forepaw stimulation. Magn.
Reson. Med. 1998; 39: 615–624.

68. Donahue MJ, Blicher JU, !stergaard L, Feinberg DA, MacIntosh BJ,
Miller KL, Günther M, Jezzard P. Cerebral blood flow, blood volume,
and oxygen metabolism dynamics in human visual and motor
cortex as measured by whole-brain multi-modal magnetic reso-
nance imaging. J. Cereb. Blood Flow Metab. 2009; 29: 1856–1866.

69. Yang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood
volume, blood flow, and blood oxygenation information during
brain activation. Magn. Reson. Med. 2004; 52: 1407–1417.

70. Rostrup E, Knudsen GM, Law I, Holm S, Larsson HBW, Paulson OB.
The relationship between cerebral blood flow and volume in
humans. Neuroimage, 2005; 24: 1–11.

71. Chen JJ, Pike GB. MRI measurement of the BOLD-specific flow–
volume relationship during hypercapnia and hypocapnia in
humans. Neuroimage, 2010; 53: 383–391.

72. Bulte DP, Chiarelli PA, Wise R, Jezzard P. Measurement of cerebral
blood volume in humans using hyperoxic MRI contrast. J. Magn.
Reson. Imaging, 2007; 26: 894–899.

73. Blockley N, Driver ID, Fisher JA, Francis ST, Gowland PA. Measuring
venous blood volume changes during activation using hyperoxia.
Neuroimage, 2012; 59: 3266–3274.

74. Driver ID, Hall E, Pritchard S, Francis ST, Gowland PA. A new
approach for venous blood oxygenation and calibrated BOLD using
hyperoxia. Proc. Int. Soc. Magn. Reson. Med. 2011; 19: 3597.

75. Hua J, Qin Q, Donahue MJ, Zhou J, Pekar JJ, van Zijl PCM. Inflow-
based vascular-space-occupancy (iVASO) MRI. Magn. Reson. Med.
2011; 66: 40–56.

76. Lansing RW, Gracely RH, Banzett RB. The multiple dimensions of
dyspnea: review and hypotheses. Respir. Physiol. Neurobiol. 2009;
167: 53–60.

77. Robbins PA, Swanson GD, Howson MG. A prediction-correction
scheme for forcing alveolar gases along certain time courses. J.
Appl. Physiol. 1982; 52: 1353–1357.

78. Robbins PA, Swanson GD, Micco AJ, Schubert WP. A fast gas-mixing
system for breath-to-breath respiratory control studies. J. Appl.
Physiol. 1982; 52: 1358–1362.

79. Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G,
Ansel C, Duffin J, Fisher JA. Prospective targeting and control of end-
tidal CO2 and O2 concentrations. J. Physiol. 2007; 581: 1207–1219.

80. Wise RG, Pattinson KTS, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM,
O’Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P. Dynamic
forcing of end-tidal carbon dioxide and oxygen applied to functional
magnetic resonance imaging. J. Cereb. Blood Flow Metab. 2007; 27:
1521–1532.

81. Mark CI, Slessarev M, Ito S, Han J, Fisher JA, Pike GB. Precise control
of end-tidal carbon dioxide and oxygen improves BOLD and ASL
cerebrovascular reactivity measures. Magn. Reson. Med. 2010; 64:
749–756.

A REVIEW OF CALIBRATED BOLD METHODS

NMR Biomed. (2012) Copyright © 2012 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nbm

15

 



  

 

138 

82. An H, Lin W. Impact of intravascular signal on quantitative mea-
sures of cerebral oxygen extraction and blood volume under
normo- and hypercapnic conditions using an asymmetric spin echo
approach. Magn. Reson. Med. 2003; 50: 708–716.

83. Dickson JD, Ash TWJ, Williams GB, Harding SG, Carpenter TA,
Menon DK, Ansorge RE. Quantitative BOLD: the effect of diffusion.
J. Magn. Reson. Imaging, 2010; 32: 953–961.

84. Brewer KD, Rioux JA, D’Arcy RCN, Bowen CV, Beyea SD. Asymmetric
spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous
regions. NMR Biomed. 2009; 22: 654–662.

85. Edelstein WA, Hutchison JM, Johnson G, Redpath T. Spin warp NMR
imaging and applications to human whole-body imaging. Phys.
Med. Biol. 1980; 25: 751–756.

86. An H, Lin W. Quantitative measurements of cerebral blood oxygen
saturation using magnetic resonance imaging. J. Cereb. Blood Flow
Metab. 2000; 20: 1225–1236.

87. Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2*
relaxometry. Magn. Reson. Med. 2005; 53: 1202–1206.

88. Xu F, Uh J, Brier MR, Hart J, Yezhuvath US, Gu H, Yang Y, Lu H. The
influence of carbon dioxide on brain activity and metabolism in
conscious humans. J. Cereb. Blood Flow Metab. 2010; 31: 58–67.

89. Zappe AC, Uludag K, Oeltermann A, Ugurbil K, Logothetis NK. The
influence of moderate hypercapnia on neural activity in the anes-
thetized nonhuman primate. Cereb. Cortex, 2008; 18: 2666–2673.

90. Jain V, Langham MC, Floyd TF, Jain G, Magland JF, Wehrli FW. Rapid
magnetic resonance measurement of global cerebral metabolic
rate of oxygen consumption in humans during rest and hypercap-
nia. J. Cereb. Blood Flow Metab. 2011; 31: 1504–1512.

91. Thesen T, Leontiev O, Song T, Dehghani N, Hagler DJ, Huang M,
Buxton RB, Halgren E. Depression of cortical activity in humans by
mild hypercapnia. Hum. Brain Mapp. 2012; 33: 715–726.

92. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercap-
nia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in
spontaneously breathing animals. Neuroimage 2005; 25: 850–858.

93. Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of
hyperoxia on cerebral metabolic rate for oxygen measured using
positron emission tomography in patients with acute severe head
injury. J. Neurosurg. 2007; 106: 526–529.

94. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous ves-
sels using T2-relaxation-under-spin-tagging MRI. Magn. Reson.
Med. 2008; 60: 357–363.

95. Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R. Iron in
chronic brain disorders: imaging and neurotherapeutic implica-
tions. Neurotherapeutics, 2007; 4: 371–386.

96. Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by
Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000; 100: 111–
114.

97. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assess-
ment of relative brain iron concentrations using T2-weighted and
T2*-weighted MRI at 3 Tesla. Magn. Reson. Med. 1994; 32: 335–341.

98. Wismer GL, Buxton RB, Rosen BR, Fisel CR, Oot RF, Brady TJ, Davis
KR. Susceptibility induced MR line broadening: applications to brain
iron mapping. J. Comput. Assist. Tomogr. 1988; 12: 259–265.

99. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and
CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage
2007; 35: 175–184.

100. Chiarelli PA, Bulte DP, Piechnik S, Jezzard P. Sources of systematic
bias in hypercapnia-calibrated functional MRI estimation of oxygen
metabolism. Neuroimage 2007; 34: 35–43.

101. Kastrup A, Krüger G, Neumann-Haefelin T, Glover GH, Moseley ME.
Changes of cerebral blood flow, oxygenation, and oxidative metab-
olism during graded motor activation. Neuroimage 2002; 15: 74–82.

102. Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic
responses to neuronal inhibition. Neuroimage 2004; 22: 771–778.

103. Chiarelli PA, Bulte DP, Gallichan D, Piechnik SK, Wise R, Jezzard P.
Flow-metabolism coupling in human visual, motor, and supple-
mentary motor areas assessed by magnetic resonance imaging.
Magn. Reson. Med. 2007; 57: 538–547.

104. RestomK, Perthen JE, Liu TT. Calibrated fMRI in themedial temporal lobe
during a memory-encoding task. Neuroimage 2008; 40: 1495–1502.

105. Ances BM, Leontiev O, Perthen J, Liang C. Regional differences in
the coupling of cerebral blood flow and oxygen metabolism
changes in response to activation: implications for BOLD-fMRI.
Neuroimage 2008; 54: 2156–2162.

106. Uludağ K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB.
Coupling of cerebral blood flow and oxygen consumption during
physiological activation and deactivation measured with fMRI.
Neuroimage 2004; 23: 148–155.

107. Pasley BN, Inglis BA, Freeman RD. Analysis of oxygen metabolism
implies a neural origin for the negative BOLD response in human
visual cortex. Neuroimage 2007; 36: 269–276.

108. Liang C, Ances BM, Perthen J, Liau J, Buracas G, Hopkins S, Buxton RB.
The ratio of CBF to CMRO2 changewith brain activation increaseswith
increasing stimulus amplitude in human visual cortex. Proc. Int. Soc.
Magn. Reson. Med. 2009; 17: 1630.

109. Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A.
Frequency-dependent changes in cerebral metabolic rate of oxy-
gen during activation of human visual cortex. J. Cereb. Blood Flow
Metab. 1999; 19: 272–277.

110. Lin AL, Fox PT, Yang Y, Lu H, Tan LH, Gao JH. Time-dependent
correlation of cerebral blood flow with oxygen metabolism in
activated human visual cortex as measured by fMRI. Neuroimage
2009; 44: 16–22.

111. Moradi F, Bura!cas GT, Buxton RB. Attention strongly increases
oxygen metabolic response to stimulus in primary visual cortex.
Neuroimage 2012; 59: 601–607.

112. Fukunaga M, Horovitz SG, de Zwart JA, van Gelderen P, Balkin TJ,
Braun AR, Duyn JH. Metabolic origin of BOLD signal fluctuations
in the absence of stimuli. J. Cereb. Blood Flow Metab. 2008; 28:
1377–1387.

113. Wu CW, Gu H, Lu H, Stein EA, Chen JH, Yang Y. Mapping functional
connectivity based on synchronized CMRO2 fluctuations during the
resting state. Neuroimage 2009; 45: 694–701.

114. Attwell D, Iadecola C. The neural basis of functional brain imaging
signals. Trends Neurosci. 2002; 25: 621–625.

115. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvas-
culature. Nat. Neurosci. 2007; 10: 1369–1376.

116. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of
cerebral blood flow. Trends Neurosci. 2009; 32: 160–169.

117. Devor A, Sakadzic S, Saisan PA, Yaseen MA, Roussakis E, Srinivasan
VJ, Vinogradov SA, Rosen BR, Buxton RB, Dale AM, Boas DA.
“Overshoot” of O2 is required to maintain baseline tissue oxygena-
tion at locations distal to blood vessels. J. Neurosci. 2011; 31: 13
676–13 681.

118. Vafaee MS, Gjedde A. Model of blood–brain transfer of oxygen
explains nonlinear flow–metabolism coupling during stimulation
of visual cortex. J. Cereb. Blood Flow Metab. 2000; 20: 747–754.

119. Brown GG, Eyler Zorrilla LT, Georgy B, Kindermann SS, Wong EC,
Buxton RB. BOLD and perfusion response to finger–thumb apposi-
tion after acetazolamide administration: differential relationship to
global perfusion. J. Cereb. Blood Flow Metab. 2003; 23: 829–837.

120. Lawrence KS, Ye FQ, Lewis BK, Frank JA, McLaughlin AC. Measuring
the effects of indomethacin on changes in cerebral oxidative
metabolism and cerebral blood flow during sensorimotor activa-
tion. Magn. Reson. Med. 2003; 50: 99–106.

121. Uludağ K, Buxton RB. Measuring the effects of indomethacin on
changes in cerebral oxidative metabolism and cerebral blood
flow during sensorimotor activation. Magn. Reson. Med. 2004; 51:
1088–9; author reply 1090.

122. Griffeth VEM, Perthen JE, Buxton RB. Prospects for quantitative
fMRI: investigating the effects of caffeine on baseline oxygen me-
tabolism and the response to a visual stimulus in humans. Neuro-
image 2011; 57: 809–816.

123. Mulderink TA, Gitelman DR, Mesulam MM, Parrish TB. On the use of
caffeine as a contrast booster for BOLD fMRI studies. Neuroimage
2002; 15: 37–44.

124. Nehlig A, Daval JL, Debry G. Caffeine and the central nervous sys-
tem: mechanisms of action, biochemical, metabolic and psychosti-
mulant effects. Brain Res. Brain Res. Rev. 1992; 17: 139–170.

125. Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM.
Relationship between caffeine-induced changes in resting cerebral
perfusion and blood oxygenation level-dependent signal. Am. J.
Neuroradiol. 2003; 24: 1607–1611.

126. Liau J, Perthen JE, Liu TT. Caffeine reduces the activation extent and
contrast-to-noise ratio of the functional cerebral blood flow response
but not the BOLD response. Neuroimage 2008; 42: 296–305.

127. Mathew RJ, Wilson WH. Caffeine induced changes in cerebral
circulation. Stroke, 1985; 16: 814–817.

N. P. BLOCKLEY ET AL.

wileyonlinelibrary.com/journal/nbm Copyright © 2012 John Wiley & Sons, Ltd. NMR Biomed. (2012)

16

 



  

 

139 

128. Cameron OG, Modell JG, Hariharan M. Caffeine and human cerebral
blood flow: a positron emission tomography study. Life Sci. 1990;
47: 1141–1146.

129. Field AS, Laurienti PJ, Yen YF, Burdette JH, Moody DM. Dietary
caffeine consumption and withdrawal: confounding variables
in quantitative cerebral perfusion studies? Radiology 2003; 227:
129–135.

130. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS,
Lansing AE, Buxton RB. Effects of aging on cerebral blood
flow, oxygen metabolism, and blood oxygenation level depen-
dent responses to visual stimulation. Hum. Brain Mapp. 2009;
30: 1120–1132.

131. Gauthier CJ, Hoge RD. Magnetic resonance imaging of resting OEF
and CMRO2 using a generalized calibration model for hypercapnia
and hyperoxia. Neuroimage 2012; 60: 1212–1225.

132. Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW,
Bright MG, Jezzard P. Quantitative measurement of cerebral

physiology using respiratory-calibrated MRI. Neuroimage 2011;
60: 582–591.

133. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A
pathophysiological framework of hippocampal dysfunction in ageing
and disease. Nat. Rev. Neurosci. 2011; 12: 585–601.

134. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: func-
tional imaging and the resting human brain. Nat. Rev. Neurosci.
2001; 2: 685–694.

135. Hua J, Stevens RD, Huang AJ, Pekar JJ, van Zijl PCM. Physiological
origin for the BOLD poststimulus undershoot in human brain:
vascular compliance versus oxygen metabolism. J. Cereb. Blood
Flow Metab. 2011; 31: 1599–1611.

136. Hyder F, Sanganahalli BG, Herman P, ComanD,MaandagNJG, Behar KL,
Blumenfeld H, Rothman DL. Neurovascular and neurometabolic
couplings in dynamic calibrated fMRI: transient oxidative neuroener-
getics for block-design and event-related paradigms. Front Neuroenerg.
2010; 2: article 18.

A REVIEW OF CALIBRATED BOLD METHODS

NMR Biomed. (2012) Copyright © 2012 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nbm

17

 



  

 

140 

Section B: An analysis of calibrated BOLD 

A general analysis of calibrated BOLD methodology for measuring CMRO2 responses:
Comparison of a new approach with existing methods

Nicholas P. Blockley a,⁎, Valerie E.M. Griffeth b, Richard B. Buxton a,c

a Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, USA
b Department of Bioengineering and Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
c Kalvi Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 19 August 2011
Revised 21 October 2011
Accepted 25 November 2011
Available online 6 December 2011

Keywords:
Calibrated BOLD
Cerebral metabolic rate of oxygen
Functional MRI
Hypercapnia
Hyperoxia

The amplitude of the BOLD response to a stimulus is not only determined by changes in cerebral blood flow
(CBF) and oxygen metabolism (CMRO2), but also by baseline physiological parameters such as haematocrit,
oxygen extraction fraction (OEF) and blood volume. The calibrated BOLD approach aims to account for this
physiological variation by performing an additional calibration scan. This calibration typically consists of a
hypercapnia or hyperoxia respiratory challenge, although we propose that a measurement of the reversible
transverse relaxation rate, R2′, might also be used. A detailed model of the BOLD effect was used to simulate
each of the calibration experiments, as well as the activation experiment, whilst varying a number of physi-
ological parameters associated with the baseline state and response to activation. The effectiveness of the dif-
ferent calibration methods was considered by testing whether the BOLD response to activation scaled by the
calibration parameter combined with the measured CBF provides sufficient information to reliably distin-
guish different levels of CMRO2 response despite underlying physiological variability. In addition the effect
of inaccuracies in the underlying assumptions of each technique were tested, e.g. isometabolism during hy-
percapnia.
The three primary findings of the study were: 1) The new calibration method based on R2′worked reasonably
well, although not as well as the ideal hypercapnia method; 2) The hyperoxia calibration method was signif-
icantly worse because baseline haematocrit and OEF must be assumed, and these physiological parameters
have a significant effect on the measurements; and 3) the venous blood volume change with activation is
an important confounding variable for all of the methods, with the hypercapnia method being the most ro-
bust when this is uncertain.

© 2011 Elsevier Inc. All rights reserved.

Introduction

The BOLD signal is dependent on changes in cerebral blood flow
(CBF) and oxidative metabolism (CMRO2). However, changes in CBF
and CMRO2 alone do not determine the amplitude of the BOLD re-
sponse to neural activity. It is therefore possible to measure BOLD re-
sponses with different amplitudes that result from the same
underlying changes in CBF and CMRO2. The scale of the BOLD re-
sponse is determined by the baseline physiological state of the tissue
contained within the imaging voxel. This baseline is characterised by
the total amount of deoxyhaemoglobin present, which is dependent
on the haematocrit, baseline oxygen extraction fraction (OEF), and
baseline blood volume.

The calibrated BOLD approach (Davis et al., 1998) was proposed to
measure changes in CMRO2 using measurements of CBF and BOLD.
This is achieved by characterising differences in baseline physiology
using a calibration experiment. Traditionally this experiment consists
of simultaneous measurements of CBF and BOLD acquired during in-
terleaved periods of normocapnia and hypercapnia (Davis et al.,
1998; Hoge et al., 1999). Hypercapnia is induced by presenting the
participant with carbon dioxide rich gas mixture (typically 5% CO2,
21% O2, 74% N2) and results in an increase in CBF and the BOLD signal.
A model of the BOLD signal is then used to convert these changes into
a measure of the baseline physiological state (Davis et al., 1998),
under the assumption that baseline CMRO2 is not altered by hyper-
capnia (Jain et al., 2011; Sicard and Duong, 2005).

More recently an alternative respiratory challenge was presented
whereby hypercapnia was replaced with hyperoxia (Chiarelli et al.,
2007). Experiments have been performed with oxygen content rang-
ing from 25% (Mark et al., 2011) to 100% (Chiarelli et al., 2007;
Goodwin et al., 2009). Hyperoxia does not substantially increase arte-
rial blood oxygen saturation, but does increase the oxygen carried by
arterial blood through an increased plasma oxygen concentration.
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This results in an increase in venous blood oxygen saturation and
hence an increase in BOLD signal. A modification of the BOLD signal
model used for hypercapnia calibration can then be used to character-
ise the baseline state (Chiarelli et al., 2007).

However, respiratory challenges are time consuming to set up, un-
comfortable and may be contraindicated for some subjects, for exam-
ple in Chronic Obstructive Pulmonary Disease (COPD) (Moore et al.,
2009). Therefore, it would be useful to be able to calibrate without ad-
ministering gases. It has long been known that the reversible trans-
verse relaxation rate, R2′, is sensitive to venous cerebral blood
volume (CBVv) and the concentration of deoxyhaemoglobin ([dHb])
(Yablonskiy and Haacke, 1994). This sensitivity is exploited by the
qBOLD approach to make absolute measurements of resting CBVv
and OEF (He and Yablonskiy, 2006). However, this method has poor
temporal resolution and is not suitable for measuring CMRO2 changes
on short timescales. Nevertheless, R2′ is dependent on haematocrit,
OEF and blood volume and as such captures most of the characteris-
tics of the baseline physiological state that are important for deter-
mining the scaling of the BOLD response, particularly total
deoxyhaemoglobin content. Can we therefore use this information
to calibrate the BOLD response? In this study we investigate whether
R2′ can be used to calibrate the BOLD response through detailed sim-
ulation. In addition, we compare this new calibration method with
the existing respiratory challenge calibrations, hypercapnia and
hyperoxia. The simplifying assumptions of each of these methods
are investigated and the uncertainty they introduce into the calibra-
tion process assessed.

Theory

A general model for calibrated BOLD

The aim of calibrated BOLD is to take measurements of BOLD sig-
nal and CBF and combine them with information about the baseline
state to estimate CMRO2 changes. This baseline information is gath-
ered from a calibration experiment. In the classic approach intro-
duced by Davis and colleagues, the BOLD response is modeled as:

δs ¼ M 1−f α
r
f

! "β# $
ð1Þ

where δs is the percentage BOLD signal change, f is the CBF ratio and r
is the CMRO2 ratio (activation/baseline), and α and β are model pa-
rameters. The calibration parameter M that scales the BOLD signal is
calculated from the measured BOLD and CBF responses to hypercap-
nia, with the assumption of no change in CMRO2 (r=1). Physically,
the calibration parameter M depends on a number of physiological
variables that affect the local deoxyhaemoglobin concentration in
the baseline state, and so represents an important source of variation
across subjects and across brain regions. It also depends on image ac-
quisition parameters, so that M is not simply a property of the brain,
and comparing M values across different studies requires some care.

In the current study our goal is take a more general approach to
the process of calibration, as a way of accounting for variations in
the baseline state, without assuming the simple form of the Davis
model. More generally the calibrated BOLD experiment can be stated
in the following way,

δs ¼ B h f ; rð Þ ð2Þ

where B is the calibration parameter and h(f,r) is a function that de-
scribes the effect of normalised changes in CBF and CMRO2, on the
change in BOLD signal. To model hwe use a recently described detailed
model for the BOLD response that includes a number of physiological
variables that were not included in the original Davis model (Griffeth
and Buxton, 2011). The model includes three blood compartments

(arterial, capillary and venous) as well as the extravascular compart-
ment, and models BOLD signal contributions from all compartments
as well as effects of volume exchange as a blood compartment expands.
The model also allows the baseline blood volume fractions to be varied,
as well as the volume changes of these vascular compartments with ac-
tivation. Baseline oxygen extraction fraction and blood haematocrit also
can be varied. Although this model does not provide a simple closed
form for h(f,r) like Eq. (1), it provides a flexible way to simulate the
BOLD response for a wide range of physiological baseline states. The
model is described in more detail in Appendix A.

The detailed model allows us to test any proposed method for cali-
bration in the followingway. The calibration experiment itself is simulat-
edwith the detailed BOLDmodel for a given set of baseline physiological
parameters, and the value of B is calculated for the prescribed calibration
method from the simulated BOLD and CBF responses. The activation ex-
periment is then simulated for particular values of f and rwith the same
baseline physiological parameters, and the BOLD response normalized to
the calibration parameter (δs/B) is then plotted as a function of f. This plot
represents a simulation of the measured results of a calibrated BOLD
study. This procedure is then repeated for many variations of the base-
line physiological parameters and the CBF change f, but for the same
CMRO2 change r, with each simulation plotted as one point in the δs/B
vs. f plot. If the calibration is perfect, these points for a constant r should
fall on a single curve, andwhen the simulations are repeated for a differ-
ent value of r the points should fall on a distinctly different curve. In this
way the calibration completely captures the variability due to the base-
line state and the measurements of δs/B and f uniquely define r. Note
that the shape of the curve for a particular value of r, which effectively
is determined by h, is not what we are after here. Instead, the central
question is whether a calibration method produces a clean separation
of the points for different values of r.

As an initial demonstration of the importance of calibration, Fig. 1
omits calibration and plots δs versus f. Three different levels of CMRO2

change are displayed; 10%, 20% and 30% increases. When baseline
haematocrit, Hct, oxygen extraction fraction, E0, and blood volume,
V, are randomly varied across the physiological range, all three
CMRO2 levels overlap and cannot be clearly separated. A calibration
experiment is therefore required to determine B and to reduce the
uncertainty in r. This commonly takes the form of a hypercapnia or
hyperoxia respiratory challenge, although here we also consider an
alternative technique based on measurements of R2′.

Fig. 1. The effect of physiological variability in haematocrit, baseline oxygen extraction
fraction and baseline blood volume on the relationship between the BOLD response
(δs) and CBF (f). These simulations show that the effect of physiological variability on
δs does not allow 10% step changes in CMRO2 to be clearly separated, confirming that
this information is insufficient to accurately measure CMRO2.
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Hypercapnia calibration

Hypercapnia calibration is performed by presenting a hypercapnic
gas mixture to the participant whilst measurements of BOLD signal
and CBF are made (Davis et al., 1998). These measurements are com-
bined with the Davis model to estimate the calibration parameter B
with Eq. (3). Typically this is known as M, with subscript hc added
here to distinguish hypercapnia from hyperoxia.

B≡Mhc ¼
δs

1−f α−βrβ
ð3Þ

Here, the constants α and β represent flow-volume coupling
(Grubb et al., 1974) and the relationship between blood oxygenation
and the BOLD signal (Ogawa et al., 1993), respectively. Current prac-
tice sets the value of α as 0.2 based on measurements of CBVv, the
vascular compartment that underlies the BOLD response (Chen and
Pike, 2009). Similarly β is chosen to be 1.3 for experiments performed
at 3.0 T (Mark et al., 2011). In the ideal calibration experiment it is as-
sumed that CMRO2 is not altered by hypercapnia (r=1) and this was
initially assumed in these simulations.

Hyperoxia calibration

Hyperoxia calibration is performed in a similar manner to hyper-
capnia calibration, by presenting a hyperoxic gas mixture to the par-
ticipant whilst recording measurements of BOLD and CBF (Chiarelli et
al., 2007). The BOLD scaling parameter is termed Mho and is equiva-
lent to B in Eq. (2). In the ideal experiment it is assumed that CBF
does not change during hyperoxia, in which case measurements of
CBF are not necessary during calibration. Hence,

B≡Mho ¼
δs

1− dHb½ %
dHb½ %0

! "β ð4Þ

where β takes the same definition as for hypercapnia calibration and
[dHb]/[dHb]0 is the change in deoxyhaemoglobin concentration due
to breathing the hyperoxic gas mixture, relative to normoxia
(Chiarelli et al., 2007). To calculate Mho using Eq. (4) [dHb]/[dHb]0
must be estimated. This is achieved using a model of the oxygen car-
rying capacity of the blood that is a function of the arterial partial
pressure of oxygen (PaO2). In practice this is inferred from the end-
tidal pressure of oxygen (PETO2) expired by the participant, taking
into account alveolar–arterial oxygen gradient and assuming that
the arterial blood is well equilibrated with the gas in the alveoli.
This latter assumption relies upon healthy lung function for validity.
Oxygen is mostly carried bound to haemoglobin within the blood,
however a small amount is carried by the plasma. The PaO2 of the
blood determines how much is carried by both of these compart-
ments. The oxygen carried by the plasma is a linear function of PaO2

(ε PaO2) and for bound oxygen the haemoglobin saturation of arterial
blood (SaO2) can be calculated from an approximation for the oxygen
dissociation curve (Severinghaus, 1979):

SaO2 ¼ 1
23400

PaO2ð Þ3þ150PaO2

þ 1
ð5Þ

During hyperoxia the amount of oxygen carried bound to haemo-
globin in the arteries increases slightly, alongside a larger increase in
the amount carried as dissolved gas in plasma. Therefore, under
hyperoxia the amount of oxygen carried by plasma contributes to a
greater degree to the overall delivery of oxygen than during normoxia
due to the asymptotic nature of Eq. (5). During passage through the
capillary bed the extraction of the excess oxygen in plasma offsets
the extraction of oxygen bound to haemoglobin, so that venous

haemoglobin saturation increases. However, in the venous blood the
partial pressure of oxygen (PvO2) remains low and represents less
than 1% of total amount of oxygen carried by venous blood. Therefore,
assuming that PvO2 is negligible should not result in a large error and
allows [dHb]/[dHb]0 to be estimated as:

dHb½ %
dHb½ %0

¼ 1þ Δ dHb½ %
dHb½ %0

¼ 1− ϕ Hb½ %ΔSaO2 þ εΔPaO2
ϕ Hb½ % 1−SaO2 1−E0ð Þð Þ þ εPaO2 1−E0ð Þ

ð6Þ

where ϕ is the oxygen carrying capacity of haemoglobin
(1.34 mlO2gHb

−1), ε is the solubility coefficient of oxygen in blood
(0.0031 mlO2dl−1 mmHg−1), and ΔSaO2 and ΔPaO2 are the change
in these parameters due to hyperoxia relative to the normoxic
state. Haemoglobin concentration, [Hb], is assumed to be
15 gHbdl−1 (Chiarelli et al., 2007; Mark et al., 2011) and the oxygen
extraction fraction, E0, is assumed to be 0.3 (Mark et al., 2011). This
value of E0 is lower than the generally reported values of approxi-
mately 0.4 (Perlmutter et al., 1987), however we retain this value
to reflect current practice in the papers describing the hyperoxia cal-
ibration method. Haemoglobin concentration can be converted to
haematocrit using a simple approximation,Hct≈0.03× [Hb]. In sum-
mary, the hyperoxia calibration method requires assumed values for
several variables. Oxygen carrying capacity and solubility are stan-
dard physical parameters that should not vary across subjects. How-
ever, haematocrit may well vary across subjects, and baseline O2

extraction fraction could also vary across brain regions within the
same subject.

R2′ calibration

Analytical results (Yablonskiy and Haacke, 1994) and Monte Carlo
(Ogawa et al., 1993) simulations have shown that R2′ is a function of
blood volume, haematocrit and OEF.

R′
2 ¼ κ V Hct E0ð Þβ ð7Þ

The constant κ subsumes various properties of brain tissue includ-
ing vessel geometry, magnetic field strength and the susceptibility
difference between blood and tissue, and β follows the same defini-
tion as in hypercapnia and hyperoxia calibration. If we consider the
BOLD signal to be a largely extravascular effect then changes in R2′
determine changes in the BOLD signal. Hence the maximum BOLD
signal change during activation is determined by R2′ in the baseline
state. Assuming monoexponential decay, the gradient echo (GE) and
spin echo (SE) signal at the BOLD echo time, TE, can be described by
the following equations, where R2⁎=R2+R2′.

SGE TEð Þ ¼ S 0ð Þe−TEðR2þR′
2Þ ð8aÞ

SSE TEð Þ ¼ S 0ð Þe−TE R2 ð8bÞ

We propose to use the ratio of these signals to define the calibra-
tion parameter B.

B≡ ln
SSE TEð Þ
SGE TEð Þ ¼ T E R′

2 ð9Þ

The echo time, TE, is included to account for the echo time depen-
dence of the magnitude of the BOLD response. This approach assumes
that intravascular signal contributions are negligible and that diffu-
sional narrowing does not dominate. These assumptions were tested
using an extension of the detailed BOLD signal model (Griffeth and
Buxton, 2011). This was achieved by considering the signal contribu-
tions from each of the compartments of the detailed signal model
under GE and SE pulse sequences during a resting baseline and is de-
scribed in detail in Appendix A. It must be noted that the measured
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value of R2′ is dependent on the way in which it is measured. It is gen-
erally assumed that the transverse signal decay of a homogenous
voxel is monoexponential. However, for time points close to the exci-
tation pulse in a GE sequence, and close to the refocusing pulse for a
SE sequence, this decay has been shown to be quadratically exponen-
tial in nature (Yablonskiy and Haacke, 1994). In the case of Eq. (9) the
SE signal will be acquired in this short echo time regime whilst the GE
signal will be acquired in the long echo time regime. Models for the
SE signal compartments were chosen to be consistent with the
short echo time regime (Uludağ et al., 2009; Zhao et al., 2007).

Methods

Simulations

The detailed signal model was used to simulate calibration using
hypercapnia, hyperoxia and R2′ using Eqs. (3), (4) and (9), respec-
tively, as prescriptions for taking specific measured signals and calcu-
lating B. Note that the first two methods explicitly depend on the
parameter β, which functions as a way to approximate multiple fac-
tors affecting the BOLD response. This parameter does not appear in
the detailed BOLD model because these different mechanisms are in-
dividually modeled. Similarly, the parameter α is related to CBVv
change, and in the detailed model the changes in different vascular
compartments are simulated.

All simulations were performed in MATLAB (Mathworks, Natick,
MA). The main aim of these simulations was to determine how vari-
ability in physiology affects the uncertainty in a measurement of
CMRO2. For variations in a single parameter simulations are per-
formed by propagating linearly spaced values of this parameter
through the detailed signal model. However, for variations in baseline
physiology we expect multiple parameters to vary simultaneously
and the compound effect of these variations isn't clear. Simple linear
ranges for multiple parameters would be slow and produce multidi-
mensional data that is difficult to visualise. Here we take an alterna-
tive approach by drawing random combinations of these
parameters from predefined ranges. Multiple repeats of this process
enable a ‘cloud’ of data to be generated that can be visualised in two
dimensions, as shown in Fig. 1.

In order to investigate the sensitivity of each of the calibration
methods to baseline physiological variability and the assumptions of
each method, the change in BOLD signal was divided by the calibra-
tion scaling factor. In the following figures this quantity, δs/B, is plot-
ted against f. These simulations are performed for two different
scenarios; fixed CMRO2 level or fixed CBF-CMRO2 coupling value, n,
defined as,

n ¼ f−1
r−1:

ð10Þ

Fixed CMRO2 changes enables us to visualise how well different
CMRO2 levels can be separated, whilst fixed CBF-CMRO2 coupling
shows the uncertainty in these measurements for more physiologi-
cally plausible combinations of CBF and CMRO2. Fixed CMRO2 levels
of 10%, 20% and 30% increases and CBF-CMRO2 coupling values of
n=1.3, 2 and 3 were simulated. An n value of 1.3 represents a special
case where the increase in blood oxygenation due to increased CBF is
approximately balanced by increased oxygen extraction due to me-
tabolism, resulting in a net zero BOLD signal change. The exact
value of n required to achieve this condition is CBF dependent and
can be estimated from the Davis model (Eq. (1)) for specific values
of α and β. Therefore, n=1.3 is an approximate BOLD-nulling value
for the CBF values simulated.

Each of the calibration parameter values was calculated as de-
scribed in the Theory section. In summary, the hypercapnia calibra-
tion scaling factor, Mhc, is calculated using Eq. (3) under the

assumption that CMRO2 does not change (r=1) and a 47% increase
in CBF due to hypercapnia (f=1.47). In all simulations α in Eq. (3)
was chosen to be 0.2. The hyperoxia calibration, Mho, is calculated
using Eq. (4), relying on Eq. (6) to determine [dHb]/[dHb]0, following
the method of Mark et al., and [Hb] and E0 in this equation have fixed
values of 15 gHbdl−1 and 0.3, respectively (Mark et al., 2011). Hyper-
oxia calibration was simulated as an ideal experiment where CBF is
not altered by hyperoxia. In both traditional methods β was chosen
to be 1.3. In R2′ calibration the scaling factor is the product of TE
and R2′, and is calculated using Eq. (9). No assumptions about isome-
tabolism or the value of α and β are required.

Baseline physiological variation

The parameters that determine the baseline state are haemato-
crit, baseline OEF and baseline blood volume. Haematocrit is
known to vary between males and females with typical ranges of
0.42–0.50 and 0.37–0.47, respectively (McPhee and Hammer,
2009). However, there is a great deal of overlap and typically calibra-
tion methods do not take account of sex during data processing,
therefore a range of 0.37–0.50 was tested. Ranges for baseline OEF
are similarly wide at 0.35–0.55 (Marchal et al., 1992). This range
was extended at the low end to encompass the assumed OEF value
of 0.3 used in the hyperoxia calibration method. The baseline total
blood volume fraction is typically measured to be 0.05 in grey matter
(Roland et al., 1987). However, to account for the partial volume ef-
fect at the low end of the range and for incorporation of large vessels
at the high end of the range a total blood volume fraction between
0.01 and 0.1 was tested. Relative volume fractions for arteries, capil-
laries and veins were fixed at 0.2, 0.4 and 0.4, respectively. This
resulted in simulated venous volume fractions in the range 0.004 to
0.04. Finally, the activation induced change in CBF was simulated
across a large range (0.8 to 1.8) to encompass all physiologically
plausible eventualities. Values for the remaining model parameters
are listed in Table 1.

Randomly generated combinations of these parameters were se-
lected from their respective ranges, including activation induced
CBF change, using a uniform random number generator. A uniform
random distribution was chosen as the mean and standard deviation
of each of the physiological parameters is not generally known. For
each simulation 1,000 repeats of the random parameter generation
process were completed. These values were propagated through the
detailed signal model to generate a stimulus induced BOLD signal
change, δs, and a calibration parameter, B, for each calibration meth-
od. To simplify the simulation process CBF was included as an addi-
tional randomly generated value providing the third experimental
variable of the calibrated BOLD approach.

Flow-volume coupling assumption

A general assumption of all calibrated BOLD methods is that
changes in CBVv can be inferred from measurements of CBF through
a power law relationship defined by α. An inaccurate value of α
would be a source of systematic error. Here we aim to determine
the sensitivity of each of the calibration methods to the value of α.
Traditionally α was defined as 0.4 based on measurements of total
CBV (Grubb et al., 1974), but has more recently been superseded by
a value of 0.2 using measurements of venous CBV change (Chen and
Pike, 2009). These values were used to test the extremes of the
range for flow-volume coupling given our current knowledge. When
calculating Mhc, α in Eq. (3) was fixed at 0.2 regardless of the value
of the underlying flow-volume coupling. This reflects the way that
hypercapnia calibration is performed, whereby a value of α must be
assumed that may not reflect the true underlying changes in volume.
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Effect of errors in assumptions

Assumptions that would lead to the largest sources of error in each
method were identified and the effect of systematic error in these

assumptions was tested. Baseline physiological variability was not in-
cluded in these simulations, unless otherwise stated, and standard
values for these parameters were assumed (Hct=0.45, E0=0.4,
VI,0=0.05).

(a) (b) (c)

(d) (e) (f)

Fig. 2. Three different calibration techniques were investigated to account for physiological variability; hypercapnia, hyperoxia, and R2′ calibration (columns left-right). By simul-
taneously varying haematocrit (0.37–0.50), oxygen extraction fraction (0.30–0.55) and blood volume (0.01–0.10) we are able to assess howwell each method copes with this phys-
iological variability. Simulations were performed for both fixed increases in CMRO2 (top row) and for fixed coupling of CBF and CMRO2 (Eq. (10)) (bottom row). For a perfect
calibration each of the simulated points should fall on a single curve, which should be distinctly different for each CMRO2 level or CBF-CMRO2 coupling value.

Table 1
Constants required for the detailed signal model (Griffeth and Buxton, 2011) and extension to simulate R2′.

Constant Value Description

TE 32 ms Imaging echo time.
εA 1.30 Ratio of baseline intravascular arterial to extravascular signal (Griffeth and Buxton, 2011).
εC 1.02 Ratio of baseline intravascular capillary to extravascular signal (Griffeth and Buxton, 2011).
εV 0.50 Ratio of baseline intravascular venous to extravascular signal (Griffeth and Buxton, 2011).
a*L 4.3 Coefficient describing extravascular signal resulting from vessels in the range 16–200 μm diameter under a gradient echo

(Ogawa et al., 1993).
a*S 0.04 s Coefficient describing extravascular signal resulting from 5 μm diameter vessels under a gradient echo (Ogawa et al., 1993).
aL, 5 −1.92×10−11 s4 Coefficients describing extravascular signal resulting from 16 μm diameter vessels under a spin echo (Uludağ et al., 2009).
aL, 4 −1.26×10−8 s3

aL, 3 −2.89×10−6 s2

aL, 2 2.51×10−4 s
aL, 1 0.0067
aL, 0 −0.0382 s−1

aS, 5 −1.13×10−11 s4 Coefficients describing extravascular signal resulting from 5 μm diameter vessels under a spin echo (Uludağ et al., 2009).
aS, 4 0.96×10−8 s3

aS, 3 −3.22×10−6 s2

aS, 2 4.90×10−4 s
aS, 1 −3.58×10−6

aS, 0 0.0175 s−1

Δχ 2.64×10−7 Susceptibility of fully deoxygenated blood (Spees et al., 2001).
Yoff 0.95 Blood saturation for equal tissue–blood susceptibility (Spees et al., 2001).
R2,0 25.1 s−1 Intrinsic transverse relaxation rate for extravascular tissue (Perthen et al., 2008).
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Table 5.1. Constants required for the detailed signal model and extension to simulate R2'. 

Figure 5.8. Three different calibration techniques were investigated to account for physiological variability: hypercapnia, hyperoxia and R2' calibration.
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It has been shown by a number of experiments that hypercapnia
may cause a reduction in baseline CMRO2 (Xu et al., 2010). It is nor-
mally assumed that there is no change in CMRO2 due to hypercapnia,
(r=1). In order to consider the effect of reduced CMRO2 the value of
r=0.85 was also simulated to reflect a 15% reduction in CMRO2 dur-
ing the hypercapnia challenge.

For hyperoxia the estimation ofMho is dependent on the calculation
of [dHb]/[dHb]0 from the change in PETO2 measured during hyperoxia.
To simplify this calculation values for [Hb] and E0 are assumed (Mark
et al., 2011). Simulations were performed to determine whether more
accurate values of one or both parameters would enable variations in
baseline physiology to be better accounted for. Since the accuracy of
these assumptions is dependent on physiological variability, the same
approach of generating random combinations of baseline parameters
as used for baseline physiological variation alone was used.

Measurements of R2′ are not only sensitive to mesoscopic sources
of magnetic field inhomogeneity around blood vessels but also to
large scale magnetic field inhomogeneity that are not removed during
shimming. The sensitivity of R2′ calibration to large scale magnetic
field inhomogeneity was tested by simulating (Eq. (A8)) a frequency
difference across the voxel, Δω, of 20 Hz (An and Lin, 2003).

Results

Baseline physiological variability

Fig. 2 displays the effect of normalising the BOLD signal change
using a calibration measurement. All three calibration methods

drastically reduce the variability in the relationship between BOLD
and CBF (cf. Fig. 1). The width of the lines for each CMRO2 level
(Figs. 2a–c), or CBF-CMRO2 coupling value (Figs. 2d–e), are propor-
tional to the error in the final measurement of CMRO2. In an ideal cal-
ibration experiment there would be no deviation from the mean and
the width of the line would be zero.

For hypercapnia calibration the line width appears to be constant
with increasing CBF and independent of the CMRO2 level (Fig. 2a) or
CBF-CMRO2 coupling value (Fig. 2d). Hyperoxia calibration shows an
increase in the line width with increasing CBF (Figs. 2b,e). The line
width is minimised when CBF and CMRO2 balance to give a zero
BOLD signal change equivalent to n=1.3 in the plot of CBF-CMRO2

coupling (Fig. 2e). R2′ calibration shows a similar trend to hyperoxia
calibration, but with a reduced line width (Figs. 2c,f).

Flow-volume coupling assumption

The effect of assuming that the coupling between CBF and CBVv is
accurately known is displayed in Fig. 3. Solid lines are used to repre-
sent the case where α=0.2 and dashed lines for when α=0.4. Here
we are examining the effect of assuming an incorrect value for α.
Therefore, a calibration method with low sensitivity to this parameter
should show only a minor shift between these lines, ultimately mini-
mising the error in the measurement of CMRO2.

Hypercapnia shows the smallest shift, representing the lowest
sensitivity to an inaccurately assumed value of α (Figs. 3a,d). The
magnitude of this shift appears to increase with increasing change
in the CMRO2 level (Fig. 3a). Hyperoxia and R2′ calibration both

(a) (b) (c)

(d) (e) (f)

Fig. 3. An inaccurate assumption of the flow-volume coupling constant α would result in a systematic error. Here the effect of different underlying physiological values of this cou-
pling were investigated where a solid line represents α=0.2 and the dashed line α=0.4. A minimal shift in the dashed line with respect to the solid line would reflect lower sen-
sitivity to the assumed value of α. Physiological variability is not included in these simulations and haematocrit, oxygen extraction fraction and blood volume were assumed to be
0.45, 0.4, 0.05, respectively.
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show a larger shift than hypercapnia calibration (Figs. 3b,e; Figs. 3c,f).
In all cases the effect of assuming an inaccurate value of α causes the
greatest effect for n=1.3 in plots of CBF-CMRO2 coupling.

Hypercapnia calibration assumption

Fig. 4 considers the effect of a change in baseline CMRO2 during
hypercapnia. Solid lines represent r=1 during hypercapnia and
dashed lines r=0.85. The shift between these lines appears to in-
crease with CMRO2 level (Fig. 4a) and CBF-CMRO2 coupling
(Fig. 4b). Unlike flow-volume coupling, changes in CMRO2 during hy-
percapnia have little to no effect when n=1.3.

Hyperoxia calibration assumptions

Investigation of the origin of the increased variability in hyperoxia
calibration is displayed in Fig. 5. Including more accurate information
about either haematocrit (Figs. 5a,d) or baseline oxygenation (Figs. 5b,
e) reduces this variability. Information about both of these parameters
(Figs. 5c,f) reduces variability to similar levels as hypercapnia calibration
(Figs. 2a,d).

R2′ calibration assumption

Fig. 6 considers the effect of large scale magnetic field inhomoge-
neity on R2′ calibration. Solid lines represent a perfectly homogenous
field (Δω=0) and dashed lines represent Δω=20 Hz. The shift

between these lines is of a similar order to that seen for CMRO2

change during hypercapnia (Fig. 4).

Discussion

Use of the calibrated BOLD approach has improved the interpreta-
tion of fMRI by accounting for physiological variability. Without this
calibration procedure measurements of BOLD signal and CBF cannot
be used to determine the change in CMRO2 (Fig. 1). However, the ex-
tent to which this physiological variability can be characterised by
existing methods is not easily accessible in an experimental setting.
The simulations performed in this study enable us to investigate
these methods and the assumptions that underpin them. Key to this
approach was the use of a detailed model of the BOLD effect that
allowed us to vary a number of physiological parameters associated
with the baseline state and the response to activation. This allowed
us to model effects that were not included in the simpler Davis
model standardly used for calibrated BOLD experiments. The effec-
tiveness of the different calibration methods was tested by simulating
the calibration experiment as well as the activation experiment, and
testing whether the measured BOLD response to activation scaled
by the calibration parameter combined with the measured CBF re-
sponse provides sufficient information to reliably distinguish differ-
ent levels of CMRO2 response despite underlying physiological
variability. We evaluated the original hypercapnia method (Davis
et al., 1998), the more recently proposed hyperoxia method
(Chiarelli et al., 2007) and a novel method based on R2′. The simula-
tion methodology used here has previously been used to optimise hy-
percapnia calibrated BOLD (Griffeth and Buxton, 2011), the results of
which have been applied experimentally (Griffeth et al., 2011). Ex-
tensions to the detailed signal model allowed us to simulate R2′ in
the baseline state, in order to assess its use as an alternative calibra-
tion method.

There were three primary findings of this study: 1) The new cali-
bration method based on R2′ worked reasonably well, although not
as well as the ideal hypercapnia method; 2) The hyperoxia calibration
method was significantly worse because baseline haematocrit and
OEF must be assumed, and variability of these physiological parame-
ters has a significant effect on the measurements; and 3) the venous
blood volume change with activation is an important confounding
variable for all of the methods, with the hypercapnia method being
the most robust when this is uncertain. The results for each of the cal-
ibration methods tested are discussed in more detail below.

Hypercapnia calibration

Simulation of hypercapnia calibration revealed that this method
provides an accurate calibration for baseline physiological variability
(Figs. 2a,d). The broadening of the line due to physiological variability
shows only very weak dependence on the change in CBF. Uncertainty
in the value of α causes additional deviation of the lines of CMRO2

that appears to increase with increasing CMRO2 change (Figs. 3a,d).
We also tested the resulting errors if the assumption of no CMRO2

change with hypercapnia is wrong. When a reduction in CMRO2 dur-
ing hypercapnia was simulated a shift in the lines of CMRO2 was ob-
served (Fig. 4). This could result in an inaccurate measurement of
CMRO2, for example when f=1.6 a 10% CMRO2 change when
r=0.85 would appear similar to a 20% change when r=1.

Hyperoxia calibration

Simulations of hyperoxia calibration, when values for baseline
[Hb] and E0 are assumed, predict poor performance of this method
for normalising the BOLD signal change (Figs. 2b,e). Further investiga-
tion revealed that when more information is known, such as [Hb]
(Figs. 5a,d) or E0 (Figs. 5b,e), then uncertainty is reduced. When

(a)

(b)

Fig. 4. It has been observed that hypercapnia may cause a reduction in baseline CMRO2.
Here we consider what effect this would have on hypercapnia calibration when CMRO2

is reduced by 15% (r=0.85 in Eq. (3)). Physiological variability was not included for clar-
ity. Isometabolism (r=1) is plotted as a solid line whilst reduced CMRO2 is plotted as a
dashed line. Shifting of the dashed linewith respect to the solid line suggests that reduced
baseline CMRO2 would have a marked effect on the accuracy of hypercapnia calibration.
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both variables are known then uncertainty is reduced to the same
level as hypercapnia calibration (Figs. 5c,f). This uncertainty is mini-
mised when the combination of CBF and CMRO2 changes result in a
net zero BOLD signal (as is also the case for R2′ calibration). This effec-
tively means that the venous oxygen saturation is unchanged be-
tween the rest and activated states and hence the physiological
variability does not have any effect.

The origin of the observed poor performance of hyperoxia cali-
brated BOLD can be determined by considering Eq. (6). The change
in deoxyhaemoglobin concentration due to hyperoxia ([dHb]/
[dHb]0) is determined by the decrease in concentration Δ[dHb] and
the baseline concentration [dHb]0. The former is determined by
[Hb], as this adjusts the balance of oxygen carried by haemoglobin
and plasma, and is independent of E0, whereas the latter is a function
of E0 at normoxia and [Hb]. Accurate values of [Hb] and E0 are there-
fore required as [dHb]/[dHb]0 is used to convert measurements of the
BOLD signal change during hyperoxia to Mho (Eq. (4)). This conver-
sion is provided by the denominator of Eq. (4) producing a scaling
of the BOLD signal change equivalent to one over the denominator.
For the extremes of the [Hb] and E0 ranges tested here, and a fixed
ΔPaO2 of 310 mm Hg, this scaling value is in the range 5.9 to 15.6 (as-
suming β=1.3). In contrast, the approach taken by Mark et al. (2011)
will always scale the hyperoxic BOLD signal change by 7.9 for the
same fixed ΔPaO2. Whilst the extremes of the [Hb] and E0 ranges
are unlikely to simultaneously exist this analysis illustrates the sensi-
tivity of hyperoxia calibration to assumed values for these parame-
ters, and explains the reduced variability encountered when both
are known (Figs. 5c,f). Therefore, hyperoxia calibration may be im-
proved by acquiring more accurate information about baseline

physiology. This could be achieved by making direct MR measure-
ments of deoxyhaemoglobin concentration in the sagittal sinus as
an approximation for E0 (Jain et al., 2011; Lu et al., 2012) or by mea-
suring the haematocrit from a venous blood sample.

It is unclear whether this expected variability has been observed
in the literature, largely due to the limited number of studies having
undertaken this calibration. A large spread in the calibration parame-
terMho has been observed (Goodwin et al., 2009), which would result
from the variability we see, but it is unclear whether the uncontrolled
manual hyperoxia challenge employed in this study may have con-
tributed to this effect. Studies using controlled hyperoxic challenges
have suggested that the variability in measurements of CMRO2 is
lower for hyperoxia calibration when compared with hypercapnia
calibration (Mark et al., 2011). The results of our simulations conflict
with this observation.

Hyperoxia calibration also shows greater sensitivity to flow-
volume coupling than hypercapnia calibration (Figs. 3b,e). The result-
ing shift in the lines of CMRO2 could result in a large error in the mag-
nitude of the CMRO2 change if the assumed flow-volume coupling
does not match the physiological relationship.

R2′ calibration

The concept of using R2′ to calibrate the BOLD response is based on
this parameter's well known dependence on haematocrit, OEF and
blood volume (Yablonskiy and Haacke, 1994). Currently this effect
is exploited by the qBOLD method to measure baseline blood oxygen-
ation and volume (He and Yablonskiy, 2006). However, to date it has
not been used within a calibrated BOLD framework to measure

(a) (b) (c)

(d) (e) (f)

Fig. 5. Further investigation of hyperoxia calibration was undertaken to better understand the large observed variability. This was achieved by increasing the amount of information
used to estimate the calibration scaling factorMho; haematocrit known, oxygen extraction fraction known and both known (columns left-right). Physiological variability was includ-
ed as it is the origin of the observed variability in Figs. 2b,e. More information about the baseline physiology reduces the variability in hyperoxia calibration.
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changes in CMRO2 during activation. At first glance it appears that R2′
would be a poor choice for calibration because the BOLD response de-
pends in part on signal changes that would not be captured by R2′. In a
gradient echo-based BOLD experiment the signal change is due largely
to changes in the transverse relaxation rate R2⁎, which is taken to be a
sum of processes that cannot be reversed by a spin echo (R2) and pro-
cesses that can be reversed (R2′). Motional narrowing due to diffusion
of spins around sources of magnetic field heterogeneity means that a
good part of the intravascular signal changes and part of the extravas-
cular signal change around the smallest vessels cannot be fully refo-
cused by a spin echo, and so should not contribute to R2′. In
addition, volume exchange effects as blood vessels expand also con-
tribute to the BOLD effect, but are not directly related to R2′. Neverthe-
less, our simulations indicate that R2′ in the baseline state captures
much of the physiological variability of the baseline state that does af-
fect the BOLD response. The reason it works as well as it does is prob-
ably that R2′ essentially reflects the amount of deoxyhaemoglobin in
the baseline state, and the other factors affecting the BOLD response
for the most part tend to scale with total deoxyhaemoglobin.

The main weakness of this calibration method is its sensitivity to
magnetic field inhomogeneity. Investigation of a 20 Hz frequency dif-
ference across a voxel in one dimension showed that this causes a
shift in the lines of CMRO2 that increases with changes in CBF
(Fig. 6). The magnitude of this shift is very similar to that caused by
CMRO2 changes during hypercapnia calibration. For example, a 10%
CMRO2 change when Δω=20 Hz leads to the same R2′ as a 20%
change when Δω=0 (f=1.6).

This magnitude of magnetic field inhomogeneity is likely for re-
gions of the brain that are not close to air-tissue interfaces. For re-
gions of the brain closer to the surface, where Δω is larger,
measurements of R2′will need to be corrected for residual field gradi-
ents (Yablonskiy, 1998) or their effect minimised by the acquisition
technique (Christen et al., 2010). Experiments using the qBOLD tech-
nique have shown that this effect can be corrected enabling R2′ cali-
brated BOLD to become a practical alternative to hypercapnia or
hyperoxia (He and Yablonskiy, 2006). The major benefit of this alter-
native method is a reduction in the complexity of the experimental
protocol. Equipment to perform a respiratory challenge is not re-
quired, saving time and permitting the calibration scan to be based
purely on endogenous contrast.

For this approach to yield an accurate calibration factor it is as-
sumed that deoxyhaemoglobin is the dominant source of paramagne-
tism in the brain. Other possible sources of iron in the brain include
ferritin, transferrin, neuromelanin and haemosiderin (Stankiewicz
et al., 2007). However, the sensitivity of R2′ to these sources is also
dependent on the geometry of the iron deposition. This effect is max-
imised in the static dephasing regime where the diffusion length of
protons around the susceptibility inclusion is much shorter than the
dimension of the inclusion itself. This dimension is approximately
equivalent to a cylinder with a radius of 7 μm, but this R2′ contrast
falls away rapidly with radius. (Boxerman et al., 1995). Very small
scale inclusions, such as ferritin and transferrin, do not produce R2′
contrast and appear as a pure R2 effect. There are twomain conditions
in which elevated values of R2′ are measured in the brain; Parkinson's
disease and brain haemorrhage. In Parkinson's disease deposits of
iron in the substantia nigra, consisting of neuromelanin granules
and iron filled Lewy bodies (Castellani et al., 2000), have been
shown to result in elevated R2′ measurements (Ordidge et al.,
1994). Lewy bodies have a diameter of approximately 8 μm and are
likely to exhibit an R2′ effect. Brain haemorrhage causes bleeding
into the tissues of the brain and production of haemosiderin, and
has also been shown to increase R2′ (Wismer et al., 1988). If R2′ cali-
bration is to be performed in patients with either of these conditions
then care must be taken to avoid affected areas of the brain.

Estimating CMRO2 changes

A measurement of CMRO2 change is the ultimate aim of calibrated
BOLD, converting information contained in δs, B and f into a measure
of r. In the traditional approach the Davis model plays a dual role, first
as a way to convert measured hypercapnia responses into a calibra-
tion factor, and second as a way to use that factor in combination
with measured responses to activation to estimate the CMRO2

change. In the current analysis we have essentially broken the link
between the two steps. With this approach we can consider any po-
tential method for calibrating the BOLD signal, and determine an ap-
propriate form of h(f,r) in Eq. (2) through simulations of both the
calibration experiment and the activation experiment with the de-
tailed BOLD model. That is, h(f,r) is given implicitly through the de-
tailed model by the curves in the δs/B versus f plane (e.g., Figs. 2a
and c for the hypercapnia and R2′ methods, respectively). An appro-
priate lookup table, or parameterization of the curves in the figures,
would allow calculation of r for a given set of measurements, effec-
tively defining h(f,r). That is, although the Davis model was used to
define the calibration experiment for hypercapnia, this was simply
used as a particular recipe for calculating a value of B, and the detailed
model was used to simulate that recipe and provide curves of how the
measured signals vary with different CMRO2 changes. In this way the
detailed model provides a form for h(f,r) that is appropriate for
the defined method of calculating B. If that method changed (e.g., if
the hypercapnia responses were used to calculate M with different
values of α and β), then the detailed simulations would provide a

(a)

(b)

Fig. 6. It is well known that R2′ is sensitive to both mesoscopic and macroscopic sources
of magnetic field inhomogeneity. The former represents the effect of blood vessels,
which underlies the BOLD response, and the latter is caused by disturbance of the mag-
netic field by the head. Here we compare perfect field homogeneity (Δω=0), plotted
as a solid line, with a through slice gradient Δω=20 Hz, plotted as a dashed line. Shift-
ing of the dashed line with respect to the solid line emphasises that macroscopic field
inhomogeneity effects must be minimised.
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shifted set of curves defining a new form of h(f,r) appropriate for the
new definition of the method for calculating B.

Conclusion

The simulations performed in this study enable the potential
strengths and weaknesses of BOLD calibration methods to be investi-
gated. In addition, a new calibration method is proposed that does not
require a respiratory challenge. Hypercapnia calibration is shown to
be robust even when isometabolism during hypercapnia is not as-
sumed and the flow-volume coupling is altered. Simulations of hyper-
oxia calibration reveal hitherto unexplored weaknesses due to the
assumptions that must be made in the model of oxygen transport
used to estimate the change in venous blood oxygenation due to
hyperoxia. This suggests further experimental validation of this
method is required before it may be used routinely. Examination of
R2′ as a new calibration method show that such a technique is prom-
ising. Whilst the uncertainty in the measurement of CMRO2 may be
increased when compared with hypercapnia, this method is more
generally applicable to the population at large as it does not require
gases to be administered. However, further work is needed to develop
robust acquisition methods that allow correction for large scale field
inhomogeneity effects.

Additionally, in the absence of measurements of CBF, a measure-
ment of R2′may also be useful as a normalisation procedure to reduce
intersubject variability in the BOLD response. These approaches com-
pare the stimulus evoked BOLD response with measurements of the
BOLD response to a hypercapnia challenge (Biswal et al., 2007), or
with a single aspect of baseline physiology such as CBF (Liau and
Liu, 2009) or baseline blood oxygenation (Lu et al., 2008). A measure-
ment of R2′, however, is sensitive to multiple sources of physiological
variability through its sensitivity to blood volume, blood oxygenation
and haematocrit and may account for a greater degree of intersubject
variability than traditional methods.

Acknowledgments

We would like to thank Aaron Simon, Farshad Moradi and David
Dubowitz for helpful discussions regarding this work. This work
was supported by funding from NIH/NINDS grant NS-036722.

Appendix A

Simulations of the effect of changes in CBF, CMRO2 and baseline
physiology were performed using a previously reported detailed
BOLD signal model (Griffeth and Buxton, 2011). Constants required
for this model are detailed in Table 1. This model was further extend-
ed to enable R2′ in the baseline resting state to be simulated. Taking
Eq. (8) as a starting point, we can expand these relations to include
multiple signal compartments for both gradient echo (GE) and spin
echo (SE) pulse sequences.

SGE TEð Þ ¼ f 1−VI;0

! "
SE;0 0ð Þe−TE R2;0þR%

2Eð Þ þ VA;0SA;0 0ð Þe−TE R%
2A

þ VC;0 SC;0 0ð Þe−TE R%
2C þ VV ;0 SV ;0 0ð Þe−TE R%

2V g F TEð Þ
ðA1aÞ

SSE TEð Þ ¼ 1−VI;0

! "
SE;0 0ð Þe−TE R2;0þR2Eð Þ þ VA;0 SA;0 0ð Þe−TE R2A

þVC;0 SC;0 0ð Þe−TE R2C þ VV ;0 SV ;0 0ð Þe−TE R2V
ðA1bÞ

Here V, S(0), R2⁎ and R2 are the volume fraction, proton density and
transverse relaxation rates for their respective compartments indicat-
ed by subscripts; intravascular (I), extravascular (E), arterial (A), cap-
illary (C) and venous (V). Parameters with subscript 0 reflect the
baseline resting value. Monoexponential decay of each compartment
is assumed with echo time TE. The extravascular transverse relaxation

rate for both GE and SE signals is modelled as a baseline rate (R2,0)
plus an additive term (R*2E or R2E). This term reflects dephasing of
the signal due to mesoscopic magnetic field inhomogeneity for GE
and incomplete refocussing of this dephasing due to diffusional nar-
rowing in the case of the SE. To complete the model, expressions for
intra- and extravascular R2 and R2⁎ are required along with the defini-
tion of F(TE), the signal attenuation due to magnetic field inhomoge-
neity. Intravascular signal was modelled using measurements of the
dependency of R2⁎ on haematocrit and blood oxygenation saturation
(Y) (Zhao et al., 2007).

R%
2I ¼ A% þ C% 1−Yð Þ2 ðA2Þ

In order to further generalise the detailed signal model, the de-
pendency of A⁎ and C⁎ on haematocrit (Hct) was approximated by
linearly fitting to data acquired at 3.0 T (Griffeth and Buxton, 2011;
Zhao et al., 2007).

A% ¼ 14:9 Hct þ 14:7 ðA3aÞ

C% ¼ 302:1 Hct þ 41:8 ðA3bÞ

Similarly R2 was modelled based on measurements of the depen-
dency of blood R2 on oxygenation and haematocrit (Zhao et al., 2007).

R21 ¼ Aþ C 1−Yð Þ2 ðA4Þ

A ¼ 16:4 H ct þ 4:5 ðA5aÞ

C ¼ 165:2 H ct þ 55:7 ðA5bÞ

These measurements were acquired using a single spin echo pulse
sequence, stepped through a range of echo time values, and hence are
consistent with the short time regime of transverse signal decay
(Yablonskiy and Haacke, 1994). Extravascular R2⁎ was modelled
using the results of Monte Carlo simulations (Ogawa et al., 1993),

ΔR%
2E ¼ a%LΔχ H ct ω0 V Yoff−Y

###
###−V0 Yoff−Y0

###
###

h i
for large vessels

ðA6aÞ

ΔR%
2E ¼ a%SΔχ Hct ω0 V Yoff−Y

###
###
2−V0 Yoff−Y0

###
###
2

$ %
for small vessels

ðA6bÞ

where the constants a*L and a*S scale R*2E for large and small vessels, re-
spectively, and ω0 is the proton Larmor frequency. Vessels are cate-
gorised as being large with diameters in the range 16–200 μm
(arterioles and venules) or small (capillaries) with a diameter of
5 μm (Ogawa et al., 1993). Fully oxygenated blood and tissue do not
have the same susceptibility and this is reflected by the blood oxygen
saturation offset Yoff, i.e. the point at which fully oxygenated blood and
tissue have the same susceptibility (Spees et al., 2001). The results of
Monte Carlo simulations for a single spin echo pulse sequence were
used to simulate the extravascular R2 (Uludağ et al., 2009). These sim-
ulations are consistent with the blood R2 measurements of Zhao et al.
and with acquisition in the short echo time regime (Yablonskiy and
Haacke, 1994). The large vessel relation was derived from simulations
of 16 μm diameter vessels (arterioles and venules) and the small ves-
sel relation from vessels (capillaries) of 5 μm diameter.

R2E ¼ V0 ∑
n
aL;n Δχ Hct ω0 Yoff−Y0

###
###

h in
for large vessels ðA7aÞ

R2E ¼ V0 ∑
n
aS;n Δχ Hct ω0 Yoff−Y0

###
###

h in
for small vessels ðA7bÞ
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Finally, the signal attenuation of the gradient echo data due to
large scale magnetic field inhomogeneity can also be modeled
(Yablonskiy, 1998),

F TEð Þ ¼ sin ΔωTE=2ð Þ
ΔωTE=2ð Þ ðA8Þ

where Δω is the frequency difference across the voxel. The constants
detailed in these equations are listed in Table 1.
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Section C: Using Hyperoxia to measure venous CBV  

An analysis of the use of hyperoxia for measuring venous cerebral blood volume:
Comparison of the existing method with a new analysis approach
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Hyperoxia is known to cause an increase in the blood oxygenation level dependent (BOLD) signal that is primarily
localised to the venous vasculature. This contrast mechanism has been proposed as a way to measure venous cere-
bral blood volume (CBVv) without the need for more invasive contrast media. In the existing method the analysis
modelled the data as a dynamic contrast agent experiment, with the assumption that the BOLD signal of tissue
was dominated by intravascular signal. The effects on the accuracy of the method due to extravascular BOLD signal
changes, aswell as signalmodulation by intersubject differences in baseline physiology, such as haematocrit and ox-
ygen extraction fraction, have so far been unexplored. In this study the effect of extravascular signal and intersubject
physiological variabilitywas investigated by simulating thehyperoxia CBVvexperiment using adetailed BOLD signal
model. This analysis revealed substantial uncertainty in themeasurement of CBVv using the existing analysis based
on dynamic contrast agent experiments. Instead, the modelling showed a simple and direct relationship between
theBOLD signal change andCBVv, and an alternative analysismethodwithmuch reduceduncertaintywasproposed
based on this finding. Both methods were tested experimentally, with the new method producing results that are
consistent with the limited literature in this area.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Hyperoxia has previously been proposed as a tracer for measuring
venous cerebral blood volume (CBVv) (Bulte et al., 2007a, 2007b). The
subject is asked to breathe a hyperoxic gas mixture interleaved with
periods of air breathing. Breathing a hyperoxic gas mixture produces an
increase in venous haemoglobin saturation resulting in an increase in
the blood oxygenation level dependent (BOLD) signal. In analogy with
T1-based contrast agent studies formeasuring total cerebral bloodvolume
(CBV), the measured BOLD signal from tissue is normalised by the signal
from a 100% CBV voxel located in a large vein (Newman et al., 2003;
Rempp et al., 1994). This analysis approach assumes that the signalsmea-
sured in both cases are dominated by intravascular signal change.

However, the tissue signal has a significant extravascular component
that makes up around 70% of the total signal at 3.0 T (Uludağ et al.,
2009). The magnitude of the BOLD response is also dependent on phys-
iological differences between subjects (Blockley et al., 2012) potentially
confounding the measurement of CBVv. However, quantitative mea-
surements of CBVv have a number of potential uses. For example, the ac-
quisition of normative data in the healthy brain would allow for a
comparison with the diseased state. In addition, the dynamic range of
the BOLD response is strongly influenced by CBVv (Blockley et al.,
2012). Thereforemeasurements of CBVvmay be useful when controlling
for differences in the magnitude of the BOLD response across subjects
and in disease.

In this work we performed simulations of the existing method of
measuring CBVv using a detailed model of the BOLD signal and its re-
sponse to a hyperoxic stimulus. These simulations enable the physiolog-
ical confounds of thismethod to be considered in away that experiments
alone could not achieve. Specifically the effect of intersubject variations
in baseline physiology and alterations in cerebral blood flow (CBF) and
oxygenmetabolism (CMRO2) due to hyperoxiawere considered. Follow-
ing on from these simulations an alternative analysis method is pro-
posed that has lower sensitivity to baseline physiological variability.
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Experiments were performed to establish the plausibility of the mea-
surements produced by both methods with reference to literature
values.

Theory and simulations

Extravascular BOLD signal

Firstly we consider the effect of an increase in venous haemoglobin
saturation on the BOLD signal when the brain is under baseline resting
conditions. At 3.0 T themajority of the BOLD signal originates in the ex-
travascular compartment and is caused by an enhancement of the tissue
transverse relaxation rate, R2⁎, by magnetic field gradients surrounding
deoxygenated blood vessels. Theoretical and Monte Carlo numerical
analyses have shown that the enhancement of extravascular R2⁎ (δR2⁎)
is a function of CBVv (Vv) and venous deoxyhaemoglobin concentration
([dHb]v, gdHbdlblood−1 ) (Ogawa et al., 1993; Yablonskiy and Haacke, 1994).

δR!
2 ¼ κVv dHb½ $βv ð1Þ

Here κ reflects properties of the experiment including vessel geome-
try, field strength and the susceptibility of deoxyhaemoglobin. The expo-
nent β is dependent on the blood vessel scale under examination due to
diffusion of water protons around these vessels, with β=1 being used
for larger vessels, such as venules and larger, and β=2 being used for
capillaries. The aim of this study was to target CBVv and hence β=1 is
most appropriate, leading to the following relation for the change in ex-
travascular R2⁎ (ΔR2⁎). Since the aim of these experiments was to mea-
sure resting baseline CBVv it is assumed to be unchanged in this simple
model.

ΔR!
2 ¼ κVvΔ dHb½ $v ð2Þ

Hyperoxia results in only small changes in ΔR2⁎ suggesting that a
linear approximation is appropriate to describe the fractional change
in BOLD signal (δStiss).

δStiss≈TEκVvΔ dHb½ $v ð3Þ

Therefore, for venous vessels the resting CBVv is a function of the
BOLD signal change that results from the change in deoxyhaemoglobin
concentration (Δ[dHb]v) caused by a hyperoxic stimulus. This enables
CBVv to be measured as long as Δ[dHb]v can be accurately estimated.
However, it is clear that this would not be the case for capillaries. In ad-
dition this model does not take account of intravascular signal change,
which still represents a significant fraction of the total signal at 3.0 T.
Therefore, detailed modelling of the BOLD signal, incorporating all of
these effects, is required to test whether CBVv can be measured in this
way.

Oxygen transport modelling

We now consider the underlying physiology that results in an in-
crease in venous haemoglobin saturation during the administration of a
hyperoxic stimulus. Oxygen is carried by the blood in two ways, bound
to haemoglobin or dissolved in plasma. If we first consider the arterial
blood, its saturation (SaO2) is dependent on the oxygen partial pressure
of the blood (PaO2) in units of mm Hg. This can be approximated by
the following relation (Severinghaus, 1979).

SaO2 ¼ 1
23400

PaO2ð Þ3þ150PaO2
þ 1

ð4Þ

The total oxygen content of the blood (CaO2) is the sum of the
haemoglobin (ϕ [Hb] SaO2) and plasma (ε PaO2) contributions.

CaO2 ¼ ϕ Hb½ $SaO2 þ εPaO2 ð5Þ

The constants ϕ, [Hb] and ε are the oxygen carrying capacity of
haemoglobin (ϕ=1.34 mlO2gHb

−1), the blood haemoglobin concen-
tration ([Hb]=15 gHbdlblood−1 , equivalent to a haematocrit of 0.45)
and the solubility coefficient of oxygen in blood (ε=
0.0031 mlO2dlblood−1 mm Hg−1), respectively (Chiarelli et al.,
2007). This relation holds for venous blood, but the total oxygen con-
tent of venous blood (CvO2) can also be defined in terms of CaO2,
where CmetO2 is the oxygen extracted to serve oxidative metabolism.

CvO2 ¼ CaO2−CmetO2 ð6Þ

Rearranging, the venous haemoglobin saturation (SvO2) can be writ-
ten in the following way, where PvO2 is the oxygen partial pressure of
venous blood.

SvO2 ¼ CaO2−CmetO2−εPvO2
ϕ Hb½ $ ð7Þ

Hence the resting [dHb]v level can be evaluated given the following
relation.

dHb½ $v ¼ Hb½ $ 1−SvO2ð Þ ð8Þ

It is fair to assume that PvO2 is negligibly small as the oxygen in the
venous plasma is in equilibrium with that bound to haemoglobin. Since
the change in haemoglobin saturation due to hyperoxia is relatively
small the change in PvO2 will be even smaller, i.e. ΔPvO2≈3 mm Hg.
For now, we will consider that CmetO2 is not altered by hyperoxia.
With these assumptions the change in venous deoxyhaemoglobin con-
centration, Δ[dHb]v, can then be described by,

Δ dHb½ $v ¼
ϕ Hb½ $ΔSaO2 þ εΔPaO2

ϕ
: ð9Þ

Here ΔSaO2 and ΔPaO2 are the changes in SaO2 and PaO2 in response
to hyperoxia, respectively. Unlike PvO2, PaO2 contributes significantly to
Δ[dHb]v as it can be easily three orders of magnitude greater than the ve-
nous effect, i.e. ΔPaO2≈200 mm Hg. Eq. (9) predicts that changes in ve-
nous blood oxygen saturationwill dominate during a hyperoxic stimulus.
For example, when ΔPaO2=200 mm Hg and [Hb]=15 gHbdlblood−1 , the
change in arterial deoxyhaemoglobin content, Δ[dHb]a, is approxi-
mately−0.24 gdHbdlblood−1 , whilstΔ[dHb]v is approximately−0.70 g-
dHbdlblood−1 . This equates to a ~3 times larger change in [dHb] in venous
vessels. Hence changes in the BOLD signal will be strongly weighted to-
wards the venous vasculature. However, Eq. (9) assumes
isometabolism and therefore detailed modelling of the BOLD signal is
required to examine the results when this is not true.

Simulations

Simulations were performed to test the underlying principle of
using hyperoxia to measure resting baseline CBVv and the sensitivity
of this method to intersubject variations in physiology. Oxygen trans-
port and the BOLD signal are dependent on properties of the blood,
with the haematocrit and venous haemoglobin saturation being the
most important. However, the value of these parameters does have
substantial variation within the population. The PET literature defines
a relatively broad range of OEF values from 0.35 to 0.55 (Marchal et
al., 1992). Similarly haematocrit varies in the ranges of 0.42–0.50 for
males and 0.37–0.47 for females (McPhee and Hammer, 2009).
These parameters, along with CBVv, determine the maximum BOLD
signal amplitude. A detailed BOLD signal model (Griffeth and Buxton,
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2011) was used to simulate the BOLD response to hyperoxia to investi-
gate the effect of variability in baseline physiology. A summary of the sa-
lient features of themodel and analysis approachwill now be presented;
see Griffeth and Buxton (2011) and Blockley et al. (2012) for further de-
tail. The detailed BOLD signal model includes intra- and extravascular
signal contributions from three vascular compartments; arteries, capil-
laries and veins. Extravascular signals were modelled using the results
of numerical simulations for two vessel scales to reflect the different sig-
nal characteristics of capillaries (β=2) comparedwith arteries and veins
(β=1) (Ogawa et al., 1993). Intravascular signals were described using
empirical measurements of blood R2⁎ as a function of oxygenation and
haematocrit (Griffeth and Buxton, 2011; Zhao et al., 2007). Capillary
blood haemoglobin saturation was described by a weighted average of
the arterial and venous values (Griffeth and Buxton, 2011). Distribution
of blood to the three compartments was achieved by assigning a value
of total CBV and partitioning this volume into relative volume fractions,
Ω, for each of the compartments (subscripts a, c, v for the arterial, cap-
illary and venous compartments, respectively). Relative volume frac-
tions were initially set as Ωa=0.2, Ωc=0.4 and Ωv=0.4. The effect of
physiological variation was simulated by randomly selecting pairs of
haematocrit and OEF values to sample the expected distribution of the
population (Blockley et al., 2012). Values were selected in the ranges
of 0.37–0.50 and 0.35–0.55 for haematocrit and OEF, respectively. The
baseline total CBV fraction was added as an additional randomly select-
ed valuemeaning that each data pointwas defined by three parameters.
Total CBV fractionwas allowed to vary in the range of 0 to 0.1 to bracket
the experimentally observed value of 0.05 (Roland et al., 1987).

The following steps were followed to simulate the CBVv experi-
ment. The BOLD signal change (δS=ΔS/S0) resulting from breathing
a hyperoxic gas mixture was simulated for tissue (tiss) and vein
(vein) using the detailed BOLD signal model. One thousand values of
δStiss and δSvein were produced using a uniform random number genera-
tor to select values for haematocrit, OEF and CBVv in the ranges described
above. The uncertainty introduced by this physiological variability was

assessed by plotting the measured signals against the true CBVv to as-
sess the scatter in this relationship. For the existing method the mea-
sured quantity is the tissue signal normalised by the signal from a vein
measured at steady state, per Eq. (10) (Bulte et al., 2007b). This equation
is re-written in terms of percentage CBVv rather than ml g−1 of tissue as
in the original reference.

CBVv ¼ h
ln δStiss þ 1ð Þ
ln δSvein þ 1ð Þ

ð10Þ

Scaling of the measured signals in terms of CBVv is provided by
the constant h=(1−Hct) /(1− r Hct), where Hct is the haematocrit
and r=0.85 corrects for differences between small and large vessel
haematocrit. However, this scaling was neglected at this stage in
order to test the fundamental relationship between the measured
quantity and CBVv. Figs. 1a–c plot the effect of intersubject physio-
logical variation on this relationship for three different levels of
hyperoxia: ΔPaO2=200 mm Hg, 300 mm Hg and 400 mm Hg. The
effect of haematocrit and OEF alone, and in combination, reveals
that OEF causes substantial variability in this relationship. Such var-
iability will increase the uncertainty on the measurement of CBVv.

This result led us to consider an alternative analysis approach
that does not require a measurement of the venous BOLD signal
change (δSvein). Figs. 1d–f plot the unnormalised tissue BOLD signal,
δStiss, against CBVv for the same hyperoxic levels to investigate the effect
of haematocrit andOEF alone and in combination. Amuch tighter and ap-
proximately linear relationship is revealed that shows lower sensitivity to
OEF. However, the slope of this relationship is dependent on the specific
ΔPaO2 experienced by the subject. Due to the linearity of the relationship
between δStiss and CBVv a method for scaling the former in units of the
latter is required. Figs. 1d–f show that variations in haematocrit and
OEF result in much less uncertainty in this relationship than was the
case for the existingmethod. However this effect is relatively small, lead-
ing to a ±5% variation in the value of Δ[dHb]v with respect to the

a b c

fed

Fig. 1. Simulation of the relationship between themeasured signal and true CBVv for the existing (Eq. (10)) and newmethods (Eq. (11)). Three different hyperoxia levels were simulated
described by the change in arterial PO2 (ΔPaO2). The effect of variations in haematocrit (a,d) and OEF (b,e) alone, and in combination (c,f), is considered. A large amount of uncertainty is
observed for the existing method suggesting that it cannot accurately account for physiological variability. By plotting the unnormalised tissue BOLD signal response a much tighter and
approximately linear response is revealed.
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Figure 5.13. Simulation of the relationship between the measured signal and true CBVv for the existing and new methods.
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mean value for ΔPaO2=200 mm Hg (typical of the experiments
below) given the range of haematocrit expected in the population.
This variation is similarly small for the OEF. Therefore, an empirical
model, inspired by the formof Eq. (3), is proposed to calculate an appro-
priate scaling factor as a function of echo time (TE) and ΔPaO2 alone.
The error caused by not including the effects of variation in haematocrit
and OEF is likely to be smaller than the typical precision of this experi-
ment. This also results in a more practical method as further measure-
ments of haematocrit and OEF are not required.

CBVv ¼ A
TE

þ B
! "

C
ΔPaO2

þ D
! "

δStiss ð11Þ

Further simulations were performed (not shown) varying TE
and ΔPaO2 to estimate A, B, C and D yielding the following values:
A=27.0 ms, B=0.2, C=245.1 mm Hg, D=0.1.

Three potential confounds of this newmethodwere identified. Firstly,
the relative volume fractions (Ω) of the vascular compartments deter-
mine the proportion of the signal derived from the different extravascular
regimes (static dephasing versus motional narrowing) with the potential
to increase the uncertainty in the CBVvmeasurement. This effect was ex-
amined by setting the arterial volume fraction asΩa=0.2 and varying the
venous fraction Ωv between 0.4 and 0.6, whilst keeping the sum of Ωv

and, the capillary fraction, Ωc constant. Fig. 2a shows that this has only
a weak effect on the relationship between δStiss and CBVv. Secondly, it
has been observed that CBF decreases during hyperoxia, through the
direct effect of oxygen (Bulte et al., 2007a) and through an associated re-
duction in blood carbon dioxide (CO2) levels (Iscoe and Fisher, 2005).
This effect was investigated by simulating the effect of a 5% flow reduc-
tion during hyperoxia. The concomitant change in CBVwasmodelled as
previously described (Griffeth and Buxton, 2011). Briefly, the change in
total CBV at steady state was defined using Grubb's relation: CBV=
CBFα where α=0.38. This change was then distributed across the vas-
cular compartments using similar power law relations. For the venous
compartment αwas set to 0.2 (Chen and Pike, 2009) and for the capil-
lary compartment a value α=0.1 was used, with the arterial compart-
ment contributing the remainder of the volume change. Since these
experiments were performed at steady state, the slow recovery of
CBVv due to balloon effects was not considered. Fig. 2b shows that
this causes the relationship between δStiss and CBVv to shift and broad-
en. Finally, the effect of a change in CMRO2 during hyperoxia was con-
sidered. However, it isn't clear from the literature whether CMRO2

increases (Rockswold et al., 2010), remains the same (Diringer et al.,
2007) or decreases (Richards et al., 2007; Xu et al., 2012) during
hyperoxia. Therefore, CMRO2 changes of ±10% were simulated. Fig. 2c
shows that this causes the relationship between δStiss and CBVv to
shift and broaden in a similar manner to Fig. 2b, but to a larger degree.

Experimental methods and results

Imaging

This study was approved by the National Research Ethics Service,
Oxfordshire REC A. Informed consent was obtained from nine healthy
subjects (6 male, mean age 28±4 years). Subjects were scanned at
3.0 T on Siemens Trio (n=7) and Verio (n=2) scanners (Siemens
Medical Solutions, Erlangen, Germany). Both systems were equipped
with a transmit body coil and multi-channel head receive coils (Trio—12
channel, Verio—32 channel). Foam inserts were placed around the
subject's head to minimise motion. Gradient-echo echo planar images
(EPI) were acquired with BOLD-weighting (TE=30 ms). Images were
acquired with 3×3×3 mm3 spatial resolution using a 64×64 matrix
over 53/44 (Trio/Verio) slices with a temporal resolution of 3.0/2.4 s. A
high resolution structural MPRAGE scan (Mugler and Brookeman, 1990)
was acquired to enable grey and white matter masks to be generated
(TR/TE=2040/4.7 ms, flip=8°, 1 mm isotropic resolution).

The hyperoxic condition was achieved by presenting 100% oxygen to
the subject via a two tube nasal cannula at 7 lpm, whilst simultaneously
sampling inspired and expired gases. Due tomixingwith roomair, the in-
spired oxygen fraction was approximately 50%. Two 2 minute periods of
hyperoxiawere interleavedwith 2 min of roomair. End-tidal PO2 (PETO2)
and PCO2 (PETCO2) were recorded throughout the experiment using a
Biopac MP150 (Biopac Systems, Inc. Goleta, CA, USA) with oxygen and
carbon dioxide gas analyser units (O2100C and CO2100C), at a sampling
rate of 25 Hz. PCO2 data were not analysed further due to a calibration
error in some data sets.

Analysis

Two subjects were excluded from the analysis due to a ΔPETO2 less
than 100 mm Hg. Images were pre-processed using FSL software tools
for motion correction (Jenkinson et al., 2002) and brain extraction
(Smith, 2002). High pass temporal filtering with a cut-off of 240 s and
spatial smoothing with a Gaussian kernel with a full width half maxi-
mum of 5 mm were applied to the data. The BOLD signal response
due to hyperoxia was analysed by fitting a general linear model of
the expected time-course using FEAT (Woolrich et al., 2001). This
model function was generated by convolving a 2 minute box-car
with a Gamma-variate function (phase 0 s, standard deviation 30 s,
mean lag 60 s) (Bulte et al., 2012). The PETO2 time-course was not
used as a regressor as this would require accurate synchronisation with
the scanner, precise selection of the end-tidal PO2 in the respiratory
cycle and would lead to the inclusion of additional noise. The resulting
parameter estimate for the hyperoxia challenge was converted to

a b c

Fig. 2. Simulation of the relationship between the measured signal and true CBVv for the newmethod (Eq. (11)). (a) The effect caused by the distribution of vessel scales was examined by
altering the fraction of the total CBV occupied by venous vessels (Ωv), whilst keeping the combined capillary and venous fraction constant. (b)Hyperoxiahas been shown to cause a reduction
in CBF (ΔCBF), hence the effect of a 5% flow reduction was examined. (c) It has also been suggested that hyperoxia may alter resting CMRO2. CMRO2 changes of ±10% (ΔCMRO2) were
considered.
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percent BOLD signal change by dividing by the mean signal intensity
over time and multiplying by 100. Maps of percent BOLD signal change
were then used to calculate CBVv in percent using Eq. (10) (existing
method) and Eq. (11) (new method).

For the existing method, voxels within the sagittal sinus were select-
ed in the following way. Firstly, the centre of the sagittal sinus wasman-
ually defined on 5 slices and a 3 dimensional spline fitted to these points.
An 8×8 voxel region of interest was then placed at the vessel centre de-
fined by the spline on a slice-by-slice basis to produce the finalmask. The
percent BOLD signal change map was then masked before thresholding
at the 99th percentile. Finally, the mean of the remaining voxels was
used to define δSvein in Eq. (10). The new method (Eq. (11)) requires
a measurement of the change in PaO2 between the normoxic and
hyperoxic states (ΔPaO2). We infer this from measurements of PETO2

under the assumption that the arterial blood is well equilibrated with
the gas in the alveoli and that the alveolar-arterial oxygen gradient is
not altered by hyperoxia. The hyperoxic PETO2 was measured from the
last 30 s of each 2 minute hyperoxia challenge, whilst the normoxic
value was taken from a 1 minute window preceding the first hyperoxic
block.

Functional data were also registered to the subject's own structural
image (Jenkinson et al., 2002). Automated segmentation of the structural
image was performed using FAST to produce grey matter, white matter
and CSF regions of interest (ROI) (Zhang et al., 2001). Grey and white
matter ROIs were then transformed back into functional space and sub-
sequently used to calculate themean and standard deviation of CBVv for
these tissue types. Fig. 3 shows five example slices taken from approxi-
mately the same region of the brain in each of the subjects. Table 1
gives mean grey and white matter CBVv values.

Discussion

Measuring the BOLD response to a hyperoxia challenge has the po-
tential to provide the most sensitive measurement available of CBVv.
The existing analysis approach essentially treated hyperoxia as a contrast
agent that simply alters the venous blood signal, so that normalising the
BOLD signal change in a tissue voxel to the signal change measured in-
side a large vein gives the fractional venous CBV in that voxel. Here we
used a detailedmodel of the BOLD effect to show that a different physical
picture of the effect of hyperoxia can provide a better foundation for

Fig. 3. Maps of CBVv for the existing and new methods, calculated using Eqs. (10) and (11) respectively, as a percentage of the total voxel volume. Note the difference in scaling
between each of the methods; 0–16% versus 0–4%.
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determining CBVv. Specifically, we found that the BOLD signal change it-
self, without normalisation, has a simple and direct relationship with
CBVv. The basic physical picture is that a given level of hyperoxia, in
the absence of flow or metabolism changes, produces the same change
in venous deoxyhaemoglobin concentration Δ[dHb]v in all venous ves-
sels, regardless of the baseline oxygen extraction fraction. Because the
BOLD signal change is primarily driven by a change in total
deoxyhaemoglobin (the product of CBVv and Δ[dHb]v), CBVv can be de-
termined directly from the BOLD signal change provided that Δ[dHb]v is
accurately estimated. Experimental data was analysed based on using
both the new approach and the existing approach. The results differed
by about a factor of four, with the results of the new approach in good
agreement with literature values.

In addition,we examined the confounding effects of subject variabil-
ity of haematocrit and baseline oxygen extraction fraction on the esti-
mate of CBVv. If there is no accompanying change in CBF or CMRO2

with hyperoxia, the newmethod is insensitive to variations in baseline
OEF. However, if CBF or CMRO2 changes with hyperoxia, this conclusion
changes, and the sensitivity to baseline OEF grows. For this reason,
maintaining constant CBF and minimising the potential for CMRO2

change are important goals for these experiments. We also examined
the effect of variability in haematocrit, which affects the estimation of
the deoxyhaemoglobin changeΔ[dHb]v. Whilst this effect is small, accu-
racy can be improved by directlymeasuring haematocrit in each subject
and including its effect in amodel of the scaling factor. Knowledge of the
subject's OEF could also improve the accuracy of the new method and
could be incorporated into the model, but is unlikely to be available in
practice.

Simulations

An ideal method for measuring CBVv should produce a tight one-
to-one relationship between the measured quantities and CBVv, regard-
less of differences in haematocrit and OEF across subjects. If these
unknown variables broaden the distribution of possible measurement
outcomes for a given CBVv increase, the uncertainty of the CBVv estimate
grows. Figs. 1a–c show that the existing measurement technique
(Eq. (10)) gives a large uncertainty in CBVv. However, by plotting δStiss
alone (Figs. 1d–f) a much lower uncertainty in the value of CBVv can
be achieved. This perhaps paradoxical result can be explained by consid-
ering two elements of the signal change. Firstly, the change in BOLD signal
due to hyperoxia is proportional to CBVv andΔ[dHb]v, as suggested by the
simplistic model described by Eq. (3). Secondly, oxygen transport model-
ling reveals that when CMRO2 is constant during hyperoxia Δ[dHb]v is
independent of OEF and only weakly dependent on haematocrit
(Figs. 1d–f). Hence changes in tissue signal with hyperoxia should be
proportional to CBVv. However, during an uncontrolled hyperoxic respi-
ratory challenge it is likely that CBF may be reduced (Bulte et al.,
2007a), resulting in an altered relationship between δStiss and CBVv,
and increased uncertainty (Fig. 2b). A reduction in CBF causes an in-
crease in the OEF. Importantly the resultant decrease in venous

oxygen saturation is dependent on baseline OEF, unlike isometabolic
hyperoxia. Correction for this effect requires an unconfounded esti-
mate of the change in CBF (see discussion below). There is still much
debate as to whether CMRO2 is altered during hyperoxia (Diringer
et al., 2007; Richards et al., 2007; Rockswold et al., 2010; Xu et al.,
2012). However, it is clear from Fig. 2c that, if changes in this parameter
were present, they would cause a large degree of uncertainty in mea-
surements made with the newmethod. In a similar manner to changes
in CBF, changes in CMRO2 introduce a dependency on the baseline OEF.
Likewise a measurement of OEF is required for correction, which is not
easily obtainable.

The weak dependence of this method on haematocrit was predicted
to produce a ±5% variation in Δ[dHb]v. Since the change in R2⁎ due to
hyperoxia is proportional to the product of CBVv and Δ[dHb]v, this
results in a ±5% error in the estimation of CBVv. This error can be
minimised by measuring haematocrit in each subject and including it
in themodel used to calculate the scaling factor (Eq. (11)). Alternatively
this error can be reduced by increasingΔPaO2, resulting in an increased
fraction of the total oxygen content to be carried by the plasma. Since
the plasma content is independent of haematocrit the mean Δ[dHb]v
is increased, but the variability due to haematocrit is unchanged, dilut-
ing the effect of physiological variability. It must be noted that the pa-
rameters that define Eq. (11) are magnetic field dependent and hence
the values presented here are only valid at 3.0 T. Similar simulations
would be required to define these parameters at different magnetic
field strengths.

The underlying cause of the uncertainty seenwith the existingmeth-
od can be explained by the differing relaxivity characteristics of the intra-
vascular and extravascular signals. Fig. 2a suggests that the extravascular
signal is dominated by larger venous vessels, since altering the volume
fraction occupied by small vessels (capillaries) has only a weak effect
on the resulting BOLD signal. Wemight therefore consider the extravas-
cular compartment to have linear relaxivity (Eq. (2)) (Ogawa et al., 1993;
Yablonskiy and Haacke, 1994). However, the relaxivity of blood has been
shown by theory and experiment to be quadratic (Gardener et al., 2010;
Jensen and Chandra, 2000; Silvennoinen et al., 2002; Thulborn et al.,
1982) meaning that the change in intravascular signal is dependent on
the normoxic haemoglobin saturation of the blood. This introduces a
dependency on OEF, that does not exist for the extravascular signal,
resulting in the observed uncertainty.

It is also important to note that the interpretation of the hyperoxia
BOLD signal presented here is incompatible with using hyperoxia to
calibrate the BOLD response (Chiarelli et al., 2007). In hyperoxia cali-
brated BOLD a hyperoxic respiratory challenge is used to measure
the BOLD scaling parameter M, which encompasses properties of the
baseline physiological state including CBVv and [dHb]0 (Chiarelli et
al., 2007). However, we have recently shown that this approach is
only valid when the correct values for haematocrit and OEF are as-
sumed in the calculation of M (Blockley et al., 2012). Therefore
suggesting that the hyperoxia BOLD signal is predominantly modulat-
ed by CBVv.

Table 1
Mean grey and white matter percent CBVv for both methods. Regions of interest created by segmentation of a high resolution structural image.

Subject Existing method New method

Grey matter CBVv/% White matter CBVv/% Grey matter CBVv/% White matter CBVv/% ΔPETO2/mm Hg

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 9.77 9.53 6.69 5.07 2.38 2.70 1.64 1.33 198.4
2 8.16 9.20 4.21 2.91 2.68 3.31 1.37 0.97 201.6
3 9.14 8.04 5.41 2.94 2.75 2.79 1.60 0.88 161.5
4 6.53 7.31 3.90 3.26 1.76 2.19 1.06 0.98 147.3
5 8.68 8.61 4.64 4.41 2.03 2.15 1.08 1.08 149.1
6 8.42 7.81 4.74 3.38 1.88 2.29 1.11 0.83 197.0
7 7.01 6.35 4.62 2.79 1.81 2.04 1.24 0.80 222.9
Meana 8.24 1.14 4.89 0.92 2.18 0.41 1.30 0.24 182.5
a Intersubject mean and standard deviation calculated from individual subject mean values.
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Experiments

Experimental measurements of CBVv using both methods produced
very different mean values; 8.24% and 2.18% for grey matter for the
existing and new methods respectively. There are currently few stud-
ies in the literature that quantitatively measure CBVv. Variants of the
qBOLD sequence have been used in several studies with whole brain
average CBVv estimates in the range of 2.68% to 3.68% (An and Lin,
2002a, 2002b). One study presented grey and white matter specific
CBVv values of 1.75% and 0.58% (He and Yablonskiy, 2007). The fact
that the results of the new method are comparable with those derived
from the qBOLD method lends credibility to the assumption that CBF
and CMRO2 changes are small or non-existent at the hyperoxic levels
achieved in this study. However, confirmation of this assumption is
still required and is the subject of ongoing work.

The consistency of the results of the new method with those from
qBOLD is also not surprising, as measurements of CBVv made using
hyperoxia and qBOLD share a common theoretical background. The
qBOLD technique relies on the different characteristics of the extravas-
cular transverse signal decay during short and long timescales following
excitation or refocussing. In the short timescale the signal decay is qua-
dratically exponential, but reverts tomonoexponential in the long time-
scale. Each of these timescales is differently sensitive to CBVv and [dHb]v
enabling these parameters to be disentangledwhen data are acquired in
both conditions. The hyperoxia CBVv method only acquires data in
the long timescale, relying on the effects of hyperoxia to separate
the CBVv effect from [dHb]v, i.e. by modulating [dHb]v whilst keeping
CBVv constant.

Effects of hyperoxia

Changes in CBF during hyperoxia can theoretically be corrected by
measuring this change using arterial spin labelling (ASL). However, ox-
ygen is paramagnetic and is known to alter the T1 of arterial blood
(Silvennoinen et al., 2003). Accurate quantification of ASL data requires
knowledge of the arterial blood T1, confounding the estimation of CBF
when the oxygen level changes during an experiment (Buxton et al.,
1998). Recently this limitation has been overcome by measuring the
T1 of arterial blood in each experiment (Pilkinton et al., 2012). However,
this technique is time consuming and has not yet been performed in
humans.

Alternatively changes in CBF and CMRO2 can be minimised by care-
fully controlling the respiratory stimulus. Themajor driver of changes in
CBF during hyperoxia is the associated hypocapnic effect (Iscoe and
Fisher, 2005). Similarly the effect of oxygen on CMRO2 is proportional
to the degree of hyperoxia induced (Xu et al., 2012). In the experiments
performed in this study an uncontrolled hyperoxia challenge was
employed. However, greater control can be achieved using automated
respiratory control methods (Prisman et al., 2008; Wise et al., 2007).
Such methods could be used to maintain isocapnia, whilst maintaining
an oxygen level that minimises changes in CMRO2. The ability to target
specific changes in PaO2 using these methods opens up a further inter-
esting possibility.When TE=30 ms and ΔPaO2=306 mm Hg the scal-
ing factor between CBVv and δStiss is 1. Therefore, the percentage BOLD
signal change in response to hyperoxia is numerically equivalent to the
percentage CBVv.

Conclusion

It was shown by simulation that the existing method for measuring
CBVv using hyperoxic contrast has substantial sensitivity to variations
in baseline physiology. This sensitivity is caused by the normalisation
of the mostly extravascular tissue signal by intravascular blood signal.
This knowledge enabled an alternative analysiswith reduced sensitivity
to be proposed. Experimental application of this newmethod produced

results that were consistent with the limited results available in the
literature.
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Abstract

Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood
Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood
flow (CBF) and cerebral oxygen metabolism (CMRO2) that occur in response to neural stimuli. To date, however, the range of
neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related
design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of
using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow
fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is
unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals
through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of
our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD
experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly
we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus,
suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic
and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged.
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Introduction

Functional hyperemia is a phenomenon by which blood flow to
a volume of brain tissue increases rapidly and dramatically in
response to a local increase in neural activity. Though still poorly
understood, functional hyperemia is thought to play an important
role in the maintenance of homeostasis in the brain, and its
dysfunction has been postulated to play a role in the etiologies of
several cerebral vascular and neurodegenerative diseases [1].

Functional Magnetic Resonance Imaging (fMRI) has become a
popular method of studying functional hyperemia in humans, both
because it is non-invasive and because it is capable of imaging
large volumes of tissue with good spatial and temporal resolution.
The most commonly used fMRI technique today is blood
oxygenation level dependent (BOLD) imaging. Contrast in BOLD
imaging is derived from the paramagnetic properties of deoxy-
genated hemoglobin, which increases the transverse relaxation

rate of the MR signal [2]. In general, functional hyperemia leads
to a local decrease in the fraction of oxygen extracted from
capillaries, increasing the oxygenation of hemoglobin in down-
stream venules [3] and producing a robust increase in the BOLD
signal. BOLD imaging is highly sensitive to fluctuations in blood
oxygenation and is thus often used to localize regions of the brain
where blood oxygen saturation changes in response to neural
activity. However, BOLD imaging is limited in two ways. First, it
cannot be interpreted in a quantitative physiological sense, as both
the rate of delivery and rate of consumption of oxygen affect the
magnitude of the BOLD signal and cannot be disentangled by
BOLD imaging alone [4]. Second, the BOLD signal is a change
between two acutely defined states, and so is not directly sensitive
to chronic physiological changes that would affect the baseline
state.

Arterial spin labeling (ASL), an MR imaging technique that
creates contrast by magnetically labeling arterial blood as it enters
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the cerebrovasculature, is a more direct method of imaging
functional hyperemia and in principle overcomes the two
limitations of BOLD imaging noted above [5,6]. Like BOLD
imaging, ASL is non-invasive and sensitive to the fluctuations in
local blood flow that accompany neural activity. However, unlike
BOLD imaging, ASL can provide quantitative information about
the local perfusion in absolute physiological units, including both
the baseline and activated states, making it a potentially highly
useful tool for understanding brain function and cerebrovascular
physiology in health and disease [6,7]. In addition, as a component
of a multi-modal imaging approach including simultaneous BOLD
imaging, ASL may be used to disentangle competing neuronal and
vascular contributions to the BOLD signal, allowing quantitative
measurement of CMRO2 fluctuations [8,9]. However, ASL suffers
from several limitations of its own. Amongst the greatest
limitations of this technique is the intrinsically low signal-to-noise
ratio of the ASL signal, which is largely due to the small amount of
labeled arterial blood that can be delivered during the longitudinal
relaxation time of the blood. To compensate, quantitative
measurements of CBF using ASL are often made with lower
spatial and temporal resolution than standard BOLD-fMRI
studies, and are primarily used to measure baseline blood flow.
Dynamic measurements of blood flow typically require significant
trial averaging over repeated stimuli and spatial averaging over a
selected region of interest [4,10–12].

While such studies provide useful insights into differences in
cerebral perfusion and metabolic requirements between nominal
states of ‘‘control’’ and ‘‘activity’’, the methods they employ can
say little about the role of functional hyperemia in everyday neural
processing. Current methods of quantitatively estimating CBF and
CMRO2 fluctuations associated with more natural neural tasks,
which could include watching a film, listening to music, or simply
lying quietly in the scanner, are inadequate in large part because
the underlying stimulus driving hemodynamic and metabolic
changes cannot be defined, making it difficult to identify and
average measurements corresponding to the same physiological
state. Here we examined the feasibility of estimating fluctuations in
CBF and CMRO2 without a priori knowledge of the temporal
pattern of neural activity by combining the CBF information
contained in simultaneously acquired BOLD and ASL measure-
ments. We hypothesized that because the BOLD signal is strongly
driven by CBF, simultaneous measurement of ASL and BOLD
fluctuations via a combined BOLD-ASL imaging experiment
could be used to model an improved estimate of the ‘‘true’’ CBF
signal even in the presence of significant noise in both the BOLD
and ASL measurements. Further, we hypothesized that under the
conditions of a calibrated BOLD experiment, information about
fluctuations in CMRO2 could also be extracted from the
information contained in the combined BOLD-ASL data.
Importantly, we hypothesized that correction of the CBF signal
could be accomplished without explicit, a priori knowledge of the
stimulus presented, opening up a path towards the quantitative
study of how cerebral blood flow is modulated to meet the
metabolic demands of the neural processing that occurs in
response to natural stimuli or at rest. We call this combination
of BOLD and ASL image data BOLD-Constrained Perfusion
(BCP) estimation to emphasize that our criteria for distinguishing
CBF signal fluctuations from noise is that they be simultaneously
reflected in the BOLD signal.

The outline of this paper is as follows. We begin with a short
theoretical discussion of our motivation for pursuing the BCP
estimation approach, which we illustrate schematically in Figure 1.
We then present empirical results that demonstrate that the BCP
approach can both increase the precision of dynamic CBF

estimates and, under the conditions of a calibrated experiment,
provide information about the coupling of CBF and CMRO2

without a priori knowledge of the stimulus driving neural activity.
In order to be able to validate the results of the BCP analysis, we
analyzed data that were previously acquired and reported as a
calibrated BOLD study [8], using a stimulus with well-understood
temporal characteristics: a simple block-design visual task. Our
rationale for choosing such a simple stimulus was two-fold. First, to
determine whether the influence of noise on the estimated
dynamic CBF time series was decreased by BCP analysis, we
needed to be able to predict with some confidence what the CBF
time series should be in the absence of noise. Second, in order to
be able to verify that we could accurately estimate the coupling of
CBF and CMRO2 we needed to choose an experimental design
for which traditional calibrated BOLD analysis could also be
performed.

Theory

Signal and Noise in Simultaneous BOLD-ASL Imaging
In a dual-echo, simultaneous BOLD-ASL acquisition scheme,

‘‘tag’’ images, in which the magnetization of inflowing arterial
blood is inverted, and ‘‘control’’ images, in which the magneti-
zation of arterial blood is not inverted, are acquired in an
interleaved fashion, typically with an echo-planar or spiral
gradient recalled echo (GRE) readout. The echo time (TE) of
the first echo is chosen to be as short as possible in order to
minimize sensitivity to fluctuations in R!2 decay, while the second
echo is chosen to have a longer TE, so as to maximize BOLD
sensitivity. From the measured time series two new time series are
constructed by surround subtraction and surround addition, in
which the voxel signal at one time point is appropriately combined
(subtracted or added) with the average value of the preceding and
following time points. Surround subtraction of sequential images
acquired at the first echo time produces the ASL time series of
images, in which the intensity of each voxel is weighted by the
local rate of cerebral blood flow. Surround addition of sequential
second echo images produces the BOLD time series of images,
with little CBF weighting but considerable BOLD sensitivity [13].

However, in addition to CBF and blood oxygenation, the
instantaneous magnitudes of the surround subtraction and
surround addition signals, respectively, are sensitive to several
sources of noise. This noise may be attributable to the scanner
itself, to subject motion and cardiac pulsatility, or to instabilities in
the magnetic field due to changes in the size of the thoracic cavity
associated with the breathing cycle. Several methods have been
developed for identifying and removing the signal contributions
from some of these noise sources, in particular, subject motion,
cardiac and respiratory activity, and scanner drifts [14–19]. Often,
one or more of these methods is used to reduce the noise in the
BOLD and ASL signals before quantitative analysis is performed.
However, in general, none of these techniques can perfectly
remove all sources of nuisance signal and no technique can
remove the random thermal noise inherent in every signal. Thus
we must think of our measured BOLD and ASL signals, even after
correction for known sources of noise, as discrete time signals that
are combinations of both ‘‘real’’ signal fluctuations (that are of
interest to us) and noise [13]. We can express this very generically
as

A½t#~f ½t#zeA½t# ð1Þ
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B½t"~b½t"zeB½t" ð2Þ

where A½t" and B½t" are the measured ASL and BOLD signals,
respectively, f ½t" represents a low-pass filtered representation of the
CBF at sample t scaled by a constant related to imaging
parameters and experimental conditions, b½t" represents a low-
pass filtered representation of the instantaneous BOLD signal, and
eA½t" and eB½t" capture the contributions of random thermal noise
and any physiological sources of noise in the ASL and BOLD
signals, that are not completely removed by the methods cited
above. The precision of the CBF and BOLD estimates at each
time point is then determined by the variances of eA½t" and eB½t",
which may still be significant, especially for the ASL signal.

Relating BOLD Fluctuations to Changes in Cerebral Blood
Flow

Both A½t" and B½t" are driven by the underlying CBF
fluctuations. The former is a direct but noisy reflection of CBF,
and the latter is a more sensitive measurement but related to CBF
in a nonlinear way. The central idea of BOLD-constrained
perfusion (BCP) is to use both signals to make a better estimate of
the underlying CBF fluctuations. To utilize the BOLD signal in
this way requires a mathematical model that links changes in
cerebral blood flow to changes in the BOLD signal. Recently our
group developed a detailed numerical model of the BOLD
response as a function of changes in CMRO2, CBF, and cerebral
blood volume (CBV). The model also includes a number of
baseline physiological parameters (microvascular hematocrit,
venous and capillary blood volume, baseline oxygen extraction
fraction (OEF), etc.) that modulate the magnitude of the BOLD
response [20]. Although the detailed model is not in a tractable
form for the current application, it nevertheless provides a useful
framework for testing the accuracy of much simpler, closed-form
models. Recently we used this approach to develop a relatively
simple model and test its accuracy through many simulations with
the detailed model for different values of the unknown physiolog-
ical parameters [14]. The form of the model is:

b½t"{b0

b0
~M(1{av{l) 1{

f0

f ½t"

! "
~k 1{

f0

f ½t"

! "
ð3Þ

In this equation, the parameter M is a scaling factor that absorbs
many of the physiological factors that simply scale the BOLD
response and depends on the amount of deoxyhemoglobin in the
baseline state as well as parameters of the image acquisition (echo
time and field strength). We have used the symbol M for this
scaling factor in analogy with the Davis model [21], but it should
be noted that analyzing data to determine a value of M will yield a
different numerical value using Equation 3 than using the original
Davis model because of the different mathematical form. The
factor av is the exponent of a power law relationship between the
venous CBV change and the CBF change. The parameter l is the
ratio of the fractional change in CMRO2 to the fractional change
in CBF (e.g., a 20% change in CMRO2 with a 40% change in
CBF would correspond to l= 0.5). Finally, f0 and b0 represent the
magnitude of the CBF and BOLD signal in the baseline state.

We refer to this model as a heuristic model because it clearly
shows the basic anatomy of the BOLD response: it is driven by the
CBF change, but strongly modulated by the baseline state (M), the
venous CBV change (av), and the CMRO2/CBF coupling ratio
(l). In addition, though, our comparison tests with the detailed
model have shown that the heuristic model is reasonably accurate
as well. Previously, the most commonly used closed form model for
the BOLD response was the Davis model, and our comparison
tests have shown that the accuracy of these two simpler models is
similar. However, the particular advantage of the heuristic model
is that all of the unknown parameters that modulate the BOLD
response can be combined into a single factor, k, scaling a simple
nonlinear function of the CBF change. This means that our model
connecting b½t" to the underlying CBF fluctuation requires only a
single parameter to be determined. (In principle, the BCP
approach can be applied using any model that connects the
BOLD response to the CBF change, and the Supporting Section
and shows a similar analysis based on the Davis model. See the
Document S1, Figure S1, and Figure S2 for this analysis).

Figure 1. Schematic of the BOLD-constrained Perfusion (BCP) estimation process. When a cognitive task is presented to a subject, induced
neural activity evokes both a hemodynamic and a metabolic response. ASL imaging captures principally the evoked changes in CBF while BOLD
imaging is sensitive to changes in CBF, CMRO2, and CBV. In addition, both imaging modalities are sensitive to noise of both physiological and
mechanical origin (eA and eB, respectively). The BCP analysis approach is to combine information about CBF fluctuations present in both the BOLD
and ASL signals to improve the estimate of dynamic CBF fluctuations. This is accomplished by fitting the measured data to a cost function (Equation 4
in text) that treats the measured time series as noisy representations of two signals that are linked by a simple mathematical model. The output of
this process is an improved dynamic estimate of CBF fluctuations. Under the conditions of a calibrated BOLD experiment, an additional estimated
parameter of the mathematical model (k) may also provide information about the coupling of CMRO2 and CBF fluctuations (l). ASL: Arterial Spin
Labeling. CBF: Cerebral Blood Flow. CMRO2: Cerebral Metabolic Rate of Oxygen Metabolism. CBV: Cerebral Blood Volume.
doi:10.1371/journal.pone.0054816.g001

BOLD Constrained Perfusion Estimation

PLOS ONE | www.plosone.org 3 January 2013 | Volume 8 | Issue 1 | e54816

 
Figure 5.16. Schematic of the BOLD-constrained Perfusion (BCP) estimation process.



  

 

162 

BOLD Constrained Perfusion Estimation
We now propose that the precision of an estimate of the

instantaneous CBF, f̂f ½t" may be improved by assuming that the
expected values of the measured ASL and BOLD signals, E A½t"½ "
and E B½t"½ " are the true underlying CBF and BOLD signals, f ½t"
and b½t", and that the unknown parameter k of our BOLD model
has a constant value over a window of interest T samples in

length. The values of f̂f ½0",:::,f̂f ½T{1" and k̂k can then be estimated
by minimizing the cost function

min
f̂f ½t",k̂k

g f̂f ½t",k̂k
! "

~

XT{1

t~0

1

s2
eB

B½t"{b̂b½t"
! "2

z
1

s2
eA

A½t"{f̂f ½t"
! "2

 ! ð4Þ

under the constraint that b̂b½t"~k̂k 1{
f0
f̂f ½t"

! "
(Equation 3) at every

time point in the window. In essence, what we are doing here is

finding the values of f̂f ½0",:::,f̂f ½T{1" and k̂k that best fit the
measured ASL and BOLD signals to Equation 3 given the
assumption that there is noise in both (Figure 1). Note that this is
quite different from performing a simple non-linear regression of
the two signals based on Equation 3, which would implicitly
assume that only one of the signals contained noise and that the
other was noise-free. In the cost function represented by Equation

4, the parameters seA
2 and seB

2 are weighting parameters that

reflect the fact that both measured signals contain noise and
account for the possibility that the noise variance in A½t" may be
different from that of B½t". In this work we have estimated these
parameters by measuring the variances of the BOLD and ASL
signals in voxels containing cerebral spinal fluid (CSF), which
should have no CBF-related ASL or BOLD signal fluctuations
[17].

Estimating CMRO2-CBF Coupling for Calibrated
Experiments

As stated above, the output of the minimization of Equation 4 is
a time series of CBF estimates, f̂f ½t", which we hypothesize will
more precisely approximate the time course of true underlying
CBF fluctuations than the time series of ASL measurements A½t".
In addition, the minimization of Equation 4 yields an estimate of
the parameter k, which links BOLD fluctuations to underlying

changes in CBF. Alone, the value of k̂k yields very little information
of physiological interest. This is because the value of k depends on
three parameters, av, l, and M. However, if the values of M and av

are obtained by other means, then an estimate of k becomes
equivalent to an estimate of l. This is of great physiological
interest as it represents the ratio of CMRO2 changes to CBF
changes throughout the analysis window. For a typical calibrated-
BOLD experiment, the value of av is assumed based on literature
values. Though there is still some disagreement about the
appropriate value to assume for av, the most recent estimates
suggest that it is approximately 0.2 [22]. Because of the
dependence of M on the baseline state, in most cases it must be
measured rather than assumed. The most common method of
estimating M is through a separate calibration experiment during
which simultaneous BOLD and ASL images are acquired while
the subject breaths CO2 enriched air [23]. The underlying
assumption of this experiment is that breathing CO2 increases
blood flow without affecting oxygen metabolism (l= 0), allowing
one to calculate M based on an assumed value of av. Of course, the
accuracy of the value of l estimated by this approach will depend

on the accuracy of the values obtained for av and M. However,
under conditions where these values may be obtained, BCP
analysis may yield an estimate of CMRO2-CBF coupling in
addition to CBF fluctuations.

Potential Sources of Bias in BCP estimates
The BCP approach outlined here relies implicitly on several

assumptions about the nature of both the underlying physiology of
functional hyperemia and the characteristics of the BOLD and
ASL signals that could potentially bias BCP estimates of f ½t" and l.
First, the BCP approach assumes that the CMRO2-CBF coupling
ratio (l) varies slowly enough in time that it can be considered
constant over a window of several or even many time points. If in
reality l varies significantly over a period of time shorter than the
window, the BCP estimates of both l and f ½t" may become less
accurate. Related to this is the assumption that the dynamics of the
CBF, CBV and CMRO2 responses to neural stimuli are tightly
coupled, at least as resolvable at the sampling rate of an ASL
experiment. In reality the coupling of these processes may not be
strictly tight, as analysis of transient features of the BOLD response
have led several investigators to conclude [24–27]. Dynamic
mismatch of these processes would effectively produce transient
fluctuations in the values of l or av in Equation 3, which again is
not currently accounted for in the BCP approach. Finally, the
BCP approach is based on the idea that CBF fluctuations may be
distinguished from noise by the correlated fluctuations they
produce in the ASL and BOLD signals. This implicitly assumes
that noise in the ASL and BOLD signals is not correlated in a
significant way. If correlated noise in the ASL and BOLD signals is
consistent with a similar estimate of k as the physiological
fluctuations in CBF and CMRO2, the correlated fluctuations will
add noise to the BCP estimation, reducing the ability of BCP

estimation to improve the precision of f̂f ½t". If the correlated noise
leads to a shift in the line defining the BOLD-ASL relationship it

will likely reduce the accuracy of both l̂l and f̂f ½t" as well as their
precisions.

Methods

Ethics Statement
This study was approved by the institutional review board at the

University of California San Diego, and written informed consent
was obtained from all participants.

Imaging
For the empirical component of this work, we reanalyzed the

raw data from a previously published calibrated-BOLD study [8].
Briefly, the study was conducted on 10 healthy adults (mean age
33+/27 years). Simultaneous BOLD and CBF images were
acquired on a GE Excite 3T scanner with a dual-echo arterial spin
labeling (ASL) PICORE QUIPSS II sequence [28] with a spiral
readout. ASL sequence parameters were six 5-mm slices aligned
with the calcarine sulcus, TR 2.5 s, TI1/TI2 600/1500 ms, TE1
2.9 ms, TE2 24 ms, 90u flip angle, FOV 240 mm, matrix 64664.
Functional imaging consisted of two scans during which subjects
performed a visual task and two calibration scans during which
subjects breathed a gas mixture containing 5% CO2. Each visual
task began with 60 seconds of rest followed by four cycles of 20
seconds of stimulus, 60 seconds of rest, and ended with a final 30
seconds of rest. The stimulus consisted of a black and white
checkerboard flickering at 8 Hz while numbers appeared in the
center of the checkerboard. Throughout scanning, cardiac pulse
and respiratory effort data were monitored using a pulse oximeter
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(InVivo) and a respiratory effort transducer (BIOPAC), respec-
tively. A high-resolution anatomical image was also acquired at the
start of each session, using a magnetization prepared 3D fast
spoiled gradient acquisition in the steady-state (FSPGR) sequence
(172 sagittal slices, 1-mm slice thickness, TI 450 ms, TR 7.9 ms,
TE 3.1 ms, 12u flip angle, FOV 25 cm, matrix 2566256).

Preprocessing
The first four images of each ASL scan were excluded from data

analysis to allow the MRI signal to reach steady state. All
functional runs were motion corrected and registered to the first
functional run using AFNI software [29]. The first echo data was
used for the analysis of CBF activity, and the second echo data for
the analysis of BOLD activity. To generate a perfusion-weighted
signal from the raw ASL images at each time point during the
functional scans, the image intensity corresponding to a ‘‘tag’’
image was subtracted voxel-wise from the average intensity of the
surrounding two ‘‘control’’ images. Similarly, at each ‘‘control’’
time point, the image intensity was added voxel-wise to the
negative average of the surrounding two ‘‘tag’’ images. BOLD-
weighted images were obtained by adding the image intensity at
each time point (tag or control) to the average of the intensities in
the two surrounding time points [13].

ROI Selection
ROI selection was performed on the data from the first visual

task using a general linear model (GLM) approach for the analysis
of ASL data [8,16]. A stimulus-related regressor in the GLM was
obtained by convolving the block design stimulus pattern with a
gamma density function [30]. The measured cardiac and
respiratory data were included in the GLM as regressors to
account for the modulation of the ASL signal caused by
physiological fluctuations [15,16] as were regressors related to
variations in heart rate and respiratory volume [19]. A constant
and a linear term were also included as nuisance regressors to
account for scanner drift. Voxels exhibiting CBF or BOLD
activation were detected after correcting for multiple comparisons
using AFNI AlphaSim [29,31] and setting an overall significance
threshold of p = 0.05 for CBF and p = 0.01 for BOLD given a
minimum cluster size of four voxels. For each subject, an active
region of interest (ROI) was defined as those voxels exhibiting both
BOLD and ASL activation. Subjects were excluded from further
analysis if fewer than 50 voxels met these criteria, resulting in the
exclusion of three subjects from further study. Following ROI
selection, data from the first visual task was excluded from further
analysis.

Voxel Scale BCP Analysis
To determine whether BCP estimation could be used to

improve the precision of a dynamic CBF time series, BCP analysis
was conducted on the measured ASL and BOLD time series
obtained from the second visual task on each voxel within the
previously defined ROI. Before performing the BCP analysis,
known sources of physiological noise and linear scanner drifts were
regressed out of the measured CBF- and BOLD-weighted time
series [15,16]. For each voxel, estimates of f0 and b0 were obtained
by averaging the first 20 time points of the measured ASL and
BOLD signals. The relative noise weighting terms s2

A and s2
B were

estimated for each subject by calculating the mean variance of the
measured ASL and BOLD signals (after physiological noise
regression) in voxels with a CSF partial volume greater than
95% as estimated by auto-segmentation of the high resolution
anatomical image with FSL’s FAST image segmentation tool [32].
The value of k that minimized Equation 4 was determined using a

Golden-Section search algorithm [33]. This algorithm is initialized
by bracketing the expected function minimum between two
assumed values (e.g. a and b). Here we assumed that (correspond-
ing to approximately for and ) in order to minimize any a priori
assumptions about its value. A third point (point c) is then chosen
that is intermediate to the bracketing values, forming a triplet of
test solutions (two brackets and an intermediate value). The
minimum of a function is then found by evaluating it at a fourth
point (point d) located 38.197% of the distance between the
intermediate point and the more distant bracket (a fractional
distance called the golden section). If the value of the function at d
is lower than at c, then c becomes a new bracket point and d
becomes the new intermediate value. If the value of the function is
greater at d than at c, then d becomes the new bracket and c
remains intermediate. In this way the distance between the
brackets is reduced until a specified tolerance is reached. Here the
tolerance was set to 0.001. At each test point, Equation 4 was
evaluated by mapping each pair of measurements A½t",B½t"ð Þ to

the closest point f̂f ½t",b̂b½t"
! "

on a line defined by Equation 3 and the

current value of k̂k.
To test the effect of voxel-wise BCP estimation, we examined

signal-to-noise improvements by measuring the correlation (r2) of
the BCP-estimated CBF signal f̂f ½t" for each voxel in the active
ROI with the stimulus-related regressor used in the GLM analysis
and comparing it to the correlations of A½t" and B½t" with the same

regressor. In addition, we evaluated the precisions of A½t" and f̂f ½t"
by calculating the standard deviation of each signal during the last
10 seconds of each stimulus, a time period usually assumed to
represent a steady state of elevated CBF, and in the period 12.5–
22.5 seconds after the cessation of each stimulus, a period of time
during the BOLD post-stimulus undershoot. We also assessed

whether BCP estimation introduced any bias in the estimate f̂f ½t"
by comparing the ROI-averaged values of f̂f ½t" and A½t" during the
steady state period of activity and during the BOLD post-stimulus
undershoot period. Because the hypercapnia calibration experi-
ment used lacks sufficient precision to estimate M at the single
voxel scale, we did not attempt to estimate l for individual voxels.

ROI-scale Analysis
BCP analysis was also conducted at the spatial scale of a region

of interest in order to determine the feasibility of estimating the
CMRO2-CBF coupling parameter l with this technique. As
described above, estimation of l is feasible only if M and av are
known. For this study we used the literature value of av = 0.2 for
the CBF-venous CBV coupling constant [22] and an additional
calibration experiment to make an ROI-scale estimate of M for
each subject. To determine M, data from the two hypercapnia
runs was first corrected for fluctuations due to physiological noise
and linear drifts on a voxel-wise basis using a general linear model.
Time series were then averaged across each subject’s ROI and
across the two experiments to produce a single pair of CBF and
BOLD time courses for each subject. Estimates of the baseline
CBF and BOLD signals were obtained from these time courses by
averaging the first 40 data points in the image series. Estimates of
the steady-state response to hypercapnia were obtained by
averaging the last 40 time points recorded while CO2 was being
administered. The scaling parameter M was then calculated for
each subject using the equation
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M~

bCO2
{b0

b0

1{avð Þ 1{
f0

fCO2
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where bCO2
and fCO2

represent the steady state BOLD and CBF

responses to hypercapnia, av is assumed to be 0.2, and l is
assumed to be zero.

Once values of M were obtained for each subject, the measured
ASL and BOLD signals from the second visual task were corrected
for fluctuations due to physiological noise and scanner drifts and
then averaged-spatially across each subject’s ROI. The value of k
for the average time courses was then estimated for a window the
length of the entire functional run and l was estimated using the
formula l~1{av{

k
M. For comparison, l was also estimated by a

method more commonly used in calibrated BOLD studies. To
obtain this reference estimate of l, the measured CBF and BOLD
responses of each subject were averaged over the last 10 seconds of
each visual task to produce the average steady-state CBF and
BOLD estimates fvt and bvt. These estimates were then plugged into
the equation

l~1{av{
bvt{b0

M 1{
f0
fvt

# $ ð6Þ

To investigate the possibility that l or av fluctuate through the
stimulus cycle, we next divided each subject’s ROI-averaged time
series into four epochs: a transient active period (first 10 sec. of
each stimulus), a steady state active period (last 10 sec. of each
stimulus), a transient inactive period (first 10 sec after each
stimulus) and a BOLD post-stimulus undershoot period (12.5–
22.5 sec after the cessation of each stimulus). We then concate-
nated the data points corresponding to each of these four epochs,
forming four BOLD/CBF time series pairs (per subject), each
containing 16 data points from within a single epoch. We then
used BCP analysis to estimate âavzl̂l~1{ k̂k

M separately for each
time series pair, under the assumption that systematic changes in l
and/or av would produce systematic differences in their sum from
epoch to epoch.

Results

Voxel Scale BCP Analysis
Application of BCP estimation at the single voxel scale

increased the correlation the CBF signal with the stimulus model
and increased the precision of our estimates of CBF changes
during steady-state active and BOLD-undershoot periods without
introducing any apparent bias. Figure 2a displays a representative
CBF time course from a single voxel after correction for known
sources of physiological noise (blue) and after constraint by BCP
analysis (red). For comparison, a scaled and shifted representation
of the measured BOLD signal is also shown (gray). Black lines
indicate when the visual stimulus was on. Note that the shape of
the constrained CBF signal is similar, though not identical, to the
BOLD signal, but that proper CBF scaling is maintained at the
stimulus peaks. It is also interesting to note that many of the very
large fluctuations in the measured CBF signal that occur between
peaks are also represented (albeit in a less dramatic way) in the
BOLD signal, and are thus attenuated but not eliminated from the
constrained CBF signal. Figure 2b displays the mean correlation
(r2) of single voxel time series from within an ROI with a stimulus-

related regressor. The height of the blue bars represents the mean
r2 of the measured CBF signal after correction for known
physiological noise for each subject. The height of the red bars
represents the mean r2 of the BCP estimated CBF signal. For
comparison, the grey bar represents the mean r2 of the measured
BOLD signal after correction for known physiological noise.
Across subjects, the mean correlation of the BCP estimated CBF
signal with the stimulus related regressor at the single voxel scale
was 0.45+/20.13 (mean +/2 std.). This was significantly higher
than the mean correlation of the measured CBF signal (0.19+/
20.07, p,0.01, pairwise t-test) and the measured BOLD signal
(0.42+/20.12, p = 0.026, pairwise t-test).

In addition to increasing the correlation of the CBF signal with
the stimulus model, BCP estimation increased the precision of
estimated changes in CBF during both the steady-state active and
BOLD post-stimulus undershoot periods. Across subjects, during
the active period, the mean standard deviation of the single voxel
CBF signal as a fraction of the baseline was 0.38+/20.14 for the
measured signal and 0.22+/20.08 for the BCP-estimated signal
(p,0.01 pairwise t-test). Similarly, during the undershoot period,
the mean standard deviation of the single voxel CBF signal was
0.38+/20.12 for the measured CBF signal and 0.14+/20.04 for
the BCP-estimated signal (p,0.01 pairwise t-test). For comparison,
the mean value of seA

was 36+/215% of the baseline ASL signal
or 28+/25 signal units. The mean value of seB

was 0.5% +/
20.2% of the baseline BOLD signal or 56+/218 signal units
across subjects. No bias was observed in the BCP estimated CBF
signals during either the steady-state active period or the post-
stimulus undershoot period. Figure 2c displays the mean change in
CBF as a fraction of baseline CBF signal for each subject during
the active (red) and undershoot (blue) periods for the measured
(horizontal axis) and BCP estimated (vertical axis) CBF signals.
Across subjects the mean change in CBF during the steady-state
active period was 0.46+/20.14 (mean +/2 std.) for the measured
CBF signal and 0.44+/20.15 for the BCP estimated CBF signal
(p = 0.3, pairwise t-test). The mean change in CBF during the
undershoot period was 20.02+/20.11 for the measured CBF
signal and 20.04+/20.08 for the BCP estimated CBF signal
(p = 0.31, pairwise t-test). For the measured BOLD signal, the
mean change across subjects was 0.014+/20.004 (mean +/2 std.)
during the steady-state active period and 20.002+/20.004 (mean
+/2 std.) during the undershoot period.

ROI-scale Analysis
BCP estimation at the ROI level yielded estimates of l in good

agreement with those produced by traditional calibrated BOLD
techniques despite the blind application of the BCP estimation
method to the entire time series. Figure 3 displays the estimates of
l found for each subject by traditional analysis and by BCP
analysis using the heuristic model. Figure 3a displays results from a
single subject (subject 2), demonstrating the difference between
estimating l by traditional calibrated BOLD methods and by BCP
estimation. In traditional calibrated BOLD analysis, BOLD and
CBF measurements collected during a period of steady-state
activity (red circled dots) are averaged together to produce a single
estimate of the change in BOLD and CBF signal associated with
the stimulus (red ‘X’). The location of this point in the CBF-BOLD
plane determines the value of l̂l. In contrast, with BCP analysis, all
(CBF, BOLD) data points from within a chosen time-window, in
this case the length of the entire functional run, are fit to a BOLD-

CBF relationship defined by a BOLD signal model. The value of l̂l
that minimizes Equation 4 determines the CMRO2-CBF coupling

ratio. Figure 3b displays the value of l̂l estimated for each subject
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using the BCP or traditional approach. Across subjects the mean

value of l̂l estimated by BCP analysis of the whole time series was
0.35+/20.14 (mean +/2 std.) and by traditional calibrated
BOLD, 0.36+/20.13 (p = 0.26, paired t-test). Across subjects the
mean scaling parameter M was found to be 0.11+/20.04.

As is shown in Figure 3c, there were not any clear systematic
differences across subjects in the values of l+ av estimated at
different stages of the stimulus cycle. Across subjects, l̂lzâav was
estimated to be 0.57+/20.12 during the transient active period,
0.55+/20.14 during the steady-state period, 0.53+/20.15 during
the transient off period, and 0.59+/20.12 during the post stimulus
undershoot. Not one epoch was found to produce an estimate of
av+l that was significantly different from another across subjects
(p.0.2 for all pairwise t-tests, even without correction for multiple
comparisons).

Discussion

In this study we report a new method of measuring dynamic
CBF fluctuations by combining information obtained through
simultaneous acquisition of ASL and BOLD image time series.
This approach takes advantage of the favorable features of both
time series. The ASL measurement is directly proportional to
CBF, but the low signal to noise ratio makes it difficult to assess
dynamics. The BOLD signal has much better sensitivity, but is
related to the underlying CBF fluctuations in a complicated and
nonlinear way. To simplify this relationship, we incorporated a
recent model of the BOLD effect. The BOLD and ASL signals are
then essentially treated as two independent but noisy windows into
the same underlying physiological process, so that by constraining
the CBF fluctuations to be consistent with the BOLD signal model,
we may substantially decrease the influence of noise on the CBF
time series and increase the precision of CBF estimates.
Importantly, the BOLD constrained perfusion (BCP) estimation
procedure does not require any prior knowledge of the stimulus,

suggesting that the method may be applicable to complex tasks in
addition to conventional block and event-related stimulus designs.

Reducing the Influence of Noise on CBF Estimates and
Time Series Measurements

To test the method we used data from a simple, block-design
visual task for which we believed we could generate a fairly
accurate, a priori model of dynamic CBF fluctuations. We then
compared the correlation of measured and BCP-estimated CBF
time series with the predicted model as a metric for the
improvement in SNR. We found that the value of the BCP
estimated CBF signal was on average more than 200% that of the
measured CBF signal based on ASL alone at the single voxel scale
and that it was comparable to, and even slightly greater than, the
r2 value of the measured BOLD signal, suggesting a substantial
decrease in the influence of noise on the CBF time series. We
noted that the shape of the constrained CBF time series was
similar, though not identical, to that of the measured BOLD time
series. They are not identical because both the BOLD and CBF
signals are assumed to contain some noise, which differentiates
BCP estimation from a simple, non-linear regression analysis.
However, it is not surprising that the estimated CBF is similar to
the measured BOLD, given the higher SNR of the BOLD signal.
In addition, we noted that, interestingly, many of the very large,
inter-stimulus fluctuations in the measured CBF signal were also
present, though to a lesser extent, in the BOLD signal, and were
thus reduced in magnitude but not absent in the constrained CBF
signal. We cannot conclude definitively whether these correlated
fluctuations partly represent real fluctuations in CBF (perhaps
related to opening and closing of eyes between stimuli or ‘‘resting
state’’ activity) or whether they represent correlated noise in the
BOLD and CBF signals. Several features of our image acquisition
and processing protocol, however, reduce the likelihood that these
fluctuations are pure artifacts. First, the CBF and BOLD signals
are acquired from separate spiral readouts, making it unlikely that

Figure 2. BCP estimation improves precision of CBF estimates without inducing estimation bias. A) Representative CBF time series from
a single voxel within the visual cortex before (blue) and after (red) BCP estimation. For comparison, a scaled and shifted version of the measured
BOLD signal is displayed in gray. Black lines indicate when the stimulus (8 Hz flashing checkerboard) was on. B) BCP significantly reduces the
influence of noise on the CBF signal as measured by correlation with a predicted hemodynamic response. Height of the blue bars indicates mean
correlation (r2) for each subject between measured CBF time series (after removal of known sources of physiologic noise) and a predicted CBF time
course based on the convolution of the stimulus paradigm with a hemodynamic response function. Height of the red bars indicates mean correlation
between BCP estimated CBF time series and the same predicted time course. For comparison, grey bars indicate the correlation between the
measured BOLD response (after removal of known sources of physiologic noise) and the predicted time series. Error bars indicate the standard
deviations of the calculated r2 values across the ROI. C) BCP estimation produces no detectable bias in CBF estimates of steady-state activation
response or post-stimulus undershoot response. Scatterplot shows mean CBF responses for each subject during steady-state activation (red) and
undershoot (blue) before (horizontal axis) and after (vertical axis) BCP analysis. No significant difference was observed between pre- and post-BCP
estimates. BCP: BOLD Constrained Perfusion. CBF: Cerebral Blood Flow. ROI: Region of Interest.
doi:10.1371/journal.pone.0054816.g002
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random readout noise or k-space spikes would be correlated across
the two signals. Second, the surround subtraction procedure used
to produce the CBF signal should further reduce the correlation of
its noise with that of the BOLD signal. For example, while rapid
fluctuations in the static tissue signal that are precisely timed with
control images will produce correlated fluctuations in the BOLD
and CBF signals, those that are precisely timed with tag images
will produce anti-correlated fluctuations, and those that last longer
than a tag-control triplet will be preserved in the BOLD but
eliminated from the CBF signal. Still, further work must be done
to investigate the source of these correlated inter-stimulus
fluctuations, and if they prove to be artifacts, to account for them.

We further investigated the effect of BCP analysis on the
precision of the CBF signal by measuring the standard deviation of
CBF measurements taken during a period of presumably steady-
state activity and during the post-stimulus BOLD undershoot.
Again, we found that BCP analysis significantly reduced the
influence of noise on the measurements, reducing the standard
deviation of the measurements by approximately 40% during the
active period and by approximately 60% during the undershoot
period.

We were concerned that despite the improvement in the
precision of our measurement, there might be some bias in the
magnitude of the BCP estimated CBF fluctuations as compared to
the measured ASL signal, which we assume, on average, reflects
the true magnitude of CBF fluctuations. We were particularly
concerned about this possibility because we assume in applying the
BCP estimation approach that the parameters of our BOLD signal
model are fixed throughout the duration of a chosen time window,
which in our analysis encompassed the entire experiment. As
discussed above, despite the simplicity of our experimental design,
the stimulus we chose consisted of several epochs (e.g. rest,

activation, post-stimulus BOLD undershoot, and transitions
between activity and rest) during which several of our BOLD
model parameters (in particular l and possibly av as well) might be
expected to change significantly, and we anticipated that the non-
stationarity of these parameters might bias the BCP estimate of the
CBF signal.

To determine whether bias was significant in the BCP estimated
signal, we averaged CBF measurements taken during the steady-
state period of activity and during the post-stimulus undershoot
period and compared them to average BCP estimates of the same
periods. We found that during the steady-state activity period, the
average BCP estimate was only 1.6% of the baseline signal lower
than the average measurement and that during the undershoot
period the average BCP estimate was only 2.1% lower. Neither of
these differences was statistically significant. While we cannot
conclude definitively from this finding that the BCP estimate is
unbiased or that this finding is applicable to all stimulus
paradigms, we take it as an encouraging sign that the BCP CBF
estimate is reasonably robust despite the potential weakness of the
parameter stationarity assumption. Further experiments will be
important to test this potential limitation of the method.

Estimating CMRO2-CBF Coupling
BCP estimation with the heuristic model yields a set of CBF

estimates as well as an additional parameter estimate, k̂k. We noted
that the value of this parameter alone could not be interpreted in a
physiological sense. However, we hypothesized that if values for
the CBF-CBV coupling parameter, av, and the BOLD model

scaling factor, M, could be obtained, then the value of k̂k could be
used to calculate an estimate of the ratio of fluctuations in

CMRO2 to CBF, l̂l, throughout the analysis window. Because of

Figure 3. Calibrated BCP allows estimation of CMRO2-CBF coupling without prior knowledge of the stimulus paradigm. A)
Representative, ROI-averaged single subject (subject 2) data comparing traditional and BCP approach to estimating l, the ratio of changes in CMRO2

to changes in CBF evoked by a stimulus. In traditional calibrated BOLD analysis, BOLD and CBF measurements collected at time points (TPs) during
which the stimulus response is assumed to be in a steady state (SS). These measurements (red circled dots) are averaged into a single measurement
(red ‘X’). The location of the ‘X’ in the BOLD-CBF plane determines the coupling ratio l. Conversely, calibrated BCP estimation requires no knowledge
of the stimulus pattern. All data points within a time window (here, the length of the experiment) are fit to a cost function (Equation 4 in text) using a
mathematical model (here Equation 3 in text) to link BOLD and CBF fluctuations. The value of l that minimizes the difference between the measured
and estimated BOLD and CBF values given the relative noise (dashed black line) determines the coupling ratio. B) Estimates of l produced by blind
Calibrated BCP analysis agree with those produced by traditional calibrated BOLD analysis. Height of blue bars indicates traditional calibrated BOLD
estimate for each subject. Height of red bars indicates the calibrated BCP estimate for a window the length of the full time series. No significant
difference between the two was detected. C) Epoch-based BCP analysis does not reveal evidence of systematic variation of model parameters with
stimulus cycle. Height of bars indicates the estimated sum of the model parameters av and l during the transient active (gray), steady state active
(blue), transient inactive (white), and BOLD undershoot periods (red). Considerable differences between steady state and undershoot estimates may
be seen in several subjects; however, no systematic differences were detectable across the group. BCP: BOLD Constrained Perfusion. ROI: Region of
Interest. CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral Blood Flow.
doi:10.1371/journal.pone.0054816.g003
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the imprecision of the calibration experiment required to estimate
M, the test of this hypothesis was conducted at the scale of a region
of interest in the visual cortex. To determine whether the blind
application of BCP analysis to the complete time series could
produce an accurate estimate of l, we compared estimates of l
produced by a traditional calibrated BOLD technique to estimates
produced by BCP analysis of the complete time series. We found
that l estimates were highly consistent between the traditional and
BCP estimation techniques, with no significant differences
between the two. We then divided the time series into distinct
epochs in order to look for systematic differences in the sum of l
and av during the steady state active period, the post-stimulus
BOLD undershoot period, and the transition periods as the
stimulus was turned on and off. We looked at the sum of l and av,

rather than l alone, because in transition periods we cannot be
certain that av maintains its steady state value. Across subjects, no

systematic differences in the sum l̂lzâav were found between any
epoch pairs. Again, these findings are encouraging, as they suggest
that potentially divergent CBF and BOLD dynamic transients are
not having a strong biasing effect on our estimates of k; however,
more work will be required to determine conclusively whether the
apparent lack of systematic difference is attributable to an
underlying physiological process or simply to signal noise.

The BOLD Post-stimulus Undershoot
The lack of evidence of systematic bias in the BCP estimates of

CBF and k during the BOLD undershoot period is somewhat
surprising given our current understanding of its etiology. The
origin of the BOLD post-stimulus undershoot has been a topic of
considerable debate for nearly two decades. Several studies have
found the undershoot to be consistent with a slow return to
baseline of CMRO2 compared with CBF [34,35], while others
have found it to be consistent with a slow return of venous blood
volume [36,37] or a post-stimulus CBF undershoot [37]. Transient
uncoupling of CBF and CMRO2 dynamics would result in
changes in l (increased for a slow CMRO2 recovery and
decreased for a CBF undershoot at baseline CMRO2). The model
for the BOLD signal used in the BCP analysis does not include the
possibility of a slow return of blood volume explicitly, so we would
expect this effect to appear as a slow recovery of CMRO2 and a
correspondingly higher value of l (i.e., the basic problem is that
these two potential effects can produce similar BOLD responses).
Each of these potential undershoot mechanisms suggest that k (or
l+av) should be significantly different in the active and undershoot
states, and that as a result, our estimate of CBF in the undershoot
period should be systematically biased if we blindly apply BCP to a
long time series. The reason we do not see this bias may be
because the BOLD and CBF fluctuations in the undershoot period
are relatively small. As Figure 3a demonstrates, CBF-BOLD
contours representing distinct values of l converge at the origin.
As a result, near the origin small deviations in the CBF-BOLD
plane produce large changes in l. Thus in this regime, systematic
errors in the estimated CBF signal due to a biased estimate of k are
likely to be small, especially compared to the random error due to
noise. This has both positive and negative implications for BCP
analysis. On the positive side, it suggests that even large changes in
l during an undershoot should not cause dramatic bias in the CBF
estimates made in that period, as we have seen here. On the
negative side, it suggests that as the magnitude of CBF and BOLD
fluctuations within a window of interest decrease, the precision of
BCP estimates of l should decrease as well.

Potential Applications for BCP Analysis
The two principal findings of this work were (1) that the blind

application of BCP-analysis to voxel scale CBF time series
increased their correlation with the hemodynamic model and
increased the precision of CBF estimates both in periods of steady-
state activity and post-stimulus undershoot without producing
significant estimation bias, and (2) that the blind application of
BCP-analysis to ROI-scale BOLD and CBF data produced an
estimate of the CMRO2-CBF coupling parameter l that was
highly consistent with one produced by traditional, steady-state
calibrated BOLD analysis. These findings are encouraging, as they
suggest that transient fluctuations in our BOLD model parameters
(l and av) may not dramatically bias our estimates of instanta-
neous CBF or CMRO2-CBF coupling over a window of time if the
underlying hemodynamic and metabolic activity is coupled in a
relatively stationary way, as was the case in these experiments. The
findings presented here suggest that BCP analysis may be
immediately useful in the study of the hemodynamic responses
of small regions of interest or even single voxels to simple block-
design stimuli, as a way of improving the precision of CBF
estimates. Similarly, BCP has the potential to be useful in the study
of stimuli that cannot be presented repeatedly or for prolonged
periods, either because they are noxious or produce habituation or
sensitization. BCP analysis could also be potentially applied to the
calibration of the BOLD response by fitting for the parameter k
during a CO2 challenge and calculating M based on the
assumption that l= 0; however, given the CO2 challenge often
lasts several minutes, BCP may not produce a more precise
estimate of M than is achievable with simple temporal averaging.

Looking forward, we hope that BCP analysis will prove to be a
useful tool in the quantitative study of hemodynamic and
metabolic activity associated with more natural neural tasks, such
as watching movies, listening to music, or even rest, tasks that are
difficult to study with traditional calibrated BOLD techniques
because the temporal pattern of CBF and BOLD fluctuations may
not be predicable or replicable with repeated stimuli. To date,
neural tasks of this type have typically been studied in a qualitative
or semi-quantitative manner. Several groups [38,39] have used
BOLD imaging alone to investigate the patterns of neural activity
associated with watching popular films and found significantly
correlated signal fluctuations not just across regions within a single
brain, but across the brains of multiple subjects, suggesting that
such natural stimuli might be used to drive blood flow and oxygen
metabolism fluctuations throughout the brain, allowing many
regions to be studied at once. Similarly, resting state BOLD fMRI
has been used extensively to map the spatial and temporal patterns
of hemodynamic activity that occur when a subject lies quietly in
the MR scanner [40–42]. ASL has also been used for this purpose
[43,44] and the two modalities have even been combined in a
semi-quantitative fashion to demonstrate that the ratio of BOLD
fluctuations to ASL fluctuations at rest is closer to the ratio
associated with a visual task than an iso-metabolic breathing task,
suggesting a metabolic basis for resting state BOLD fluctuations
[45]. The consensus produced by this body of work is that
hemodynamic and metabolic activity in the brain is highly
coordinated even in nominal states of rest. However the
magnitude of this activity, and thus its importance in maintaining
homeostasis, remains poorly understood. If BCP estimation may
be applied to quantitatively measure the CBF and CMRO2

fluctuations associated with natural neural activity, it could
provide important insights into the physiology of complex neural
processing and how it is altered by disease.
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Potential Limitations and Future Work
Despite the promising results of this proof-of-principle exper-

iment, we acknowledge that the results presented here do not
demonstrate conclusively that BCP analysis will prove to be robust
under more general experimental conditions, and more study will
be necessary before BCP analysis is ready to be used to study the
physiology of complex neural processing. A key issue that requires
further study is the sensitivity of the BCP estimation approach to
the dynamics of the BOLD signal. As discussed above, the BOLD
response to neural activity is notable for several transient features
that have been observed in various studies including initial dips
[26], early overshoots [25], and post-stimulus undershoots [24].
While no definitive dynamic BOLD model has yet been described,
both experimental [35,46] and theoretical [27,36,47] analyses
agree that these transient features occur due to differences in the
dynamic responses of CMRO2, CBF, CBV to neural stimuli. This
poses a potential challenge for BCP estimation, as the simplifica-
tions made to the BOLD signal model in order to reduce it to a
function of CBF and a few unknown parameters implicitly requires
the assumption that these physiological variables are dynamically
synchronized, at least over the finite length of a window of time
and within the temporal resolution of our measurements. In this
study we looked for evidence of bias due to this assumption by
comparing the mean responses of measured and BCP estimated
CBF time series both in the active state and during the post-
stimulus undershoot, by comparing estimates of l produced by
blind BCP estimation with those made by traditional calibrated
BOLD analysis, and by comparing BCP estimates of the sum l+av

at different stages of the stimulus cycle. None of these tests revealed
evidence of bias, even during the period of the BOLD post-
stimulus undershoot. This is quite encouraging, however, the lack
of evidence of bias in this study cannot be taken as definitive proof
that BCP analysis is robust to these transients, nor does it
guarantee that BCP analysis will be robust to transient dynamics
under more general experimental conditions. To test this
assumption more rigorously, we are currently working to develop
visual stimuli that continuously drive CBF and CMRO2 in ways
that will allow us to carefully examine how both how the dynamics
and amplitudes of CBF and BOLD fluctuations influence the
accuracy and precision of BCP estimation. A useful tool in
assessing the robustness of BCP analysis under these more general
conditions may be ASL with background suppression. Several
methods of acquiring background suppressed ASL images have
recently been developed [48–50], though they share the common
strategy of reducing noise from the static tissue compartment
through the application of multiple inversion pulses timed to null
the static tissue signal at the time of image acquisition [51]. An
advantage of ASL with background suppression is that it achieves
SNR gains independently of the BOLD effect, which makes it less
vulnerable to the sources of potential bias in BCP analysis. CBF
time series produced by background suppressed ASL may thus
prove to be useful reference functions for determining BCP
estimation bias in future studies.

Conclusions
We have presented here a proof-of-principle demonstration of

the feasibility of improving the precision of dynamic estimates of
CBF by combining information from simultaneously acquired
ASL and BOLD images through a technique we term BOLD
Constrained Perfusion (BCP) estimation. Further, we have shown
that, under the condition that a calibration experiment is
conducted, the BCP approach may be utilized to obtain
quantitative information about the coupling of CMRO2 and
CBF fluctuations. Importantly, we have demonstrated that this

technique may be used without taking into consideration the
temporal dynamics of the stimulus presented, suggesting that it
may be useful in the quantitative study of hemodynamic and
metabolic responses to neural tasks that cannot be easily modeled
temporally. Further studies are required to investigate and if
necessary correct for the sensitivity of the BCP approach to the
dynamics of CMRO2, CBF, and CBV; however, the results
presented in this initial test are quite promising and suggest that,
despite its simplicity, BCP analysis may improve our ability to
estimate CBF and CMRO2 fluctuations under conditions that are
currently challenging to study with traditional calibrated BOLD
techniques.

Supporting Information

Figure S1 Calibrated BCP Estimation with the Davis
model. In this bar chart, the height of blue bars indicates
traditional calibrated BOLD estimate of l, the ratio of evoked
changes in CMRO2 to CBF, for each subject. The height of red
bars indicates the BCP estimate. Dark colored bars represent
estimates based on the Davis model. Light Colored bars represent
estimates based on the heuristic model. No significant differences
between BCP and traditional estimates produced by the same
model were observed. However, a small but significant difference
in the estimates produced by the two models was observed,
regardless of whether BCP or traditional calibrated BOLD
estimation was used. BCP: BOLD Constrained Perfusion. ROI: Region
of Interest. CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral
Blood Flow.
(TIFF)

Figure S2 Danger of attributing physiological signifi-
cance to simultaneously estimated values of l and M. In
the heuristic model (Equation 3 in Text), The CMRO2-CBF
coupling parameter, l, and the scaling parameter, M, may be
lumped into a single parameter, k, when both of their values are
unknown. BCP analysis may then still be used to improve CBF
estimates, although k has no real physiological meaning. In the
Davis model (Equation S1 in Document S1), l and M cannot be
lumped together and must be estimated simultaneously from the
data if both are unknown. However, if estimated in this manner,
their values will still not be interpretable physiologically because
the BOLD-CBF relationship is not uniquely defined. The plot
above illustrates this point, displaying two nearly identical BOLD-
CBF relationships defined by the Davis model for two very
different pairs of l and M. BCP: BOLD Constrained Perfusion.
CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral Blood Flow.
(TIFF)

Document S1 Discussion of BCP Analysis with Davis
model. In theory BCP estimation should be applicable to a
variety of mathematical models of the BOLD signal. Here we
repeated our analysis using the Davis model (Equation S1 in
Document S1) instead of the Heuristic model (Equation 3 in the
Text) to constrain the relationship between BOLD and CBF
measurements.
(DOC)
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CHAPTER 6 CONCLUSIONS 

Why study the BOLD signal? 

 Functional brain imaging is an exciting field with the potential to provide extensive 

insight into how the brain works at a macroscopic level. The classic technique of neuroscience 

is patch-clamp and focuses on how single neurons respond to and interact with the environment 

around them, but it is also necessary to relate these findings to the global function of the brain. 

Other electrophysiological techniques and optical two-photon imaging examine populations of 

neurons, but all require an invasive surgical procedure to gain access to the brain through the 

skull. Optical techniques are also limited by their ability to penetrate at most the top 1mm of the 

brain due to scattering of light. Other optical measurements exist, which are non-invasive, and 

measure both blood velocity and oxygenation, but again these are limited by their inability to 

penetrate deeply into the brain. Electroencephalography (EEG) and magnetoencephalography 

(MEG) are non-invasive techniques, which directly measure fluctuations in synchronized 

neuronal currents that reach the scalp in the form of voltage changes and magnetic fields. Both 

directly measure the electrical activity in the cortex but EEG is limited by spatial resolution 

while MEG has low signal magnitude. Positron emission tomography (PET) detects gamma-

rays from positron-emitting radionuclide tracers and can measure cerebral blood flow (CBF), 

glucose metabolism, and oxygen metabolism (CMRO2). A limitation of PET is that it involves 

exposure to ionizing radiation, especially when combined with computed tomography (CT). Of 

these techniques, PET is the most similar in what it measures to functional MRI (fMRI).  

The advantage of functional fMRI is that it is non-invasive, safe, and can provide 

information about deep structures of the brain including subcortical structures such as the 

thalamus. To integrate knowledge gained from all of these modalities in order to gain a better 
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understanding of how the brain works, it is necessary to understand how the technologies are 

related. Here I focused on relating the blood oxygenation level dependent (BOLD) fMRI signal 

to underlying physiological changes, especially CBF and CMRO2 while applying the technique 

to neurophysiological questions of interest. Of particular interest is the relationship of the 

BOLD signal to CMRO2, which is related to neural activity through the large energy 

requirement of pumping ions against their gradient at neural synapses [1,2]. 

Interpreting changes in the BOLD signal response 

Similar to optical techniques measuring blood oxygenation changes, the BOLD signal is 

not a direct reflection of neural activity but rather depends on the fractional change in 

hemoglobin oxygen saturation, which is a function of cerebral blood flow (CBF), oxygen 

metabolism, and the baseline state of the brain. The complexity of the BOLD signal makes 

interpretation of changes in the response magnitude difficult for two reasons: a change in the 

BOLD response does not necessarily imply a change in neural activity [3,4], and a lack of a 

measureable change in the BOLD response does not equate to a constant neural response [5]. 

Specifically previous studies using acetazolamide and end-tidal carbon dioxide manipulations 

modulated basal cerebral blood flow thereby producing changes in the BOLD response 

magnitude despite an expectation that the neural and CMRO2 responses to the stimuli were 

unchanged [6-9]. Similarly in work presented in this dissertation, I showed that without a 

measureable change in the BOLD response pre- and post-caffeine, there could still be changes 

in the underlying neural activity [5]. In other words, both false positives and false negatives are 

possible when equating changes in the BOLD signal alone to changes in neural activity. The 

complexity of the BOLD signal, which leads to this conundrum, suggests an approach for 

measuring how CMRO2 changes with a stimulus or under different baseline conditions. By 

combining measurements of BOLD with CBF, a measurement of cerebral oxygen metabolism 
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can be extracted in an approach known as calibrated fMRI [10], thereby providing an indication 

of the underlying neural activity. 

Prospects for quantitative fMRI: neuromodulation due to caffeine 

To examine the prospects for quantitative fMRI, I studied the effects of caffeine on 

BOLD, CBF and CMRO2 in the baseline state and in response to a visual stimulus. Using 

previously developed acquisition and analysis methods for combined BOLD and arterial spin 

labeling (ASL) [11,12], I quantitatively measured fluctuations in CBF and R2*, which is the MR 

signal decay rate that produces the BOLD signal. By combining these measurements with a 

calibration experiment to determine the baseline state of the brain, I was able to calculate 

changes in both baseline CMRO2 and the CMRO2 stimulus response using the Davis model of 

the BOLD response [10]. I found that caffeine ingestion results in a decrease in baseline CBF 

and an increase in baseline CMRO2 [5]. Additionally in response to a visual stimulus, the CBF 

response was blunted by caffeine while the CMRO2 response was increased. Notably these 

changes in the CBF and CMRO2 stimulus responses combined to produce no change in the 

BOLD response to the visual stimulus pre- and post-caffeine thus demonstrating how changes 

in neural activity can be masked by the complexity of this signal.  

Limitations of the calibrated fMRI approach 

This study clearly shows the dangers of only measuring the BOLD signal when 

examining interventions affecting the central nervous system. While it is possible to use the 

BOLD signal directly to examine immediate CNS effects of drugs by infusion while subjects lie 

in the scanner [13], it is much more difficult to measure the effects when subjects must be 

removed from the scanner or studied on multiple days. In these types of studies, it is more 

reliable to calculate the quantitative signal decay rate, R2*, from the echo decay curve in order 
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to characterize changes in the BOLD signal [14]. Furthermore changes in the BOLD signal 

response are confounded by changes in the blood flow response, which necessitates combining 

BOLD and CBF measurements with a mathematical model to extract information about oxygen 

metabolism, which is likely to be a better indicator of neural activity. Inherent to this approach 

are assumptions due to both the mathematical model and the calibration experiment. Classically 

the Davis model for calibrated fMRI has been used [10], but this model neglects contributions 

to the BOLD signal from the intravascular compartment [15], incorrectly assumes cerebral 

blood volume (CBV) changes are distributed equally across the vascular compartments [16-18], 

and ignores the exchange of blood for tissue as CBV increases with activation [19]. 

Furthermore it relies on an additional calibration experiment to measure a scaling parameter, 

which is reflective of the baseline state of the brain. Most often the calibration performed 

requires subjects to breathe 5% carbon dioxide  (combined with 21% oxygen), but this 

additional experiment is time consuming, uncomfortable for subjects, and impossible in many 

patient populations. There are also indications that hypercapnia is not isometabolic, a key 

assumption of the calibration calculation [20,21].  

To address these criticisms of the Davis model and further our understanding of the 

BOLD signal, I developed a detailed mathematical model (DBM) of the BOLD response 

incorporating factors that affect the baseline brain state and how changes in blood volume 

depend on changes in blood flow [22]. Using the DBM to test the accuracy of the Davis model 

[10], I found that the physiological factor having the greatest impact on CMRO2 calculations is 

the dependence of venous CBV on CBF while variation in hematocrit and oxygen extraction 

fraction are accounted for by performing a calibration experiment. This result confirmed the 

potential for error in Davis model calculations due to the underlying assumption that CBV 

changes are distributed equally, but beyond this variation I determined that the Davis model is 
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surprisingly accurate in most areas of CBF-CMRO2 coupling. The exception is when CBF and 

CMRO2 change in opposite directions, which is typical of caffeine ingestion. In this case, 

optimization of α and β in the Davis model by treating them as free parameters improves the 

accuracy of the Davis model for calculating CMRO2 changes. While these results address 

criticism of the mathematical form of the Davis model, the limitations due to calibration 

(questionable accuracy and limited application in patient populations) remain. 

Variation in the coupling of CBF and CMRO2 

Calibration of the BOLD signal provides quantitative information about CMRO2 as an 

indication of the underlying changes in neural activity, but this specific information may not 

always be necessary to study changes in neural activity using fMRI. In fact by developing 

techniques independent of calibration, questions regarding the accuracy of the calibration can be 

circumvented and a more diverse population of subjects can be studied making the possibility of 

clinical studies more likely. One possibility for identifying changes in the underlying neural 

activity without a calibration experiment is monitoring how the coupling of CBF and CMRO2 

responses change with stimulus intensity or other stimulus characteristics. Supporting this 

approach are studies indicating that blood flow and energy metabolism respond to different 

aspects of neural activity. Previously it was believed that energetically expensive increases in 

neural activity first produced an increase in the metabolic demand, which in turn triggered a rise 

in blood flow all in a linear fashion [23]. The work of Fox and Raichle questioned this 

presumption revealing that blood flow and oxygen metabolism are not tightly coupled as brain 

blood flow increased much more than the change in oxygen metabolism in response to a 

sensory stimulus [24]. Current thinking is that CMRO2 may simply respond to the net energy 

demand associated with evoked neural activity (more specifically the energetic cost of pumping 

sodium and potassium ions against their gradients) [1,25] while changes in CBF are thought to 
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respond to neuronal signals in a feed-forward manner with the balance of these changes 

determining the magnitude of the BOLD response [25,26]. The details of these changes and the 

type of neuronal activity therefore will likely affect the coupling of CBF and CMRO2 changes. 

To show that CBF changes are not simply dependent on metabolic signaling molecules, 

research has focused on determining a direct relationship between neural activity and changes in 

blood flow. Evidence supporting this hypothesis comes from a diverse group of animal studies 

using techniques such as electrophysiological recordings, optical imaging, PET, and fMRI. 

Instead of metabolic signals initiating the blood flow response, in vitro research indicates that 

specific neuronal cell types directly produce the arteriolar response [27-29]. In particular 

research using patch-clamp recordings coupled to confocal observation of GABA inhibitory 

interneurons and blood vessels indicate that activation of neurons expressing vasoactive 

intestinal peptide (VIP) or nitric oxide synthase (NOS) produce vasodilation while those 

expressing somatostatin and neuropeptide-Y (NPY) elicit vasoconstriction [28]. Related work 

using infrared videomicroscopy showed that specific cerebellar cell types either dilate (stellate 

cells) or contract (Purkinje cells) the microvasculature [29]. In vivo studies have also linked 

neuronal inhibition to both vasoconstriction and the negative BOLD response using fMRI or 

optical imaging combined with electrophysiological recordings [30-32]. Further evidence of 

blood flow dependence on neural activity rather than on the metabolic consequences of neural 

activity is the dissociation of glucose metabolism from blood flow; in areas with predominantly 

neuronal inhibition an increase of glucose consumption was shown to occur in the presence of 

vasoconstriction [31,33]. Numerous studies also cite a role for astrocytes in the coupling of 

neural activation and blood flow changes, as astrocytes mediate both vasodilation [34-36] and 

vasoconstriction [37,38]. These studies in summary provide mechanisms by which neural 

activity modulates cerebral blood flow independent of metabolic changes in the brain. 
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To study these changes in CBF and CMRO2 responses in a straightforward manner, I 

proposed a new heuristic model of the BOLD response, which inspired the “ratio method” for 

identifying differences in n for the same region of interest activated by different stimuli based 

only on the measured BOLD and CBF signals. My findings indicate that the ratio method 

performs well at 1.5T and 3T, but caution should be used when applying this method at higher 

field strengths where the method may predict a change in n where one does not exist (Chapter 

3). Within the context of a calibrated BOLD experiment, I also demonstrated that the heuristic 

model performs with accuracy similar to that of the Davis model when changes in CBF and 

CMRO2 are both positive (Chapter 3). To test the ratio method on experimental data, I applied it 

to previously published data confirming that as visual stimulus intensity is increased so does n 

for the response in primary visual cortex. The approach using the ratio method is 

straightforward and simple, but the original analysis was cumbersome as it used the Davis 

model and multiple calculations assuming a broad range of values for M, α and β. In an 

additional application of this method, I compared a complex movie stimulus to a simple 

flickering checkerboard and found no difference in the coupling of blood flow and oxygen 

metabolism. This was in contrast to our hypothesis that more complex stimuli would be 

associated with lower n as additional afferents modified the response of the visual cortex 

increasing CMRO2 more than CBF. Examining this data further I found that during a movie 

stimulus the variance of R2* and CBF in the primary visual cortex is increased over that of the 

baseline and that the correlation of the CBF and R2* responses to a long movie stimulus is 

higher across subjects watching the same movie than it is within the same subject watching 

different movies (Chapter 4). These results were in line with our hypothesis and existing data 

that the brain responds in a consistent manner to a complex stimulus even across subjects [39-

41]. 
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Improving calibrated BOLD 

Returning to discussion of calibrated BOLD, quantitative measurements of CMRO2 

using combined CBF and BOLD measurements rely on the accuracy of the calibration 

experiment used to measure the scaling parameter. Numerous approaches have been proposed 

for calibration and typically involve inhaled gases (hypercapnia, hyperoxia or some 

combination). The original and most common calibrated BOLD approach, hypercapnia, 

assumes that cerebral oxygen metabolism does not change when subjects inhale carbon dioxide, 

but this assumption has been questioned [9,20,21,42,43]. Gas calibrations are also time-

consuming and uncomfortable for subjects. To address these criticisms, some groups have 

proposed using hyperoxia as an alternative for calibrating the BOLD signal, but an ideal 

calibrated BOLD experiment would not use an inhaled gas protocol at all and would instead 

rely on imaging techniques to measure tissue properties reflective of the baseline state of the 

brain.  

We used the DBM to simulate one such gas-free BOLD calibration, the reversible 

signal decay rate (R2’), and compared this new calibration method with those using inhaled 

gases. We simulated whether combining measurements of CBF with BOLD responses scaled by 

one of the calibration parameters (hypercapnia, hyperoxia or R2’) would be sufficient to 

distinguish between levels of CMRO2. While both idealized hypercapnia (no metabolic effect) 

and R2’ methods for calibration distinguished between levels of CMRO2 change, hyperoxia 

calibration did not, because it is sensitive to fluctuations in baseline CBV, baseline oxygen 

extraction fraction and subject hematocrit [44,45]. Consistent with previous findings, the 

physiological factor having the greatest impact on all calibration methods was the dependence 

of venous CBV on CBF; hypercapnia was the least sensitive to this variation while hyperoxia 
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and R2’ were more sensitive. These findings support pursuit of a measurement for R2’ as a 

simple method of calibrating BOLD fMRI studies. 

While hyperoxia is not a reliable method for calibrated fMRI, there does appear to be a 

direct relationship between the BOLD signal change due to hyperoxia and venous CBV [46]. 

We showed that the existing analysis for determining venous CBV based on dynamic contrast 

agent experiments has substantial systematic error, because it assumes that the change in the 

BOLD signal due to hyperoxia depends only on the intravascular signal. Instead a new method 

relating the BOLD signal change directly to venous CBV is more reliable and consistent with 

the limited literature in this area. Quantitative measurements of venous CBV are important, 

because there may be important differences in the venous vasculature between the healthy brain 

and disease state. Venous CBV also strongly influences the magnitude of the BOLD response, 

so these measurements may be useful when controlling for differences across subjects and in 

disease. 

Improving noise limitations of ASL CBF measurements 

A limitation of the combined measure of CBF with R2* is the low signal to noise ratio 

of the blood flow measurement, which is a result of the small amount of tagged blood that can 

be delivered to a brain region during the imaging period. To overcome this, CBF imaging is 

often performed with lower spatial and temporal resolution than standard BOLD imaging. 

Significant averaging (spatially over a region of interest and temporally over repeated stimuli) is 

also used to acquire dynamic measurements of CBF. The BOLD signal has a much higher 

signal to noise ratio and is strongly weighted by the blood flow signal, suggesting a method 

called BOLD Constrained Perfusion, which combines information in the two signals to improve 

the precision of the CBF signal [47]. This work was done in collaboration using the DBM and 

heuristic model, which makes BCP work more cleanly and straightforwardly than the Davis 
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model. It is advantageous over other analysis methods because it does not require repeated 

temporal measurements making it possible to study more natural stimuli that cannot be easily 

repeated or averaged. 

In total these results confirm the limitations of the BOLD signal while demonstrating 

that combined quantitative acquisition of R2* with CBF provides a significant improvement to 

our ability to relate the BOLD signal to neural activity through changes in CMRO2. Without a 

calibration experiment, a simple comparison of the BOLD response ratio and non-linear CBF 

response ratio permits comparison of CBF-CMRO2 coupling for different stimuli. If specific 

information about CMRO2 or if response comparison across regions of interest is necessary, 

then a calibration experiment is required. While hypercapnia appears to be the most reliable 

gas-based method as long as it is iso-metabolic, the gas-free measurement of R2’ holds promise 

for the future. 

Future studies: The neurological basis of CBF-CMRO2 coupling changes 

Recent findings from our group and others suggest that the coupling of blood flow and 

oxygen metabolism in the brain is not constant but rather depends both on the state of the brain 

[5,14,48] as well as the stimulus [49,50]. Caffeine has been shown to alter the baseline state of 

the brain by decreasing CBF and increasing CMRO2 [5,14]. When the response to a simple 

visual stimulus was examined, the absolute CMRO2 change to the same stimulus was increased 

by 61% after caffeine ingestion resulting in a lower n and suggesting increased neuronal 

excitability. This is consistent with the idea that adenosine (as an inhibitory neuromodulator) is 

blocked by caffeine thereby relieving the inhibition [5,14]. Modulations of attention appear to 

have a similar effect on the response to a visual stimulus as increasing attention to a stimulus 

produces a lower n in response [48]. On the other hand adaptation to a stimulus appears to 
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decrease the metabolic response relative to the vascular response resulting in a higher n (Moradi, 

submitted). Modulations to the stimulus itself have also been shown to alter the physiological 

response: increasing either the stimulus frequency [50] or characteristic intensity [49] results in 

a higher n. In sum these studies are consistent with the idea that changing stimulus strength 

modulates CBF more than CMRO2, while changing the brain state so that it responds differently 

to the same stimulus modulates CMRO2 more than CBF. These findings are closely related to 

the studies discussed earlier showing the regulation of cerebral blood flow and metabolism are 

driven in parallel by separate mechanisms.  

Examining these results closely a pattern emerges, which suggests a new hypothesis: 

CBF and CMRO2 coupling reflects the underlying balance of excitatory and inhibitory activity 

with larger increases in excitatory activity leading to relatively larger CMRO2 responses while 

larger increases in inhibitory activity lead to larger relative CBF responses (Figure 1). This 

hypothesis is based on three ideas. First excitation is always coupled to inhibition because of the 

wiring of cortical circuits [51]. Second acute increases in CBF are thought to be driven by fast 

glutamate-mediated neural signaling (associated with excitatory activity) and also GABA 

interneurons, which may either increase or decrease CBF depending on the signaling molecule 

released [25,26,28,52]; decreases in CBF are due in part to somatostatin- and NPY-positive 

interneurons while increases in CBF are due to VIP- and NOS-positive interneurons. Astrocytes 

play a secondary role during prolonged activation integrating signals from multiple sources 

[25,28,53]. Third CMRO2 is a reflection of the overall evoked neural activity (associated with 

action potentials, postsynaptic effects of glutamate, and the cost of transporting ions), and is 

likely to be dominated by excitatory activity with only a small component due to inhibitory 

activity [2,54]. In sum CBF and CMRO2 are driven in parallel by separate mechanisms 

integrating signals from both excitatory and inhibitory activity to different degrees based on the 



  

 

183 

stimulus type. This hypothesis would suggest that when stimulus intensity increases inhibitory 

activity increases more than excitatory activity such that the CBF response increases more than 

the CMRO2 response leading to a larger n with increasing stimulus intensity.  

 

Figure 6.1. Illustration of the physiological relationship between BOLD, CBF, CMRO2 
and neural activity.  
A stimulus results in activation of both excitatory and inhibitory neurons. Excitatory neuronal 
activity (green) produces increases in both CBF and CMRO2 while inhibitory neuronal activity 
(red) directly tends to decrease CBF but also has an indirect effect on coupling by decreasing 
excitatory activity. The combined changes typically lead to the uncoupling of CBF and CMRO2 
such that the blood flow response tends to be much greater than the metabolic response. This is 
the phenomenon underlying the BOLD signal, which is also scaled by the baseline state of the 
brain. Factors altering these responses include direct actions on the stimulus, which tend to 
increase n as the stimulus intensity is increased, and modulations of the underlying neural 
activity by factors such as caffeine, subject attention and adaptation to prolonged stimuli. 

 

On the other hand neuromodulation by caffeine is thought to impact inhibitory activity 

directly. Caffeine is a non-selective antagonist of adenosine receptors, particularly types A1, A2A 

and A2B [55,56]. In the brain adenosine acts to inhibit the release of excitatory neurotransmitters 

at A1 receptors, so by blocking these receptors caffeine diminishes inhibitory activity leading to 

an increase in the neuronal firing rate [55,57]. Additionally caffeine acts as a vasoconstrictor by 

blocking A2A and A2B receptors [56,58]. Our hypothesis is that this combination of changes due 
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to caffeine leads to more excitatory activity than inhibitory activity relative to the pre-caffeine 

state thereby producing a larger CMRO2 response relative to CBF resulting in a lower n [59].   

Studies examining the effects of attention have shown that neurons increase their firing 

rates in response to a stimulus when it is attended [60-63], while there is only moderate 

attentional modulation of the BOLD signal [64-67]. However recent findings from my group 

indicate that attention strongly modulates the CMRO2 response [48]. This not only emphasizes 

the importance of combining BOLD and CBF measurements but also shows a decrease in n 

with attention. Interestingly modulation of visual cortex V1 firing activity by attention is shown 

to be much weaker than the effect on CMRO2, and the source of this large mismatch is 

unknown [48,68]. One possible reason for this discrepancy is the balance of excitatory and 

inhibitory activity: if both types of activity increase, then CMRO2 would be expected to increase 

as well because of the energy costs of transporting ions while the firing rate of particular 

neurons would depend instead on the balance of excitatory and inhibitory activity [48]. The 

decrease in CBF-CMRO2 coupling could then be explained by an increase in excitatory activity 

more than that of inhibitory activity leading to a modulation of CMRO2 that is greater then the 

CBF modulation. 

Possibilities for modulation of n 

Future studies will focus on examining this relationship in detail through experiments 

modulating both the stimulus intensity and neural response to stimuli. One possibility is testing 

the effect of finger tapping frequency on n to examine whether changing stimulus frequency 

affects coupling in areas of the brain other than the visual cortex, although one previous study 

did not show a difference [69]. Another possibility is testing the neuromodulatory effects of 

nicotine. Nicotine is a nicotinic acetylcholine receptor agonist that acts within both the adrenal 
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medulla and the central nervous system (CNS). In the CNS, nicotine produces an increase in the 

release of many neurotransmitters including dopamine, norepinephrine, acetylcholine, serotonin, 

γ-aminobutyric acid (GABA) and glutamate [70]. Excitatory glutaminergic projections and 

inhibitory GABA projections alter the level of dopamine release such that the overall effect of 

nicotine (whether it is a stimulant or sedative) is dependent on the balance of glutamate and 

GABA [71]. While the effect of nicotine on brain metabolism will also depend on this balance, 

there are indications that nicotine enhances alertness, arousal and cognition through stimulation 

of nicotinic cholinergic receptors [72,73]. PET studies have indicated increases in cerebral 

glucose consumption after administration of nicotine [73,74] as well as cerebral blood flow in 

certain areas of the brain [75]. Magnetic resonance methods have also shown increases in blood 

flow and metabolism [76,77]. These neuromodulatory effects make nicotine a fascinating 

candidate for a calibrated BOLD experiment that parallels the previous study of caffeine, and I 

would hypothesize that nicotine would decrease the coupling of CBF and CMRO2 in response 

to a stimulus due to its the stimulatory effects. In particular both the visual cortex and the left 

inferior frontal cortex were stimulated by nicotine, so a task incorporating both a visual stimulus 

and either go/no-go decision making or semantic working memory could be interesting [74]. In 

short, our caffeine study can serve as a prototype for other studies of neuromodulation. 

Neuromodulatory effects of exercise 

Recently I proposed to study the neurophysiological effects of exercise, which is 

interesting due to its beneficial effects on physical health, mental health and disease prevention 

[78-81]. With increasing sedentary lifestyle, there is an increased risk of depression, 

cardiovascular disease, diabetes, cancer, and hypertension as well as lowered general wellbeing 

[81-83], but how exercise modulates brain physiology specifically is less clear. Exercise 

increases CBF and metabolic rate during exercise while decreasing glucose uptake and 
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increasing CBF post-exercise [84-87]. How exercise modulates local metabolic rate and 

CMRO2 is not known, and how these physiological changes may be related to “that warm fuzzy 

feeling” after exercise [88] is of additional interest. The ability to measure local changes in CBF 

and CMRO2 continuously over a period of time using the techniques discussed in this 

dissertation will provide insight into the neural effects of exercise, whether these changes may 

be localized to specific areas, and how exercise may modify the brain’s response to stimuli. 

I started work on this project and have collected data from ten subjects. Over the next 

few months I will analyse this data in order to determine whether exercise affects baseline CBF 

and CMRO2 or alters the stimulus response by studying subjects’ R2* and CBF responses before 

and after 30 minutes of exercise at 60% of their maximum VO2. Like caffeine, exercise has 

been shown to impact adenosine levels. However, exercise increases adenosine [89,90] while 

caffeine decreases adenosine effects [55]. Since exercise increases adenosine, it would be 

expected to have the opposite effect as caffeine on CBF and CMRO2, increasing baseline CBF 

and decreasing baseline CMRO2. However, exercise has many other effects which could 

dominate these anticipated adenosine effects. Past experiments have shown exercise increases 

CBF and metabolism during an exercise task [84,86] while glucose uptake is decreased in the 

90 minutes post-exercise [87]. Anecdotally, exercise increases alertness and may increase 

baseline CMRO2, so we are very interested in the outcome of this experiment. 

With regard to the effect of exercise on the neurological response to different stimuli, 

my work on the effects of caffeine demonstrated the importance of measuring not only the 

BOLD response to a stimulus but also the CBF and CMRO2 responses. In the case of caffeine, 

both the baseline state (decreased CBF with increased CMRO2) and the evoked response to a 

standard stimulus (a larger increase of CMRO2 relative to CBF after caffeine) were altered with 

the result being no change in the BOLD response. Considering the impact of exercise on 
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increasing adenosine levels, it would be expected to decrease the CMRO2 response to the 

stimulus relative to the CBF response. However as noted above, exercise mediates many other 

effects increasing both CMRO2 and CBF during exercise, but how this will impact 

neurophysiology post-exercise is not known. Anecdotally, exercise increases alertness, which 

may result in increased CMRO2 responses to the stimuli. 

The experimental approach developed here lays the groundwork for future studies by 

establishing a tool for probing the physiological effects of exercise directly. My long-term goal 

is to build on the proposed studies of acute effects of exercise in order to study brain responses 

after modifications of daily exercise regimens.  
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