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ABSTRACT:  This paper describes a novel large-scale device capable of performing both direct 

shear and simple shear tests to evaluate shear deformation and strength properties of Type B tire-

derived aggregate (TDA).  The device consists of stacked tubular steel members that can be 

locked as upper and lower rigid sections to displace relative to one another in direct shear or 

pinned at the ends to translate in simple shear.  For both configurations, the TDA specimen has a 

length of 3048 mm, a width of 1220 mm, and an initial height up to 1830 mm.  The upper rigid 

section of the device can also be used to conduct interface direct shear tests.  Vertical stress is 

applied to the top surface of the specimen using dead weights and horizontal shearing force is 

applied using two hydraulic actuators in displacement-control mode.  Typical results from 

internal direct shear, concrete interface direct shear, and cyclic simple shear tests are presented.  

In direct shear mode, the device allows for mobilization of peak shear strength and, in simple 

shear mode, for evaluation of shear stiffness and damping ratio under large strain conditions for 

TDA with large particle size. 

 

 

KEYWORDS:  Large-scale testing, direct shear, interface direct shear, simple shear, tire-

derived aggregate 

 

RUNNING TITLE:  Large Combination Direct Shear/Simple Shear Device   
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INTRODUCTION  

Approximately 270 to 290 million light duty and commercial tires are discarded each year in 

the United States (RMA 2011, 2014).  A significant percentage of these waste tires historically 

have been disposed in landfills, where they take up valuable space, or stockpiled in often 

unsightly and unsanitary surface impoundments.  Tires also are potentially combustible and have 

characteristics that make disposal difficult.  As a result, there is a strong need for recycling and 

beneficial reuse of waste tires, and civil engineering construction constitutes one of the major 

markets for these efforts (Geosyntec 2008; RMA 2011). 

Waste tires can be recycled to produce tire-derived aggregate (TDA) for construction.  TDA 

consists of a blend of tire chips (2 to 50 mm) and tire shreds (50 to 300 mm), and is more 

suitable as a construction material when the tire shearing process cleanly cuts the particle edges 

(Geosyntec 2008).  One of the primary benefits of TDA as an alternative to mineral soil 

aggregate is the low unit weight, which is about one-third to one-half of typical compacted soil.  

TDA also has other distinctive properties, such as free drainage, high thermal insulation capacity, 

good vibration damping, and high compressibility.  TDA is generally inexpensive compared to 

other lightweight fill materials and has been used in a wide variety of construction applications, 

including subgrade, embankment, and trench fills (Geisler et al. 1989; Bosscher et al. 1992; 

Ahmed and Lovell 1993; Bosscher et al. 1997; Hoppe 1998; Salgado et al. 2003; Yoon et al. 

2006; Humphrey 2008; Ahn et al. 2014), backfills for retaining walls and bridge abutments (Reid 

and Soupir 1998; Tatlisoz et al. 1998; Tweedie et al. 1998a,b; Lee et al. 1999; Humphrey et al. 

2000; Humphrey 2008; Xiao et al. 2012; Ahn and Cheng 2014), subgrade thermal insulation 

(Eaton et al. 1994; Humphrey and Eaton 1995; Benson et al. 1996; Lawrence et al. 1999), 

drainage layers for highways (Lawrence et al. 1999), vibration damping layers below rail lines 
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(Wolfe et al. 2004), drainage and daily cover layers for landfills (Edil et al. 1992; Duffy 1996; 

Jesionek et al. 1998; Reddy and Saichek 1998; Park et al. 2003; Aydilek et al. 2006; Warith and 

Rao 2006; Reddy et al. 2010), leach fields for septic systems (Envirologic 1990; Spagnoli et al. 

2001; Grimes et al. 2003), and protective cushions and seismic isolation layers for earthquake 

engineering design (Hazarika et al. 2008; Tsang 2008). 

TDA can be broadly classified according to predominant particle size into Type A and Type 

B materials, as summarized in Table 1.  Type B TDA includes larger particles and therefore 

requires less processing and is more cost-effective than Type A TDA for earth fill applications.  

Larger particles also decrease the amount of exposed steel, which reduces the potential for self-

heating reaction (Humphrey 2005).  TDA can be mixed with soil prior to construction to improve 

mechanical properties, such as compressibility and shear strength, and minimize self-heating 

(Edil and Bosscher 1994; Bernal et al. 1996; Lee et al. 1999; Salgado et al. 2003; Zornberg et al. 

2004; Yoon et al. 2006; Tiwari et al. 2012); however, this requires mixing process control on a 

field scale such that final proportions are within project specifications.  The higher unit weight 

and additional work and cost involved with material preparation is a disincentive for the use of 

TDA-soil mixtures and, thus, pure Type B TDA is often preferred for fills and embankments.  In 

this case, limits are placed on TDA layer thickness to prevent self-heating (Table 1). 

Shear stiffness and strength information are needed for design of many civil engineering 

applications involving TDA, such as embankments and retaining walls; however, only limited 

data are available for Type B TDA materials because conventional testing devices cannot 

accommodate the large particle size.  Triaxial tests have been conducted on granulated rubber, 

small tire chips, and tire chip-soil mixtures with particle sizes of generally 50 mm or less 

(Bressette 1984; Ahmed 1993; Benda 1995; Masad et al. 1996; Wu et al. 1997; Lee et al. 1999; 
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Yang et al. 2002) and, although stress-strain and volume change behavior can be evaluated, the 

size and displacement range of the typical triaxial cell do not allow for Type B TDA material.  

Direct shear devices generally permit larger shear displacements (e.g., Fox et al. 2006); however, 

these displacements often are too small to measure peak shear strengths (Humphrey et al. 1993; 

Foose et al. 1996; Bernal et al. 1997; Tatlisoz et al.1998; Yang et al. 2002; Xiao et al. 2013).  As 

a result, TDA shear strength often is defined at a specified shear displacement, which allows for 

comparison between tests but may lead to significant variations in reported shear strength 

parameters.  Similarly, dynamic properties (e.g., stiffness and damping) of granulated rubber and 

rubber-sand mixtures have been reported using a variety of tests, but only for particle sizes 

smaller than 10 mm (Feng and Sutterer 2000; Kaneko et al. 2003; Pamukcu and Akbulut 2006; 

Kim and Santamarina 2008; Anastasiadis et al. 2012; Senetakis et al. 2012; Senetakis and 

Anastasiadis 2015).  Measurements of interface shear strength and pullout behavior of TDA with 

different materials also are relatively scarce (Bernal et al. 1997; Tatlisoz et al. 1998; 

O’Shaughnessy and Garga 2000).  In the absence of adequate data, engineering designs using 

Type B TDA have been based on conservative parameters, which render the material less 

competitive as an alternative choice for construction applications. 

To address this need, a novel large-scale combination direct shear/simple shear testing device 

was designed and constructed at the University of California-San Diego.  The volume of the test 

specimen is sufficiently large to accommodate Type B TDA materials.  In direct shear mode, the 

device allows for mobilization of peak shear strength and, in simple shear mode, for evaluation 

of shear stiffness and damping ratio under large strain conditions.  The design of the device is 

first presented, followed by typical results for internal direct shear, concrete interface direct 

shear, and cyclic simple shear tests on Type B TDA. 

Page 6 of 44

https://mc04.manuscriptcentral.com/astm-gtj

Geotechnical Testing Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

FINAL manuscript submitted to the ASTM Geotechnical Testing Journal June 2017 

 

6 
 

 

EQUIPMENT DESIGN 

Overview 

The combination shear device was designed to permit testing of large specimens of Type B 

TDA materials in both direct shear and simple shear modes.  The shear box has interior plan 

dimensions of 3048 mm (length) × 1220 mm (width) and can accommodate specimens with 

initial heights up to 1830 mm, which yields an initial specimen volume up to 6.80 m
3
.  Type B 

TDA has a predominant particle size range of 150 to 300 mm, and thus the minimum dimension 

(width) of the specimen is four times larger than the maximum particle size.  The sides of the 

box in the longitudinal direction (i.e., parallel to shear) consist of ten horizontal steel tubular 

members.  At both ends of the box, these tubes are attached to vertical steel end plates using 

pinned connections.  Each end plate consists of upper and lower parts that can be disconnected to 

displace relative to one another for direct shear or rigidly connected for simple shear.  In direct 

shear mode, the device permits shear displacements up to 715 mm and thus allows for 

mobilization of peak shear strength for Type B TDA.  In simple shear mode, the device permits 

shear strain amplitudes up to 30% and thus allows for evaluation of shear stiffness and damping 

ratio under large strain conditions. 

The device includes a variety of sensors to record data for direct shear and simple shear tests.  

Each actuator contains a load cell to measure axial force.  Tiltmeters are used to indicate angular 

displacement of the actuators from horizontal and angular displacement of the end plates from 

vertical (simple shear mode).  A string potentiometer is used to measure horizontal displacement 

of the device.  Displacement transducers are used to measure vertical displacement at each 
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corner of the top section, which indicates specimen volume change and tilting of the top section 

(direct shear mode). 

 

Direct Shear Configuration 

In the direct shear configuration, the device consists of a split box with a top section that 

travels over a bottom section in the conventional manner, as shown in Figure 1.  The longitudinal 

steel tubes are locked using four diagonal braces (not shown) attached to the outside of the 

device (i.e., one on each side of both sections), such that the top and bottom sections remain 

rigid.  This forces relative displacement to occur on a horizontal plane through the TDA 

specimen at the level of the gap between the sections.  Vertical stress is applied to the upper 

surface of the TDA specimen using a rigid top plate and steel/concrete dead weights.  Tests with 

low applied vertical stress are conducted using only the top plate or with dead weights stacked on 

the top plate, as shown in Fig. 1(a).  Tests with high applied vertical stress require additional 

dead weights that are carried using a “saddle” frame to lower the center of gravity and reduce the 

potential for tipping instability of the load, as shown in Fig. 1(b).  Vertical stresses up to 

approximately 80 kPa can be applied to a TDA specimen using the saddle frame. 

Horizontal shear force is applied by two hydraulic actuators, as shown in Figure 2.  The 

actuators are connected to the top section using slots that permit vertical alignment and 

positioned at or slightly below the level of the gap to minimize applied moments to the TDA 

specimen.  The actuators can be operated in force-control or displacement-control mode, with 

displacement control generally preferred to permit measurement of post-peak response.  The 

uppermost steel tube on each side of the bottom section extends out an additional 1180 mm in 
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the direction of shear to provide stability to the top section in the event of tipping.  These tube 

extensions are not contacted during a direct shear test and provide no frictional resistance. 

Design details for the longitudinal steel tubes are presented in Figure 3.  Each tube has a 

square cross section (152 mm × 152 mm) and a clear vertical distance of 25.4 mm between the 

adjacent tubes.  This clear distance remains constant for direct shear tests because the top and 

bottom sections of the device are rigid.  For simple shear tests (described below), this clear 

distance decreases with increasing shear strain of the device.  To prevent TDA material from 

intruding into the clear spaces between the tubes, each tube has a vertical “shingle” welded to the 

inside face.  The shingles are longitudinal plates with a thickness of 6.4 mm and a tapered 

leading edge, which span the clear space and do not contact the adjacent tube (gap = 3.2 mm) to 

minimize friction during simple shear tests. 

The top and bottom surfaces of the device are fitted with transverse ribs, shown for the 

bottom surface in Figure 4(a), to reduce slippage of the TDA specimen at these boundaries 

during shear.  The interior walls are lined with thin plastic sheeting to minimize friction and 

facilitate shear-induced volume change of the specimen.  The plastic sheeting also keeps small 

debris from filling the 3.2 mm gap between each shingle and the adjacent tube, which would 

introduce extra friction for simple shear tests.  Interface direct shear tests can be conducted when 

various materials are placed in the bottom section of the device, such as the Portland cement 

concrete block shown in Figure 4(b).  In this case, the top section is filled with TDA material and 

then pulled over the bottom section to measure interface shear strength in the conventional 

manner.  In direct shear mode, the device operates without frictional resistance because shear 

force is measured at the hydraulic actuators and the top section displaces over the TDA or 

interface material in the bottom section with no device (i.e., metal-on-metal) contact. 
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Simple Shear Configuration 

In the simple shear configuration, the four diagonal cross-braces are removed and the upper 

and lower parts of the vertical steel plates at each end of the shear box are rigidly connected 

using steel bars attached to the outside.  This permits the box to deform as a parallelogram when 

shear force is applied to one end using the hydraulic actuators, as shown in Figure 5(a).  The 

actuator stroke produces back-and-forth cyclic shear strain γ  (= dx/H), where dx is the horizontal 

displacement measured using a string potentiometer at elevation H = 1600 mm.  The maximum 

shear strain amplitude for the device is ±30%.  Figure 5(b) shows a photograph of a simple shear 

test with low applied vertical stress (i.e., no saddle).  In simple shear mode, the device operates 

nearly without frictional resistance because shear forces are measured at the hydraulic actuators, 

the shingles do not contact adjacent steel tubes, and the steel tubes are connected to the vertical 

end plates using pinned connections. 

 

MATERIAL 

Tests were performed using a single batch of Type B TDA material obtained from the 

California Department of Resources Recycling and Recovery (CalRecycle).  The material had a 

specific gravity of 1.15, which is consistent with the typical range of 1.02 to 1.27 for TDA 

(Bressette 1984; Humphrey et al. 1992; Humphrey and Manion 1992; Ahmed 1993).  Particle 

size data, as obtained by manual sorting according to maximum particle dimension (i.e., length) 

and based on dry weight, are presented in Table 2.  Particles ranged from 30 to 320 mm in length 

and 6 to 20 mm in thickness.  The median particle size 50D = 120 mm.  The coefficient of 

uniformity zC = 60D / 10D  = 2.21 and the coefficient of curvature cC = ( 30D )
2
/( 60D 10D ) = 1.02, 
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which suggests that this TDA material is poorly graded using specifications for natural gravels 

(ASTM D2487). 

 

PROCEDURES 

Specimen Preparation 

Preparation procedures for the TDA specimens were similar for both direct shear and simple 

shear tests.  The TDA material was tested in the air-dry condition and stored in large bags, each 

of which was numbered and had a measured total weight of approximately 3 kN.  Before 

placement of TDA into the device, the interior walls were lined with two layers of thin plastic 

sheeting and depth markers were painted on the plastic to guide the compaction process.  TDA 

was placed in 100 mm-thick loose lifts, each of which required approximately two bags of 

material and received six passes of a self-propelled rolling and vibrating compactor (total weight 

= 14.4 kN).  The compactor was lifted into the device using a crane and operated by remote 

control.  During compaction, a temporary geomembrane was placed against the sidewalls to 

protect the plastic sheeting.  Visual observations indicated that the TDA material densified 

during compaction. 

After compaction, the initial specimen height was measured manually at the four corners of 

the top section, vertical stress was applied using dead weights, and the specimen height was 

measured again.  The applied stress remained on the specimen for static loading period of 12 

hours minimum (overnight) to accommodate initial creep settlement and associated TDA 

densification, such as reported by Wartman et al. (2007), prior to the start of the shearing stage. 

 

Direct Shear  
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After the static loading period, four hydraulic jacks were used to raise the top section and 

create a gap (150 to 250 mm) between the top and bottom sections.  The gap was smaller than 

the maximum particle length and needed to avoid metal-on-metal contact between the sections at 

large displacements.  The top section can be raised into this position because vertical stress is 

applied directly to the TDA specimen (through the top plate) and is facilitated by low friction of 

the plastic sheeting.  The load plate and top section were then rigidly connected such that the 

entire weight of the top part of the device, including TDA, top section frame, load plate, and any 

dead weights, was completely supported by the TDA material at the shearing surface.  This 

allows for direct calculation of the total vertical force and eliminates frictional resistance from 

the device during shear. 

Once the top section was in position, the actuators were attached to the vertical end plate of 

the top section and aligned at the elevation of the gap.  A string potentiometer was connected 

from the concrete reaction block to the end plate to measure horizontal displacement.  Four 

displacement transducers were attached at each corner of the top section to measure vertical 

displacements.  During shear, the tips of these transducers slide on stainless steel plates as shown 

in Figure 6(a).  Two tiltmeters (east/west, north/south) also were attached to the vertical end 

plate of the top section.  Finally, prior to the start of shear, the gap thickness and specimen height 

were measured again at the four corners and the plastic sheeting at the gap was cut around the 

periphery of the device. 

A direct shear test was conducted on a Type B TDA specimen for an initial normal stress of 

76.7 kPa on the failure surface.  After compaction and loading, the specimen had an initial unit 

weight of 8.04 kN/m
3
 and an initial void ratio of 0.40.  Values of void ratio are calculated from 

known specimen weight, specimen volume, and specific gravity of solids.  Shear displacement 
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was applied at a constant rate of 10 mm/min.  During the shearing process, TDA material was 

left behind at the rear of the device and expanded due to stress relief, and some tilting of the top 

section was observed at large displacements, as shown in Figure 7(a).  Test data are corrected for 

top section tilt, actuator tilt, and decreasing failure surface area to yield normal stress, shear 

stress, and volume change of the specimen as a function of shear displacement. 

 

Interface Direct Shear 

Procedures for interface direct shear tests are similar to those for internal direct shear tests, 

with the exception that the bottom boundary of the failure surface is replaced by the specified 

interface material (e.g., concrete or geosynthetic).  An interface direct shear test was conducted 

using Type B TDA and a solid block of Portland cement concrete for an initial normal stress of 

77.0 kPa on the failure surface.  After compaction and loading, the specimen had an initial unit 

weight of 7.38 kN/m
3
 and initial void ratio of 0.53.  Shear displacement was applied at a constant 

rate of 10 mm/min.  Fig. 7(b) shows slide marks on the top of the concrete block for this test. 

 

Simple Shear  

Simple shear tests are conducted with the four diagonal cross-braces removed and the upper 

and lower parts of each vertical end plate rigidly connected.  A multi-stage cyclic simple shear 

test was performed on a single Type B TDA specimen with constant applied stress.  After 

compaction and loading, the specimen had an initial unit weight of 7.07 kN/m
3
 and an initial 

void ratio of 0.60.  Including self-weight of the TDA, the vertical stress at the mid-height of the 

specimen was 76.6 kPa.  The test was operated in displacement-control mode and included five 

stages of progressively increasing shear strain amplitude ( aγ = 0.1, 0.3, 1, 3, and 10%).  Each 
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stage consisted of 20 cycles of back-and-forth shearing using a triangular waveform with 

constant shear strain amplitude and a constant displacement rate of 24 mm/min. at the string 

potentiometer (H = 1600 mm).  The final stage consisted of 20 cycles at the previous amplitude 

(3%), followed by 20 cycles at the highest amplitude (10%).  Vertical settlement of the top plate 

was measured throughout the test using displacement transducers at the corners.  The test 

required 15.3 hr. to complete, including the five shearing stages and a static waiting period of 30 

min. between each stage.  Test data are corrected for top plate tilt, actuator tilt, and actuator 

height to yield shear stress and volume change of the specimen as a function of shear strain. 

 

RESULTS 

Direct Shear 

Results for the internal direct shear test on Type B TDA are presented in Figures 8 and 9.  

Fig. 8(a) shows the constant uncorrected normal stress (76.7 kPa) and the corrected normal 

stress, which increases nonlinearly with increasing horizontal shear displacement and associated 

reduction in failure surface area under constant normal force.  Uncorrected and corrected values 

of shear stress are shown in Fig. 8(b).  Both relationships indicate progressively decreasing shear 

stiffness up to peak shear strength.  The corrected data yield a peak shear strength of 52 kPa at a 

horizontal displacement of 460 mm.  Corresponding mobilized secant friction angles are shown 

in Fig. 8(c) and indicate a peak value of 30.2° at 403 mm and post-peak strength reduction with 

continuing displacement. 

Vertical displacements at the four corners of the top section of the device (i.e., NE, NW, SE, 

and SW) during shear are shown in Figure 9(a).  The direction of shearing is toward the south 

and positive values indicate downward displacement.  The individual measurements show 
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progressive downward tilting of the south and west sides of the top section and the average of 

these four measurements indicates a slight downward displacement during shear.  The 

corresponding average volumetric strain calculated from the average vertical displacement is 

presented in Fig. 9(b) and shows contraction of the Type B TDA material up to 0.82% at a 

displacement of 278 mm, followed by expansion to the end of the test.   

 

Concrete Interface Shear 

Relationships for uncorrected (77.0 kPa) and corrected normal stress, uncorrected and 

corrected shear stress, and mobilized secant friction angle for the Type B TDA-concrete interface 

shear test are presented in Fig. 10.  As with Fig. 8(a), the corrected normal stress increases 

nonlinearly with increasing displacement and associated reduction in failure surface area.  The 

uncorrected shear stress reaches a peak, followed by small post-peak strength reduction, whereas 

the corrected shear stress continues to increase in response to increasing normal stress with a 

final value of 39.6 kPa at 715 mm.  The mobilized secant friction angle reaches a peak of 22.3° 

at a displacement of 255 mm and then displays slight post-peak strength reduction to the end of 

the test with a final value of 21.5°.  The peak interface secant friction angle occurs at a smaller 

displacement and represents a 26% reduction as compared to the peak internal secant friction 

angle for Type B TDA, and the ratio of peak interface to peak internal secant friction angles is 

22.3°/30.2° = 0.74.  The peak secant friction angle for the Type B-concrete interface is higher 

than typical soil-concrete interface friction angles measured for silt (14°), silty sand or clayey 

sand (17°) and clean sand (17-22°), as reported by NAVFAC (1986). 

Vertical displacements at the four courses of the top section are shown in Fig. 11(a), and 

generally display more consistent behavior than corresponding measurements for the internal 
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shear test (Fig. 9a).  The measurements indicate progressive downward tilting of the south end of 

the top section during shear.  The average volumetric strain, shown in Fig. 11(b), indicates 

continuous contraction for the Type B TDA material with a final value of 4.2%.  Volumetric 

contraction was greater for the interface shear test than for the internal shear test, which is 

attributed to greater material dilation due to particle interlocking at the failure surface for the 

internal shear test. 

 

Simple Shear 

The multi-stage cyclic simple shear test on Type B TDA yields altogether different results 

than the direct shear tests.  Combined relationships for horizontal displacement, shear force, and 

specimen volumetric strain for all five stages of the test under a constant vertical stress of 76.6 

kPa are presented in Fig. 12.  The cyclic displacement time history, shown in Fig. 12(a), 

indicates good actuator control and consistent maximum displacement values for each test stage.  

Corresponding shear forces, corrected for actuator tilt and top elevation of the TDA specimen, 

are shown in Fig. 12(b) and display increasing maximum force values with increasing 

displacement amplitude, as expected, and also with number of cycles for each stage of loading.  

Measured shear forces during each loading stage are consistent and indicate good frictional 

connections between the TDA specimen and the upper and lower shearing surfaces.  Data from 

preliminary tests (not shown) revealed that, without the transverse ribs of Figure 4(a), boundary 

slippage occurred and produced erroneous shear forces with continued cycling.  Corresponding 

values of volumetric strain are shown in Fig. 12(c) and indicate progressive specimen contraction 

at all stages of the test, including sharp changes in response to higher shear strain amplitude and 

also progressive contraction with continued cycling during each stage.  The slight increase of 
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shear resistance during each stage, as shown in Fig. 12(b), is attributed to increasing volumetric 

contraction of the TDA specimen with continued cycling under constant vertical stress and shear 

strain amplitude. 

A combined plot of shear stress versus shear strain relationships for all five stages is 

presented in Fig. 13(a) and shows hysteretic behavior similar to natural soils.  The hysteresis 

loops indicate energy dissipation for each stage and reduction in stiffness of the Type B TDA 

material with increasing strain amplitude.  Little to no stiffness degradation is observed with 

continued cycling for each stage.  Corresponding values of secant shear modulus were calculated 

at the points of displacement reversal in the conventional fashion and are shown in Fig. 13(b).  

Secant shear modulus decreases from 2,386 kPa at aγ = 0.1% to 403 kPa at aγ = 10%.  Based on 

data provided by Stokoe et al. (1994) and others, these values are approximately ten times lower 

than for natural granular soils at similar states of stress and shear strain amplitude.  Values of 

damping ratio D indicate relative levels of energy dissipation and were calculated as: 

T

L

A

A
D

π4

1
=  (1) 

where LA  is the total area within the hysteresis loop for a given stage and TA  is the area within a 

right triangle going from the origin to the peak of the curve, defined as: 

( ) ( )[ ] ( ) ( )[ ]
222

1 minmaxminmax γγττ absabsabsabs
AT

++
=  (2) 

where maxτ and minτ  are the maximum and minimum shear stresses at opposite ends of the 

hysteresis loop, and maxγ  and minγ  are the corresponding maximum and minimum shear strains.   

Values of damping ratio are shown in Figure 13(c) and range from 18% to 21%, with a minimum 

at aγ = 1%.  The U-shaped trend differs from typical damping ratios for natural granular soils, 
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which are substantially smaller in magnitude and increase monotonically with increasing shear 

strain amplitude, but interestingly shows similarity to results reported by Nye and Fox (2007) for 

a hydrated needle-punched geosynthetic clay liner.  Volumetric strains at the end of each stage of 

cyclic shearing (i.e., 20 cycles) are shown in Figure 13(d) and indicate a strongly contractive 

trend to a final value of 7.9% at aγ = 10%. 

 

CONCLUSIONS 

The following conclusions are reached as a result of the development of a novel large-scale 

combination direct shear/simple shear testing device and subsequent internal direct shear, 

concrete interface direct shear, and cyclic simple shear tests conducted on Type B tire-derived 

aggregate (TDA): 

1.  The device consists of stacked tubular steel members that can be locked as upper and 

lower rigid sections to displace relative to one another in direct shear or pinned at the ends to 

translate in simple shear.  For both configurations, the TDA specimen has a length of 3048 mm, 

a width of 1220 mm, and an initial height up to 1830 mm.  The device can also be used to 

conduct interface direct shear tests using only the upper rigid section. 

2.  The internal direct shear test indicated that the device produced a displacement range 

sufficient to characterize the peak shear strength of Type B TDA material.  For an initial normal 

stress of 76.7 kPa, the measured peak secant friction angle was 30.2° and occurred at a horizontal 

shear displacement of 403 mm. 

3.  The interface direct shear test indicated that the device produced a displacement range 

sufficient to characterize the peak shear strength of the interface between Type B TDA and 

Portland cement concrete.  For an initial normal stress of 77.0 kPa, the measured peak secant 
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friction angle was 22.3° and occurred at a horizontal shear displacement of 255 mm.  A slight 

post-peak strength reduction was observed for this test. 

4.  The multi-stage cyclic simple shear test indicated that the device produced a displacement 

range sufficient to characterize the shear stiffness and damping ratio of Type B TDA material 

under large strain conditions.  For a constant vertical stress of 76.6 kPa at specimen mid-height, 

the measured secant shear modulus decreased from 2,386 kPa at shear strain amplitude aγ = 

0.1% to 403 kPa at aγ = 10%.  Damping ratios ranged from 18% to 21%, with a minimum at aγ = 

1%.  Repeatable hysteresis loops and continuous volumetric contraction were observed for each 

stage of the test. 

5.  The Type B TDA material experienced volumetric contraction during shear for all three 

tests.  The multi-stage cyclic simple shear test displayed the most volumetric contraction and the 

internal direct test displayed the least volumetric contraction. 
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TABLE 1:  Typical characteristics of TDA materials for field applications (CalRecycle 2016). 

 

 

Characteristics Type A TDA Type B TDA 

Fill class Class 1 Class 2 

Typical size 75-100 mm 150-300 mm 

Maximum layer thickness to 

avoid self-heating reaction* 
1 m 3 m 

Typical dry unit weight range: 

(shipping and stockpiling) 
3.9-5.5 kN/m

3
 3.9-5.5 kN/m

3
 

Typical dry unit weight range: 

(compacted) 
7.1-8.3 kN/m

3
 7.1-7.9 kN/m

3
 

*ASTM D6270 
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TABLE 2:  Particle size information for Type B TDA material. 

 

 

Parameter Value 

Particle length 30-320 mm 

Particle thickness 6-20 mm 

10D  70 mm 

50D  120 mm 

60D  155 mm 

Coefficient of uniformity, zC  2.21 

Coefficient of curvature, cC  1.02 
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FIGURE CAPTIONS 

 

FIG. 1:  Components of shear device in direct shear mode: (a) Direction parallel to shear; (b) 

Direction perpendicular to shear with saddle frame (distances in mm). 

 

FIG. 2:  Shear device in direct shear mode: (a) Elevation view; (b) Photograph with low applied 

stress; (c) Photograph with high applied stress. 

 

FIG. 3:  Details for longitudinal steel tubes and shingles (distances in mm). 

 

FIG. 4:  Boundary conditions: (a) Transverse ribs in bottom section; (b) Portland cement 

concrete block in bottom section for interface direct shear test. 

 

FIG. 5:  Shear device in simple shear mode: (a) Elevation view; (b) Photograph with low applied 

stress. 

 

FIG. 6: Vertical displacement transducers for measurement of volume change behavior in direct 

shear mode. 

 

FIG. 7:  Direct shear tests: (a) Tilting of top section at large displacements for TDA internal 

shear test; (b) Slide marks on concrete block for TDA-concrete interface shear test. 

 

FIG. 8:  Results for internal direct shear test of Type B TDA:  (a) Normal stress; (b) Shear stress; 

(c) Secant friction angle. 

 

FIG. 9:  Results for internal direct shear test of Type B TDA: (b) Vertical displacements; (b) 

Volumetric strain. 

 

FIG. 10:  Results for direct shear test of Type B TDA-concrete interface: (a) Normal stress; (b) 

Shear stress; (c) Secant friction angle. 
 

FIG. 11: Results for direct shear test of Type B TDA-concrete interface: (a) Vertical 

displacements; (b) Volumetric strain. 
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FIG. 12:  Results for multi-stage cyclic simple shear test of Type B TDA: (a) Horizontal 

displacement; (b) Shear force; (c) Volumetric strain. 

 

FIG. 13: Results for multi-stage cyclic simple shear test of Type B TDA: (a) Shear stress versus 

shear strain; (b) Secant shear modulus; (c) Damping ratio; (d) Volumetric strain. 
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