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One of the most basic characterizations of the relationship between two random variables, X and Y, is the
value of their mutual information. Unfortunately, calculating it analytically and estimating it empirically are often
stymied by the extremely large dimension of the variables. One might hope to replace such a high-dimensional
variable by a smaller one that preserves its relationship with the other. It is well known that either X (or Y) can
be replaced by its minimal sufficient statistic about Y (or X) while preserving the mutual information. While
intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously.
We demonstrate that this is in fact possible: the information X’s minimal sufficient statistic preserves about Y is
exactly the information that ¥’s minimal sufficient statistic preserves about X. We call this procedure information
trimming. As an important corollary, we consider the case where one variable is a stochastic process’ past and
the other its future. In this case, the mutual information is the channel transmission rate between the channel’s
effective states. That is, the past-future mutual information (the excess entropy) is the amount of information
about the future that can be predicted using the past. Translating our result about minimal sufficient statistics,
this is equivalent to the mutual information between the forward- and reverse-time causal states of computational

mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.

DOI: 10.1103/PhysRevE.95.060102

I. INTRODUCTION

How do we elucidate dependencies between variables?
This is one of the major challenges facing today’s data-rich
sciences, a task often stymied by the curse of dimensionality.
One approach to circumventing the curse is to reduce each
variable while still preserving its relationships with others.
The maximal reduction—the minimal sufficient statistic—
is known to work for a single variable at a time [1]. In
the multivariate setting, though, it is not straightforward to
demonstrate that, as intuition might suggest, all variables
can be simultaneously replaced by their minimal sufficient
statistics. Here, we prove that this is indeed the case in the
two- and three-variable settings; therefore this technique is a
form of lossless multivariate dimensionality reduction [2,3].

The need for sufficient statistics arises in many arenas.
Consider, for example, the dynamics of a complex system. Any
dynamical system can be viewed as a communication channel
that transmits (information about) its past to its future through
its present [4]. Shannon information theory [1] tells us that
we can monitor the amount of information being transmitted
through the present by the past-future mutual information—the
excess entropy [5]. However, this excess entropy can rarely be
calculated from past and future sequence statistics, since the
sequences are semi-infinite. This makes calculating the excess
entropy an ideal candidate for using sufficient statistics. The
latter take the form of either a process’ prescient states or its
causal states [6]. Although known for some time [4], a detailed
proof of this relationship was rather involved, as laid out
in Ref. [7].
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The proof of our primary result relies on analyzing
the information-theoretic relationships among four random
variables W, X, Y, and Z. All possible informational
relationships—in terms of Shannon multivariate information
measures—are illustrated in the information diagram [8,9]
(I-diagram) of Fig. 1. This Venn-like diagram decomposes the
entropy H [X,Y, Z, W] of the joint random variable (X, Y, Z, W)
into a number of atoms—informational units that cannot be
further decomposed using the variables at hand. For example,
take the region labeled f in Fig. 1; this region is the conditional
entropy H[X|Y,Z,W]. Similarly, one has the four-variable
mutual information (co-information) k =1[X :Y : Z : W]
and the conditional mutual information d =1[W : Z|X,Y].
The analogy with set theory, while helpful, must be handled
with care: Shannon information forms a signed measure. Any
atom quantifying the information shared among at least three
variables can be negative. In the context of our example, Fig. 1,
atoms g, h, m, n, and k can be negative. Negative information
has led to a great deal of investigation (see, for example,
Refs. [10,11]).

Here, we are interested in what happens when W is
a sufficient statistic of X about Y and Z is a sufficient
statistic of Y about X [1]. We denote this W = X \( Y and
Z =Y N\ X. The resulting (reduced) I-diagram provides a
useful and parsimonious view of the relations among the four
variables. In particular, it leads us to the main conclusion that
each variable can be simultaneously reduced to its sufficient
statistic while maintaining the mutual information. Our de-
velopment proceeds as follows: Section II defines sufficient
statistics and utilizes two of their properties to reduce the
informational relationships among the variables. Section III
discusses how this result applies to stochastic processes as
communication channels. Section IV extends our results to
the three-variable case and makes a conjecture about broader
applicability. Section V provides a concrete example of the
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FIG. 1. Information diagram (I-diagram) for four random vari-
ables X, W, Z, and Y. Each is depicted as a stadium shape and the
information atoms are obtained by forming all possible intersections.
Individual atoms are identified with lowercase letters.

information trimming procedure. Finally, Sec. VI outlines
further directions and applications.

II. SUFFICIENT STATISTICS

A statisticis afunction f(e) of random variable samples [1].
Let Fx denote the set of all functions of a random variable X.
These functions are also random variables. Given variables X
and Y, a variable V forms a Markov chain X-V-Y if p(x,y) =
>, p@)pvlx)p(y|v). Let Myy denote the set of all variables
that form a Markov chain with X and Y. A sufficient statistic of
X about Y isan element of Sx_,y = Fx N Myy.! The minimal
sufficient statistic X N\ Y of X about Y is the minimal-entropy
sufficient statistic:

XN Y =agminH[V]. @))
VeSx_y
It is unique up to isomorphism [12].

The minimal sufficient statistic can be directly constructed
from variables X and Y. Consider the function f(e) mapping
x to the conditional distribution p(Y|X = x); then X (Y ~
f(X) [13,14]. Put more colloquially, X Y\, Y aggregates the
outcomes x that induce the same conditional distribution
p(Y|X = x). This is an equivalence class over X, where the
probability of each class is the sum of the probabilities of the
outcomes contained in that class.

A. Sufficient statistic as a function

Our first step in reducing Fig. 1 is to consider the fact
that W = X \ Y is a function of X.> Any W = f(X) if and
only if H[W|X] = 0 [12]. Furthermore, conditional entropies
H[W]|e] are never increased by conditioning on additional
variables [1]. Since conditional entropies are non-negative
[1], conditioning W on variables in addition to X can only
yield additional zeros. In terms of the information atoms,

'Our definition here is equivalent to that provided in, e.g., Ref. [1],
but in a form that more directly emphasizes the properties we exploit
over the next two subsections.

By Y = f(X),wemean forall x, |{y : p(Y = y|X = x)>0}|=1.
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FIG. 2. I-diagram for sufficient statistics: The vanishing infor-
mation atoms implied by a sufficient statistic being a function of a
random variable are labeled 0*. Those vanishing atoms implied by a
sufficient statistic forming a Markov chain are marked with 0F.

the relations:

H[WX]=a+d+h+1=0,
H[W|X,Y]=a+d =0,
HIW|X,Z]=a+1=0,

H[W|X,Z,Y]=a =0,

imply a=d =h =1=0. A symmetric argument implies
that b = d = g = j = 0. Each of these zeros is marked with
an asterisk in Fig. 2.

B. Sufficient statistic as a Markov chain

Variables X, V, and Y form a Markov chain X-V-Y if and
onlyif I[X : Y|V] = 0. Said informally, V statistically shields
X and Y, rendering them conditionally independent. Applied
to variable W we find

I[X:YIW]=0, m+0=0,
and similarly for Z:

I[X:Y|Z]=0, n+o=0.

Since o = I[X : Y|W,Z] is a conditional mutual information,
o0 is non-negative by the standard Shannon inequality [1].

Thus far, m and n are not individually constrained and so
could be negative. However, consider I[X : Z|W] = j + m,
another conditional mutual information, which is therefore
also non-negative. It is already known that j = 0, therefore m
is non-negative. Clearly, then, m and o are individually zero.

Analogously, we find that n is non-negative and conclude
that n and o are individually zero. These vanishing atoms are
marked with O in the simplified I-diagram in Fig. 2.

From this reduced diagram we can easily read that:

k=1[X:Y]=1[X:Z]=1I[W:Y]=1[W:Z]
=I[X:W:Z]=1[X:W:Y]=I1[X:Z:Y]
=I[W:Z:Y]|=1[X:W:Z:Y]. 2)

Furthermore, one can remove the atoms that vanish to arrive
at the reduced I-diagram of Fig. 3. It now contains only five
of the original 15 atoms. This demonstrates the procedure of
information trimming for two arbitrary random variables.

060102-2
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X\ Y

YN\ X

FIG. 3. Minimal I-diagram containing only nonvanishing atoms
in Fig. 2.

III. STOCHASTIC PROCESSES AS CHANNELS

We find useful application of this result in the analysis
of stationary stochastic processes. Computational mechanics
[6] is an information-theoretic framework for analyzing
structured stochastic processes. There, a process is considered
a channel that communicates its (semi-infinite) past X .0
to its (semi-infinite) future Xg.., through the present [4,15].
(The following suppresses co when indexing.) An important
process property—excess entropy—is the mutual information
E =1[X, : Xo.] between the past and future. E is the amount
of uncertainty in the future that can be removed using
knowledge of the past (and vice versa).

At first blush, it is not clear how to proceed in computing a
mutual information between two infinite-dimensional random
variables such as these. The answer lies in the concept of
causal states. Causal states play a central role as the minimal
effective states of a process’ channel. The forward-time causal
states encapsulate the minimal amount of information from
the past required for predicting the future. More precisely, the
random variable S; is the minimal sufficient statistic of the
past about the future. Analogously, the reverse-time causal
states S, embody the minimal sufficient statistic of the future
about the past—the states needed for optimally retrodicting
the past from the future.

By making the substitutions X — X.g, W — ST, z— S,
and ¥ — X, in Eq. (2), we immediately see that the excess
entropy (past-future mutual information) has several alternate
expressions:

E = I[X:O : XO:] (3)
=1[X0:S1=1[8] : Xol =1[S] : S51. @)

The last identity is the most useful form: The excess entropy
is the mutual information between the forward-time and
reverse-time causal states. As such, this provocatively suggests
a communication channel between the forward- and reverse-
causal-state processes—a channel that determines the amount
of information being transmitted through the present. See also
Fig. 1 in Ref. [4], analogous to Fig. 3.

We can interpret this operationally. Consider a past x.,
the particular forward-time causal state o(;L it induces, and
an instance xo. of the future following this state. This future
analogously induces a reverse-time causal state o, . Consid-
ering the above channel between forward- and reverse-time
states, the forward state 0’0+ corresponds to a distribution over
reverse-time causal states S;. Sampling a state from this
distribution results in a state that gives as much information
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(retrodictivity) about the past as the particular reverse state
determined by the future.

Continuing, there are a number of related multivariate
mutual information [10] identities that follow directly:

E:I[X;():SJ:S&]:I[X;O:SS':XOZ]
:I[X;():SO_:XO;]:I[SS’:SO_:XOZ]
:I[X:O:SJ:S(;:XO;].

Furthermore, making use of the vanishing information
atoms, we find that the following Markov chains exist:

Xo—8 -85 — Xo.,
S§ — X0 — 85 — Xo.,
Xo—8 —Xo.—8,, and
S —Xo—Xo— S, -

Causal states are, as noted, minimal sufficient statistics.
This minimality is not necessary in the above development.
As defined i/Il Ref. [12], a prescient state R is one for which
I[X. : X0:/Ro] = 0and R is a function of the past. In contrast
to the causal states, prescient states need not be minimal. And
so, with little else said, the analogous results follow for pre-
dictive and retrodictive prescient states. For example, we have
E=1[R™:R"].

If we were to lift the restriction that prescient states are
functions of the past (or the future), the resulting forward and
reverse generative [16] states may interact in their “gauge”
information. That is, the atom labeled d in Fig. 1 may be
nonzero; for more on this, see Ref. [17]. The utility of our
mutual information identities is then unclear.

The excess entropy, and related information measures, are
widely used diagnostics for complex systems, having been
applied to detect the presence of organization in dynamical
systems [18-21], in spin systems [22,23], in Markov random
fields [24], in neurobiological systems [25-27], in long-
memory processes [28], and even in human language [29,30].

With these application domains in mind, we should call
out the analytical benefits of using causal states, along the
lines analyzed here. The benefits are particularly apparent in
Refs. [27,28], for example. While closed-form expressions
for excess entropy of finite-state processes have existed
for several years [4,15], it is only recently that it has been
analyzed for truly complex (infinite-state) processes [27,28].
In this work, identifying and then framing calculations around
the causal states led to substantial progress. The detailed
results here show why this is true: as sufficient statistics,
causal states capture the essential structural information in a
process. Similar benefits should also accrue when developing
empirical estimation and inference algorithms for related
information measures.

IV. MULTIVARIATE EXTENSIONS

The results can be extended to multivariate systems as well
as to alternative measures of shared information. Consider
a system of three variables X, Y, and Z. The I-diagram of
interest involves six variables: X, Y, Z, and their sufficient
statistics about the other variables: X \( YZ, Y \( XZ, and
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FIG. 4. Minimal I-diagram involving three variables and their
minimal sufficient statistics. This differs from a standard three-
variable I-diagram by the addition of three atoms: H[X|X \ Y Z],
H[Y|Y \\ XZ],and H[Z|Z \( XY].

Z \. XY. This I-diagram contains 2° — 1 = 63 atoms. It can
be substantially simplified along the lines of the previous
section. First, note that if A, B, C, and D form the Markov
chain A-B-C-D, then we also have the chains A-B-C and
A-B-D. Second, recall our primary result that I[X : Y] =
I[X \\ YZ : Y N\ XZ]and note there are similar relations for
the pairs (X, Z) and (Y, Z). Combining these two observations
and the methods employed in Sec. II allows one to determine
that 53 atoms are identically 0. This reduction results in the
I-diagram of Fig. 4.

Remarkably, the structure of this reduced I-diagram al-
lows us to immediately conclude that the toral correlation
T[X :Y : Z] [31], dual total correlation B[X : Y : Z] [32],
co-information 1[X : Y : Z] [33,34], CAEKL mutual infor-
mation J[X : Y : Z] [35], and any other multivariate gener-
alization of the mutual information remain unchanged under
substitution of sufficient statistics. That is:

TIX:Y:Z]I=T[X\YZ: Y\ XZ:Z\ XY],
B[X:Y:Z]=B[X\\YZ: Y\ XZ:Z\ XY],
I[X:Y: Z]=1[X\\YZ: Y\ XZ:Z\ XY], and
JIX: Y Z]1=J[X\\YZ: Y\ XZ:Z\ XY]

We conjecture that this behavior holds for any number of
variables. That is, replacing each variable by its sufficient
statistic about the others does not perturb the informational
interactions among the variables. Nor does it induce any
additional interactions among the sufficient statistics. And
so, any multivariate mutual information will be invariant. We
further conjecture that this is true of any common information,
such as the Gdcs-Korner common information [36,37], the
Wyner common information [38,39], and the exact common
information [40].

V. EXAMPLE

We now provide an illustrative example of information
trimming. In this example, shown in Fig. 5, we analyze a

RAPID COMMUNICATIONS
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XY Pr (X \\Y) (Y \, X) Pr
0 01 0 0 1/
0 11/ _/( 0 1 1/
20 1/s 1 0 14
2 1 1/s
0 218
2 2 1/s
101/
111/

X

X\Y Y\ X
Y
owg‘la)o%ZJII}

FIG. 5. Information trimming example: The distinction between
X =0 and X = 2 is irrelevant for the statistics of Y. Similarly, the
distinction between ¥ = 0 and Y = 1 is irrelevant for the statistics
of X. The informationally trimmed version sheds this 1.5 bit of
information.

distribution over two variables, X and Y, each with an alphabet
of size 3. There, the distinction between X = 0 and X = 2 is
irrelevant for the statistics of Y while the distinction between
Y =0and Y = 1isirrelevant for the statistics of X. Trimming
the distribution sheds 1.5 bit of irrelevant information. It is
worth noting that there remains conditional entropy in the
distribution—it is generically not possible to capture just the
mutual information as a random variable [36].

VI. CONCLUDING REMARKS

We demonstrated that it is proper to replace each variable
with a sufficient statistic about the others without altering
information-theoretic interactions among the variables. This is
a great asset in many types of analysis and provides a principled
method of performing lossless dimensionality reduction. As
an important specific application, we demonstrated how the
causal states of computational mechanics allow for the efficient
computation of the excess entropy.

Our proof method centered around the use of an I-diagram
and its atoms. Steps in our proof, such as identifying that
the atom labeled m is non-negative via its containment in
I[X : Z|W], are greatly aided by this graphical tool. Despite
this, we believe that a superior proof of these results exists—a
proof that does not depend on demonstrating atom by atom
that all but a select few are zero. Such a proof would,
hopefully, apply generically and directly to an N-variable
system, hold for the menagerie of multivariate generalizations
of the mutual information, and perhaps apply even to the
common informations.

Finally, we note that this procedure is available in the
dit (discrete information theory) Python package [41] as
dit.algorithms.info_trim().
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