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In recent years, we have seen the rise of technologies with unprecedented abilities to query 

the status of different biological systems that generate enormous amounts of data. While these data 

hold the promise to unravel new insights and better understanding of the working of the human 

biological systems, this access to enormous amounts of data is frequently accompanied by 

computational and algorithmic challenges. This dissertation answers questions related to some of 

these systems with the help of data – in some cases by developing new algorithms and computational 

tools, and in others using statistical and exploratory data analyses approaches.  
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Chapter 1  

Introduction 

 
High-throughput technologies have enabled the creation of numerous experiments probing 

DNA, RNA, and metabolites. The vast amount of untargeted data generated by such technologies 

can enable inferring novel insights about biological mechanisms in the human body by way of 

exploratory data analyses. Frequently, with the rise of new technologies and new types of data comes 

the need of new computational tools. This dissertation answers specific questions about three areas 

in human health – immunology, metabolism, and mental health - in the next three chapters, 

respectively.   

Chapter 2 of this dissertation presents a novel computational method for the inference of 

immunoglobulin genes using immunosequencing data. Antibodies (immunoglobulins) provide 

specific binding to an enormous range of antigens and represent a key component of the adaptive 

immune system. Immunosequencing has emerged as a method of choice for generating millions of 

reads that sample antibody repertoires and provides insights into monitoring immune response to 

disease and vaccination. Immunoglobulin genes are formed through V(D)J recombination, which 

joins the variable (V), diversity (D), and joining (J) germline genes. Since variations in germline 

genes have been linked to various diseases, personalized immunogenomics focuses on finding alleles 
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of germline genes across various patients. Efforts such as the 1000 Genomes Project have led to only 

limited progress towards inferring the population-wide census of germline immunoglobulin genes 

because of the difficulty in assembling the highly repetitive immunoglobulin loci from whole 

genome sequencing data. Chapter 2 describes a novel computational method for the inference of D 

genes from immunosequencing data.  

Chapter 3 of this dissertation studies the effects of fasting on human health using data 

gathered by nontargeted liquid chromatography mass spectroscopy (LCMS). A growing body of 

evidence suggests that factors related to meal timing, frequency, and caloric content significantly 

impact health and longevity. Long-term caloric restriction and intermittent periods of fasting have 

been linked to a wide array of benefits in humans. The molecular mechanisms that underlie the long-

term benefits of fasting are thought to be linked at least in part to an orchestrated shift in fuel 

metabolism in non-hepatic tissues. Chapter 3 presents part of our ongoing work on the systematic 

analysis of potentially protective factors that increase with fasting. 

Chapter 4 of this dissertation studies the influence of war on the mental health of post-combat 

veterans using data from a sample of veterans returning from Iraq or Afghanistan. Hostility, anger, 

and aggression are conceptually related but unique constructs found to occur more often among 

veterans with posttraumatic stress disorder (PTSD) than among civilians or veterans without PTSD. 

The pathways between PTSD, depression, hostility, anger, and aggression have not been 

comprehensively characterized. Direct and indirect relationships among PTSD, depression, hostility, 

anger, and four types of aggression - verbal, and physical toward self, others, and objects – are 

investigated in Chapter 4.
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Chapter 2  

Personalized inference of IGHD genes 

using immunosequencing data 

2.1 Introduction 

Antibodies provide specific binding to an enormous range of antigens and represent a key 

component of the adaptive immune system [1]. The antibody repertoire is generated by somatic 

recombination of the V (variable), D (diversity), and J (joining) germline genes by a process known 

as V(D)J recombination. During this process, the germline V, D, and J genes are randomly selected, 

and the gene ends are randomly trimmed and joined together along with some random insertions 

between the trimmed genes, leading to a huge number of unique recombined sequences. The 

specificity of an antibody is largely defined by the recombination site referred to as the third 

complementarity determining region (CDR3) [2].  

Immunosequencing helps in monitoring immune response to disease and vaccination by 

generating millions of reads that sample antibody repertoires [3]. Information about all germline 

immunoglobulin genes specific to the individual is a prerequisite for analyzing immunosequencing 

(Rep-Seq) data. However, most previous immunogenomics studies have relied on the population-
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level germline genes. As the set of known germline genes is incomplete (particularly for non-

Europeans) and contains alleles that resulted from sequencing and annotation errors [4, 5], studies 

based on population-level germline genes can lead to incorrect results. Moreover, it is difficult to 

find which known allele(s) is present in a specific individual since the widespread practice of aligning 

each read to its closest germline gene results in high error rates [5]. Using population-level germline 

genes rather than individual germline genes can thus make it difficult to analyze somatic 

hypermutations (SHM) and clonal development of antibody repertoires [6-8].  

Identifying individual germline genes (i.e., personalized immunogenomics) is important 

since variations in germline genes have been linked to various diseases [9], differential response to 

infection, vaccination, and drugs [10, 11], aging [12], and disease susceptibility [9, 13, 14]. There 

still exist unknown human allelic variants and the International ImMunoGeneTics (IMGT) database 

[15] is incomplete even for well-studied human germline genes [16]. The germline genes for less 

studied albeit immunologically important model organisms remain largely unknown [17, 18]. 

Assembling the highly repetitive immunoglobulin loci from whole genome sequencing data is 

difficult [19] and efforts such as the 1000 Genomes Project have led to only limited progress towards 

inferring the population-wide census of germline immunoglobulin genes [19-21].  

Although the personalized immunogenomics approach was first proposed by [22], the 

manual analysis in this study did not result in a software tool for inferring germline genes. Gadala-

Maria et al. [23] developed the TIgGER algorithm for inferring germline genes and used it to discover 

novel alleles of V genes. The challenge of de novo reconstruction of V and J genes was further 

addressed by Corcoran et al. [24], Zhang et al. [25], Ralph and Matsen [5], and Gadala-Maria et. al. 

[26]. However, as Ralph and Matsen [5] commented, the more challenging task of de novo 

reconstruction of D genes remained elusive.  

The sequences encoded by D genes play important roles in B cell development, antigen 

binding site diversity, and antibody production [27]. Safonova and Pevzner [28] recently developed 

the IgScout algorithm for de novo inference of D genes using immunosequencing data. Unlike 



 
5 

algorithms for de novo inference of V and J genes [23, 24], it does not rely on alignments against 

closest germline genes that might lead to erroneous inferences [29, 30]. Instead, IgScout uses the 

observation that the most abundant k-mers in CDR3s arise from D genes (a k-mer refers to a string 

of length k). However, IgScout lacks a probabilistic model and has limitations with respect to 

inferring short D genes and D genes that share substrings with other D genes. It relies on the 

knowledge of k such that each k-mer occurs in a single D gene (information that is often unavailable) 

and uses those k-mers as seeds in its seed extension procedure. However, if a k-mer seed occurs in 

multiple D genes, IgScout might miss some D genes altogether and sometimes even produce 

inaccurate results. To bypass this problem, IgScout attempts to select large k to guarantee that each 

k-mer occurs in a single D gene (e.g., k=15 for human D genes). However, using long k-mers as seeds 

results in missing D genes that are shorter than those k-mers. Thus, for species with limited 

information about the range of D gene lengths, IgScout is bound to make errors.  

Our MINING-D algorithm uses a probabilistic model and addresses above limitations of 

IgScout. We applied MINING-D to nearly 600 publicly available Rep-seq datasets from humans, 

mice, camels, rhesus macaques, rats, and rabbits. In total, MINING-D inferred 13, 6, 4, 8, 12, and 15 

novel D genes using human, mouse, rat, macaque, camel, and rabbit datasets, respectively. We 

validated 25 out of these 58 novel D genes - 2, 1, 3, 8, 8, 3 D genes for human, mouse, rat, macaque, 

camel, and rabbit datasets, respectively - using Whole Genome Sequencing data. We further 

analyzed the usage of D genes in diverse Rep-seq datasets to analyze potential associations between 

the usage of a D gene and an environment, i.e., a health condition, a tissue, or a cell type.  

2.2 Methods 

2.2.1 Probabilistic model of CDR3 generation.  

The transformation of a D gene (a seed string) to a CDR3 (a modified string) can be modeled 

by the following probabilistic model. The seed string s is trimmed at two randomly chosen locations 

p and q (p+q ≤ |s|, where |.| denotes the length of a string) such that the first p and the last q symbols 
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of s are removed (Figure 2.1a). The resulting string is extended on the left and on the right by 

randomly generated strings el and er of randomly selected lengths ll and lr respectively. The resulting 

string is further extended on the left by a randomly chosen string vl from a set of strings Vcdr3 and on 

the right by a randomly chosen string jr from a set of strings Jcdr3 to form a modified string c.  

The seed string s in the above model corresponds to a D gene, the strings el and er correspond 

to the random insertions, and Vcdr3 and Jcdr3 correspond to the sets of suffixes of V genes and prefixes 

of J genes that form parts of the CDR3 sequences. All random variables in the model are drawn 

according to a joint distribution on all the variables.  

 

Figure 2.1. Transformation of a seed string representing a D gene into a modified string representing 
a CDR3 (a) and a set of modified strings generated according to a simple probabilistic model (b). (a) 
The symbols in red, yellow, and green in the modified string denote the symbols from the truncated seed 
string, random insertions, and V suffixes/J prefixes, respectively. The sets of V suffixes and J prefixes are 
shown below the modified string. Note that the sequences shown here are only for illustration and do not 
correspond to any real genes. (b) In a simple probabilistic model, suffixes of length k are trimmed from the 
seed string, and the trimmed string is extended by k random symbols, where k (shown by numbers on the left) 
is chosen uniformly at random. Note that in most cases, there are multiple ways a modified string can be 
generated from the original string. For example, the first modified string can be generated from the original 
string by trimming the suffix “CC” and adding the string “TC” or by trimming the suffix “CCC” and adding 
the string “CTC.”  
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2.2.2 D gene inference and the trace reconstruction problem.  

Given a set C={c1, c2, c3,.., cN} of independently generated instances of the modified strings 

generated from an unknown set of seed strings S={s1, s2,.., sM}, the D genes inference problem is to 

reconstruct the set S of seed strings. This problem can be thought of as a version of the trace 

reconstruction problem in information theory [31] i.e., reconstruction of an unknown string s given 

a collection of its traces generated according to a given probabilistic model. In the trace 

reconstruction problem, an unknown string s yields a collection of traces, each trace independently 

obtained from s by deleting each symbol with a given probability. In the D genes inference problems, 

traces are generated according to a more complex probabilistic model with multiple parameters. 

2.2.3 A simple probabilistic model.  

Although the described variant of the trace reconstruction problem represents an adequate 

probabilistic model for the VDJ recombination, estimating a joint distribution on the variables that 

accurately mimics the real recombination events is a difficult task. For the sake of simplicity and to 

develop an intuition for the MINING-D algorithm, we consider a simpler probabilistic model that is 

based on a single seed string s (representing a single D gene) rather than a set of strings (representing 

multiple D genes) that gets trimmed only on one side (Figure 1b).  

Let s be a seed string in an alphabet 𝒜𝒜. The seed string generates a modified string c according 

to the following probabilistic process: 

1. A trimming integer k is sampled uniformly at random from [0, |s|], and the suffix of s of 

length k is trimmed. 

2. The resulting string is extended by k symbols on the right where each symbol is uniformly 

selected at random from the alphabet 𝒜𝒜.  

Note that a seed string may generate the same modified string for different values of the 

trimming integer k. For example, a seed string ATGA may generate a modified string ATCC for k=2 

(with probability 1/5*1/16 in the case of 4-letter alphabet 𝒜𝒜), or a modified string ATCC for k=3 
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(with probability 1/5*1/64), or a modified string ATCC for k=4 (with probability 1/5*1/256). The 

probability 𝑃𝑃 (𝑐𝑐|𝑠𝑠) that a seed string s generates a modified string c depends only on the length m of 

their longest shared prefix and is given by  

𝑃𝑃 (𝑐𝑐|𝑠𝑠) =
1

|𝑠𝑠| + 1
�

1
|𝒜𝒜||𝑠𝑠|−𝑘𝑘

𝑚𝑚

𝑘𝑘=0

 (1) 

                        =
1

(|𝑠𝑠| + 1)|𝒜𝒜||𝑠𝑠|   �|𝒜𝒜|𝑘𝑘
𝑚𝑚

𝑘𝑘=0

 (2) 

                                 =
1

(|𝑠𝑠| + 1)|𝒜𝒜||𝑠𝑠| ×
|𝒜𝒜|𝑚𝑚+1 − 1

|𝒜𝒜| − 1
 (3) 

                                = 𝐾𝐾(|𝑠𝑠|, |𝒜𝒜|)  ×  (|𝒜𝒜|𝑚𝑚+1 − 1) (4) 

where 𝐾𝐾(𝑞𝑞, |𝒜𝒜|) is a constant given length of the seed string and the alphabet size. Given a set C = 

{c1, c2, c3, …, cN} of N modified strings independently generated from the same seed string s, the 

probability that s generates C is computed as   

𝑃𝑃(𝐶𝐶|𝑠𝑠) = �𝑃𝑃(𝑐𝑐𝑖𝑖|𝑠𝑠)
𝑁𝑁

𝑖𝑖=1

 (5) 

2.2.4 String Reconstruction Problem.  

Given a set of modified strings C generated by an unknown seed string, find a string s 

maximizing 𝑃𝑃(𝐶𝐶|𝑠𝑠).   

Maximizing 𝑃𝑃(𝐶𝐶|𝑠𝑠) is equivalent to maximizing ∏  N
i=1 𝐾𝐾(|𝑠𝑠|, |𝒜𝒜|)  ×  (|𝒜𝒜|𝑚𝑚𝑖𝑖+1 −

1), where mi stands for the length of the longest shared prefix of s and ci. Since 𝐾𝐾(|𝑠𝑠|, |𝒜𝒜|) is a 

constant, it is equivalent to finding a string s that maximizes:  

 score(𝐶𝐶|𝑠𝑠) =� log(|𝒜𝒜|𝑚𝑚𝑖𝑖+1 − 1)
𝑁𝑁

𝑖𝑖=1

 (6) 
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Interestingly, if one ignores the “-1” term above, this problem is equivalent to finding a string 

s that maximizes ∑ 𝑚𝑚𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , the number of “red” cells in the matrix shown in Figure 2.1(b). Given a 

string s, score(𝐶𝐶|𝑠𝑠) can be computed in O(|s|*N) time.  

2.2.5 Greedy algorithm for D gene inference 

Although the objective function in (6) can be efficiently maximized (see Supplemental Note: 

Exact Algorithm for solving the String Reconstruction Problem), it is unclear how to generalize that 

algorithm for the more complex model with multiple D genes and varying lengths of modified 

strings. We thus describe a suboptimal greedy algorithm that is easier to extend to cases where the 

assumptions of the simpler model do not hold. The algorithm starts with an empty string and at step 

j extends it on the right by the most abundant symbol in C at position j and discards from C the strings 

that have symbols that are not the most abundant symbols at position j (more details in Supplemental 

Note: Greedy Algorithm). This procedure is repeated until the length of the resulting string is equal 

to the length of the seed string s. 

To account for the complexities of the VDJ recombination process, we need to modify the 

greedy algorithm described above. Therefore, for the original D gene inference problem from CDR3 

sequences, we describe a heuristic algorithm MINING-D (Method for INference of 

ImmuNoglobulin Genes - D) inspired by the above greedy algorithm and considering the 

complexities of real CDR3s.  

2.2.6 MINING-D algorithm 

Figure 2.2 presents the outline of the MINING-D algorithm. Although D genes typically get 

truncated on both sides during the VDJ recombination process, their truncated substrings are often 

present in the newly recombined genes, and, hence, the CDR3s. Therefore, the truncated substrings 

of D genes are expected to be highly abundant in a CDR3 dataset (Figure 2.2). MINING-D first finds 

highly abundant k-mers in a CDR3 dataset and then iteratively extends them on both sides to recover 

the entire D gene based on the elevated relative abundances of the extended substrings. We illustrate 
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the steps of the MINING-D algorithm on a CDR3 dataset constructed from the ERR1759678 sample 

(MOUSE dataset). The MOUSE dataset corresponds to a pet shop mouse (the strain is unknown) and 

consists of 124,121 distinct CDR3s. In general, MINING-D does not rely on the productivity of the 

input sequences and can work on any fragments of the VDJ region (both in-frame and out-of-frame) 

that cover the entire D gene (as well as short segments of V and J genes). 

 

Figure 2.2. Outline of the MINING-D algorithm. (Top) MINING-D pipeline. (Bottom, a) Abundances of 
the 300 most abundant 10-mers in the MOUSE dataset vary from 770 to 34,451. (Bottom, b) A D gene (top) 
and its truncated substrings in various CDR3s of varying lengths (bottom). The red part of a CDR3 is the 
“surviving” substring of the D gene shown at the top whereas the blue part represents the non-D gene part 
(parts of V and J genes and random insertions). Some substrings of the original D gene, mostly central, are 
highly abundant. (Bottom, c) A k-mer is extended based on the relative abundances of the four shown (k+1)-
mers on the left and the four shown (k+1)-mers on the right. 

2.2.7 Seed selection.  

MINING-D starts with the m most abundant k-mers in the CDR3 dataset referred to as seeds 

(default k = 10, the selection of the default value of m depends upon the species and is described in 

Supplemental Note: MINING-D Parameters). Most seeds represent substrings of D genes, or strings 

that have suffixes of V genes or prefixes of J genes as substrings. Our goal is to extend seeds 

originating from D genes into full-length D genes and filter out seeds originating from (potentially 

unknown) V and J genes. The abundances of the m = 300 (default value for mice datasets) most 

abundant 10-mers in the MOUSE dataset ranged from 770 to 34,451 (Figure 2.2). 
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2.2.8 Extending seed k-mers and the stopping rule.  

Given a string of length l, MINING-D analyzes all its possible extensions on the left and 

right by a single nucleotide. We test a hypothesis that this string represents the first (last) l-mer in 

some D genes, and thus any nucleotide present immediately on the left (right) of this l-mer in CDR3 

sequences is a random insertion. If the (l+1)-mer resulting by adding the corresponding nucleotide 

on the left (right) is also a substring of the same D gene, the hypothesis will most likely be rejected, 

and an extension is made using the most abundant extension symbol. 

We start the above procedure with seed k-mers. For a highly abundant seed k-mer, let the 

abundances of the four possible extension (k+1)-mers on the right be NA, NG, NC, and NT  (Figure 

2.2). We assume a probabilistic model in which a random nucleotide is added to the last k-mer 

according to some distribution. The statistic S, where  

𝑆𝑆 = �
(𝑁𝑁𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖𝑖𝑖 ∈{𝐴𝐴,𝐺𝐺,𝐶𝐶,𝑇𝑇}

 

 
and Ei is the expected abundance under the distribution of the (k+1)-mer with the nucleotide i added 

to the right of the k-mer is approximately Chi-square distributed with 3 degrees of freedom. We test 

the null hypothesis that the random nucleotide was added according to a uniform distribution, and, 

thus, the expected abundances are equal under the null hypothesis. The null hypothesis is accepted 

or rejected based on the p-value of the test. The robustness of the choice of equal abundances of the 

four (k+1)-mers under the null hypothesis can be, to some extent, controlled by choosing a 

significance threshold to which the p-value is compared to accept or reject the hypothesis. Having a 

low significance threshold will lead to rejection of the hypothesis only when the observed distribution 

of the abundances of the four (k+1)-mers is very different from the uniform distribution, most likely 

in the case where one of the (k+1)-mers is much more abundant than the others (see also 

Supplemental Note: MINING-D Parameters). The statistical test is run on both the distributions – 

one with the abundances of the four (k+1)-mers corresponding to the extensions on the left and the 
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other corresponding to the extensions on the right. If one of the two hypotheses is rejected, the k-mer 

is extended to the most abundant (k+1)-mer corresponding to the rejected hypothesis. If both the 

hypotheses are rejected, the extension is made corresponding to the hypothesis with a lower p-value 

of the test. In any case, if the k-mer is extended to a (k+1)-mer, the procedure is repeated until both 

the hypotheses are accepted. Thus, for every highly abundant seed k-mer, we generate a string 

containing this k-mer.  

2.2.9 Finding multiple extensions of seed k-mers.  

Some highly abundant k-mers can be substrings of multiple D genes as shown in Figure 

2.3(a). Following the procedure above, if we start with a k-mer that is a substring of multiple D genes, 

its extension will most likely correspond to the more abundant D gene in the CDR3 dataset (among 

D genes containing this k-mer). Therefore, sometimes multiple extensions are desired from a single 

abundant k-mer. However, since it is not clear how to avoid false positives in the case of multiple 

extensions, the IgScout algorithm [28] uses long seed k-mers (that are unique among all D genes), 

thus bypassing the multiple extension problem. Although this approach works for species with 

partially known germline genes, it is unclear how to select k for species with unknown germline 

genes and short germline genes.  

To address this limitation of IgScout, we modified the extension procedure described above. 

After rejecting a hypothesis at any step (say j for j ≥ k) and extending the j-mer to the most abundant 

(j+1)-mer, we further test the hypothesis that the remaining three (j+1)-mers follow a random 

uniform distribution. If the j-mer was a part of two D genes and the selected (j+1)-mer corresponds 

to the more abundant D gene among those, the abundance of the (j+1)-mer corresponding to the 

lesser abundant D gene will still be greater than the (j+1)-mers corresponding to the random 

insertions. Hence, the hypothesis will be rejected, and in the next step, extensions of both the (j+1)-

mers are looked for in an independent manner, leading to multiple extensions from a single abundant 

k-mer. On the MOUSE dataset, the 300 most abundant 10-mers lead to 544 extensions.  
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Figure 2.3. Details of MINING-D algorithm. (a) The 10-mer ATTACTACGG is present in two human D 
gene segments. (b) The mean relative positions of the extensions in the MOUSE dataset. The relative positions 
of the extensions form three clusters each corresponding to one of the V, D, and J gene segments. (c) Similarity 
graph on all extensions corresponding to D genes before filtering extensions or clique merging for the MOUSE 
dataset (left) and after filtering extensions and merging cliques (right). The size of a node represents its degree. 

2.2.10 Filtering extensions originating from V and J genes. 

Since the CDR3 sequences contain some suffixes of V genes and prefixes of J genes, many 

highly abundant k-mers in the CDR3 dataset originate from these suffixes/prefixes rather than D 

genes. Therefore, it is important to classify the extensions as corresponding to V, D, or J genes while 

trying to infer D genes from CDR3 sequences. This problem becomes challenging when the V and J 

genes are unknown.  

Since parts of the V, D, and J genes appear in order in each CDR3 sequence, we use the 

mean relative position of an extension in the CDR3 dataset to classify it as corresponding to one of 

the V, D, or J gene segments. We define the relative position of a substring s in a CDR3 sequence c 

as follows: 

𝑅𝑅𝑃𝑃𝑐𝑐(𝑠𝑠) = 𝐼𝐼𝑐𝑐(𝑠𝑠)
|𝑐𝑐|−|𝑠𝑠|+1

 , 

where Ic(s) is the index of the substring s in the list of all the substrings of length |s| in c ordered from 

first to last. The normalization by the total number of substrings of length |s| in c is done to compare 

the relative positions among CDR3s of varied lengths. The relative position of an extension in the 

entire CDR3 dataset is taken as the mean of the relative positions of the extension in all the CDR3 
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sequences of which it is a substring. Looking at the relative positions of the extensions of k-mers has 

some advantages over looking at the relative positions of the k-mers as explained in the Supplemental 

Note: Defining Relative Positions. The mean relative positions of the extensions of abundant 10-

mers from the MOUSE dataset are shown in Figure 2.3(b). Since the central cluster most likely 

corresponds to the extensions corresponding to the D genes, MINING-D discards the extensions in 

the left and right clusters.  

However, not all the unique extensions in the central cluster correspond to different D genes. 

The extensions are first filtered according to the method described in the Supplemental Note: 

Removing Unidirectional Extensions. Out of the 544 extensions corresponding to the MOUSE 

dataset, 123 remained after filtering out unidirectional extensions, out of which only 52 were unique. 

Of these 52, only 19 were in the central cluster.  

2.2.11 Removing false positives.  

To reduce the number of reconstructions per D gene, we construct an undirected similarity 

graph on the inferred extensions. Two extensions are adjacent in the graph if they are similar. The 

distance between extensions e1 and e2 is defined as Dist(e1,e2) = min (|e1|, |e2|) – |substring(e1,e2)|, 

where substring(e1,e2) is the longest common substring of e1 and e2. It denotes the number of 

nucleotides, at the edges, of one extension that need to be changed or deleted to transform it to the 

other extension or a substring of the extension. The larger this number, the more dissimilar the 

extensions are. We connect extensions e1 and e2 with an edge if Dist(e1,e2) does not exceed a 

threshold maxDist (the default value is 2).  

Cliques in the constructed graph correspond to groups of highly similar extensions. For every 

clique in the graph, we find the longest common substring among the extensions and extend it to 

form a new string. This new string then replaces all the extensions that formed the clique. After this 

clique merging procedure, only 15 of the 19 extensions remained in the MOUSE dataset. Figure 

2.3(c) shows the similarity graph among the extensions before and after filtering unidirectional 
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extensions and merging cliques for the MOUSE dataset. To generate a comprehensive database of D 

genes from multiple datasets corresponding to different individuals of the same species and health 

condition, inferred D genes from the datasets were put together and processed (substrings were 

removed and similar D genes were merged). 

2.2.12 Computing usage of the inferred D genes.  

Given a set of D genes, we say that a k-mer is unique if it occurs in a single D gene from this 

set. We limit attention to k-mers that are at least Kmin nucleotides long (default value Kmin = 8) and 

say that a CDR3 sequence c is formed by a D gene d if c contains a unique k-mer from d but does 

not contain unique t-mers from other D-genes for t ≥ k. A CDR3 sequence is traceable if it is formed 

by a D gene and non-traceable otherwise. The usage of a D gene is defined as the proportion of the 

traceable CDR3 sequences that were formed by the D gene.  

2.3 Results 

2.3.1 Immunosequencing datasets.  

We analyzed 588 immunosequencing datasets from 14 publicly available NCBI projects:   

● Human  

1. Allergy. 24 peripheral blood mononuclear cell (PBMC) and bone marrow datasets 

from six allergy patients from the NCBI project PRJEB18926 [32]. 

2. Flu vaccination.  

a. 95 datasets taken at different times after vaccination from the NCBI project 

PRJNA324093 corresponding to different types of cells from eight 

individuals [33].  

b. 18 PBMC datasets taken either before vaccination or at least two weeks after 

the vaccination from three individuals from the NCBI project 

PRJNA349143 [34].  
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3. Healthy. 28 PBMC datasets corresponding to either IgG or IgM isotypes from three 

individuals from the NCBI project PRJNA430091 [35]. 

4. Cord Blood. 6 datasets corresponding to cord blood samples from five individuals 

from the NCBI project PRJNA393446. 

5. Intestinal. 35 datasets from seven individuals corresponding to different types of 

isotypes and cell types from the tissues ileum mucosa and colon mucosa from the 

NCBI project PRJNA355402 [36]. 

6. Multiple Sclerosis. 32 datasets from four multiple sclerosis patients corresponding 

to various tissues with different stages of the disease from the NCBI project 

PRJNA248475 [37].  

7. Hepatitis B.   

a. 142 datasets corresponding to IgG isotype and various cell types from nine 

individuals following a Hepatitis B primary vaccination from the NCBI 

project PRJNA308566. 

b. 107 datasets corresponding to IgG and IgM isotypes and various cell types 

from nine individuals following a Hepatitis B booster vaccination from the 

NCBI project PRJNA308641. 

●  Mouse. 71 datasets from various cell types (pre-B cells, naive B cells, plasma cells) of 20 

untreated and antigen-immunized mice from the strain C57BL/6J, and naive cells of four 

Balb/c mice and three pet mice from the NCBI project PRJEB18631 [38]. 

● Macaque. 7 datasets from three Indian and four Chinese origin rhesus macaques from the 

NCBI project PRJEB15295 [24].  

● Camel. 6 datasets corresponding to the VH and VHH isotypes from three camels from the 

NCBI project PRJNA321369 [39].  

● Rat. 10 datasets, each corresponding to an immunized rat of Wistar strain from the NCBI 

project PRJNA386462 [40].  
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● Rabbit. 7 datasets corresponding to spleen and PBMC of three New Zealand rabbits at 

different stages of a multi-step immunization from the NCBI project PRJNA355270 [41].  

Some immunosequencing datasets in a project represent different samples of 

immunosequencing data from the same environment representing the same individual, tissue, 

isotype, etc. (e.g., Donor 1, bone marrow sample 1 and Donor 1, bone marrow sample 2). We merged 

sequences in such datasets to construct a larger CDR3 dataset corresponding to the same 

environment. Supplemental Note: Immunosequencing Datasets presents summaries of all 

immunosequencing datasets analyzed in this study. Meta-categories of these datasets were created 

for different types of analyses and are shown in Table 2.1.   

Table 2.1 Meta-categories of datasets. 

Meta-category Datasets Condition(s) 

Healthy PBMC 
Allergy  PBMC 

Either before vaccination or at least 2 weeks 
after (flu vaccination) 

Flu Vaccination 
Healthy 

Healthy PBMC & Bone 
Marrow (BM) 

Allergy PBMC or Bone Marrow 
Either before vaccination or at least 2 weeks 

after (flu vaccination) 
Flu Vaccination 

Healthy 

Tissue Specific 
Intestinal 

All 
Cord Blood 

Stimulated Datasets 
Flu Vaccination 

All Hepatitis B 
Multiple Sclerosis 

Non-human 

Mouse 

All 
 

Macaque 
Camel 

Rat 
Rabbit 

 
2.3.2 Constructing CDR3 datasets.  

For each immunosequencing dataset, we computed CDR3s using the DiversityAnalyzer tool 

[42]. Since DiversityAnalyzer uses the set of known V and J genes to compute CDR3s and since V 

and J genes for camel and macaque are unknown, we used human V and J genes to construct CDR3s 

for these species. Since some CDR3s may be affected by sample preparation errors, we grouped 
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CDR3s differing by at most 3 mismatches and constructed a consensus CDR3 for each group as 

described in [28]. Constructing consensus CDR3s also helps concentrate on only the recombinant 

diversity (and not SHMs) of immunosequencing datasets by removing CDR3s with SHMs to some 

extent. We ignored datasets with less than 15,000 consensus CDR3s for the inference of D genes.    

2.3.3 Known D genes.  

The ImMunoGeneTics (IMGT) database [15] contains information about human, mouse, rat, 

and rabbit germline D genes. We used the IMGT D genes of crab-eating macaques for rhesus 

macaque analysis and the IMGT D genes of alpacas for camel analysis. Table 2 provides information 

about the D genes of all these species.   

Table 2.2. Information about the D genes in the IMGT database for various species. 

Species # D genes 
(allelic variations) # distinct sequences range of lengths  

of D genes 

Human 27 (7) 32 11 - 37 

Mouse 31 (8) 28 10 - 29 

Rat 35 (2) 35 10 - 29 

Rabbit 14 (0) 10 24 - 42 

Crab-eating macaque 40 (0) 35 11 - 42 

Alpaca 8 (0) 8 11 - 34 

 
 
2.3.4 Inferred D genes.  

For inference of human D genes, PBMC datasets from Healthy, PBMC Flu Vaccination 

datasets taken either before vaccination or at least two weeks after vaccination, and PBMC datasets 

from Allergy datasets were considered (Healthy Human PBMC datasets, Table 2.1). This was done 

so as to not include any disease specific changes in the repertoire for inference of D genes. For all 

other species, all available datasets were used. All inferred genes from an immunosequencing dataset 

(or multiple datasets) were classified into the following categories based on the IMGT database:   



 
19 

• Inferred genes in IMGT – the inferred gene is either (i) the same as a known D gene 

or a known variation, or (ii) a substring of a known D gene or a known variation, or 

(iii) a substring of a known D gene or a known variation extended by at most 

extension extra nucleotides at the start and/or the end of that substring (the default 

extension = 3). 

• Novel variation – the inferred gene differs from a known D gene in the database with 

percent identity > 75%.  

• Novel gene – the inferred gene has percent identity < 75% compared to all known 

D genes in the database. 

Table 2.3 presents information about the number of inferred D genes from each species and 

their classification into one of the categories above. To benchmark the performance against IgScout, 

we compared the results of MINING-D and IgScout on all Allergy datasets from the project 

PRJEB18926 and many non-human datasets (see Supplemental Note: Benchmarking MINING-D 

against IgScout). For human datasets, IgScout failed to reconstruct seven D genes from the IMGT 

database from all the datasets, whereas MINING-D only missed three genes.  

Table 2.3. Information about inferred D genes. The number of novel genes and variations validated using 
genomic data (procedure described later) are shown. 

Species 
#Individuals 

IMGT 
Database 

# Inferred  
genes 

# Inferred 
genes in IMGT 

# Novel 
variations 
(validated) 

# Novel genes 
(validated) 

Healthy Humans 
20 Human 38 25 8 (2) 5 (0) 

Untreated + Immunized Mice 
27 Mouse 24 18 5 (1) 1 (0) 

Immunized Wistar Rats 
1 Rat 16 12 4 (3) - 

Rhesus Macaques 
7 

Crab Eating 
Macaque 25 17 6 (6) 2 (2) 

Bactrian Camels 
3 Alpaca 13 1 12 (8) - 

Rabbit 
3 Rabbit 18 3 13 (3) 2 (0) 
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2.3.5 Novel Variations.  

Among the 38 (m = 600) inferred D genes from the Healthy Human PBMC datasets 

corresponding to 20 individuals, 8 were labeled as novel variations, including four variations of the 

gene IGHD3-10*01, two variations of the gene IGHD3-22*01, and single variations of the genes 

IGHD2-2*01 and IGHD3-16*02. Table 2.4 presents the sequences of the validated (validation 

procedure described later) novel variations of genes in Human and other datasets. Note that although 

only the sequence TTATGATTACATTTGGGGGAGTTATCGTTAT was inferred as a novel variation 

of the gene IGHD3-16*02 (N_Var (IGHD3-16*02)-0) from immunosequencing data, the full 

sequence GTATTATGATTACATTTGGGGGAGTTATCGTTATACC was found in genomic reads 

(more details in next subsection). Information about all inferred variations (including variations that 

could not be validated using genomic data) is presented in Supplemental Note: Novel Variations.  

For rhesus macaques, the two novel genes inferred seem to be two variations of the same 

novel gene with the following sequences: 

N_Gene-0          TACAATTTTTGGAGTGGTTAT 

N_Gene-1    ATTACAATATTTGGACTGGTTATTAT 

The sequences of these genes found in the genomic data from different individuals of the 

same species are as follows: 

N_Gene-0   GTATTACAATTTTTGGAGTGGTTATTACACC 

N_Gene-1   GTATTACAATATTTGGACTGGTTATTATACC. 
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Table 2.4. Novel variations of D genes validated using genomic data from human, camel, rhesus 
macaque, mouse, rat, and rabbit datasets. “Original” refers to the sequence in the IMGT database. In three 
of the inferred sequences, there is an extra nucleotide at the end that was not found in the genomic reads, e.g., 
the novel variation inferred from mice datasets TTTATTACTACGATGGTAGCTACg is only present as 
TTTATTACTACGATGGTAGCTAC in the genomic reads. Other polymorphisms that were found using 
genomic validation of the inferred genes are underlined. For example, GATACAGCGGGTACAGT was 
inferred by MINING-D as a variant of the macaque gene IGHD5S3*01, but the whole sequence 
GGGGATACAGCGGGTACAGTTAC was found in the genomic reads. 

Human 
IGHD3-10*01 
Original    GTATTACTATGGTTCGGGGAGTTATTATAAC 
N_Var-3     GTATTACTATGGTTCAGGGAGTTATTATAAC 

IGHD3-16*02 
Original  GTATTATGATTACGTTTGGGGGAGTTATCGTTATACC 
N_Var-0   ---TTATGATTACATTTGGGGGAGTTATCGTTAT--- 

Camel 
IGHD3*01 (Alpaca) 
Original   GTATTACTACTGCTCAGGCTATGGGTGTTATGAC 
N_Var-1    ----GACTGCTATTCAGGCTCTTGGTGTTATG--  
N_Var-0    ---TGACTACTGTTCAGGCTCTTGGTGT------  

IGHD2*01 (Alpaca) 
Original    ACATACTATAGTGGTAGTTACTACTACACC 
N_Var-1     --ATATTGTAGTGGTGGTTACTGCTAC---  
N_Var-0     GCATACTATAGTGGTGGTTACTAC------  

IGHD4*01 (Alpaca) 
Original    TTACTATAGCGACTATGAC 
N_Var-1     CTACTATAGCGACTATG--  
N_Var-0     CTACTATAACGAATATG--  

IGHD6*01 (Alpaca) 
Original    GTACGGTAGTAGCTGGTAC 
N_Var-2     GTACGGTGGTAGCTGGTAC 

IGHD5*01 (Alpaca) 
Original    AGACTACGGGTTGGGGTAC 
N_Var-0     ----TATGGGTT-GGGTAC  

Rhesus Macaque 
IGHD1S39*01 
Original    GGTATAGTGGGAACTACAAC 
N_Var-0     -----AGTGGGAGCTAC--- 

IGHD3S18*01 
Original    GTACTGGGGTGATTATTATGAC 
N_Var-0     --ACTGGAGTGATTATTA---- 

IGHD5S3*01 
Original    GTGGATACAGTGGGTACAGTTAC 
N_Var-0     -G-GATACAGCGGGTACAGT--- 

IGHD2S11*01 
Original    AGAATATTGTAGTAGTACTTACTGCTCCTCC 
N_Var-0     --C--ATTGTAGTGGTACTTACTGCTATG-- 

IGHD2S17*01 
Original    AGAATACTGTACTGGTAGTGGTTGCTATGCC 
N_Var-0     ----TACTGTACTGGTAGTGGTTGCTAC--- 

IGHD3S23*01 
Original    GTATTACTATGATAGTGGTTATTACACCCACAGCGT 
N_Var-0     ---TTACTATGGTAGTGGTTATTAC----------- 

Mouse 
IGHD1-1*01 
Original    TTTATTACTACGGTAGTAGCTAC- 
N_Var-0     TTTATTACTACGATGGTAGCTACg  

Rat 
IGHD1-3*01 
Original    TTTTTAACTATGGTAGCTAC 
N_Var-0     -TTTTAACTACGGTAGCTAC 

IGHD1-9*01 
Original    TACATACTATGGGTATAACTAC- 
N_Var-1     --CATACTACGGGTATACCTACg 

IGHD1-12*02 
Original    TTTATTACTATGATGGTAGTTATTACTAC- 
N_Var-0     -TTATTACTATGATGGTACTTATTACTACg 

Rabbit 
IGHD6-1*01 
Original    --------------GTTACTATAGTTATGGTTATGCTTATGCTACC 
N_Var-4   GTTACTATACTTATGGTTATGCTGGTTATGCTTATGCTACC 
N_Var-3   GTTA------TGCTGGTTATGCTGGTTATGGTTATGCTACC  

IGHD1-1*01 
Original    GCATATACTAGTAGTAGTGGTTATTATATAC 
N_Var-2     GCATATGCTAGTAGTAGTGGTTATTAT---- 
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2.3.6 Validation of novel D gene variations using Whole Genome Sequencing data.  

To validate novel genes and variations discovered by MINING-D, we downloaded genomic 

reads for all analyzed species and searched for the occurrences of the novel genes and variations in 

these reads (see details in Supplemental Note: Finding D genes in Whole Genome Sequencing Data). 

Since paired genomic and immunosequencing datasets were not available, genomic and 

immunosequencing reads came from different individuals (Table 2.5). We consider an inferred novel 

D gene or variation validated if it is present in at least 2 reads and is surrounded by RSS motifs on 

both sides. Table 2.5 provides details of the downloaded data and information about validated 

variations.  

Table 2.5. Genomic data used for validating discovered D gene variations. The last column describes the 
number of datasets in which the novel sequences were found in genomic reads and the range of number of 
reads in which the sequences were found. For rhesus macaques, we chose only 4 datasets out of the 1318 in 
the NCBI project PRJNA382404 for analysis. 

Species Project Description Datasets Novel variations/genes found in 
genomic reads 

# datasets 
(# reads) 

Human PRJNA427604 WES of PBMC 
(ESCC - cohort, China) 40 

N_Var (IGHD3-10*01)-3 
N_Var (IGHD3-16*02)-0 

5 (8-14) 
6 (30-58) 

Mice PRJEB18467 WGS of mus musculus 32 N_Var (IGHD1-1*01)-0 19 (1-10) 

Bactrian 
Camel PRJNA276064 WGS of Old world 

camels 7 

N_Var(IGHD2*01)-0 
N_Var(IGHD2*01)-1 
N_Var(IGHD3*01)-0 
N_Var(IGHD3*01)-1 
N_Var(IGHD4*01)-0 
N_Var(IGHD4*01)-1 
N_Var(IGHD5*01)-0 
N_Var(IGHD6*01)-2 

2 (2) 
6 (4-17) 
2 (2-6) 
7 (1-16) 
2 (4-5) 
6 (7-15) 
6 (2-13) 
7 (5-21) 

Rhesus 
Macaque PRJNA382404 WGS of rhesus 

macaques 4/1318 

N_Gene-1 
N_Gene-1-0 

N_Var (IGHD1S39*01) 
N_Var (IGHD3S18*01) 
N_Var (IGHD5S3*01) 
N_Var (IGHD2S11*01) 
N_Var (IGHD2S17*01) 
N_Var (IGHD3S23*01) 

4 (9-27) 
2 (8-9) 
1 (18) 

2 (8-21) 
4 (13-28) 

1 (6) 
4 (8-30) 
3 (12-24) 

Wistar Rats PRJNA479378 WGS of wistar rats 10 
N_Var (IGHD1-12*02)-0 
N_Var (IGHD1-3*01)-0 
N_Var (IGHD1-9*01)-1 

10 (1-9) 
10 (2-18) 
10 (2-8) 

Rabbit PRJNA242290 
WGS of rabbits and 
hares to survey for 

domestication signals. 
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N_Var (IGHD1-1*01)-2 
N_Var (IGHD6-1*01)-3 
N_Var (IGHD6-1*01)-4 

23 (1-14) 
19 (1-9) 
11 (1-6) 

 



 
23 

2.3.7 Usage of D genes.  

We analyzed the usage of all IMGT D genes and validated novel genes/variations in Healthy 

PBMC datasets. 54.1% of CDR3s on average were traceable. The usage of all genes is mostly 

consistent across individuals, although there are a few deviations for certain individuals owing to 

their germline variations (Figure 2.4). Potential deletion polymorphisms involving multiple 

contiguous IGHD genes, as reported in the past [13, 43], can also be seen in Figure 2.4. Donor 10 

likely has a deletion of genes D3-3 – D6-6 and donor 11 likely has a deletion covering genes D3-22, 

D5-24, and D1-26.  

To analyze the relative usage of a variant of a D gene (known or novel) against other variants 

of the same gene, we also included the bone marrow datasets and plotted the variant usage in Healthy 

PBMC BM (Table 2.1) datasets (Figure 2.5). We found that extensive SHMs in IgG repertoires may 

lead to a misclassification of alleles for some genes e.g. IGHD3-16 and IGHD2-8. For these genes, 

we accurately compute the D gene allele usage using decoy alleles as explained in the next 

subsection.   

In the Stimulated datasets, some differences were seen in the usage of D genes in IgG and 

IgM datasets (see Supplemental Note: D gene usage). For instance, in the Hepatitis B datasets, 65.4% 

and 45.9% CDR3s were traceable on average in datasets corresponding to IgM and IgG isotypes, 

respectively. The usage of some genes differs in datasets corresponding to IgG and IgM isotypes 

from the same individual (Figure 2.6). For example, genes IGHD1-26*01, IGHD6-13*01, and 

IGHD3-3*01 appear to be used more in the IgM datasets for most individuals whereas IGHD3-9*01 

is used more in the IgG datasets. 
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Figure 2.4. Usage of various known and novel genes in various Healthy datasets. Each row corresponds to 
a different dataset described by the three leftmost columns. The first column denotes the tissue, i.e., PBMC, 
the second column denotes the isotype (IgM or all/unsorted), and the numbers in the third column represent 
different individuals. The color in each cell represents the proportion of traceable CDR3s that were formed by 
a gene on the x-axis in the dataset corresponding to the y-axis. Validated novel variations are highlighted on 
the x-axis. 

2.3.8 Accurate computation of the D gene allele usage.  

High SHM rate in IgG datasets can lead to inaccurate labeling of CDR3s in terms of the D 

gene allele used. Figure 2.5 shows a checkered pattern (particularly in the usage of genes IGHD2-8 

and IGHD3-16 in IgM and IgG datasets) for individuals 0 and 1 - while IgM datasets show 

homozygous state of IGHD3-16 formed by allele 2, IgG datasets show heterozygous state of IGHD3-

16 formed by the known allele 1 and the novel allele N_Var-0. This is because the estimated usage 

of a D gene depends not only on the sequence of that gene but also on the sequences of other genes. 

If two genes have very similar sequences and only one of them is present in the database, the CDR3 

sequences originating from both the genes will get assigned to the one that is present in the database.  
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Figure 2.5. Usage of variants of D genes in Healthy PBMC BM datasets. Gray lines separate the plot such 
that each subplot corresponds to one gene and its variants. Each cell in a subplot represents the proportion of 
the usage of a variant with respect to the total usage of all variants. Thus, in every subplot, the sum of all rows 
is 1. The columns on the y-axis tick labels represent the individual, the tissue, and the isotype, respectively. 

 

 

Figure 2.6. Usage of D genes in the Hepatitis B datasets corresponding to the IgG and IgM isotypes 
from various individuals. 
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When there are many SHMs, some hypermutated reads (CDR3s) can get assigned to one of 

the allelic variations if only a few (2-3, usually germline) are present in the database. Since the usage 

of alleles of a D gene is calculated in terms of proportion of the total usage of the D gene, even a 

small number of hypermutated CDR3s that got assigned to a wrong allele (because not all possible 

variations of the gene were in the database) can show up as a considerable proportion of the total 

usage, particularly if the total usage is small. This is what happened in the cases of genes IGHD3-16 

and IGHD2-8 (Figure 2.5).  

To circumvent this issue, we added artificial alleles of IGHD2-8, IGHD3-16, and IGHD3-

10 to the D genes database to check if all the CDR3s that were assigned to alleles in the IgG datasets 

for subjects 0, 1, and 2 (Figure 2.5) would still be assigned to the same alleles in the presence of 

these false variations. We added 61 alleles for IGHD3-16 that are possible with mutations at the 

highlighted sites in Figure 2.7. 

 
Figure 2.7. Alleles of the gene IGHD3-16. 

The results of D gene labeling are shown in Figure 2.8. Most of the CDR3 reads that were 

falsely assigned were distributed among the false alleles whereas the ones which were correctly 

assigned did not.  

 
Figure 2.8.   Allelic variant usage for genes IGHD3-10 (a), IGHD3-16 (b) and IGHD 2-8 (c). FA stands 
for false alleles. The alleles listed in IMGT are shown in blue. Novel inferred genes are shown in red. 
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For genes IGHD3-16 and IGHD2-8, the total usage was much smaller than other genes e.g. 

IGHD3-10. That is why the CDR3s incorrectly assigned to alleles made up a considerable proportion 

of the total number of CDR3s that were assigned to all alleles of the gene. Figure 2.8(a) illustrates 

that results for genes with a slightly higher usage are similar to results in Figure 2.5.  

2.3.9 Haplotyping heterozygous V genes using D genes.  

To support the inferences of the novel alleles found in the Healthy datasets, we used them 

for inference of haplotypes of V genes. Haplotype inference, whenever subjects are heterozygous 

with respect to some genes, can lend support to the identification of novel alleles of the germline 

genes [44]. We analyzed two Rep-seq datasets corresponding to individual 2 in Figure 2.4 and 

individual 5 from the Intestinal datasets (see Supplemental Note: D gene usage, Figure A.10). For 

each individual, we selected V genes that are present in corresponding Rep-seq datasets in the form 

of at least two allelic variants. To minimize the impact of the sample preparation artifacts and SHMs, 

we ignored alleles with low usage (<1000 distinct CDR3s). As a result, we selected 12 and 9 

heterozygous V genes for individuals 2 and 5, respectively (Table 2.6). Afterward, we extracted 

distinct CDR3s corresponding to each of the selected alleles and identified D genes in them. The 

joint usage of V and D gene alleles allows us to identify haplotypes of V genes and 4 heterozygous 

D genes (including novel alleles of IGHD3-10 and IGHD3-16) in individuals 2 (Figure 2.9) and 5 

(Figure 2.10). 

We could not infer haplotypes using IGHD2-2 gene because differences between its alleles 

are concentrated in the start of the gene that is often truncated. We also did not use gene IGHD3-3 

that is homozygous in both individuals. In individual 2, we could not infer haplotypes for the 4 out 

of 12 selected V genes: IGHV1-3, IGHV2-5, IGH3-23, and IGHV3-30. In individual 5, we could not 

infer haplotypes of IGHV1-69. We assume that it may be caused by the presence of these genes in 

several copies and SHMs (in individual 2).  
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Within an individual, haplotypes of the remaining V genes are consistent across all 

heterozygous D genes. Thus, haplotyping results lend additional support for novel alleles of D genes 

and prove that heterozygous D genes can be used for haplotyping the IGH locus.  

Table 2.6. Abundant heterozygous IGHV genes in individual 2 from Figure 4 and individual 5 from 
Figure A.10. For individual 2, only the IgM datasets were used. For individual 5, only the naive datasets were 
used. 

 
V gene 

 
Allele 

# distinct CDR3s 
Individual 2, Figure 4 Individual 5, Figure A.10 

IGHV1-2 2 - 4152 
4 - 1299 

IGHV1-3 1 7166 - 
2 2175 - 

IGHV1-46 1 2154 2717 
3 1058 1445 

IGHV1-69 1 - 7872 
6 8820 5194 
9 1914 - 

12 - 3052 
IGHV2-5 1 2667 - 

9 2621 - 
IGHV3-7 1 2841 - 

3 2276 - 
IGHV3-11 1 2569 - 

3 1114 - 
IGHV3-15 1 2263 - 

7 2339 - 
IGHV3-23 1 1428 - 

4 26138 - 
IGHV3-30 1 - 2621 

3 1617 2784 
18 6245 - 

IGHV3-48 1 3559 1581 
2 3538 - 
3 - 2753 

IGHV3-53 1 2495 - 
2 1048 - 

IGHV4-31 1 - 1488 
3 - 8183 

IGHV4-39 1  - 6732 
7 - 3448 

IGHV4-61 1 - 2828 
2 - 7271 

IGHV5-51 1 9561 17635 
3 2143 4082 
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Figure 2.9.  Haplotypes of IGHV genes for individual 2 from Figure 4. (Upper) Joint usage of V and D 
gene alleles. Alleles of V genes are shown at the third column on the left. A cell corresponding to allele X of 
gene V and allele Y of gene D shows the number of distinct CDR3s derived from alleles X, Y normalized by 
the total number of distinct CDR3s derived from allele X and gene D. Gray lines separate the plot such that 
each subplot corresponds to one gene and its alleles. (Lower) Haplotypes of IGHV are inferred according to 
the pairings of alleles of V and D genes supported by the maximum number of CDR3s. 

 

Figure 2.10. Haplotypes of IGHV genes for individual 5 from Figure A.10 (see legend for Figure 2.9).  
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2.3.10 Overused D genes 

To see any potential association between the usage of a D gene and an environment (a health 

condition, a tissue, or a cell type), we analyzed the usage of D genes in Stimulated and Tissue-specific 

datasets. We use the gene usage profiles in the Healthy PBMC datasets as a reference and compare 

the D gene usage profiles in other datasets. 

We say that a gene is overused in a dataset if the usage of the gene in that dataset is at least 

twice the maximum usage of that gene in all Healthy PBMC datasets. The ratio of usage of an 

overused gene to the maximum usage in Healthy PBMC datasets is referred to as over-usage. The 

usages of all IMGT D genes and validated novel variations in Healthy Human PBMC datasets are 

shown in Figure 2.11. Details on the genes overused in the Flu Vaccination datasets are shown 

inTable 2.7, and overused genes in other Stimulated and Tissue-specific datasets are shown in 

Supplemental Note: Over-usage of D Genes. In total, 9 genes were overused in at least 2 datasets of 

the same type in all Stimulated datasets (Figure 2.12), and 6 genes were overused in at least 2 datasets 

from the Intestinal datasets (Figure 2.13). These results suggest potential associations between the 

usage of a D gene and a health condition, tissue, or cell type, although it is difficult to infer 

statistically significant associations with such a small sample size. 

 
Figure 2.11. D gene usage in all Healthy datasets. Each point above a gene represents a Healthy Human 
PBMC dataset. To distinguish usages of different genes, adjacent genes are represented by different colors.  
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Table 2.7. Overused genes in Flu Vaccination datasets. Since the number of datasets in PRJNA324093 is 
much greater than in other projects, only genes that are overused in at least three different datasets are shown. 
The over-usage of a gene in a dataset is also shown. For example, the usage of IGHD1-1*01 in HA+ activated 
B cells for donor 1 is 3.7 times the maximum usage in all Healthy Human datasets.  

Gene Cell type Donor Over-usage 

IGHD1-1*01 

HA+ activated B cell 
1 3.7x 
5 
 

13.5x 
HA+ memory cells 5.8x 

HA- activated B cell 7 
 

2.4x 
HA- ASC 4.3x 

IGHD2-21*02 
HA+ activated B cell 7 

 

8.8x 
6.4x 

HA+ ASC 4.4x 

IGHD3-22*01 

HA+ activated B cell 4 
 
 

2.2x 
HA+ ASC 3.4x 

HA- activated B cell 4.4x 
HA+ memory B cell 7 3.2x 

IGHD3-9*01 

HA+ activated B cell 3 2.0x 
HA- activated B cell 

 
6 2.2x 
7 
 

2.0x 
HA- ASC 2.1x 

IGHD4-17*01 

HA+ activated B cell 

6 
 

9.5x 
8.6x 

7 
 

4.0x 
4.0x 

HA+ ASC 
6 9.7x 
7 6.7x 

HA+ memory B cell 6 7.2x 
 

 
Figure 2.12. Summary of overused genes in Stimulated datasets. The datasets in which each gene is 
overused are highlighted and annotated with the corresponding individuals. Subjects were prefixed with a 
letter corresponding to the project – “F” for Flu Vaccination, “M” for Multiple Sclerosis, and “H” for 
Hepatitis B Vaccination. Some genes were overused in multiple datasets from the same and/or different 
individuals. The number in parentheses shows the number of datasets from the same individual in which the 
gene was overused.   
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Figure 2.13. Summary of overused genes in Intestinal datasets. The datasets in which each gene is 
overused are highlighted and annotated with the corresponding individuals. The subjects in the Intestinal 
Repertoire project were prefixed with “G.” 

2.3.11 Usage of D genes in the Mouse datasets.  

57.4% of CDR3s on average were traceable in each dataset. Figure 2.14 shows the usage of 

mouse D genes (annotated in IMGT mice and one validated novel variant) in the datasets 

corresponding to naive B cells of various mice (see also Supplementary Note: D gene usage). The 

usage of genes among individuals of the same strain is similar. In contrast, the usage of genes among 

individuals of different strains (Balb/c, C57BL/6J, pet mice) is very different. The gene usages in 

two of the three pet shop mice (Pet 1 and Pet 2) of unknown strains show a departure from both 

Balb/c and C57BL/6J strains.  

The genes with differential usage in strains Balb/c and C57BL/6J are shown in Figure 2.15. 

Although the gene IGHD1-1*01 is only listed as a Balb/c gene in the IMGT database, we inferred it 

in both strains. We inferred genes IGHD1-2*01, IGHD2-10*01/IGHD2-11*01, IGHD2-14*01, and 

IGHD3-2*01 from only the Balb/c datasets – among these, three of them are listed as Balb/c genes 

in IMGT whereas IGHD2-14*01 is listed only as a 129/Sv gene. Genes IGHD3-2*02 and IGHD2-

5*01/IGHD2-6*01 were inferred from only the C57BL/6J datasets. IGHD3-2*02 is listed as a 

C57BL/6J gene in the IMGT database. The genes IGHD2-5*01 and IGHD2-6*01 have the same 

sequence and are listed under the CB.20 strain and C57BL/6J strain, respectively, in the IMGT 
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database. The results suggest that other than the novel variation that is not listed in the IMGT database 

for any strain, there are some genes which are listed in the IMGT database of some strains but were 

also inferred from other strains.    

 
Figure 2.14. Usage of various known and novel genes/variations in MICE datasets. Columns on the left 
represent cell type, tissue, strain, and individual respectively. OVA, HP-HEL, and HBsAg in the right most 
column represent the C57BL/6J mice immunized with OVA, HP-HEL, and HBsAg, respectively. For 
example, OVA 3 represents the C57BL/6J mouse number 3 that was immunized with OVA. 
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Figure 2.15. Genes with differential usage in Balb/c and C57BL/6J strains. Except IGHD1-1*01, all 
genes were inferred only in one strain. 

2.3.12 Usage of D genes in the camel, macaque, and rat datasets.  

31.7%, 52.6%, and 54.3% of CDR3s were traceable on average in the Camel, Macaque, and 

Rat datasets, respectively (see Supplemental Note: D Gene Usage). The D gene usage profiles were 

slightly different for the VH and the VHH isotypes within individuals (Figure A.15). For rats, genes 

belonging to the IGHD2 and IGHD3 families were used much less than in other gene families (Figure 

A.16). D genes with the highest usage among datasets of a species are shown in Supplemental Note: 

Highly Used D Genes in Non-human Datasets. 

2.4 Discussion 

Although inference of personalized immunoglobulin V, D, and J genes is now recognized as 

an important step in the analysis of immunosequencing data [26], inference of D genes presents 

additional difficulties as compared to inference of V and J genes [5]. Indeed, since D genes undergo 

exonuclease removals during VDJ recombination (and since they are much shorter than V and J 

genes), the alignment-based techniques used for V and J gene reconstruction do not work for D gene 

reconstruction.  
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Since the most abundant k-mers of CDR3s usually originate from D genes, iterative 

recruitment and extension of abundant k-mers in CDR3s (implemented in IgScout [28]) results in de 

novo reconstruction of many germline D genes. The performance of IgScout depends on the value 

of k: selecting a large k results in missing short D genes, but selecting a small k presents a danger of 

recruiting k-mers that belong to multiple D genes and thus missing some of these genes or producing 

inaccurate results. For inference of human D genes, IgScout uses k = 15 since all 15-mers in known 

human D genes are unique and all human D genes but one are at least 15 nucleotides long. However, 

it is unclear how to select the parameter k for species with still unknown sets of D genes.  

The described MINING-D algorithm does not assume previous knowledge of the lengths of 

D genes and, unlike IgScout, considers multiple extensions of k-mers and thus can use short k-mers 

as seeds (the default value k = 10 does not exceed the length of all known D genes). Benchmarking 

MINING-D on simulated datasets demonstrate high accuracy of the inferred D genes (Supplemental 

Note: Benchmarking MINING-D on simulated CDR3s). 

We applied MINING-D to 588 Rep-seq datasets from various species and inferred 38, 24, 

16, 25, 13, and 18 D genes using human, mouse, rat, macaque, camel, and rabbit datasets, 

respectively. 25 (13), 18 (6), 12 (4), 17 (8), 1 (12), and 3 (15) of human, mouse, rat, macaque, camel, 

and rabbit D genes were known (novel), respectively. We additionally validated the novel genes and 

variations using genomic data. Unfortunately, since paired Rep-seq and WGS datasets are currently 

not available, we could not validate the inferred D genes with genomic data taken from the same 

individuals. Instead, we downloaded 117 publicly available WGS datasets from different individuals 

and searched for occurrences of the inferred novel D genes and variations. In total, we validated 25 

of the 58 novel D genes/variations. There are multiple reasons why some of the inferred D genes 

were not validated, e.g., it is difficult to validate a rare allele of a D gene (since paired WGS and 

Rep-Seq data are not available), inferred gene may be a result of highly abundant SHM rather than a 

real D gene, etc. We also validated novel alleles of human D genes using haplotyping of heterozygous 

V genes and showed that haplotypes computed using novel and known D genes are consistent. 
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Additionally, we benchmarked MINING-D on TCR datasets (Supplemental Note: Benchmarking 

MINING-D on TCR datasets). 

Finally, we analyzed the usage of inferred D genes in diverse Rep-seq datasets and found 

that it is highly conservative in healthy humans. To see whether a gene is overused in some specific 

datasets corresponding to a health condition, tissue, and/or cell type, we compared the usage in these 

datasets against the usage in Healthy Human PBMC datasets as a reference. Based on the results of 

this comparison, we propose potential associations between some D genes and a health condition, 

tissue, and/or cell type, albeit the small sample size keeps us from inferring statistically significant 

associations. In total, we found 9 overused genes among the Flu Vaccination, Multiple Sclerosis, or 

Hepatitis B Vaccination datasets.  

We also analyzed the D gene usage in two mouse strains (Balb/c and C57BL/6J) and 

demonstrated that the usage of genes among individuals of the same (different) strains was very 

similar (different). For example, the gene IGHD1-1*01 (which was inferred in both strains) had a 

much higher usage in the C57BL/6J strain. Since this gene is only listed as a Balb/c gene in the IMGT 

database, we propose to add it to the database of C57BL/6J genes as well. Similarly, we propose to 

add IGHD2-14*01 to the Balb/c genes, which is only listed as a 129/Sv gene in the IMGT database.  

We demonstrated that high SHM rate may result in erroneous inferences that represent 

abundant hypermutations rather than novel alleles of D genes (see Supplemental Note: 

Benchmarking MINING-D on simulated CDR3s). Therefore, inference of novel alleles of D genes 

(as well as other immunoglobulin genes) must be done from data minimally affected by SHMs (such 

as naive or IgM / IgD Rep-Seq data) with a follow-up validation of the inferred alleles by genomic 

data. Using MINING-D, we inferred and validated 25 novel genes/variations in humans, mice, 

camels, rhesus macaques, rats, and rabbits. We argue that validated novel variations of D genes must 

be added to standard databases of germline genes to make the analysis of the antibody repertoire data 

more accurate. In addition, we also analyzed the usage of the known and validated novel D genes in 

the VDJ recombination process and found that although the gene usage is similar in PBMCs from 
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healthy individuals, we see some deviations in datasets that are antigen specific. Although, 

associations between the usage of a D gene and an antigen could not be established due to the low 

number of samples with a specific data type, our study suggests directions for future research.  
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Chapter 3  

Discovery of fasting molecules using data 

from non-targeted LCMS  

3.1 Introduction 

Recent research links fasting to health and longevity [45-47]. Fasting and caloric restriction 

without malnutrition are linked to numerous benefits in humans including weight loss [48-51], lower 

blood pressure [48, 49, 52], reduced inflammation [53, 54], and global metabolic improvements in 

blood lipids and insulin sensitivity [55-59]. Studies in lower organisms suggest that prolongation of 

lifespan with caloric restriction may be mediated by some carbon-containing metabolites [60], but 

the identity of these protective molecules remains largely undefined in humans.  

Fatty acid esters of hydroxy fatty acids (FAHFAs), a class of recently discovered bioactive 

lipids [61], favorably modulate diabetes risk and inflammation in adipose tissue in pre-clinical 

models [61]. Unlike other free fatty acids (FFA) that have been implicated in promoting insulin 

resistance, ectopic fat deposition, and a pro-inflammatory milieu [62-64], certain species of FAHFAs 

such as palmitic acid hydroxy stearic acid (PAHSA) appear to exert specific anti-diabetic and anti-

inflammatory effects in select animal models of diet-induced obesity (DIO) and insulin resistance 
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(IR). FAHFAs are present in human and murine foods at very low levels, but their levels can increase 

in murine AT with fasting [61], suggesting endogenous synthesis. Although the biological effects of 

5- and 9-PAHSA have been studied extensively in animal models, data in humans has been relatively 

limited. There have been no dedicated studies examining the dynamic regulation of FAHFA levels 

with fasting, refeeding, or specific dietary interventions in humans. 

With advancements in accelerated high-performance liquid chromatographic (LC) 

separation approaches coupled to high-resolution mass spectrometry (MS), routine detection of 

thousands of unique chemical compounds in a single biosample has become possible. To study the 

effect of fasting on human health and to see whether there are any metabolites, including the 

FAHFAs, that increase with fasting and show beneficial effects on human health, we performed a 

comprehensive systematic measure of potentially protective factors that increase with fasting with 

the help of nontargeted LC-MS approach. This work was done with the help of, and in collaboration 

with, Jain Lab at UC San Diego School of Medicine.  

3.2 Results 

We first examined hourly blood samples taken from 9 obese, non-diabetic individuals during 

controlled feeding (discovery cohort). About ten thousand metabolites were detected. Metabolite 

intensities were MAD (median absolute deviation) normalized. To see response to feeding/fasting, 

we looked at the mean levels of intensities during fasted and fed states for all the detected metabolites. 

The distribution of the differences between the mean intensities in the fasted and fed states for all the 

metabolites are plotted in Figure 3.1. We observe that there are some metabolites that increase with 

fasting, some that decrease with fasting, and others that do not show any response to feeding/fasting. 

Examples of these categories of metabolites are shown in Figure 3.2.  
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Figure 3.1 Distribution of the differences between the mean intensities in the fasted and fed states. (left) 
raw values of the difference (mean(fasted) – mean(fed)) (right) normalized values. The normalized values have 
0 mean and a standard deviation (SD) of 1. Vertical lines represent 1.96 SD from the mean on either side.     

  

 
Figure 3.2 24-hour median intensities of representative metabolites showing different types of responses 
to feeding/fasting. Feeding times are highlighted by triangles.  

 To formally test whether a metabolite responds to fasting/feeding, the time scale was 

adjusted to reflect fasting hours. For example, at times 10, 14, 18, and 22 hours, the fasting hour 

would be 1, since the feeding happened at times 9, 13, 17, and 21 hours. Then the association of the 

metabolite intensity with fasting hours was measured using a linear mixed effects model, where a 

random intercept was added for each subject. The p-values for all the metabolites are shown in Figure 

3.3. 804 metabolites showed positive significant associations (p-value < 10-6) with fasting hours i.e., 

the metabolite intensity increased with fasting. To validate, associations for these metabolites were 

also checked in an independent cohort of 7 subjects (validation cohort) for which we had hourly 

blood samples. Out of 804, only 510 were found in the validation cohort. For these, the associations 
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are plotted in Figure 3.4. In total, there were 280 metabolites that showed positive significant (p-

value < 10-6) associations with fasting hours in both cohorts.   

 

 

Figure 3.3. p-values for association of metabolite intensities with fasting hours in the linear mixed effect 
model. Each dot represents a metabolite. Significant associations (p-value < 10-6) are colored based on whether 
the association with fasting hours is positive or negative.  

 
Figure 3.4. p-values for association of metabolite intensities with fasting hours in the validation cohort. 
Associations are only shown for metabolites that increased with fasting in the discovery cohort. 

To better understand the effects of molecules that increase with fasting on human health 

(fasting molecules), we checked their associations with various obesity and cardio-metabolic 

phenotypes in an observational cohort of ~8500 subjects with associated clinical information (Cohort 

3). These associations are shown in Figure 3.5. Some of these molecules increase with BMI whereas 

others show higher levels at lower BMIs (negatively correlated with BMI). Interestingly, most of the 

significant associations of these metabolites with prevalent type 2 diabetes (T2D) and prevalent 
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coronary heart disease (CHD) were found to be negative (lower levels in subjects with the disease), 

whereas for HDL and LDL cholesterol, the significant associations were mostly positive.  

 
Figure 3.5. Associations of fasting metabolites with various obesity and cardio-metabolic phenotypes. 
Associations with BMI were checked after adjusting for age and gender and associations for T2D, CHD, 
HBA1C, LDL, and HDL were checked after adjusting for age, gender, and BMI. Note that the scales on the y-
axis are different in subfigures (a) and (b).  

3.3 Ongoing and future work 

These results beg several follow-up questions. What are the molecular identities of the 

molecules that increase with fasting? Are any of them FAHFAs? We only had 24 hour sampling data 

with controlled feeding over a period of 12 hours per day – do these metabolites keep increasing with 

long term fasting i.e., several days? How do they behave with time-restricted feeding? Are these 

molecules produced by the adipose tissue? These molecules are associated negatively (protective) 

with various cardio-metabolic phenotypes including coronary heart disease (CHD) – are these 

causally protective to CHD i.e., whether the disease is caused as a result of low levels of these 

molecules? Answers to these questions will open the door to a better understanding of cardio-

metabolic health and the effect of fasting on it. However, to answer some of these questions we 

require more data e.g., data from subjects who followed time-restricted feeding and long-term 
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fasting. This is ongoing work and results from these analyses will be included in an expanded version 

of this text, which we intend to publish soon.  
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Chapter 4  

Relationships among PTSD, depression, 

hostility, and aggression. 

4.1 Introduction 

Hostility, anger, and aggression are conceptually related but unique constructs. They have 

been linked to negative outcomes including behavioral and physical health problems, particularly 

among veterans with posttraumatic stress disorder (PTSD) and/or depression. The health outcomes 

include acute and chronic pain [65], inflammation [66], headaches [67], lower cognitive function 

[68], poor sleep quality [69], myocardial infarction and mortality [70, 71], and poor response to 

mental health treatment [72]. Hostility is defined as an antagonistic attitude or evaluation of others 

and is associated with feelings of disgust, indignation, and resentment [73]. Anger is an emotional 

state that consists of feelings that vary in intensity, from a mild irritation or annoyance to fury and 

rage [74]. Aggression, on the other hand, refers to the behavioral expression of anger that can take 

the form of physical or verbal acts [75]. Physical aggression can be directed toward self, objects, or 

others, and verbal aggression can range from shouting angrily to threatening physical violence. 

Understanding the impact of PTSD and depression on hostility, anger, and verbal and physical 
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aggression has important clinical implications for assessment and the development of intervention 

programs for OEF/OIF (Operation Enduring Freedom/Operation Iraqi Freedom) combat veterans.  

Recently, there has been an increased interest in the influence of war on aggressive behavior 

in OEF/OIF service members [76]. PTSD has been associated with physical aggression [77, 78] as 

well as non-physical forms of aggression [79-81]. Aggression has also been linked to other mental 

health problems such as depression in veterans and service members [80, 82, 83]. Although both 

PTSD and depressive symptoms have been found to function almost identically in predicting 

aggression risk [80, 84], Taft et al. show that when both are considered together, depression ceases 

to have a significant effect on the presence of aggression. However, depression has been found to 

partly mediate the relationship between PTSD and two forms of aggression: verbal aggression and 

aggression toward self [79]. Both PTSD and depression are highly prevalent in service members 

returning from Afghanistan and Iraq. In a recent study, 15.8% of OEF/OIF veterans screened positive 

for PTSD [85]. Another study estimated that 13 to 15% of OEF/OIF service members had clinically 

significant symptoms of depression without PTSD, and 24% had clinically significant levels of 

comorbid PTSD and depression [86]. Also, OEF/OIF veterans with PTSD have reported higher rates 

of aggression than veterans without PTSD [87].  

A significant limitation in most of the existing aggression research in OEF/OIF and other 

veterans is the reliance on global measures of aggression [87-90]. It is important to view aggression 

as a multi-dimensional construct to gain a refined understanding of the types of aggressive behavior, 

and to improve prediction and measurement of intervention outcomes. The prevalence rates and the 

risk factors of physical and non-physical aggression differ [91]. Moreover, inclusion of non-physical 

forms of aggression in a global index can falsely escalate the observed rates of aggression. Therefore, 

it is necessary to examine aggression as a multi-dimensional construct in order to improve 

understanding of aggressive behavior in OEF/OIF veterans. 

 In contrast to aggressive behaviors, fewer studies have examined the relationships between 

PTSD and hostility in OEF/OIF veterans. Hostility has been associated with both PTSD and 
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aggression [92-94]. PTSD symptoms are associated with higher hostility scores in both men and 

women [92]. There is some evidence that hostility partially mediates the association between PTSD 

and physical aggression [93]. Strong associations have also been found between hostility and 

depression [68, 95].   

Another construct that has been associated with PTSD, depression, hostility and aggression 

is anger [96, 97]. In order to gain a better understanding of the role of anger and its relationships with 

other constructs such as PTSD and aggression, anger may be divided into state anger (anger in a 

given moment) and trait anger (the general propensity to become angry) [98]. Trait anger has been 

associated with PTSD [99, 100], aggression [78, 99-101], and depression [102]. There is also some 

evidence that trait anger mediates the relationships between some PTSD clusters and aggression 

[102].  

There has been scant research on hostility, anger and aggression concurrently. Moreover, no 

studies to date have concurrently examined the direct and indirect effects of PTSD and depression 

on hostility, anger, and aggression. Given the negative physical, emotional, and psychosocial 

outcomes associated with these constructs, an examination of the complex relationships between 

PTSD, depression, hostility, anger, and aggression is important and has the potential to improve the 

assessment and treatment of OEF/OIF combat veterans.  

The aim of the present study was to gain an understanding of the direct and indirect 

relationships among PTSD, depression, hostility, anger and four types of aggression: (a) verbal 

aggression, (b) physical aggression toward self, (c) physical aggression toward objects, and (d) 

physical aggression toward others in a sample of returning OEF/OIF combat veterans. We 

hypothesized that depression, hostility, and trait anger would mediate the relationship between PTSD 

and aggression, and that the direct and indirect effects would vary based on type of aggression.  
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4.2 Methods 

4.2.1 Participants 

Participants were 175 OEF/OIF combat veterans (95% male, mean age = 30.36 (SD = 8.86)) 

who were participating in a larger cross-sectional study of genetic factors underlying vulnerability 

for PTSD.  The study excluded participants with a self-reported Axis I disorder diagnosis before 

deployment (obtained at phone screen), current alcohol dependence, or current drug use. 

Participants’ self-reported ethnicity was 30% Hispanic/Latino, 38% Non-Hispanic/Latino, 32% not 

reported, and race was 60% white, 6% black, 7% Asian, 2% American Indian, 2% Native Hawaiian/ 

Pacific Islander, 4% “other”, 19% not reported. Recruitment efforts included clinician referrals from 

VA and Navy clinicians and posting flyers at the VA medical center. The study received local 

institutional review board approval. All participants provided informed consent before being 

included in the study. 

4.2.2 Procedures 

Participants completed self-report questionnaires and a clinical interview to characterize the 

cohort demographics and to assess study-related constructs. All participants were treated in 

accordance with the [103].  

4.2.3 Measures  

Clinician-administered PTSD scale (CAPS). PTSD symptoms were assessed using the 

CAPS, DSM-IV Version [104], a measure of the frequency and intensity of each of the 17 PTSD 

symptoms that shows high sensitivity and specificity, high test-retest reliability, and strong 

convergence with other PTSD self-report measures [105, 106].  In the current sample, internal 

consistency was excellent (Cronbach’s alpha = 0.95).  

Beck depression inventory, second edition (BDI-II). The BDI-II [107] contains 21 self-

report items that address the cognitive, emotional, and somatic manifestations of depression. 

Respondents indicate the degree to which they experience symptoms such as hopelessness and 
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irritability, cognitions such as guilt or feelings of being punished, as well as physical symptoms such 

as fatigue and weight loss, along a four-point Likert scale ranging from 0 to 3. The items were 

summed up to construct a total depression score. In the current sample, internal consistency was 

excellent (Cronbach’s alpha = 0.94). 

Cook-Medley hostility scale.  The Cook-Medley hostility scale [108] is a 50-item hostility 

scale derived from the Minnesota Multiphasic Personality Inventory (MMPI), that measures different 

aspects of hostility [109]. For this study, items corresponding to the Cynicism, Hostile Affect, and 

Hostile Attributions subscales were used. The Aggressive Responding subscale items were not 

included to avoid any spurious correlations with measures of anger and aggression. In the current 

sample, internal consistency was good (Cronbach’s alpha =0.85). 

State-Trait anger expression inventory. Trait anger was measured using the 10-item Trait-

Anger (T-Ang) scale of the revised State-Trait anger expression inventory [98], that measures the 

disposition of someone to express anger with and without provocation. Respondents indicate the 

frequency with which they experience angry feelings on a 4-point scale, ranging from 1 (“almost 

never’’) to 4 (“almost always”). Scores on individual items were summed up to construct a total T-

Ang score. In the current sample, internal consistency was good (Cronbach’s alpha = 0.89). 

Retrospective overt aggression scale (ROAS). Aggression was measured using the ROAS 

[110], a retrospective adaptation of the Overt Aggression Scale [111]. Each of the 16 items of the 

ROAS falls into one of the four subscales - verbal aggression, physical aggression toward objects, 

physical aggression toward others, and physical aggression toward self, with subscale scoring 

weighted based on the severity of the aggressive behavior. Respondents indicate the frequency with 

which they engaged in specific aggressive acts in the past month on a 5-point scale, ranging from 0 

(“never / 0 times”) to 4 (“always / greater than 10 times”). The ROAS shows excellent inter-rater 

reliability (r = 0.96), and high intra-class correlations [112, 113]. In the current sample, internal 

consistency was good (Cronbach’s alpha = 0.88).  
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4.2.4 Data Analysis 

Descriptive statistics were computed to examine the sample means and standard deviations 

on each study measure. Zero-order correlations were computed to examine basic associations 

between study variables.  

Given a dependent variable and its predictor variables, modeling was performed using least-

squares regression. The model was constructed as follows: depression was modeled as a function of 

PTSD, and hostility was modeled as a function of both depression and PTSD. Direct paths were 

added from PTSD, depression, and hostility to trait anger, and from these four variables to 

aggression. Four separate analyses were conducted to examine models of the four types of 

aggression: verbal aggression, physical aggression toward objects, physical aggression toward 

others, and physical aggression toward self. A direct effect was deemed significant if the 

corresponding p-value in the linear regression model was smaller than 0.05.  

The significance of mediated (or indirect) effects was tested via bootstrapped confidence 

intervals. Bootstrapping is a non-parametric procedure that, unlike the conventional tests of 

mediation such as the Sobel test, does not rely on the assumption of normality of the indirect effects’ 

coefficients and generates the distribution empirically by resampling the data with replacement many 

times [114]. The bootstrapped confidence intervals were generated using 5000 resamples of the data 

with replacement. An indirect effect was considered significant if the corresponding bootstrapped 

95% confidence interval did not contain zero. Age and sex were included as covariates in all direct 

and indirect effect models. 

4.3 Results  

4.3.1 Descriptive Statistics and Correlations 

The study variable means and standard deviations, and zero-order correlations among them, 

are presented in Table 4.1. All the variables were positively correlated, p < 0.001.  
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Table 4.1. Scale means, standard deviations (SD), and zero-order correlations. All correlations were 
significant with p < 0.001. 

 Mean (SD) PTSD TA Depression Hostility VA POb POt 
PTSD 55.16 (30.44) -       

TA 20.76 (7.04) 0.59 -      

Depression 15.66 (12.32) 0.74 0.61 -     

Hostility 14.61 (6.13) 0.45 0.57 0.53 -    

VA 8.11 (8.04) 0.52 0.61 0.58 0.43 -   

POb 5.01 (8.41) 0.38 0.49 0.48 0.38 0.65 -  

POt 2.82 (6.98) 0.34 0.38 0.29 0.27 0.48 0.37 - 
PS 2.56 (6.09) 0.38 0.40 0.47 0.31 0.48 0.53 0.31 

 
4.3.2 Least Squares Regression Modeling  

The standardized direct effects among PTSD, depression, hostility, and trait anger are shown 

in Figure 4.1. PTSD was a significant predictor of depression (p < 0.001). When both PTSD and 

depression were included as predictors for the criterion variable hostility, the effect of PTSD failed 

to reach significance (p = 0.35), whereas that of depression was significant (p < 0.001). Further, each 

of the variables PTSD, depression, and hostility had a significant effect on trait anger when the other 

two variables were present in the model.  

The direct effects of PTSD, depression, hostility, and trait anger on verbal aggression, 

physical aggression toward objects, physical aggression toward others, and physical aggression 

toward self are also reported in Figure 4.1. In the models of verbal aggression and physical aggression 

toward objects, depression and trait anger had significant direct effects.  In contrast, direct effects of 

PTSD (p = 0.55 for verbal aggression, p = 0.47 for physical aggression toward objects) and hostility 

(p = 0.95 for verbal aggression, p = 0.51 for physical aggression toward objects) failed to reach 

significance in both models. In the model for physical aggression toward others, trait anger had a 

significant effect, whereas PTSD (p = 0.11), depression (p = 0.96), and hostility (p = 0.73) did not. 

However, in the model for physical aggression toward self, only depression had a significant direct 

effect; the effects of PTSD (p = 0.93), hostility (p = 0.86) and trait anger (p = 0.07) were deemed 

insignificant. Overall, 56% of the variance in depression, 33% of the variance in hostility, 51% of 
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the variance in trait anger, 46% of the variance in verbal aggression, 31% of the variance in physical 

aggression toward objects, 18% of the variance in physical aggression toward others, and 25% of the 

variance in physical aggression toward self was explained by the models.  

 

 
Figure 4.1. Graphical illustration of the direct and indirect effects model of PTSD, depression, hostility, 
trait anger, and aggression. Numerical values are standardized direct effects. * p < 0.05, ** p < 0.01, *** p 
< 0.001 

4.3.3 Bootstrapped mediation analyses  

The results of the bootstrapped mediation analyses are presented in tables 4.2 and 4.3. 

Depression completely mediated the relationship between PTSD and hostility and moderately 

mediated the relationship between PTSD and trait anger.  

As hypothesized, depression also mediated the associations between PTSD and verbal 

aggression, physical aggression toward objects, and physical aggression toward self. However, it did 

not mediate the relationship between PTSD and physical aggression toward others. Trait anger also 

mediated the associations between PTSD and verbal aggression, physical aggression toward objects, 

and physical aggression toward others, but not physical aggression toward self.  
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Furthermore, trait anger completely mediated the association between depression and 

physical aggression toward others, modestly mediated the relationships between depression and 

verbal aggression as well as depression and physical aggression toward objects, but did not mediate 

the relationship between depression and physical aggression toward self.   

Trait anger also completely mediated the relationships between hostility and verbal 

aggression, physical aggression toward objects, and physical aggression toward others. However, for 

physical aggression toward self, neither hostility nor trait anger had significant direct or indirect 

effects.   

Table 4.2. Standardized direct and indirect effects on depression, hostility, and trait anger (TA). 
Significant effects (based on 95% confidence intervals) are bolded.   

Pathway Direct Effect (95% CI) Indirect Effect (95% CI) 

PTSD → Depression 0.74 (0.64 to 0.84) 
 

PTSD → Hostility 0.09 (-0.11 to 0.30) 0.34 (0.21 to 0.48) 

PTSD → Depression → Hostility 
 

0.34 (0.21 to 0.48) 

 
 

Depression → Hostility  0.47 (0.29 to 0.63)  

PTSD → TA 0.28 (0.13 to 0.44) 0.32 (0.18 to 0.45) 

PTSD → Depression → TA  0.17 (0.04 to 0.3) 

PTSD → Hostility → TA  0.03 (-0.04 to 0.1) 

PTSD → Depression → Hostility → TA  0.12 (0.06 to 0.19) 

Depression → TA  0.23 (0.05 to 0.4) 0.16 (0.08 to 0.26) 

Depression → Hostility → TA  0.16 (0.08 to 0.26) 

Hostility → TA 0.34 (0.21 to 0.48)  
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Table 4.3. Standardized direct and indirect effects on verbal aggression, physical aggression toward 
objects, physical aggression toward others, and physical aggression toward self. Significant effects (based 
on 95% confidence intervals) are bolded. 

Pathway Direct Effect (95% CI) Indirect Effect (95% CI) 

Verbal Aggression (VA) 

PTSD → VA 0.05 (-0.12 to 0.21) 0.46 (0.28 to 0.67) 

PTSD → Depression → VA  0.22 (0.06 to 0.4) 

PTSD → Hostility → VA  0.0(-0.02 to 0.02) 

PTSD → TA → VA  0.11 (0.04 to 0.2) 

PTSD → Depression → Hostility → VA  0.0 (-0.05 to 0.04) 

PTSD → Depression → TA → VA  0.07 (0.01 to 0.14) 

PTSD → Hostility → TA → VA  0.01 (-0.02 to 0.04) 

PTSD → Depression → Hostility → TA → VA  0.05 (0.02 to 0.08) 

Depression → VA 0.30 (0.09 to 0.51) 0.16 (0.06 to 0.27) 

Depression → TA → VA  0.09 (0.02 to 0.19) 

Depression → Hostility → VA  0.00 (-0.06 to 0.06) 

Depression → Hostility → TA → VA  0.06 (0.03 to 0.11) 

Hostility → VA  0.01 (-0.12 to 0.13) 0.13 (0.07 to 0.22) 

Hostility → TA → VA  0.13 (0.07 to 0.22) 

TA → VA 0.40 (0.24 to 0.58)  

Physical Aggression toward objects (POb) 

PTSD → POb -0.07 (-0.27 to 0.11) 0.44 (0.25 to 0.67) 
PTSD → Depression → POb  0.24 (0.03 to 0.48) 

PTSD → Hostility → POb  0.0 (-0.01 to 0.03) 

PTSD → TA → POb  0.09 (0.03 to 0.17) 

PTSD → Depression → Hostility → POb  0.02 (-0.02 to 0.06) 

PTSD → Depression → TA → POb  0.05 (0.01 to 0.11) 

PTSD → Hostility → TA → POb  0.01 (-0.01 to 0.04) 

PTSD → Depression → Hostility → TA → POb  0.04 (0.01 to 0.07) 

Depression → POb 0.32 (0.04 to 0.62) 0.14 (0.06 to 0.26) 

Depression → TA → POb  0.07 (0.01 to 0.15) 

Depression → Hostility → POb  0.03 (-0.03 to 0.08) 

Depression → Hostility → TA → POb  0.05 (0.02 to 0.1) 

Hostility → POb 0.05 (-0.06 to 0.17) 0.10 (0.04 to 0.19) 

Hostility → TA → POb  0.10 (0.04 to 0.19) 

TA → POb 0.31 (0.13 to 0.51)  
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Table 4.3. Standardized direct and indirect effects on verbal aggression, physical aggression toward 
objects, physical aggression toward others, and physical aggression toward self. Significant effects (based 
on 95% confidence intervals) are bolded. 

Physical Aggression toward others (POt) 

PTSD →  POt 0.17 (0.00 to 0.34) 0.16 (-0.01 to 0.38) 
PTSD → Depression →  POt  0.0 (-0.14 to 0.15) 

PTSD → Hostility → POt  0.0 (-0.02 to 0.03) 

PTSD → TA →  POt  0.07 (0.01 to 0.17) 

PTSD → Depression → Hostility → POt  0.01 (-0.04 to 0.07) 

PTSD → Depression → TA → POt  0.04 (0.00 to 0.11) 

PTSD → Hostility → TA →  POt  0.01 (-0.01 to 0.03) 

PTSD → Depression → Hostility → TA →  POt  0.03 (0.01 to 0.07) 

Depression →  POt 0.0 (-0.19 to 0.2) 0.11 (0.02 to 0.25) 

Depression → TA →  POt  0.06 (0.01 to 0.15) 

Depression → Hostility →  POt  0.01 (-0.05 to 0.09) 

Depression → Hostility → TA →  POt  0.04 (0.01 to 0.1) 

Hostility →  POt 0.03 (-0.12 to 0.18) 0.09 (0.02 to 0.18) 

Hostility → TA →  POt  0.09 (0.02 to 0.18) 

TA → POt 0.26 (0.06 to 0.51)  

Physical Aggression toward self (PS)  

PTSD →PS 0.01 (-0.19 to 0.17) 0.37 (0.10 to 0.70) 
PTSD →Depression → PS  0.25 (0.04 to 0.53) 

PTSD → Hostility → PS  0.0 (-0.02 to 0.02) 

PTSD → TA → PS  0.05 (-0.01 to 0.13) 

PTSD → Depression → Hostility → PS  0.01 (-0.05 to 0.05) 

PTSD → Depression → TA → PS  0.03 (-0.01 to 0.09) 

PTSD → Hostility →TA → PS  0.01 (-0.01 to 0.03) 

PTSD → Depression → Hostility → TA → PS  0.02 (-0.01 to 0.06) 

Depression → PS 0.34 (0.06 to 0.67) 0.07 (0.00 to 0.18) 

Depression → TA → PS  0.04 (-0.01 to 0.12) 

Depression → Hostility → PS  0.01 (-0.06 to 0.07) 

Depression → Hostility → TA → PS  0.03 (-0.01 to 0.08) 

Hostility → PS 0.02 (-0.13 to 0.15) 0.06 (-0.02 to 0.15) 

Hostility → TA → PS  0.06 (-0.02 to 0.15) 

TA → PS 0.18 (-0.05 to 0.42)  

 

4.4 Discussion  

This was the first study to investigate the direct and indirect relationships among PTSD, 

depression, hostility, anger and four types of aggression: (a) verbal aggression, (b) physical 

aggression toward self, (c) physical aggression toward objects, and (d) physical aggression toward 

others in a sample of returning OEF/OIF combat veterans. PTSD, depression, hostility, and anger 
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behaved differently while predicting different forms of aggression, corroborating the recognition of 

aggression as a multi-dimensional construct. Based on linear regression analysis, only depression 

had a significant direct effect on physical aggression toward self, whereas in the models for verbal 

aggression and physical aggression toward objects, depression and trait anger had significant effects. 

In contrast, in the model of physical aggression toward others, only trait anger had a significant direct 

effect. 

Although the bootstrapped analysis was only used to test the significance of indirect effects, 

the 95% bootstrapped confidence intervals for direct effects are also reported in tables 4.2 and 4.3 

for the sake of completeness. It is important to mention that the bootstrapped confidence interval for 

the direct effect of PTSD on physical aggression toward others (95% CI: 0.003-0.335) does not 

contain zero even though the effect is non-significant based on linear regression analysis (p = 0.11). 

For all other direct effects, there is consistency between the significance as determined by least 

squares regression and the 95% bootstrapped confidence interval not containing zero.  

In support of our study hypothesis, depression mediated the associations between PTSD and 

physical aggression toward self, verbal aggression, and physical aggression toward objects, when 

hostility and trait anger were in the model. This is partly consistent with the findings of one study 

[79], where depressive symptoms partly mediated the relationship between PTSD and two forms of 

aggression: verbal aggression and physical aggression toward self. In the study, however, the authors 

only considered PTSD, depression, and aggression, whereas in this study, hostility and trait anger 

were also in the model. Contrary to our hypothesis, depression did not mediate the association 

between PTSD and physical aggression toward others. This is also consistent with the findings of 

two studies [79, 84], that observed that although depression and PTSD both uniquely predicted 

physical aggression, when considered together, depression ceased to have a significant effect.   

To the best of our knowledge, no studies have investigated whether trait anger mediates the 

associations between PTSD and different forms of aggression, although one study [102] showed that 

trait anger mediated the relationships between some PTSD clusters and general aggression, which 
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was measured only using three items related to verbal and physical aggression. In this study, as 

hypothesized, trait anger mediated the associations between PTSD and verbal aggression, physical 

aggression toward objects, and physical aggression toward others, when depression and hostility 

were in the model. It did not, however, mediate the relationship between PTSD and physical 

aggression toward self. This study, therefore, provides a unique contribution to the literature by 

providing the relationships between PTSD, trait anger, and different forms of aggression. 

In contrast to trait anger, the indirect effect of PTSD on aggression via hostility alone was 

not significant for any type of aggression. This is contrary to a study [93], where hostility partially 

mediated the association between PTSD and physical aggression, measured by items corresponding 

mostly to physical aggression toward others. One reason why the findings differ could be the 

inclusion of depression and trait anger in our models of aggression. In our study, PTSD had no 

significant direct effect on hostility when depression was in the model, and hostility had no 

significant direct effect on physical aggression towards others when trait anger was in the model. 

Current results highlight that PTSD is not the overall direct contributor to different forms of 

aggression, and clearly show the role of depression and trait anger. Depression symptoms explain 

part of the relationships between PTSD and verbal aggression, physical aggression toward objects, 

and physical aggression toward self, and trait anger explains part of the relationships between PTSD 

and verbal aggression, physical aggression toward objects, and physical aggression toward others. 

Concurrent PTSD symptoms and higher trait anger in veterans may warrant close monitoring of 

veterans for being physically aggressive toward others. On the other hand, veterans with high 

depressive symptoms should be closely monitored for self-harm. Although evidence-based 

treatments for PTSD can help reduce depressive symptoms [115], explicitly treating depression 

among OEF/OIF veterans with PTSD may reduce acts of physical aggression toward self. Similarly, 

explicitly addressing trait anger along with PTSD symptoms among OEF/OIF veterans may help 

reduce incidents of physical aggression toward others.  
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The findings of this study should be viewed in the context of some limitations. First, our 

sample is predominantly male and white, which might limit generalizability of the findings. 

However, white males constitute majority of the US veterans [116], suggesting that the findings are 

applicable to the general population of interest.  Second, participants may not have accurately 

reported aggressive acts on the retrospective self-report aggression scale. Finally, these data were 

cross-sectional, and hence, any purported causal pathways must be cautiously considered. Although 

future research on the relationships between PTSD, depression, hostility, anger, and aggression is 

needed for validation, our findings suggest that clinicians working with veterans should consider a 

multifaceted approach to treatment that not only addresses PTSD, but also depression and trait anger.  
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Appendix A  

Supplement Notes on Chapter 2 
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A.1 Exact algorithm for solving the String Reconstruction 

Problem  

It is easy to see that 𝑃𝑃(𝐶𝐶|𝑠𝑠) is maximized by one of the modified strings. This observation 

leads to a brute-force algorithm for solving the String Reconstruction Problem (with complexity 

O(|s|*N2)) that simply computes 𝑃𝑃(𝐶𝐶|𝑠𝑠) for each of the N modified strings. Below, we describe a 

O(|s|*N) algorithm for solving this problem that is linear in the input size. 

We assume for simplicity that all modified strings are different. This is not a strict 

assumption as one can always add special symbols to distinguish all strings. We denote 𝑓𝑓(𝑗𝑗) =

 log(|𝒜𝒜|𝑗𝑗+1 − 1) and search for a string that maximizes ∑ 𝑓𝑓(𝑚𝑚𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . We denote a t-symbol prefix 

(t-prefix) of a string c as ct and the set of all t-prefixes of strings from C as Ct. Given a string s and 

an integer t, we say that a string c is t-similar to s if t-prefixes of s and c coincide. The number of 

strings in C that are t-similar to s is denoted as simt(C,s). Given a string s,  

score(𝐶𝐶𝑡𝑡|𝑠𝑠𝑡𝑡) = score(𝐶𝐶𝑡𝑡−1|𝑠𝑠𝑡𝑡−1) +  𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡(𝐶𝐶, 𝑠𝑠) ×   log�
|𝒜𝒜|𝑡𝑡+1 − 1

|𝒜𝒜|𝑡𝑡 − 1
�. (7) 

We use this recurrence to efficiently compute score(C|s) for each string s from C using 

dynamic programming. We construct a trie of all strings in C [117]. Each vertex in the trie is a t-

prefix st of a string from C, and we recursively compute score (Ct|st) in each vertex of the trie using 

the above recurrence (assuming that the score of the root is 𝑁𝑁 × log(|𝒜𝒜|− 1)). The optimal string is 

the string corresponding to the leaf node with the maximum score (Figure A.1). All scores can be 

computed by a single Depth First Search, assuming that all values simt(C,s) are computed during the 

construction of the trie.  



 
60 

 
 
Figure A.1 Illustration of the algorithm for solving the String Reconstruction Problem. The set of 
modified strings is shown on the left, and their trie is shown on the right. The string associated with each vertex 
is the one that is formed by traversing from the root node to the vertex. The number of leaves under each vertex 
is shown on the left. The scores for all vertices in the path from the root node to the leaf node with the maximum 
score are shown in blue. The leaf CATTAT is the optimal seed string.  
 

A.2 Greedy Algorithm  

The pseudocode of the greedy algorithm is as follows: 
 

greedy_string (C): 
 𝑆𝑆𝑔𝑔 ← 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒() 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 𝑖𝑖𝑖𝑖 1 𝑡𝑡𝑡𝑡 𝑞𝑞 : 

𝐸𝐸(𝑗𝑗) ← most abundant symbol at position 𝑗𝑗 in the strings in C 
𝑆𝑆𝑔𝑔 ← 𝑆𝑆𝑔𝑔 + 𝐸𝐸(𝑗𝑗)  
C ← set of all strings 𝑐𝑐𝑖𝑖 in C such that 𝑐𝑐𝑖𝑖[1: 𝑗𝑗 ] = 𝑆𝑆𝑔𝑔  

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑔𝑔 
Figure A.2. Pseudocode of the greedy algorithm.   

A.3 MINING-D Parameters 

The most important parameter of the MINING-D algorithm is m, the number of seed k-mers. 

The default value of m should be different across species, since different numbers of D genes take 

part in the recombination process in each species. To decide on the default m for each species, we 

applied MINING-D to all datasets with different values of m. The results are shown in Table A.1. 
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Based on the results in the table, we chose the following as the default values: human (m = 600), 

mouse (m= 300), rat (m = 300), rhesus macaque (m = 600), Bactrian camel (m = 300), and rabbit (m 

= 100). 

The p-value threshold was chosen to be 10-36. This value achieves 80% power from the test 

with a sample size of 2000 when the effect size (deviation from uniform distribution) is medium, 

according to the definition of the medium effect for chi-squared test. Having a strict (very low) 

threshold on the p-value may lead to some missing nucleotides on the sides of the genes, but since 

we are also doing genomic validation, the whole gene can be recovered from the genomic reads. On 

the other hand, high p-value threshold will not only lead to extra nucleotides on the sides, it will also 

cause more extensions to be made from a single k-mer, leading to more false positives. As another 

test, we also tried to extend the known human IMGT genes in Healthy Human CDR3 datasets using 

this threshold. 95% of the time, no extension was made to any gene.  
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Table A.1. Information about inferred D genes. m denotes the number of seed 10-mers. The number of novel 
genes and variations validated using genomic data are also shown. 

Species - Individuals IMGT 
Database m # Inferred genes 

including variations 
# Inferred genes 

in IMGT 
# Novel variations 

(validated) 

# Novel 
genes 

(validated) 

Healthy Humans   
20 

Human 
 

1000 42 25 12 (2) 5 (0) 

600 38  25 8 (2) 5 (0) 

300 27 20 5 (2) 2 (0) 

100 15 12 3 (1) - 

Untreated + 
Immunized 

Mouse   
27 

Mouse 
 

1000 35 18 12 (1) 5 (0) 

600 29 18 9 (1) 2 (0) 

300 24 18 5 (1) 1 (0) 

100 17 15 2 (1) - 

Immunized Wistar 
Rat  

1 
Rats 

1000 27 13 11 (3) 4 (0) 

600 20 13 6 (3) 1 (0) 

300 16    12 4 (3) -  

100 13 9 4 (3) -  

Rhesus macaque - 
7 

Crab-
eating 

macaque 

1000 25  17 6 (6) 2 (2) 

600 25 17 6 (6) 2 (2) 

300 24 16 6 (6) 2 (2) 

100 14 10 2 (2)  2 (2)  

Bactrian Camels  
3 Alpaca 

1000 24 2 18 (8) 4 (0) 

600 19 2 15 (8) 2 (0) 

300 13  1 12 (8) - 

100 10 1 9 (7) - 

Immunized New 
Zealand Rabbit  

1 
Rabbit 

1000 73 3 57 (3) 13 (0) 

600 53 3 39 (3)  11 (0) 

300 34 3 25 (3)  6 (0) 

100 18 3 13 (3) 2 (0) 

 

A.4 Defining Relative Positions 

Looking at the relative positions of the extensions of k-mers has some advantages over 

looking at the relative positions of the k-mers. Since a relatively short k-mer can be a part of two of 
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the three types of V, D, and J genes, the mean relative position among all the CDR3s of which such 

a k-mer is a substring can be misleading. Moreover, even if the k-mer is a substring of only one gene, 

the relative position of the extension gives a better estimate of the position of the CDR3 part of which 

the k-mer is a substring as illustrated in Figure A.3 and Figure A.4.  

 

Figure A.3. The relative position of a 10-mer in a CDR3. The red, green, and blue colors represent parts of 
the V, D, and J segments in a CDR3 sequence. The relative position of the 10-mer CGAAATACTA is 0.32, 
whereas the relative position of its potential extension in red is 0.04. 

 

 

Figure A.4. The mean relative positions of the abundant seed 10-mers (in green) and their extensions (in 
red) in the MOUSE dataset. The relative positions of the extensions form three clusters, each corresponding 
to one of the V, D, and J genes. 

 

A.5 Removing Unidirectional Extensions 

Not all the unique extensions in the central cluster correspond to different D genes. Some of 

them are multiple reconstructions of the same D gene and are very similar to each other in the sense 

that they differ from each other by only a few nucleotides only at the edges. Most of them can be 

eliminated by making the observation that a highly abundant k-mer that the algorithm starts with 

might not always be, as a whole, a substring of a D gene. For example, the k-mer shown in Figure 

A.5 can be among the highly abundant k-mers chosen to extend if the D gene shown in (a) is 

represented highly in the CDR3 sequences. When extended, it only extends to the right as shown in 
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(c), retaining the random insertions in the k-mer. We can eliminate such unidirectional extensions 

because we expect some of the central k-mers of the D gene to also be among the highly abundant 

10-mers. Such k-mers will be extended in both directions (bidirectional extensions), and by 

eliminating the unidirectional extensions, we reduce the number of reconstructions per D gene.  

 

Figure A.5. A highly abundant 10-mer (b) that is formed by random insertions (two nucleotides in the 
beginning) and 8 nucleotides from a highly abundant D gene (a). Since this 10-mer was not a substring of 
the D gene, its extension (c) is also not a substring of the D gene. 

 
Formally, let the number of nucleotides added to the left and right of the k-mer be NL and 

NR, respectively. We put the following constraint on NL and NR: 

|𝑁𝑁𝐿𝐿−𝑁𝑁𝑅𝑅|
max(𝑁𝑁𝐿𝐿,𝑁𝑁𝑅𝑅)

≤ 𝛼𝛼, 

where 𝛼𝛼 is a parameter of the algorithm. We used 𝛼𝛼 = 0.5. The possible values of NL and NR with 𝛼𝛼 

= 0.5 are shown in Table A.2. 

Table A.2. Possible values of NL and NR with the constraint when 𝜶𝜶 = 0.5. 

NL NR 

1 1,2 
2 1,2,3,4 
3 2,3,4,5,6 
4 2,3,4,5,6,7,8 
5 3,4,5,6,7,8,9,10 

 

A.6 Immunosequencing Datasets 

Summaries of all the human and non-human immunosequencing datasets analyzed in this 

study are shown in Table A.3 and Table A.4, respectively. 
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Table A.3. Summary of human immunosequencing datasets analyzed in the study. ASC refers to antibody 
secreting cells. 

Name # Individuals Tissue Cell Types  Isotypes NCBI Project # 
Datasets 

Allergy Patients 6 PBMC,  
Bone 

Marrow 

Unsorted NA PRJEB18926 24 

Flu Vaccination 8 PBMC Unsorted, 
Memory, resting 
memory, HA+/- 
memory,  naive,   

ASC 
 

NA PRJNA324093 95 

3 PBMC Unsorted NA PRJNA349143 18 

Healthy 3 PBMC Unsorted IgG,  
IgM 

PRJNA430091 28 

Cord Blood 5 PBMC, Cord 
Blood 

Unsorted NA PRJNA393446 6 

Intestinal 
Repertoire 

7 Ileum 
Mucosa,  
Colon 

Mucosa 

Memory,  
Plasma 

IgA,  
IgM 

PRJNA355402 35 

Multiple 
Sclerosis  

4 Brain lesion,  
Cervical 

lymph node,  
Choroid 
plexus,  

Pia mater 

Unsorted NA PRJNA248475 32 

Hepatitis B (a) 9 PBMC Unsorted,  
HBsAg+ and  

HLA-DR+ plasma 
cells 

IgG PRJNA308566 142 

Hepatitis B (b) 9 PBMC Unsorted,  
HBsAg+ and 

HLA-DR+ plasma 
cells 

IgG,  
IgM 

PRJNA308641 107 

 
Table A.4. Summary of non-human immunosequencing datasets analyzed in the study. 

Species  Strains Health 
Status 

# 
Individuals Tissue Cell Types  Isotypes Project # 

Datasets 

Mouse 

C57BL/6J
,  

Balb/c,  
Pet shop 

Untreated, 
Antigen-

immunized 
27 Spleen, Bone 

marrow 

pre-B cell, 
long lived 

plasma cell, 
naive B cell,  

NA PRJEB18631 71 

Macaque 

Rhesus 
macaques 
of Indian 

and 
Chinese 
origin 

Healthy 7 PBMC unsorted IgM PRJEB15295 7 

Camel Bactrian Healthy 3 PBMC PBMC VH, VHH PRJNA321369 6 

Rat Wistar Immunized 10 Spleen unsorted NA PRJNA386462 10 

Rabbit 

New 
Zealand 

white 
rabbit 

Sequentially 
immunized 3 PBMC,  

Spleen unsorted NA PRJNA355270 7 
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A.7 Benchmarking MINING-D against IgScout 

We compared the results of IgScout and MINING-D on all datasets from the project 

PRJEB18926. The results are shown in Figure A.6. A gene is said to be present in a dataset if at least 

one variation of the gene is found in the dataset and missing otherwise. In most datasets, both IgScout 

and MINING-D miss three D genes with very low usage (IGHD1-14, IGHD1-20, IGHD6-25) and a 

very short IGHD7-27 gene (11 nt). These D genes are also reported as missing in multiple studies on 

analyzing the usage of D genes [43, 118-120]. While IgScout also misses three more short D genes 

with low usage i.e., IGHD1-1, IGHD4-4, IGHD1-7, MINING-D infers these genes for some 

individuals.   

 

 
Figure A.6.  Results of IgScout (left) and MINING-D (right) on datasets from the project PRJEB18926. 
All genes that were found in a dataset are shown in dark green, whereas the missing genes in datasets are 
denoted by light green. Missing inferences for genes IGHD3-22 through IGHD7-27 in Donor 1 indicate a 
potential deletion polymorphism in the IGHD locus. 

We also compared the MINING-D and IgScout results on non-human datasets. Tables A.5 

through Table A.7 compare the results of IgScout and MINING-D on ten Mouse datasets (4 Balb/c 

mice, 4 C57BL/6 mice, and 2 pets), all Rat datasets, and all Camel datasets. Figure A.7 presents the 

distributions of missing and extra nucleotide bases in the inferred genes (as compared to the IMGT 

genes for all mouse datasets) for both MINING-D and IgScout. 
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Table A.5. Comparison of IMGT genes inferred by IgScout and MINING-D in Mouse datasets. The gene 
IGHD2-10*01 (the only gene inferred by IgScout but missed by MINING-D) and the gene IGHD2-1*01 
(inferred by MINING-D but missed by IgScout) only differ at the first position.    

Strain Dataset Inferred IMGT D genes 

Both IgScout only MINING-D only 

Balb/c ERR1759659 IGHD1-1*0 
IGHD1-2*01 
IGHD2-1*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*01 
IGHD4-1*01 
IGHD2-10*01 

- IGHD2-10*02 
IGHD2-2*01 

Balb/c ERR1759660 IGHD1-1*01 
IGHD1-2*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*01 
IGHD4-1*01 
IGHD2-10*01 

- IGHD2-10*02 
IGHD2-2*01 

Balb/c ERR1759661 IGHD1-1*01 
IGHD1-2*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*01 
IGHD4-1*01 
IGHD2-10*01 

- IGHD2-10*02 
IGHD2-2*01 

Balb/c ERR1759662 IGHD1-1*01 
IGHD1-2*01 
IGHD2-1*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*01 
IGHD4-1*01 

- IGHD2-10*02 
IGHD2-2*01 

 

C57BL/6 ERR1759665 IGHD1-1*01 
IGHD2-1*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD2-5*01 
IGHD3-2*02 
IGHD4-1*01 

- IGHD2-2*01 
 

C57BL/6 ERR1759668 IGHD1-1*01 
IGHD2-1*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD2-5*01 
IGHD4-1*01 
IGHD3-2*02 

- IGHD2-2*01 
 

C57BL/6 ERR1759671 IGHD1-1*01 
IGHD2-1*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD2-5*01 
IGHD3-2*02 
IGHD4-1*01 

- IGHD2-2*01 
 

C57BL/6 ERR1759674 IGHD1-1*01 
IGHD2-1*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD2-5*01 
IGHD4-1*01 
IGHD3-2*02 

- IGHD2-2*01 
 

Pet ERR1759679 IGHD1-1*01 
IGHD1-2*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*02 
IGHD4-1*01 

IGHD2-10*01 
 

IGHD2-1*01 
IGHD2-2*01 
IGHD2-5*01 
IGHD3-2*01 

Pet ERR1759680 IGHD1-1*01 
IGHD1-2*01 
IGHD2-14*01 
IGHD2-3*01 
IGHD2-4*01 
IGHD3-2*01 
IGHD4-1*01 
IGHD2-10*01 

- 
 

IGHD2-2*01 
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Table A.6. Comparison of IMGT genes inferred by IgScout and MINING-D from Rat datasets. 

Dataset Inferred IMGT D genes 

Both IgScout only MINING-D only 
SRR5534359 IGHD1-10*01 

IGHD1-11*01 
IGHD1-12*03 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD4-3*01 
IGHD5-1*01 

- 
 

IGHD1-1*01 
IGHD1-12*02 

 

SRR5534360 IGHD1-1*01 
IGHD1-10*01 
IGHD1-11*01 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-9*01 
IGHD4-3*01 

IGHD5-1*01 
 
 

IGHD1-12*02 
IGHD1-12*03 
IGHD1-8*01 

 

SRR5534361 IGHD1-11*01 
IGHD1-2*01 
IGHD1-6*01 
IGHD4-3*01 

- IGHD1-1*01 
IGHD1-10*01 
IGHD1-12*02 
IGHD1-12*03 
IGHD1-4*01 
IGHD1-5*01 

SRR5534362 IGHD1-1*01 
IGHD1-10*01 
IGHD1-11*01 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD4-3*01 

IGHD5-1*01 
 

IGHD1-12*02 
IGHD1-12*03 

 

SRR5534363 IGHD1-10*01 
IGHD1-11*01 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD4-3*01 
IGHD5-1*01 

- IGHD1-1*01 
IGHD1-12*02 
IGHD1-12*03 

 

SRR5534364 IGHD1-1*01 
IGHD1-10*01 
IGHD1-11*01 
IGHD1-12*02 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-9*01 
IGHD4-3*01 
IGHD5-1*01 

- IGHD1-12*03 
IGHD1-8*01 

 

SRR5534365 IGHD1-1*01 
IGHD1-10*01 
IGHD1-11*01 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-9*01 
IGHD4-3*01 
IGHD5-1*01 

- IGHD1-12*02 
IGHD1-12*03 
IGHD1-7*01 
IGHD1-8*01 

SRR5534366 IGHD1-10*01 
IGHD1-11*01 
IGHD1-12*02 
IGHD1-12*03 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-8*01 
IGHD1-9*01 
IGHD4-3*01 
IGHD5-1*01 

- IGHD1-1*01 

SRR5534367 IGHD1-10*01 
IGHD1-11*01 
IGHD1-12*02 
IGHD1-2*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-8*01 
IGHD1-9*01 
IGHD4-3*01 

IGHD5-1*01 
 

IGHD1-1*01 
IGHD1-12*03 

 

SRR5534368 IGHD1-1*01 
IGHD1-10*01 
IGHD1-11*01 
IGHD1-4*01 
IGHD1-5*01 
IGHD1-6*01 
IGHD1-9*01 
IGHD4-3*01 
IGHD5-1*01 

- IGHD1-12*02 
IGHD1-12*03 
IGHD1-2*01 
IGHD1-8*01 
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Figure A.7. Distribution of missing or extra nucleotide bases in the inferred genes as compared to the 
IMGT genesfor all mouse datasets shown in Table E. Only genes that were inferred by both IgScout and 
MINING-D were included in the comparison. 

Table A.7. Comparison of genes inferred by IgScout and MINING-D from the Camel datasets. M-I 
denotes that a gene was inferred by both MINING-D and IgScout, whereas M denotes that the gene was inferred 
by MINING-D only. IMGT genes in this table refer to the IMGT alpaca genes. Only genes that were validated 
using genomic reads are included in this comparison. 

Gene (Alpaca) Variant 1 VH 1 VHH 2 VH 2 VHH 3 VH 3 VHH 
IGHD6*01 N_Var (IGHD6*01) - 2 M-I M-I M-I M-I M-I M-I 
IGHD2*01 N_Var (IGHD2*01) - 1 M-I M-I - M-I M-I M-I 

N_Var (IGHD2*01) - 0 - - M-I - - - 

IGHD3*01 N_Var (IGHD3*01) - 1 M-I M-I M M-I M-I M-I 

N_Var (IGHD3*01) - 0 - - M-I - - - 

IGHD4*01 N_Var (IGHD4*01) - 1 M-I M-I M - M - 

N_Var (IGHD4*01) - 0 - - M-I - - - 

IGHD5*01 N_Var (IGHD5*01) - 0 M M - M M M 

IGHD5*01 - - M - - - 

 

A.8 Novel Variations 

All the variations found using MINING-D for humans, camels, rhesus macaques, mice, rats, 

and rabbits are shown in Table A.8. The polymorphisms in the genes validated using genomic data 

are highlighted.  
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Table A.8. All Inferred novel variations. Variations that were validated using genomic data are shown by 
highlighting the polymorphisms. 

Human 

IGHD3-10*01 
Original    GTATTACTATGGTTCGGGGAGTTATTATAAC 
N_Var-3     GTATTACTATGGTTCAGGGAGTTATTATAAC 
N_Var-2     --------ATGGTTCGGGGAcTTAT------ 
N_Var-1     ---------TGGTTCGGGGAaTTA------- 
N_Var-0     ---------TGaTTCGGGGAGTT-------- 

IGHD3-22*01 
Original    GTATTACTATGATAGTAGTGGTTATTACTAC 
N_Var-1     --ATTACTATGATAcTAGTGG---------- 
N_Var-0     -------TATGATAGcAGTGGT--------- 
 

IGHD2-2*01 
Original    AGGATATTGTAGTAGTACCAGCTGCTATGCC 
N_Var-0     AGGATATTGTAtTAGTACCAGCTGCTAT--- 

IGHD3-16*02 
Original    GTATTATGATTACGTTTGGGGGAGTTATCGTTATACC 
N_Var-0     ---TTATGATTACATTTGGGGGAGTTATCGTTAT--- 

Camel 

IGHD3*01 (Alpaca) 
Original   GTATTACTACTGCTCAGGCTATGGGTGTTATGAC 
N_Var-1    ----GACTGCTATTCAGGCTCTTGGTGTTATG--  
N_Var-0    ---TGACTACTGTTCAGGCTCTTGGTGT------  

IGHD2*01 (Alpaca) 
Original    ACATACTATAGTGGTAGTTACTACTACACC 
N_Var-1     --ATATTGTAGTGGTGGTTACTGCTAC---  
N_Var-0     -CATACTATAGTGGTGGTTACTAC------  

IGHD4*01 (Alpaca) 
Original    TTACTATAGCGACTATGAC 
N_Var-1     CTACTATAGCGACTATG--  
N_Var-0     -TACTATAACGAATATG--  
 

IGHD6*01 (Alpaca) 
Original    GTACGGTAGTAGCTGGTAC---- 
N_Var-4     --ACGGTgGTAGtTGGT------   
N_Var-3     ---CGGTgGTAGgTGGTggctgg  
N_Var-2     GTACGGTGGTAGCTGGTAC----  
N_Var-1     ---CGGTgGTAcCTGGT------ 
N_Var-0     --ACGGTgGTAaCTGG------- 

IGHD5*01 (Alpaca) 
Original    AGACTACGGGTTGGGGTAC 
N_Var-0     ----TATGGGTT-GGGTAC  

 

Rhesus Macaque 

IGHD1S39*01 
Original    GGTATAGTGGGAACTACAAC 
N_Var-0     -----AGTGGGAGCTAC--- 

IGHD3S18*01 
Original    GTACTGGGGTGATTATTATGAC 
N_Var-0     --ACTGGAGTGATTATTA---- 

IGHD5S3*01 
Original    GTGGATACAGTGGGTACAGTTAC 
N_Var-0     ---GATACAGCGGGTACAGT--- 

IGHD2S11*01 
Original    AGAATATTGTAGTAGTACTTACTGCTCCTCC 
N_Var-0     -----ATTGTAGTGGTACTTACTGCT----- 

IGHD2S17*01 
Original    AGAATACTGTACTGGTAGTGGTTGCTATGCC 
N_Var-0     ----TACTGTACTGGTAGTGGTTGCTAC--- 

IGHD3S23*01 
Original    GTATTACTATGATAGTGGTTATTACACCCACAGCGT 
N_Var-0     ---TTACTATGGTAGTGGTTATTAC----------- 

Mouse 

IGHD1-1*01 
Original    TTTATTACTACGGTAGTAGCTAC- 
N_Var-3     ------ACgACGGTAGTAGC---- 
N_Var-2     -TTATTACTACGGTAGTAGagggg 
N_Var-1     ---ATTACTgCGGTAGTAGCTAC- 
N_Var-0     TTTATTACTACGATGGTAGCTACg  

IGHD2-4*01 
Original    TCTACTATGATTACGAC--- 
N_Var-0     ------ggGATTACGACagg 
 

Rat 

IGHD1-3*01 
Original    TTTTTAACTATGGTAGCTAC 
N_Var-0     -TTTTAACTACGGTAGCTAC 
 

IGHD1-9*01 
Original    TACATACTATGGGTATAACTAC- 
N_Var-1     --CATACTACGGGTATACCTACg 
N_Var-0     --CATACTAcGGGTATAACTAC- 

IGHD1-12*02 
Original    TTTATTACTATGATGGTAGTTATTACTAC- 
N_Var-0     -TTATTACTATGATGGTACTTATTACTACg 

 

  Rabbit 

IGHD6-1*01 
Original    --------------GTTACTATAGTTATGGTTATGCTTATGCTACC 
N_Var-7     ---------------TTAtgATgGTTATGGTTATGgTa-------- 
N_Var-6     tta------tagtgGTTAtggTgGTTATGcTTATG----------- 
N_Var-5     ---------------TggtTATgGTgATGGTTATGCT--------- 
N_Var-4     TTACTATACTTATGGTTATGCTGGTTATGCTTATGCTAC------- 
N_Var-3     TTA------TGCTGGTTATGCTGGTTATGGTTATGCTAC-------  
N_Var-2     ------------tgGTTAtggTgGTTATGGTTATG----------- 
N_Var-1     --------------------ATAcTTATGGTTATGgTggT------ 
N_Var-0     --------------------ATAGTTATGGTTATGgTg-------- 
 

IGHD1-1*01 
Original    GCATATACTAGTAGTAGTGGTTATTATATAC 
N_Var-2     GCATATGCTAGTAGTAGTGGTTATTAT---- 
N_Var-1     -----------TgGTAGTGGTTATTAT---- 
N_Var-0     -------------GTAGTGGTggTTAT---- 
 

IGHD2-1*01 
Original    TAGCTACGATGACTATGGTGATTAC- 
N_Var-0     ---------TGAtTATGGTGgTTAtg 
 

IGHD8-1*01 
Original    GTTATGCTGGTAGTAGTTATTATACC 
N_Var-0     -TTATGCTGGTgaTgGTTATg----- 
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A.9 Finding D genes in Whole Genome Sequencing data 

Tables A.9 through Table A.13 show the number of WGS reads confirming both novel and 

known variations of D genes and demonstrate that novel and known D genes have similar numbers 

of supporting reads in the selected WGS datasets. 

Table A.9. Number of genomic reads containing exact occurrences of known and novel allelic variants 
of human genes IGHD3-10, IGHD3-16, and IGHD3-22 in five datasets containing reads with the novel 
allelic variants. Information on the number of datasets that a gene is present in and the number of reads 
containing the gene for some other genes - IGHD2-2*01: 36(4-54), IGHD3-3*01: 30(6-45), IGHD3-22*01: 
40(5-29). 

Dataset IGHD3-10 IGHD3-16 IGHD3-22 

*01 *02 N_Var (IGHD3-
10*01)-3 

*01 *02 N_Var (IGHD3-
16*02)-0 

SRR6435661 8 - 14 - 42 30 16 

SRR6435676 19 - 12 - 77 58 28 

SRR6435686 14 - 8 - 20 32 12 

SRR6435691 4 - 12 - 35 32 13 

SRR6435692 6 - 12 - 35 36 15 

 
Table A.10. Number of genomic reads containing exact occurrences of known and novel allelic variants 
of macaque genes. IGHD3S18*01 has the same sequence as IGHD3S29*01 that results in higher coverage 
than the novel allelic variant. Similarly, the coverage for IGHD5S3*01 is higher than the novel variant because 
it has the same sequence as IGHD5S25*01. 

Gene Type SRR7865780 SRR7865781 SRR7865793 SRR7865795 

IGHD1S39 IMGT 26 16 11 0 

Novel 0 0 0 18 

 IGHD3S18 IMGT 69 45 54 29 

Novel 0 21 0 8 

IGHD5-S3 IMGT 74 58 73 41 

Novel 28 22 22 13 

 IGHD2S11 IMGT 24 27 36 7 

Novel 0 0 0 6 

IGHD2S17 IMGT 0 0 0 9 

Novel 30 12 32 8 

IGHD3S23 IMGT 0 9 8 11 

Novel 24 12 17 0 

N_Gene-0  27 9 21 9 

N_Gene-1  0 8 0 9 
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Table A.11. Number of genomic reads containing exact occurrences of known and novel allelic variants 
of rat genes. 

Gene IGHD1-3 IGHD1-9 IGHD1-12 
 IMGT Novel IMGT Novel IMGT*01 IMGT*02 IMGT*03 Novel 
SRR7503107 5 11 - 2 - - 4 8 
SRR7503108 8 6 - 4 - - 2 1 
SRR7503109 8 7 - 5 - - 4 8 
SRR7503110 12 7 - 4 - - 6 8 
SRR7503111 5 6 - 5 - - 4 9 
SRR7503112 6 2 - 2 - - 7 2 
SRR7503113 7 5 - 3 - - 4 7 
SRR7503114 12 4 - 6 - - 7 6 
SRR7503115 9 18 - 8 - - 17 9 
SRR7503116 1 5 - 5 - - 2 3 

 
Table A.12. Number of reads containing exact occurrences for known and novel allelic variants of rabbit 
genes. 

Gene Type Datasets present in (#Reads) 
IGHD6-1 IMGT 8 (1-5) 

N_Var (IGHD6-1*01)-3 19 (1-9) 
N_Var (IGHD6-1*01)-4 11 (1-6) 

IGHD1-1 IMGT 6 (2-3) 
N_Var (IGHD1-1*01)-2 23 (1-14) 

 
Table A.13. Number of genomic reads containing exact occurrences of inferred camel genes. The IMGT 
genes here correspond to alpaca genes. 

Gene Type SRR19472
39 
 

SRR19472
40 

SRR19472
41 

SRR19472
42 

SRR19472
43 

SRR19472
44 

SRR19472
45 

IGHD3*01 IMGT - - - - - - - 

N_Var - 0 - - - - 2 6 - 

N_Var - 1 16 6 7 12 1 8 11 

IGHD2*01 IMGT - - - - - - - 

N_Var - 0 - - - - 2 2 - 

N_Var - 1 10 11 5 17 4 - 5 

IGHD4*01 IMGT - - - - - - - 

N_Var - 0 - - - - 5 4 - 

N_Var - 1 14 11 15 10 - 7 10 

IGHD5*01 IMGT - - - - - - - 

N_Var - 0 13 9 2 6 5 0 3 

IGHD6*01 IMGT - - - - - - - 

N_Var - 2 11 9 21 11 5 14 14 
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A.10 D Gene Usage 

Usage of D genes in the Flu Vaccination dataset. To analyze the usage of the D genes in 

different types of cells (including hemagglutinin-positive (HA+) and HA- activated B cells, antibody 

secreting cells, memory cells, and naive cells) from PBMCs at different times after flu vaccination, 

we used 95 datasets from the NCBI project PRJNA324093. 55.3% of CDR3s were traceable on 

average in all the datasets. The D gene usage profiles are very different in HA+ cells and other cells 

for almost all individuals suggesting the usage of specific D genes for HA+ clones in those 

individuals (Figure A.8). Interestingly, the overused D genes are not the same across individuals. For 

instance, for individual 7, genes IGHD2-21*02 and IGHD4-17*01 are overused, and for individual 

6, only the gene IGHD4-17*01 is overused. 

Usage of D genes in the Multiple Sclerosis dataset. 45.2% of CDR3s on average were 

traceable in each dataset. The usage of D genes across datasets from tissues such as brain lesion, 

cervical lymph node, choroid plexus, and pia mater is shown in Figure A.9. The results suggest that 

the usage of genes is different in different tissues from the same individual. For instance, for 

individual M5, IGHD1-26*01 and IGHD3-3*01 are overused in choroid plexus, whereas only 

IGHD3-3*01 is overused in brain lesion compared to other tissues.  

Usage of D genes in the Intestinal Repertoire dataset. We analyzed the usage of D genes 

in datasets corresponding to memory and plasma cells, IgA and IgM isotypes from ileum and colon 

tissues from 4 individuals, and naive cells from ileum from 3 individuals (Figure A.10). 43.5% of 

CDR3s on average were traceable in each dataset.  For IgM naive cells (ileum mucosa), the number 

of traceable CDR3s was 71.42% on average, whereas for memory and plasma cells from the same 

tissue, it was 43.25% and 43.12%, respectively. The D gene IGHD3-3*01 was used significantly less 

in plasma and memory cells from both tissues compared to naive cells from ileum and PBMCs from 

healthy individuals (Figure 4). Similarly, the gene IGHD6-6*01 seems to be under-used in plasma 

and memory cells from the ileum tissue compared to naive cells. Subtle differences can also be found 
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among the usage between different isotypes from the same individual’s tissue, e.g., genes IGHD2-

21*02, IGHD2-8*01, IGHD3-16*02, IGHD5-5*01/IGHD5-18*01, and IGHD7-27*01 are presented 

more in the IgM isotype than the IgA isotype in the colon tissue from individual 0.  

Usage of D genes in the Hepatitis B Vaccination dataset. To study the usage of D genes in 

HbsAg+ B cells and HLA-DR+ plasma cells, we analyzed datasets corresponding to individuals who 

received a Hepatitis B vaccination. 51.3% of CDR3s on average were traceable in each dataset. IgM 

and IgG datasets had 65.4% and 45.9% traceable CDR3s on average, respectively. The usage of 

genes is shown in Figure A.11. Differences in the usage profiles can be seen among HbsAg+ B cells, 

HLA-DR+ plasma cells, and PBMCs from the same individual for most of the individuals. For 

instance, for individual 7, IGHD2-15*01 is under-used in both HbsAg+ B cells and HLA-DR+ 

plasma cells compared to PBMCs, whereas genes IGHD4-17*01 and IGHD4-23*01 are overused. 

The gene IGHD3-22*01 is unpresented and the genes IGHD5-5*01/IGHD5-18*01 and IGHD7-

27*01 are overused in HLA-DR+ plasma cells compared to HbsAg+ B cells. For individual 2, as 

another example, the genes IGHD3-22*01, IGHD3-3*01, and IGHD6-13*01 do not appear to be 

presented in the CDR3s from HLA-DR+ plasma cells, although they are presented in both the 

PBMCs and HbsAg+ B cells from the same individual.  Similarly, differences between profiles can 

be found for all individuals, although there does not appear to be a strong pattern across individuals, 

suggesting that the response is highly personalized and might depend upon other factors. 

Usage of D genes in Cord Blood dataset. 48.9% of CDR3s were traceable on average in the 

PBMC datasets, whereas 71.6% of the datasets were traceable in the Cord Blood datasets (Figure 

A.12). Supplemental Note: “Non-genomic insertions in naive and cord blood Rep-Seq datasets” 

shows that the Cord Blood datasets are characterized by smaller number of VD and DJ insertions 

compared to the naïve datasets. 

Usage of D genes in mice datasets. Figure A.13 shows usage of various known and novel 

genes/variations in different datasets corresponding to different strain, cell type, and tissue from 

mice.  
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Usage of D genes in the Rhesus macaque datasets. 52.6% of CDR3s on average were 

traceable in each dataset. The usage of the IMGT genes and the validated novel genes and variants 

of known genes is shown in Figure A.14. 

Usage of D genes in the Camel datasets. 31.7% of CDR3s on average were traceable in 

each dataset. Although the small sample size (n = 3) limits generalizability, the low number of 

traceable CDR3s could be due to high level of hypermutation within the CDR3 region as compared 

to other species. Since there is no IMGT database for camels, we used the alpaca IMGT database as 

a reference to analyze the usage. The usage of these genes and the validated novel variants of these 

genes is shown in Figure A.15. It can be seen that the D gene usage profiles are very different for the 

VH and the VHH isotypes within individuals, especially for individuals 2 and 3.  

Usage of D genes in the Rat datasets. 54.3% of CDR3s on average were traceable in each 

dataset. The usage of the IMGT genes and the validated novel variants is shown in Figure A.16. 

Genes belonging to the IGHD2 and IGHD3 families were underutilized as compared to other gene 

families, and the novel variants were among the genes that were utilized in most of the datasets. 

There is no clear distinction between the usage profiles between HuD and DNP immunized rats. This 

could be due to one or more of the following reasons: (a) the CDR3s here are from unsorted cells 

from spleen and not antigen specific cells; (b) the usage profiles of individuals might not be identical 

before immunization, hence masking the pattern if there was any.  
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Figure A.8. Usage of IMGT and novel variations of IGHD genes in various datasets corresponding to flu 
vaccination. The columns on the left represent the individual, the cell type, and the time point (day after 
vaccination). 
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Figure A.9. Usage of various known and novel genes in various datasets corresponding to different 
tissues in Multiple Sclerosis patients. The columns on the left represent the individual and the tissue, 
respectively. 

 

 
Figure A.10. Usage of various known and novel genes in various datasets corresponding to human 
intestinal antibodies. The columns on the left represent the individual, tissue, isotype, and cell type, 
respectively. 
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Figure A.11. Usage of various known and novel genes in different datasets corresponding to different 
cell types and isotypes corresponding to human subjects with hepatitis B vaccination. 

 
Figure A.12. Usage of various known and novel genes in cord blood datasets. 
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Figure A.13. Usage of various known and novel genes/variations in different datasets corresponding to 
different strain, cell type, and tissue from mice. Columns on the left represent cell type, tissue, strain, and 
individual, respectively. OVA, HP-HEL, and HBsAg in the right most column represent the C57BL/6J mice 
immunized with OVA, HP-HEL, and HBsAg, respectively. For example, OVA 3 represents the C57BL/6J 
mouse number 3 that was immunized with OVA. 
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Figure A.14. Usage of known and novel genes in the Rhesus Macaque datasets. The novel genes and 
variations are shown on the right. 

 

 
Figure A.15. Usage of known and novel genes in the Camel datasets. 

 

 
Figure A.16. Usage of D genes in the Rat datasets. 
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A.11 Overused D genes 

Tables A.14 through Table A.17 show overused genes in different datasets.  

Table A.14. Overused genes in the Multiple Sclerosis datasets. 

Gene Donor Tissue Over-usage 
IGHD1-7*01 M3 

 
Brain Lesion 2.7x 

Cervical Lymph Node 3.1x 
IGHD3-3*01 M4 Brain Lesion 2.6x 

M5 
 

Brain Lesion 8.2x 
Choroid Plexus 4.7x 

 
Table A.15. Overused genes in the Intestinal Repertoire datasets.  

Gene Donor Tissue Isotype Cell type Overusage 
IGHD1-1*01 1 Colon  IgM Memory B cell 2.0x 

Plasma cell 6.6x 
IGHD2-21*01 0 Ileum IgM 

 
Memory B cell 5.0x 

3 Colon 3.6x 
IGHD2-8*02 0 Ileum IgA Memory B cell 2.7x 

Plasma cell 2.2x 
IgM Memory B cell 2.0x 

IGHD3-16*02 0 Colon IgM Memory B cell 5.4x 
Plasma cell 3.3x 

IGHD4-23*01 1 Colon IgA Plasma cell 2.3x 
IgM Memory B cell 2.3x 

IGHD6-25*01 0 Colon IgM Plasma cell 2.4x 
Ileum Plasma cell 5.4x 

Memory B cell 2.0x 
3 Colon IgA Memory B cell 5.2x 

Plasma cell 3.1x 
 
Table A.16. Overused genes in the Hepatitis B vaccination datasets 

Gene Isotype Individual Cell type Over usage 
IGHD1-1*01 IgG 16 HLA-DR+ Plasma cells 3.5x 

Total B cells 2.3x 
IGHD3-10*02 14 HLA-DR+ Plasma cells 43.8x 

Total B cells 13.3x 
5 HLA-DR+ Plasma cells 2.1x 
2 5.7x 
8 HBsAg+ B cells 2.1x 

IGHD3-3*01 12 HLA-DR+ Plasma cells 2.4x 
1 HBsAg+ B cells 2.9x 
8 HLA-DR+ Plasma cells 2.0x 

IGHD6-25*01 13 HLA-DR+ Plasma cells 2.2x 
16 2.4x 
2 4.8x 
8 HBsAg+ B cells 2.4x 
2 2.6x 
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Table A.17. Overused genes in the Cord Blood datasets. 

Gene Individual Overusage 
IGHD7-27*01 CB1 3.4x 

CB2 3.8x 
CB3 3.8x 
CB4 4.6x 

 

A.12 Highly Used D Genes in Non-human Datasets  

To find the genes with the highest usage among the datasets of a species, we picked the top 

3 genes from each dataset. A gene is said to be highly used in all datasets from a species if it is one 

of the top 3 genes in at least 3 datasets. We found 3 highly used D genes for camels, 3 for macaques, 

and 4 for rats ( Table A.18 and Figure A.17). 

Table A.18. Highly used D genes in the Camel, Macaque, and Rat datasets. Genes shown here are among 
the top 3 genes in terms of usage proportion in the number of datasets shown in the right column. 

Species 
(Total datasets) D Gene Datasets 

Camel (6) 
N_Var (IGHD2*01)-1 
N_Var (IGHD5*01)-0 
N_Var (IGHD6*01)-2 

5 
3 
6 

Macaques (7) 
IGHD3S12*01 
IGHD4S19*01/IGHD4S36*01 
IGHD6S20*01 

3 
3 
5 

Rats (10) 

IGHD1-1*01 
IGHD1-11*01 
IGHD1-2*01 
N_Var (IGHD1-9*01)-1 

5 
7 
6 
5 

 
 
 

 
Figure A.17. Usage proportion of highly used genes in the Camel (left), Macaque (middle), and Rat 
(right) datasets.  
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A.13 Benchmarking MINING-D on simulated CDR3s  

We simulated 250,000 mutation-free CDR3s using the human D genes listed in the IMGT 

database (except for IGHD1-14*01, IGHD4-23*01, IGHD5-24*01) and IgSimulator tool [121].  We 

then generated four mutated versions of each of these CDR3s using mutation rates equal to 0.01, 

0.05, 0.1, and 0.2. In total, we had one unmutated and four mutated datasets resulting in the average 

number of SHMs per CDR3 equal to 0, 0.7, 3.7, 7.4, and 14.8, respectively. For datasets with 

mutability < 0.1, MINING-D inferred all genes except for IGHD7-27*01 and one of the allelic 

variants of the gene IGHD2-2. There were no missing or additional nucleotide bases in the inferred 

D genes as compared to the D genes used for simulating the CDR3s. The missed gene IGHD7-27*01 

is the shortest human D gene (11 nucleotides) that cannot be inferred using the default value of k 

(k=10) for MINING-D. MINING-D inferred only one of the allelic variants IGHD2-2*01 and 

IGHD2-2*03 since they differ only at the first base as shown below. 

IGHD2-2*01  AGGATATTGTAGTAGTACCAGCTGCTATGCC 

IGHD2-2*02  AGGATATTGTAGTAGTACCAGCTGCTATACC 

IGHD2-2*03  TGGATATTGTAGTAGTACCAGCTGCTATGCC 

 
In the dataset with the mutation rate 0.1, in addition to missing the gene IGHD7-27*01, 

MINING-D inferred only one sequence for the three allelic variants of IGHD2-2 shown above. As 

the mutation rate increased to 0.2, a similar pattern was observed for IGHD3-16. Moreover, only the 

first sequence was inferred for genes IGHD1-20*01 and IGHD1-7*01 shown below.  

IGHD1-20*01  GGTATAACTGGAACGAC 

IGHD1-7*01  GGTATAACTGGAACTAC 

 
For the dataset with the mutation rate 0.2, multiple partial sequences were inferred per gene 

for some of the genes. However, there were no falsely inferred genes. For example, the following 

two sequences were inferred for the gene IGHD2-15*01  

IGHD2-15*01  AGGATATTGTAGTGGTGGTAGCTGCTACTCC 
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Inferred-1    GATATTGTAGTGGTGGTAG 

Inferred-2          GTAGTGGTGGTAGCTGCTAC 

Table A.19. Results of MINING-D on simulated datasets. X*** denotes that only a single allelic variant 
sequence was inferred among multiple allelic variants of a D gene X. X/Y*** denotes that only a single 
sequence was inferred for two D genes X and Y. 

Mutation 
rate 

Avg 
#SHMs 
per CDR3 

#D genes used 
in the 
simulation 

#D genes 
inferred by 
MINING-D  

Missing D genes  Mean 
#missing/ 
extra 
nucleotides per 
inferred gene 

Falsely 
inferred 
genes 

0 0 29 
 

27 IGHD2-2*03 
IGHD7-27*01 

0 0 

0.01 0.74 29 27 IGHD2-2*01 
IGHD7-27*01 

0 0 

0.05 3.70 29 28 IGHD2-2*01 
IGHD7-27*01 

0 1 

0.1 7.40 29 26 IGHD7-27*01 
IGHD2-2*** 

1.04 0 

0.2 14.79 29 33 IGHD7-27*01 
IGHD2-2*** 
IGHD3-16*** 
IGHD1-20/1-7*** 

8.21 0 

 
 

A.14 Benchmarking MINING-D on TCR datasets  

We downloaded ten TRB cell datasets corresponding to 7 individuals from the 

immuneACCESS database (Table A.20). Each dataset consists of short sequences (~100 nt) fully 

covering CDR3s and partially covering V and J genes. Since our preprocessing step is not designed 

for such short sequences, we skipped CDR3 search step and used original sequences as an input for 

MINING-D. Information about the D genes in the TRBD locus and the datasets they were inferred 

from is provided in Table A.21. MINING-D inferred 2 genes in most of the datasets, however in 3 

datasets, 3 genes were inferred. The falsely inferred genes (shown in Table A.22) are substrings of 

TRBV genes and are inferred because the input sequences partially cover V genes.   
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Table A.20. Description of human TRB datasets. Datasets 1–6 belong to the “TCRB technical replicates of 
PBMC from four donors” project. Datasets 7–10 belong to the “Bone Marrow From Healthy Adults” project. 
Both projects are available at the immuneACCESS database by Adaptive Biotechnologies. For the “TCRB 
technical replicates of PBMC from four donors” project, we did not use datasets corresponding to the donor 4 
because they are too small. The numbers of productive rearrangements and descriptions were taken from the 
immuneACCESS database.   

# Dataset immuneACCESS sample 
name 

# productive 
rearrangeme
nts 

Description # Inferred 
D genes 

1 Subj1_1 Subject1_Tcells_aliquot24 117,292 
 

Control, Sorted Cells, Subject 01, T cells, deep, gDNA, 
site 07 

2 

2 Subj1_2 Subject1_Tcells_aliquot26 132,807 Control, Sorted Cells, Subject 01, T cells, deep, gDNA, 
site 07 

3 

3 Subj2_1 Subject2_Tcells_aliquot24 112,172 Control, Sorted Cells, Subject 02, T cells, deep, gDNA, 
site 07 

2 

4 Subj2_2 Subject2_Tcells_aliquot26 130,789 Control, Sorted Cells, Subject 02, T cells, deep, gDNA, 
site 07 

3 

5 Subj3_1 Subject3_PBMC_aliquot24 83,347 Control, PBMC, Peripheral blood lymphocytes (PBL), 
Subject 03, T cells, deep, gDNA, site 07 

2 

6 Subj3_2 Subject3_PBMC_aliquot26 110,776 Control, PBMC, Peripheral blood lymphocytes (PBL), 
Subject 03, T cells, deep, gDNA, site 07 

 
2 

7 BM4385_1
_TCRB 

BM4385_1_TCRB 27,965 151-180 lbs, 18-35 Years, 5ft 11in - 6ft 2in, Bone marrow, 
HIV Neg, Hepatitis B Virus Negative, Hepatitis C Virus 
Negative, Hispanic, Hispanic Ethnicity, O 

3 

8 BM4359_1
_TCRB 

BM4359_1_TCRB 87,283 121-150 lbs, 18-35 Years, 5ft 6in - 5ft 10in, Bone marrow, 
HIV Neg, Hepatitis B Virus Negative, Hepatitis C Virus 
Negative, Hispanic, Hispanic Ethnicity 

2 

9 BM4359_1
_TCRB 

BM4359_1_TCRB 59,563 151-180 lbs, 18-35 Years, 5ft 6in - 5ft 10in, African 
American Ethnicity, African Race, B, Bone marrow, HIV 
Neg, Hepatitis B Virus Negative, Hepatitis C Virus 
Negative 

2 

10 BM4359_1
_TCRB 

BM4359_1_TCRB 36,703 18-35 Years, 181-210 lbs, 5ft 6in - 5ft 10in, A, Bone 
marrow, Caucasian, HIV Neg, Hepatitis B Virus Negative, 
Hepatitis C Virus Negative 

2 

 
Table A.21. Information about inferred D genes from TCR datasets using MINING-D. 

Gene Variant Sequence Datasets inferred in Datasets NOT 
inferred in 

TRBD1 TRBD1*01 GGGACAGGGGGC – BM4384 
TRBD2 TRBD2*01 GGGACTAGCGGGGGGG 

 
BM4374 
BM4385 

– 

TRBD2*02 GGGACTAGCGGGAGGG 
   

– BM4374 
Bm4385 

 
Table A.22. Information about falsely inferred D genes from TCR datasets using MINING-D. All three 
sequences are substrings of some V genes. 

Sequence Datasets inferred in Comments 
TGTATCTCTGTGCCACC Subj2_2 

BM4384 
substring of TRBV23/OR9-2*01 

TCTGTGCCAGCAGTTAC Subj1_2 substring of TRBV6-2/TRBV6-
3/TRBV6-5/TRBV6-6 

TGTACTTCTGTGCCA BM4385 substring of TRBV6-2/TRBV6-
3/TRBV6-5/TRBV6-6 
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