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ABSTRACT OF THE DISSERTATION 

 

Systems level decomposition of adaptation to metabolic perturbation 

 

by 

 

Douglas McCloskey 

 

Doctor of Philosophy in Bioengineering 

 

University of California, San Diego, 2017 

 

Professor Bernhard O. Palsson, Chair 

 

 Much progress has been made in establishing the causality of mutations 

that occur during adaptive laboratory evolution (ALE) on organism physiology.   

In contrast, little progress has been made in detailing the mechanisms and 

overarching principles of evolution that govern the adaptive process.  This 

dissertation describes the following three aims that sought to address the 

technical and scientific challenges required to better understand adaptive 
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evolution in micro-organisms.  First, an improved method to quantify intracellular 

metabolites from sampling and extraction to acquisition and quantitation was 

developed and validated.  Second, an improved method to measure intracellular 

fluxes from sampling and extraction to acquisition and modeling was developed 

and validated.  And finally, aims 1 and 2 were applied in order to uncover system 

level principles and mechanistic level network functions that were required to 

adapt to major metabolic perturbation. 

 



1 

CHAPTER 1: 

Introduction 

 

 How do organisms adapt to metabolic perturbation?  Using E. coli as a 

model organism, this dissertation documents the process by which that question 

was addressed.  This dissertation also describes the series of methodological, 

analytical, scientific contributions that were made while addressing that question. 

A review of the state of biochemical modeling applications using E. coli at 

the time of starting the doctoral degree was first conducted (Chapter 2).  The 

review describes the 6 categories of biochemical modelling uses.  The review 

also identifies several gaps that hinder our ability to accurately predict biological 

function.  These gaps pertain to the scope of biological processes that are not 

incorporated into the model (e.g., the transcription regulatory network, 

expression, DNA synthesis, etc.,) and regulation of biological interactions (e.g., 

small molecule allosteric regulation of enzymes, small molecule activation of 

transcription factors, etc.).  Two of the most important data types required to fill 

these gaps were metabolomics and fluxomics. 

Metabolomics is the systematic study of the unique chemical fingerprints 

(i.e., small molecule metabolite profiles) that specific cellular processes leave 

behind1.  Metabolomics provides a “snapshop of cellular physiology” that can be 

used to identify biomarkers and quantitatively model biochemical reactions2. 

In order to identify the most important metabolites to include in that “snapshot”, a 

modeling method to identify the most highly utilized metabolites in a genome-
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scale model of metabolism from which a targeted assay can be constructed was 

described (Chapter 3).  A first iteration of that assay was then constructed.  The 

derived data was then integrated with thermodynamic analysis to study the 

metabolome of anaerobic and aerobic wild-type E. coli.   

Several limitations to the sampling and extraction method and metabolite 

acquisition method were identified during the work described in chapter 3 that 

were addressed in (chapters 4 and 5).  To this end, an improved sampling and 

extraction method for intracellular metabolomics was developed and validated 

(chapter 4).  The method was shown to provide fast and rapid sampling from a 

diverse set of culturing conditions including both aerobic and anaerobic culturing 

vesicles.  In addition, a reverse phase ion-pairing (RIP) liquid chromatography 

(LC) mass spectrometry2 (MS/MS) method for improved quantitation of 

intracellular metabolites was developed and validated (chapter 5).  The method 

was shown to provide a reduction in carryover, superior separation of many 

biological isomers, and improved accuracy and confidence in metabolite 

identification compared to previously published methods. 

Fluxomics describes the approaches to calculate in vivo reaction rates 

(i.e., fluxes) of biological entities3.  The fluxome, or conglomerate of all enzymatic 

reaction rates of a biological entity, is said to describe the cellular phenotype or 

functional state of the cell.  The majority of fluxomics acquisition methods are 

limited to the steady-state measurement of proteogenic amino acids.  Those 

methods that do measure the isotope labeling patterns of intracellular 

metabolites for non-steady-state and dynamic experiments are often limited in 
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the number of metabolites and metabolite fragments that can be measured.  In 

addition, the majority of fluxomics modelling methods to incorporate isotope 

labeling patterns with biochemical networks are limited in scope to simplified 

models of central metabolism.  These methods are not able to calculate reaction 

fluxes outside of central metabolism that have important consequences on 

cellular physiology.   

These limitations to the field of fluxomics were addressed (chapters 6 and 

7).  A RIP-LC-MS/MS acquisition method for improved coverage of intracellular 

mass isotopomer distributions (MIDs) for metabolic flux analysis (MFA) 

applications was developed and validated.  The method was shown to expand 

the number of MIDs that can be measure in a single run, and was shown to allow 

for the measurement of MIDs of cofactors and other peripheral pathway 

metabolites.  In addition, a genome-scale MFA modeling method for expanded 

coverage of directly measurable fluxes was developed and validated.  The 

method incorporated the improved measurement abilities described previously in 

combination with a genome-scale MFA model that was shown to calculate an 

increased number and scope of reaction fluxes without a loss in flux precision. 

Adaptive laboratory evolution (ALE) is an experimental method that 

introduces a selection pressure (e.g., growth rate selection) in a controlled 

environmental setting4.  Using ALE, organisms can be perturbed from their 

evolutionary optimized homeostatic states, and their re-adjustments studied 

during the course of adaptation to reveal novel and non-intuitive component 

functions and interactions.  The metabolomics and fluxomics methods that were 
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developed and validated (chapters 4-7) along with a bioinformatics software 

pipeline were applied to uncover the systems level and mechanistic level 

changes that occur following metabolic perturbation and ALE (chapter 8).   
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CHAPTER 2: 

Basic and applied uses of genome-scale metabolic network reconstructions of 

Escherichia coli 

 

Abstract 

The genome-scale model (GEM) of metabolism in the bacterium 

Escherichia coli K-12 has been in development for over a decade and is now in 

wide use. GEM-enabled studies of E. coli have been primarily focused on six 

applications: 1) metabolic engineering, 2) model-driven discovery, 3) prediction of 

cellular phenotypes, 4) analysis of biological network properties, 5) studies of 

evolutionary processes, and 6) models of interspecies interactions. In this 

Review, we provide an overview of these applications, along with a critical 

assessment of their successes and limitations and a perspective on likely future 

developments in the field.  Taken together, the studies performed over the past 

decade have established a genome-scale mechanistic understanding of 

genotype-phenotype relationships in E. coli metabolism that is forming the basis 

for similar efforts for other microbial species. Future challenges include the 

expansion of GEMs by integrating additional cellular processes beyond 

metabolism and the development of computational methods able to handle such 

large-scale network models with sufficient power and accuracy.  
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Introduction 

Whole genome sequencing along with decades worth of detailed 

biochemical and enzymatic data (e.g., bibliomic data) on microbial metabolism 

has led to the reconstruction of metabolic networks at the genome-scale (so 

called, GENREs or genome-scale reconstructions) 1-4. Integrating this information 

in a structured fashion has enabled its translation into computational models that 

can be used to calculate metabolic phenotypes 5-7. In addition, other omics data 

types that have been generated can be interpreted in the context of a 

reconstruction and computational model to analyze cellular functions under 

specific conditions. Taken together, this information becomes a de facto 

knowledge base.  Genome-scale models (GEMs) are a structured format of such 

a knowledge base that can be used to perform computational and quantitative 

queries to answer various questions about the capabilities of organisms and their 

likely phenotypic states 8, 9.  

Escherichia coli is one of the most important model organisms in biology 

and its metabolic GEM has aided the development of microbial systems biology. 

The history of the metabolic network reconstruction process for E. coli and the 

formulation and testing of its metabolic GEM now spans over a decade (Figure 

1).  One of the earliest studies to systematically analyze E. coli utilized a 

simplified constraint-based model of acetate overflow 10.  Subsequent pre-

genome-scale studies expanded upon the constraint-based approach to include 

reactions involved in central carbohydrate metabolism, amino acid synthesis, and 

nucleotide synthesis to evaluate the biocatalyst production potential of E. coli 11, 
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12 using flux balance analysis (FBA) 13.  The ability of FBA, in particular, and 

constraint-based modeling, in general, to quantitatively describe the metabolic 

physiology of E. coli observed experimentally 14 arguable solidified the value of 

systems level analysis in understanding microbial metabolism.  The sequencing 

of the E. coli genome 15, the advent of the lambda-red system for efficient 

genome manipulation 16, and information readily available on annotated content 

of E. coli in databases and detailed biochemical reviews led to a steady increase 

in content of the E. coli GEM in the genomic era. Reconstruction efforts in the 

2000s built off of successive versions, each adding new subsystems (e.g., fatty 

acid, alternate carbon metabolism, and cell wall synthesis, respectively) as the 

reconstructions strived to incorporate all of the existing content in literature and 

newly appearing data. Analysis of the rate at which new content was added to 

the latest metabolic GEM 17 indicates that mostly newly characterized content is 

now left to include in the reconstruction.  Future expansion for the metabolic 

GEM is likely to come from characterizing promiscuity of known enzymes and the 

addition of protein synthesis will open the door for more detailed examination of 

other cellular processes and integration with other omics data sets. 

In over a decade of model-driven development of systems biology for E. 

coli, over 200 peer-reviewed studies have appeared, as summarized in Figures 2 

and Supplementary Figure 1, and documented in greater detail in Supplementary 

Table 1. This review aims to determine the benefits and drawbacks of the uses of 

the E. coli GEM to date, what has been accomplished, what has been missed, 

and what is likely to lie ahead for this field in its next decade of development.    
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Categories of Uses of GEMs 

The E. coli GEM has been applied to answer different biological questions 

(Fig. 3), most frequently in the categories of: 1) metabolic engineering, 2) model-

driven discovery, 3) prediction of cellular phenotypes, 4) analysis of biological 

network properties, 5) studies of evolutionary processes, and 6) models of 

interspecies interactions. In a previous review, we described and categorized the 

uses of the E. coli GEM appearing in 64 papers published prior to 2007 18. 

Similarly, Oberhardt et al. (Oberhardt et al, 2009) have reviewed applications 

enabled by GEMs for organisms other than E. coli through 2009, and specific 

reviews on GEM-enabled studies in plants  19 and Saccharomyces cerevisiae 20 

have recently appeared. However, the E. coli GEM remains the oldest and 

arguably most extensively utilized GEM, and given the extensive uses of the E. 

coli GEM that have appeared since 2007, we now have a sufficient amount of 

studies to critically assess what GEMs can and cannot do by focusing on the E. 

coli GEM as a subject. For example, metabolic engineering and model-driven 

discovery are categories of uses in E. coli that have matured over the years into 

workflows that can be continuously repeated to tackle a diverse set of biological 

questions. In particular, strain design has matured from academic to industrial 

thanks to the advent of sustainable processes that can be applied from one 

target compound to another.  The development of these iterative workflows in 

systems biology is a theme that will be highlighted and discussed in greater detail 

as they appear in each category.  In another example, recent studies modeling 

interspecies interactions signal an expansion of the field from single cell models 



9 
 

to ecosystem level models.  We have also highlighted a collection of noteworthy 

studies (Supplementary Figure 2) from the pool of uses that we feel demonstrate 

how a GEM can be well utilized to deduce biological complexities.   

A detailed overview of the successes and limitations of the E. coli GEM 

implementation for the categories outlined above have been summarized in 

Table 1 and will be presented in detail in each section below.  At the conclusion 

of each section, we will then assess how the limitations of GEMs can be 

overcome with further development and refinement. We also highlight systems 

biology workflows made possible by GEMs.  Furthermore, we will attempt to 

identify the future challenges that need to be overcome to bring us closer to the 

ultimate goal of establishing a comprehensive and multi-scale mechanistic 

understanding of the genotype-phenotype relationship of microbial metabolism.  

It should be stressed, that although this review is focused on the E. coli GEM, the 

findings documented here can be readily extended to metabolic modeling at the 

genome-scale in general. 
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Category of uses of GEMs: 

1. Metabolic engineering 

Current industrial processes rely upon non-renewable resources that 

cannot sustain the growing world population indefinitely. The development of 

biosustainable processes that can convert renewable resources into commodity 

items is therefore of paramount socio-economic importance.  Bacteria have 

recently emerged as a means by which to achieve bio sustainability 21.  Through 

metabolic engineering, the native biochemical pathways of bacteria can be 

manipulated and optimized to more efficiently produce industrial and 

therapeutically relevant compounds.  The E. coli GEM has guided metabolic 

engineers towards the production of an assortment of compounds including 

organic acids, amino acids, and alcohols to name a few (see Supplementary 

Table 3 for a comprehensive list). 

Contrary to random mutagenesis and screening, rational strain design 

uses the GEM to predict cellular phenotypes from a systems level using 

genomic, stoichiometric, kinetic, and regulatory knowledge to identify engineering 

strategies, which can then be implemented in vivo.  These strategies include 

gene deletions 22, gene over and under expression 23, mapping high throughput 

data onto the network reconstruction to identify bottlenecks or competing 

pathways 24, and more recently, integration of non-native pathways into standard 

microbial production hosts for production of compounds that are either not 

natively found in, or only synthesized in minute concentrations by the host 25-27.  

More advanced methods have even allowed for the identification of strategies 
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that couple bacterial growth to target product overproduction 28-30. A so-called 

“growth-coupled” strain leads to a more robust strain that is less likely to lose the 

genetically engineered genotype, or be outcompeted by alternate bacterial 

phenotypes in a bioprocess environment. A cadre of algorithms, first appearing in 

2003 30, with increasing biological detail 29 or alternative optimization methods 28 

have been developed (Supplementary Table 2) and extensively reviewed 31, 32. 

Engineering strategies found using model-driven analysis can often be 

non-intuitive and highlight some of the most interesting recent findings using 

GEMs. For instance, researchers used the GEM to not only determine a gene 

which needed to be upregulated, but were able to tune the expression level of 

this gene after subsequent GEM analysis of a deleterious overexpression 

event24. In another GEM-enabled study, the highest flavanone production was 

predicted and experimentally determined by strategically knocking out genes to 

not only increase the production of the redox carrier (NADPH) to drive the 

heterologous flavanone catalyst, but also to maintain the optimal redox potential 

of the cell (i.e., the ratio of NADPH to NADP+) 23, 33. For a final example, 

researchers improved the production potential of the non-native metabolite 1,4-

butanediol in E. coli by over three orders of magnitude 25.  The researchers were 

able to rewire the host cell to produce the compound via native and non-native 

pathways by ensuring that the production of 1,4-butanediol was the only means 

by which the host cell could maintain redox balance and grow anaerobically 25.  

These successes highlight the need to analyze genetic alterations at the systems 

level where one can not only predict the activation of pathways that compensate 



12 
 

for lost functionalities following gene deletions, but also predict engineering 

strategies that couple cellular goals to target compound overproduction.  

Engineering strategies derived from the E. coli GEM have also led to non-

viable and suboptimal phenotypes.  Even in the above studies 23, 25, 33, the 

authors had to carefully select which predicted knockout designs were 

constructed in vivo, due to, for example, known isozymes that result in non-

viability when deleted simultaneously.  Hence, a strong understanding of 

metabolic biochemistry is a prerequisite for successful strain design.  Many 

potential engineering strategies cannot be addressed with the current generation 

of GEMs as they do not account for translational regulation and detailed enzyme 

kinetics.  For example, strains generated using random knockouts via transposon 

libraries and screening for lycopene overproduction identified gene deletion 

targets in regulatory elements 34 that cannot be predicted by the current GEM.  

Similarly, because the GEM does not account for optimal codon usage, the in 

vivo performance of non-native genes and proteins cannot be predicted. 

The E. coli GEM has tilted the field of metabolic engineering towards 

advanced rational strain design by enabling researchers to explore a vast native 

and non-native genetic space in designing strains for improved metabolite 

production. More complete biochemical information will greatly aid metabolic 

engineering by allowing for genome-scale reconstructions that account for 

cellular functions beyond those accounted for in the metabolic models (e.g. 

regulation, expression, and enzyme kinetics).  This implies the need for greater 

experimental method development to deduce the details of expression, post-
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transcriptional and post-translational modifications, and enzyme kinetics.  

Advancements in pathway finding procedures to identify heterologous pathways 

that are not native to the host, and the techniques to optimize the expression of 

non-native enzymes, will expand the type of compounds that can be 

overproduced at an industrial scale.  Overall, the ability of the E. coli GEM to aid 

systems level analysis for rational strain design will only continue to improve the 

speed with which viable production strains can be designed and constructed. 

2. Biological discovery 

There are aspects of bacterial functions that remain uncharacterized.  

Even in E. coli, the most studied and best-known bacterium, 34% of the genes 

have an unknown function 17.  In order to more efficiently expand our current 

understanding of cellular functions, an iterative workflow is needed that allows 

researchers to 1) account for what is known, 2) identify gaps in our knowledge, 

and 3) allow for the design of experiments to elucidate these gaps.  The E. coli 

GEM has enabled the implementation of such a workflow to discover new 

features of microbial metabolism (Supplementary Table 4).  

The function of uncharacterized open reading frames (ORFs) can be 

elucidated by comparing growth phenotypes from in silico model predictions of 

gene deletion mutants to in vivo experimental data (Figure 6).  Discrepancies 

between GEM predictions and experimental results can point to where current 

knowledge is missing or where there are functional discrepancies. This, in turn, 

allows one to systematically formulate testable hypotheses.  For example, 

incorrect predictions made for talAB mutants grown on xylose led the authors to 
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discover a novel pathway catalyzed by the gene products of pfkA and fbaA 35.   

Various algorithms have been implemented to aid researchers in this process by 

parsing the vast number of biochemical pathways of metabolism to reconcile in 

silico growth predictions with experimental data 36-38.  These algorithms suggest 

network modifications (including assignment of enzymatic function to 

uncharacterized ORFs) that can then be confirmed by researchers in vivo 37. For 

example, one study used a combination of graph-theory-based and comparative 

genomic analyses to identify yneI (sad) as the gene responsible for the 

NAD+/NADP+ -dependent succinate semialdehyde dehydrogenase, which the 

authors experimentally confirmed 39.   

 While the GEM-enabled workflow 36, 37, 40-42 has advanced our 

understanding of metabolism greatly, many aspects of bacterial metabolism are 

still waiting to be uncovered.  One such aspect is the transcriptional regulation of 

metabolism.  Researchers have attempted to integrate the transcriptional 

regulatory network (TRN) with the metabolic network to better understand and 

prediction regulation.  For example, The TRN was used to elucidate changes in 

expression of oxygen regulators between oxic and anoxic conditions 40.  In 

another example, the TRN was used to confirm and refine the regulatory and 

functional assignment of various regulatory and metabolic genes, which included 

the novel finding that D-allose induces rpiR 36.  However, the Boolean formulation 

of the TRN regulatory rules only allows one to model regulatory interactions as 

either on or off.  Consequently, complex regulatory interactions involving a 

multitude of transcription factors, binding constants, and environmental 
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dependencies along with post-transcriptional and post-translational modifications 

that may account for in silico and in vivo discrepancies cannot be identified using 

the current GEMs. 

Efforts are underway to better understand bacterial regulation.  Large-

scale, genome-wide screens to deduce the function of transcriptional regulators 

and the development of new formalisms to account for and integrate 

transcriptional regulation in the model are in progress 43.  RNA sequencing-based 

technology will greatly assist researchers in elucidating the interactions of the 

transcriptional network by providing a richer data set than existing methods (e.g., 

RNA microarrays and ChIP-chip) 43.   Other post-transcriptional and post-

translational modifications (these include, for instance, by small RNA at the 

transcript level or by phosphorylation, methylation, glycosylation, acetylation, or 

carboxylation, to name several, at the protein level) also contribute to the 

regulation of metabolic function in prokaryotes.  Exemplary experimental efforts 

to better understand small RNA regulation of transcription 44, and the 

conservation of phosphorylation in serine, tyrosine, and threonine metabolism 45 

have demonstrated that the link between gene expression and metabolite profiles 

are far more complex than once thought.  Continued experimental efforts and 

improved computational efforts to deduce and model the complexities of 

regulation will be needed to expand the scope of biological discoveries that the 

current model can assist with.   

3. Phenotypic functions 
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For simple organisms, the physiology of bacteria is remarkably complex.  

The diverse set of biochemical pathways in bacteria have conferred a vast 

phenotypic potential that have enabled them to thrive in a plethora of 

environments ranging from volcanic vents on the bottom of the ocean, clouds,  

glaciers, and the human gut.  In order to understand this phenotypic potential, 

researchers have turned to GEMs to interpret and predict cellular phenotypes.  

Constraint-based modeling with GEMs 9 has allowed researchers to rapidly 

predict growth phenotypes in various genetic 46 and environmental 47 conditions, 

explore different objectives of microbial metabolism 48, 49 to examine the driving 

force behind cellular function, and better understand the suboptimal behavior of 

cells following perturbation 50, 51 and latent pathway activation 52.   

When phenotypic predictions are made using the GEM, one finds a large 

solution space of potential phenotypes that would allow the organism to survive 

in a given genetic and environmental background.  Many of these solutions of 

metabolic network usage that would allow for survival may not be observed 

under physiological conditions.  Consequently, researchers have formulated 

ways to confine the solution space to more accurately represent the 

experimentally observed phenotype of the cell for a given growth condition by 

incorporating constraints. Regulatory control of the metabolic genes provides a 

means to constrain the allowable solution space by specifying what genes are 

active in the metabolic network for a given environmental condition. Researchers 

have been able to show that while over 50% of the flux distribution is constrained 

by metabolism in a given environmental condition, an additional 20% can be 
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attributed to the transcriptional regulatory network 53 (TRN). In addition, the TRN 

allows the organism to rapidly and efficiently adapt its metabolism to a wide 

range of environmental conditions by altering the expressed metabolic genes 54, 

55.  Spatial constraints in the form of molecular crowding 56, 57, growth associated 

metabolite dilution 58, membrane occupancy 59, super coiling of the DNA 60, and 

indirect protein-protein interactions to facilitate the organization of enzymes in the 

cytoplasm 61 have shown promise for increasing the predictive power of the E. 

coli GEMs. For instance, a mechanistic constraint on the available space on the 

cytoplasmic membrane was introduced to better explain respiro-fermentation 

physiology 59.   Researchers have also shown that the physical structure of the 

DNA correlates more closely to the metabolic state than the regulatory network 

60.  Thermodynamic analysis provides another means to constrain the solution 

space by removing infeasible reaction loops that violate energy balance 62, 63, by 

refining reaction directionality, and by defining allowable flux ranges via 

calculation of the in vivo change of Gibbs free energy of reactions 64-66. Intimately 

tied to thermodynamic analysis is the integration of high-throughput 

metabolomics data. Several studies have incorporated metabolomics data into 

the E. coli GEM to better calculate the in vivo change in Gibbs free energy of 

reaction in order to better confine the feasible flux range of reactions and identify 

reactions that are potentially under allosteric regulation 67, 68.  

The metabolic model can be used as a scaffold onto which high-

throughput data types, such as fluxomic 69-71, transcriptomic 72, 73, and proteomic 

data 74, can be mapped to gain insight into context-specific phenotypes. 
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Fluxomics data can be used to directly compare intracellular flux distribution as 

predicted by constraint-based models 69, 70 using the GEM and can even be 

incorporated as additional constraints 71. Recent work has also demonstrated 

that fluxomic data can be integrated into a computational framework to explain 

suboptimal behavior as a trade-off between near optimal growth under one 

condition, and the ability to quickly adapt to a new growth condition 75. 

Transcriptomic data provides the experimentalist with a powerful means to 

decipher the phenotypic behavior of the cell due to its ability to qualitatively or 

quantitatively determine what genes are expressed by the cell under the given 

experimental conditions 73. A combination of transcriptomic and proteomic data 

have also allowed researchers to better understand the physiology of adapted 

strains and the mechanism for this adaption 74. 

While the E. coli GEM has aided our understanding of cellular metabolism, 

it has limitations. For instance, one should be aware that alternate optimal flux 

distributions of the cell may confound the researcher’s ability to determine the 

true physiological state. This has been demonstrated when comparing fluxomic 

data to in silico predictions 70, and also in studies of adapted E. coli mutants 46, 76 

where variations found in evolved replicates reflected the possible existence of 

multiple flux distributions that lead to equivalent growth phenotypes.  The 

methods to predict cellular physiology present a user bias in the form of an 

objective function that must be validated for specific growth conditions 48. The 

suboptimal state of the cell can also be predicted, but the most utilized method 50 

provides little insight into the biological driving force for suboptimal performance 
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77. It appears instead that a Pareto optimal solution of multiple (and at times) 

conflicting objectives can better explain the biological significance of suboptimal 

behavior than any one method 75.  Incorporating thermodynamic constraints has 

been demonstrated to greatly reduce the solution space of metabolism. 

Unfortunately, the calculation of Gibbs free energy of reaction is hampered by the 

limited availability of experimentally determined standard Gibbs free energy of 

formation for a majority of the metabolites in the E. coli GEM. Therefore, the free 

energies of reaction can only be estimated 78.  

Advancements in methods to obtain and integrate high quality omics data 

with the model will aid in overcoming many current limitations in accurately 

predicting phenotypic behavior. For example, genome-scale metabolomics is 

hampered by the biochemical diversity, range of physiological concentrations, 

and chemical liability of the species that comprise the intracellular metabolome.  

Consequently, multiple analytical platforms and well-tested analytical procedures 

79 are needed to accurately assay the full metabolome, which is costly, time-

consuming, and technically challenging.  The enzyme kinetic and thermodynamic 

information that can be obtained from metabolomics can directly improve the 

accuracy of the metabolic model, and can also be correlated with gene 

expression profiles 80 to assist in unraveling the dynamics between transcriptome 

and metabolome.  Another promising area is the formulation of a genome‐scale 

isotope mapping model 81 for implementation with metabolic flux analysis. An 

expansion of metabolic flux analysis to the genome‐scale and the ability to 
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determine the intracellular distribution of atoms beyond carbon will enhance our 

knowledge of in vivo flux states.   

4. Biological network analysis 

The metabolic reaction network is a highly complex, interwoven, and non-

linear system that responds to environmental and genetic perturbations.  In order 

to elucidate and understand the relationship between the network structure and 

function, many researchers have turned to network analysis. This exercise is 

mathematical in nature. In network analysis, biochemical reactions are 

transformed into a unipartite or bipartite graph, where the nodes and links take 

the form of metabolites and enzymatic reactions. Once formulated as a graph, 

the network can be sampled and explored using a variety of minimally biased 

mathematical and algorithmic methods to arrive at biologically insightful 

conclusions.  The following paragraphs will focus on the most recent advances in 

biological network analysis; the reader is referenced to 18 and 31 for less recent 

examples not covered in the main text. 

 Much progress has been made in the analysis of link and node 

essentiality, whereby the consequences of removing a link (i.e., reaction) from 

the network is examined. Since links have varying degrees of dependence upon 

one another, one must look to higher order combinations of link removals to 

better understand the network properties of the E. coli GEMs. For example, 

synthetic lethals, which are defined as two genes whose independent deletion is 

not lethal, but simultaneous elimination is lethal, are often a consequence of 

network redundancy or parallel pathways 82. The converse of synthetic lethals, 
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synthetic rescues, which are defined as a gene pair where the deletion of one of 

the genes is lethal, but the simultaneous deletion of both genes is non-lethal, can 

be used to rescue a nonviable single-gene deletion phenotype by rewiring the 

network in such a way as to compensate for the deleterious effect of the initial 

genetic perturbation 83, 84. To illustrate, it has been shown that the over-

expression of udhA improves the growth of E. coli pgi knockout strains on 

glucose minimal media 83. Higher order epistatic interactions have also been 

analyzed to predict non-intuitive combinations of lethal and auxotrophic-

inducing/rescuing gene-deletions85.  

 It is important to emphasize that although the E. coli metabolic network is 

analogous to other interaction networks (e.g., the internet) and can be 

interrogated using network theory 86, 87, the E. coli network is unique in that it is a 

biological network that describes a highly evolved function. Network analysis can 

easily be taken out of context or provide little insight if the function of the 

metabolic network is not taken into account. For example, graph theory can 

deduce the topological properties of the model without providing any information 

about the underlying biology. A prerequisite of biologically meaningful network 

analysis is a biologically functional random network, to which one can compare 

the properties of the E. coli GEM 88, 89. However, the in vivo experimental 

validation of such comparisons (i.e., to a random network) is infeasible.   In 

addition, many of the network analysis methods become computationally 

challenged for large biochemical networks.  Examples include elementary mode 

90 and extreme pathway analyses 91, which have been for the most part limited to 
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small-scale networks due to the combinatorial explosion inherent to the methods 

92, 93.  It should be noted that numerical efforts have been made to scale pathway 

analysis to genome-scale models by calculating only a subset of elementary 

modes 94. Additionally, the E. coli metabolic network model is subject to iterative 

updates. Analyses obtained between older and newer models can lead to vastly 

different results.  For instance, 81% of the coupling relations identified using flux 

coupling analysis changed between iJR904 and iAF1260 due to missing 

reactions in the older network model 95.  

Network analysis using GEMs has largely been depicted as a strictly in 

silico undertaking.  Recent progress, however, indicates that network analysis 

has practical applications.  For example, the recent advances in elementary 

mode analysis can be readily extended to strain design 96 and non-native 

pathway finding procedures 97.  In another example, progress has been made in 

applying network analysis of the E. coli metabolic GEM to discover novel drug 

targets 98-100. The E. coli GEM is particularly suitable for this application by 

enabling pharmaceutical researchers to analyze the complex interactions of the 

network as a whole to elucidate target links and nodes that would allow for 

complete system collapse or would severely cripple the network if removed. A 

potential viable workflow for antimicrobial drug discovery was recently presented 

99. The workflow invoked network analysis to identify novel antimicrobial targets 

combined with computational screening to identify inhibitory molecules against 

them followed by experimental validation 99. This GEM-aided workflow could 
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reduce the expensive and time-consuming experimental methods in drug 

discovery 99, and is readily extendible to other bacterial species. 

5. Bacterial evolution 

The genomic content and phenotypic landscape of bacterial species are 

constantly adapting to meet the demands of the imposed environmental 

conditions.  Adaption occurs via elimination of individual reactions by loss of 

function mutations, alterations in gene expression and enzyme capacity, 

alterations in enzyme kinetics, and through the addition of new reactions by 

horizontal gene transfer, gene duplication, and gain of function mutations.  The 

E. coli GEM has proven most useful in modeling microbial evolution through 

elimination and addition of new metabolic network content, and acting as a 

scaffold to aid in the understanding of bacterial evolution. 

Computational frameworks using GEMs have been employed to simulate 

bacterial evolution through random gene deletions.  These studies have shown 

that there appears to be a conserved reaction set that is similar for organisms 

with similar lifestyles 101, which reflects the common enzymatic machinery 

required to metabolize specific carbon sources. It has also been shown that 

although genes are lost at random, the order in which genes are lost follows a 

coordinated and consistent pattern—40% of which can be accounted for by the 

metabolic model when compared to available phylogenic data 102.  The E. coli 

GEM also provides a context by which phylogeny data can be understood. 

Comparative genomics in the context of constraint-based modeling with the E. 

coli GEM has led researchers to assert that the dominant mechanism of bacterial 
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evolution in E. coli appears to be horizontal gene transfer. Horizontal gene 

transfer is highly dependent upon the genomic content of the organism 103, 104, 

and involves genes that are mostly environment-specific and located at the 

periphery of the metabolic network 105. 

The E. coli GEM can act as a scaffold on which similar bacterial strains 

can be reconstructed, and their divergent evolutions understood. Due to the high 

standard of biochemical accuracy of the E. coli metabolic GEM (e.g., 97% of the 

included genetic content of the most recent E. coli GEM has been experimentally 

validated17, many researchers have based the reconstruction of specific 

pathways or the entire organism on the reactions of the E. coli GEM (e.g., 

Salmonella typhimurium 106). More recently, the pangenome of the species E. coli 

was reconstructed based on iAF1260, and used to generate 5 strain-specific 

GEMs that include commensal strain K-12 W3110, two enterohemorrhagic 

O157:H7 strains EDL933 and Sakai, and two uropathogenic strains CFT073 and 

UTI89 107. The study found that pathogenic E. coli appear to be more adapted to 

growth under anaerobic conditions than commensal E. coli 107. The use of the E. 

coli GEM to rapidly construct strain-specific models will continue to increase, 

particularly as the cost of genome-sequencing of microbes continues to fall and 

the available number of sequenced and annotated strains continues to rise. 

While the metabolic model allows a vast region of genotypic space to be 

explored in order to model and understand bacterial evolution, the space is 

currently limited to metabolic genes. Changes in the regulation of metabolism 

during evolution are not accounted for in GEMs. While horizontal gene transfer 
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and gene loss can be modeled up to the resolution of a core metabolic gene set 

101, and the predicted gene loss order can be compared to evidence provided by 

comparative genomics 102, limitations remain in determining the precise genes 

and their exact loss, the location of mutations in the genome, and predicting their 

effect on the physiology of the organism. In addition, comparison of the 

evolutionary trajectories of different bacterial strains is hampered by the fact that 

strain-specific portions of the genomes remain largely uncharacterized. 

The use of GEMs in modeling and understanding bacterial evolution will 

benefit from studies of adaptive laboratory evolution (ALE).  ALE is an 

experimental procedure that introduces a selection pressure (e.g., fastest growth) 

in a controlled environmental setting that allows for a time-resolved depiction of 

changes in the organism’s genome that occur during the process of adaption 108.  

These changes can then be reintroduced and their effect on the organism’s 

fitness studied 109-112.  The GEM provides a context for understanding these 

mutations by allowing the researcher to model the growth physiology of the 

adapted network.  

6. Interspecies Interaction 

There is a growing interest in better understanding host-pathogen 

interactions for the development of improved antimicrobials 113, the use of 

microbes for environmental remediation 114, and for understanding and 

manipulating the microbiome of the human gut for improved health 115. Such 

applications would benefit greatly from a platform that would allow for the 

prediction and simulation of biological interactions.  The E. coli GEM provides 
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such a platform and has been successful in modeling the exchange of 

metabolites (Figure 7) between different cell types (e.g., microbial species) and 

environmental conditions 116-118.  

Although interaction classes of interspecies interactions have been 

established, the mathematical formalism to model these interaction classes using 

GEMs has arisen only recently 116-120. Researchers have modeled host/pathogen 

interactions by directly incorporating pathogenic reactions into the stoichiometry 

of the host reaction network (e.g., to account for viral amino acid and nucleotide 

synthesis 116). Concatenated and joint stoichiometric models have been 

employed to study the exchange of metabolites between species (e.g. co-

cultures 118, 119) and the environment 117. In contrast to multi-cellular 

stoichiometric models that assume that the collection of microbes seeks to 

maximize the collective biomass, researchers have developed multi-competitor 

metabolic models to describe microbial communities where each member seeks 

to maximize their own biomass 120. Together, these studies have found that the 

combined metabolisms of multiple species can utilize the capabilities of the 

environment better than a single species.  Furthermore, while not every 

metabolic interaction is beneficial, metabolic interactions necessitate community 

formation. 

Much work remains in the field of modeling interspecies interactions.  For 

example, the measurement of metabolites exchanged between cells, needed to 

validate the accuracy of the in silico predictions, presents a strong technical 

challenge. In addition, the effect of biological interactions on regulatory elements 
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is not yet accounted for. For instance, the extent to which other strains and the 

environment influence the regulation of metabolism (e.g., through quorum 

sensing) is unclear. Also, most of the large community models do not 

differentiate the genetic content between individual species nor account for their 

spatial organization. Consideration of regulation, individual genetic content, and 

spatial organization will be needed to more accurately model and predict 

community level biological processes 121.  

The advent of single-cell sequencing technology 122 and other single-cell 

assays 123 will benefit the study of interspecies interactions with GEMs.  Such a 

‘bottom-up’ approach would allow for the characterization of individual biological 

entities through, for example, genomics and transcriptomics of individual species.  

From a ‘top-down’ approach, the total interaction of microbial communities can 

be characterized through genome-scale-omic data.  Genome sequencing and 

reconstruction of other bacterial species through manual curation or automatic 

reconstruction (e.g., model SEED 3), and the mapping of metabolite and reaction 

identifiers between reconstructions (e.g., RxnMet 124) will expand the number of 

species interactions that can be simulated together.  Based on genome-scale-

omic data that correspond with single cell data, developments in bioinformatics 

approaches that establish the relationships between individual biological entities, 

and the growing number of reconstructions will allow researchers to piece 

together the contribution of each member on the biological community in order to 

generate complete community level models. 
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In closing: What is likely for the future of GEMs 

The number of applications focused on E. coli that have utilized the 

metabolic GEM have grown in size and scope 18. This review distilled into six 

categories the approximately 200 studies that have appeared in peer-reviewed 

manuscripts over the past 12 years. In each category, key examples and 

success stories were summarized and presented. In addition, we critically 

analyzed the current status of applications using the E. coli metabolic GEM to 

demonstrate what the model can and cannot do, and discussed the 

developments needed to overcome current limitations; as summarized in Table 

1. To help summarize the impact of GEM-aided analyses thus far, 

Supplementary Figure 2 highlights studies that have made a significant 

contribution to the E. coli GEM in particular, and our understanding of microbial 

metabolism, in general.  Researchers are now able to complete the systems 

biology workflow and generate new biological knowledge with the help of the E. 

coli GEM (Fig 4). It should be emphasized that while this review has focused on 

the metabolic network, it is but one of several networks actively at work inside the 

cell 2. 

The GEM of E. coli will continue to expand as more cellular processes are 

mechanistically detailed and added to the organized GEM structure. The next 

significant increase in the applications of an E. coli GEM will likely come from 

mechanistically incorporating and integrating protein synthesis with metabolism. 

The integration of the transcriptional and translational machinery on the genome 

scale 125, 126has now been completed. The operon structure that accounts for 
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cellular regulation will follow protein synthesis as the next logical step of GEM 

expansion. The incorporation of DNA structure and transcription binding as a 

ready-to-compute biochemical network in a mathematical format would overcome 

the limitations presented by the current Boolean formulation of the TRN, and 

allow for complex regulatory interactions to be mechanistically modeled and 

predicted.  It is conceivable that DNA synthesis, post-translational modifications, 

and other cellular processes that involve biochemical interactions that can be 

described by a biochemical interaction network can also be incorporated into 

GEMs.  In brief, what lies ahead for GEMs is the iterative expansion to include 

other cellular processes beyond metabolism with the aid of omics data and the 

mathematical formalisms to model them (Fig 5). It is unclear which high-

throughput data types and algorithms will be the major drivers for many of the 

applications enabled by GEMs with an expanded scope. However, it is clear that 

modeling with such expansive networks, whose components will carry activities 

across many orders of magnitude, will require greater computational accuracy 

and power given their size.  Furthermore, the payoff for this increased complexity 

will be more accurate phenotype predictions after initial validation and gap filling 

is performed.  GEM expansion will be a substantial but worthwhile endeavor that 

will unite many diverse aspects of microbiology and move the community closer 

to the ultimate goal of establishing a comprehensive mechanistic understanding 

of the genotype-phenotype relationship of microbes.  
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Figure 2.1: History of the E. coli expression and metabolic reconstructions. Shown in the upper 
portion of the graph are 2 milestone efforts contributing to the reconstruction of the E. coli 
transcription and translation network, and shown in the bottom portion of the graph are seven 
milestone efforts contributing to the reconstruction of the E. coli metabolic network.  For each of 
the two reconstructions shown 126, 127 in the upper graph, the number of included transcription 
units (blue diamonds), genes (green triangles) and components (purple squares) are displayed.  
For each of the seven reconstructions shown 10, 11, 17, 128-131 in the bottom graph, the number of 
included reactions (blue diamonds), genes (green triangles) and metabolites (purple squares) are 
displayed. Also listed is noteworthy content expansion that each successive reconstruction 
provided over previous efforts. For example, Varma & Palsson 11, 12 included amino acid and 
nucleotide biosynthesis pathways in addition to the content that Majewski & Domach 10 
characterized.  The start of the genomic era 15 marked a significant increase in included 
components for successive iterations of the network reconstruction. The significant increase in 
the number of reactions in 2007 130 was in large part due to the removal of many lumped 
reactions, which were often included for lipid and cell wall biosynthesis in earlier metabolic 
reconstructions.  Thiele et. al. 126 expanded the initial work of Allen & Palsson 127 by increasing 
the scope of the transcription and translation network from a few example pathways to all known 
genes involved in protein synthesis (i.e., expression).  Not included on the timeline is a metabolic 
reconstruction based upon Reed et al., that was modified to include additional reactions from the 
KEGG 132 database and incorporated into the MetaFluxNet software package133.  
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Figure 2.2: The detailed usage of the E. coli metabolic GEM over time. The cumulative and new 
number of studies published per year separated according to a) the metabolic reconstruction 
used 17, 128-130, b) in silico (i.e., strictly computational prediction) or combined in silico & vivo (i.e., 
computational usage of the model and experimental validation or data generation guided by the 
model), and c) the application category of the study. ME: metabolic engineering, BE: studies of 
evolutionary processes, NA: analysis of network properties, PB: prediction of cellular phenotypes, 
BD: model-driven discovery, II: interspecies interaction. 
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Figure 2.3: Six categories of uses and number of studies for each use of the E. coli metabolic 
GEM. The original five categories defined in 2008 18 include a) metabolic engineering, b) model-
driven discovery, c) prediction of cellular phenotypes, d) Analysis of biological network properties, 
and e) studies of evolutionary processes. A new category has been added, f) interspecies 
interaction. The addition of this category signifies a growing trend in the field to explore the 
interaction of the E. coli metabolic network with other organisms and across different 
environmental conditions. Specifically, studies have explored host/pathogen interactions 116, co-
cultures 118-120, ecology 117, and chemotaxis 134. The number of studies in this category is 
expected to increase as the interest in understanding the complexities of microbial interactions 
and ecosystems continues to grow. The complete lists of the studies for each category are 
included in Supplementary Table 1.  
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Figure 2.4: Iterative workflows. A) A generic network reconstruction and model driven systems 
biology workflow is a cyclic path that iterates between in silico predictions and in vivo 
observations. This general process has been followed in some of the more influential studies 
presented in this review. DNA sequencing and bibliomic data can be used to reconstruct and 
translate a biological system into a mathematical structure.  Other omics data types that have 
been generated can be interpreted in the context of a reconstruction and computational model to 
analyze organism functions under specific conditions. This information becomes a de facto 
knowledgebase that can be queried through a consortium of analytical methods.  The aim of 
these methods is to hypothesize answers to complex biological questions that can often be non-
intuitive or not readily apparent.  Experiments can then be designed to test these predictions in 
order to either confirm GEM-derived explanations or move researchers one iteration closer to the 
answer. Studies that have successfully iterated through the E. coli GEM workflow that are 
presented as examples include B) Reed et al., 2006 37, C) Shen et al., 2010 99, D) Yim et al., 
2011 25, and E) Nakahigashi et al., 2009 35. 
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Figure 2.5:  The future of the E. coli GEM.  The most widely-used E. coli reconstruction accounts 
only for metabolism (the “M” matrix) 2.  However, efforts are currently underway to integrate the 
operon structure that determines cellular regulation (the “O” matrix), the transcriptional and 
translational machinery allowing for the expression of proteins (the “E” matrix) 126, and other 
cellular processes (e.g., DNA replication, post-translational modifications, etc.) with metabolism.  
The integration of these cellular processes, supported by high-throughput data types, into a single 
mathematical model, will allow researchers to more accurately compute complex phenotypes, 
and will guide the discovery of unknown aspects of cellular functions beyond that of just 
metabolism. 
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Figure 2.6:  The four categories of growth phenotypes.  Growth phenotypes from single-gene 
deletion mutants based on in silico model predictions can be compared to in vivo experimental 
data to elucidate or confirm function of ORFs. The results of growth phenotyping studies can be 
classified into four categories: 1) Growth/Growth (G/G): the model and experimental data show 
growth, 2) Growth/No Growth (G/NG): the model predicts growth, but the experimental data 
indicates no growth, 3) No Growth/Growth (NG/G): the model predicts no growth, but the 
experimental data indicates growth, and 4) Growth/No Growth (NG/NG): the model and 
experimental data show no growth.  The G/NG case indicates that the model over-estimates the 
metabolic capabilities of the organism, while the NG/G case indicates that the model under-
estimates the metabolic capabilities of the organism. Metabolic over-predictions are commonly 
caused by reactions that are absent in vivo, reactions that are down-regulated or inhibited under 
a specific environmental condition, or the biomass formulation is includes an erroneous 
metabolite. Metabolic under-predictions often represent knowledge gaps in that the model does 
not account for an unknown isozyme, parallel pathway, or some other functionality of the 
organism. G/G can be regarded as a consistency check and NG/NG can be regarded as a form 
of model validation. 
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Figure 2.7:  Microbial interactions as defined by metabolite exchange.  A microbial interaction can 
be defined and modeled as an exchange of molecules between species in a given environment. 
There are three main types of interaction classes between microbial species: 1. Mutualism, also 
known as syntrophy or symbiosis, is where each organism produces an essential metabolite 
needed to support growth by the other organism. 2. Commensalism is where only one organism 
depends on the other for the production of an essential nutrient to support growth. A special case 
of commensalism, known as parasitism, is when the organism providing the essential nutrient 
comes at the cost of reduced fitness. Host/pathogen interactions are a type of parasitism. 3. 
Neutralism is where each organism can sustain growth in a given environment without the 
presence of the other organism. Since each species are consuming the same resources, 
competition can arise between the organisms.  
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Table 2.1: Strengths and limitations of the metabolic GEM applications. 

Application What the model can do: What the model cannot do: 
Strengths of the E. coli GEM Areas for future progress 

Metabolic 
Engineering 

• Gene deletion (combinatorial) 
• Gene addition 
• Gene over-and under-expression 
• Rapidly test the systemic effects of 

heterologous pathway additions 
• Design biomarkers/biosensors for 

characteristic function 
• Determine media supplementation strategies 
• Map high-throughput data to identify 

bottlenecks 
• Design strains through evolution 

• Limited coverage of molecular biology 
• Predicting the effects of perturbations to 

regulatory elements 
• Predicting allosteric inhibition 
• There is no explicit representation of 

metabolite concentrations 
• Account for enzyme kinetics 
• Cannot accurately predict the performance 

of non-native genes/proteins in E. coli 
  

Biological 
Discovery 

• Predict growth on different carbon sources / 
media conditions 

• Guide the functional assignment of network 
gaps 

• Guide the discovery of previously 
uncharacterized gene product functions 
(graph theory analysis) 

• Guide the re-annotations of incorrectly 
annotated genes 

• Connect orphan metabolites to known 
reactions 

• Predict the regulation of isozymes/parallel 
pathways 

• Predict enzyme promiscuity 
• Predictive power is inherently limited 

because the model is not complete in scope 
• Predict the expression of genes 
• Predict the functional state of proteins (e.g. 

post-translational modification) 

Phenotypic 
Behavior 

• Predict optimal cellular behavior 
• Understand energetics and occurrence of 

suboptimal behavior 
• Infer impact of regulation 
• Provide a context for which experimental 

data can be interpreted 
• Predict and understand absolute and 

conditional gene essentiality 
• Predict and understand shifts in growth 

conditions 

• Differentiate between computed alternate 
optimal flux distributions of the cell a priori 

• Explain the reasons for suboptimal 
performance a priori 

• Provide a framework for incorporating 
additional regulatory interactions that are 
currently under development 

  
  
  

Network 
Analysis 

• Evaluate metabolic networks from a systems 
view through node and link dependencies, 
essentialities, overall network robustness 

• Describe the complex interactions of the 
components of the metabolic network 

• Evaluate modularity of function 
• Evaluate regulation based on network 

structure 

• Does not always include the biological 
mechanisms behind the network 
connections 

• Few predictions can be experimentally 
validated 

  
  

Bacterial 
Evolution 

• Predict essential genes 
• Predict the end-point of evolution 
• Understand the basis for epistatic 

interactions and mutational effects 
• Provide insights into evolutionary trajectories 
  

• Account for changes in regulatory elements 
• Predict the time-course of evolution 
• Predict location of mutations in the genome 
• Predict the effects of mutations in the 

genome 
• Account for strain-specific genomic 

differences 

Interspecies 
Interaction 

• Model the exchange of metabolites 
• Analyze high-throughput data from different 

strains 
• Determine the cost/benefit ratio for different 

types of commensalism 

• Model interactions that affect metabolic 
regulation 

• Inability to measure flux exchange in multi 
cell-type systems 

• There are still too many unknowns to 
accurately build an interactions network 

• Limited ability to define individual genetic 
content in large communities 

• Limited spatial knowledge in large 
communities 
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CHAPTER 3: 

A model-driven quantitative metabolomics analysis of aerobic and anaerobic 

metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically 

consistent 

Abstract 

The advent of model-enabled workflows in systems biology allows for the 

integration of experimental data types with genome-scale models to discover 

new features of biology.  This work demonstrates such a workflow, aimed at 

establishing a metabolomics platform applied to study the differences in 

metabolomes between anaerobic and aerobic growth of Escherichia coli.  

Constraint-based modeling was utilized to deduce a target list of compounds for 

downstream method development.  An analytical and experimental methodology 

was developed and tailored to the compound chemistry and growth conditions of 

interest.  This included the construction of a rapid sampling apparatus for use 

with anaerobic cultures.  The resulting genome-scale data sets for anaerobic and 

aerobic growth were validated by comparison to previous small-scale studies 

comparing growth of E. coli under the same conditions. The metabolomics data 

were then integrated with the E. coli genome-scale metabolic model (GEM) via a 

sensitivity analysis that utilized reaction thermodynamics to reconcile simulated 

growth rates and reaction directionalities.  This analysis highlighted several 

optimal network usage inconsistencies, including the incorrect use of the beta-

oxidation pathway for synthesis of fatty acids.  This analysis also identified 
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enzyme promiscuity for the pykA gene, that is critical for anaerobic growth, and 

which has not been previously incorporated into metabolic models of E coli. 
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Introduction 

The physiological and biochemical differences between anaerobic and 

aerobic growth in bacteria have implications for industrial biotechnology and 

many areas of human health.  The importance of this shift is highlighted by the 

observation that the transcription factors orchestrating this shift are the most far-

reaching in E. coli. The impact is a major change in the amount of energy that 

can be obtained from many commonly used substrates 1-4. Therefore, much 

research has been dedicated to understanding this difference, particularly for E. 

coli.  Specifically, changes in gene expression 5-7, structural and biochemical 

differences of preferential anaerobically and aerobically expressed enzymes 8-15, 

and DNA supercoiling changes 16-18 during aerobicity shifts have been 

extensively investigated.  The flux distribution and ATP maintenance costs have 

been explored 19, and an integrated omics analysis of aerobic and anaerobic 

conditions aimed at understanding the effects of nitrate on bacterial growth in the 

context of global gene regulation has been reported 20. Even with the vast 

amount of research that has been dedicated to understanding the physiological 

and biochemical differences between anaerobic and aerobic organisms, there 

are still many unanswered questions that could be addressed by examining the 

differences at the metabolite level.   

Advances in metabolomic analytical methods have allowed researchers to 

accurately probe the metabolome of various microorganisms under various 

growth conditions 21-23.  By providing a snapshot of the metabolite levels of the 

cell, metabolomics provides researchers with a powerful tool to investigate the 
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biochemical status of the cell 24-26.  This information is very useful for the 

metabolic engineering of microorganisms and the design of new and more 

specific antibiotics. A prerequisite for meaningful metabolomics data is a robust 

experimental method.  Rapid turnover of metabolites, cell leakage, and residual 

media are problems that hamper the accurate analysis of microbial metabolism.  

Various sampling and extraction strategies have been developed and critically 

evaluated 27, 28 to minimize or circumvent these problems.  In addition, rapid 

sampling apparatuses have been designed to improve the researcher’s ability to 

rapidly and accurately sample cultures 29-31.  

Genome-scale modeling techniques have been shown to produce relevant 

and useful predictions for a diverse set of applications, including metabolic 

engineering and biological discovery 32.  The development of model-enabled 

workflows allows for the integration of experimental data types with model-driven 

analysis to discover new features of biology.  In this study, we develop a model-

enabled workflow to provide a metabolic snapshot of intracellular metabolite 

levels for anaerobic and aerobic steady-state growth on glucose minimal media.  

We describe a modeling-enabled workflow for metabolomics measurements 

(Fig.1), the analytical and experimental methodology used in this study, the 

construction of a rapid sampling apparatus, and our QC/QA of the generated 

metabolomics data.  We then provide an analysis of the metabolomics data in the 

context of the body of research that has been aimed at understanding the 

differences in anaerobic and aerobic growth. Finally, we integrate the validated 

metabolomics data set with a genome-scale model of metabolism to examine its 
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thermodynamic consistency with the current knowledge contained in the 

metabolic reconstruction. 

  



56 
 

Material and Methods 

Chemicals, unlabeled standards, 13C-labeled standards, and calibration curves 

 Water, methanol, and acetonitrile were LC-MS grade (Honeywell Burdick 

& Jackson®).  Standards and additives were purchased through Sigma Aldrich or 

Santa Cruz Biotechnology, Inc. at the highest purity available.  Stock solutions 

were prepared in LC-MS grade water.  Compounds with a phosphate group or 

CoA moiety were titrated to neutral pH with sodium hydroxide to minimize 

degradation due to spontaneous acid hydrolysis prior to storage at -80 °C.  

Uniformly labeled 13C-standards were made via metabolic labeling by growing E. 

coli in uniformly labeled Glucose M9 minimal media in aerated shake flasks.  All 

extracts were pooled, well mixed, aliquoted, and stored in the -80 °C for use as 

internal standards.  Calibration mixes of standards were split across several 

mixes, aliquoted, and lyophilized to dryness.  Twelve concentration ranges were 

obtained by adding the appropriate dilution of water and uniformly labeled 

standards.  

Chromatography, mass spectrometry, and data acquisition 

 A Synergi™ 2.5 μm Hydro-RP 100 Å LC Column 100 x 2 mm 

(Phenomenex) with an UFLC XR HPLC (Shimadzu) was used for 

chromatographic separation, using the gradient profile and mobile phase 

compositions as described in Lu, et al. 22, with minimal adaptations.  The 

autosampler temperature was 10°C and the injection volume was 10 uL with full 

loop injection. 
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An AB SCIEX Qtrap® 5500 mass spectrometer (AB SCIEX) operated in 

negative mode with multiple reaction monitoring was used for detection and 

quantification.  Electrospray ionization parameters were optimized for 0.2mL/min 

flow rate, and are as follows:  electrospray voltage of -4500 V, temperature of 

500 °C, curtain gas of 30, CAD gas of 12, and gas 1 and 2 of 30 and 30psi, 

respectively. Analyzer parameters were optimized for each compound using 

manual tuning.   

Samples were acquired using the Analyst® 1.6.1 acquisition software and 

Scheduled MRM™ Algorithm (AB SCIEX).  Integration was performed using 

MultiQuant™ 2.1.1 (AB SCIEX).  Compounds were quantified if at least four 

consecutive points on the calibration curve were found to have a linear coefficient 

of determination greater than 0.99.  The lower limit of quantitation was a signal to 

noise ratio greater than 40 as calculated by the MultiQuant™ MQ4 integration 

algorithm, and peak height greater than 1,000 ion counts.  For compounds that 

were incompletely labeled due to the incorporation of exogenous carbon dioxide, 

calibration curves were truncated at the lowest linear point that was above the 

signal intensity found in the blank and had minimal bias (i.e., did not regress to 

zero).  Isotope dilution mass spectrometry 33 (IDMS) with metabolically labeled E. 

coli extracts was employed for quantitation.  Calibrators and quality controls were 

included in each batch.  In addition, carry over was also monitored with water 

blanks.   

Rapid sampling apparatus construction and operation 
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The basic premise of the apparatus was taken from the work of Aragon et 

al, 2006 34. The sampling apparatus was designed to allow for rapid sampling 

and quenching of anaerobic or aerobic batch cultures in triplicate.  A schematic 

of the sampler is shown in Figure 3.  A custom microcontroller was designed to 

control the open time of the solenoid valves, the open time of the pinch valves, 

the delay between the closing of the solenoid valve and the opening of the pinch 

valve, and the delay between samples.  The microcontroller was fabricated by 

Brian Millier (Computer Interfaces Consultant).  All materials used to fabricate the 

sampler and a more detailed description of its construction can be found in the 

Supplementary Information. 

Strains, media, and growth conditions 

 E. coli K12 MG1655 (ATCC 700926), obtained from the American Type 

Culture Collection (Manassas, VA), was grown under anaerobic and aerobic 

conditions, as described below, in 4 g/L glucose M9 minimal media 35 with trace 

elements 36.  Anaerobic cultures were inoculated in an anaerobic chamber (COY; 

37 °C; 10% CO2, balance N2) from overnight pre-cultures (starting OD600 

~0.05).  Physiological measurements for anaerobic cultures were conducted in 

the rapid sampling apparatus and anaerobic chamber for comparison.  

Metabolomic measurements for anaerobic cultures were conducted in the rapid 

sampling apparatus.  Aerobic cultures were inoculated in a fume hood from 

overnight pre-cultures grown in an incubator (starting OD600 ~0.05).  

Physiological measurements for aerobic cultures were conducted in the rapid 

sampling apparatus and water bath only for comparison.  Metabolomic 
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measurements for aerobic cultures were conducted in the rapid sampling 

apparatus.  The water bath was maintained at 37 °C and aerated at 700 RPM.    

Physiological measurements for rapid sampler testing 

Physiological measurements for culture density were measured at 600 nm 

absorbance with a spectrophotometer and correlated to cell biomass.  Samples 

to determine substrate uptake and secretion were filtered through a 0.22 µm 

filter(PVDF, Millipore) and measured using refractive index (RI) detection by 

HPLC (Waters, MA) with a Bio-Rad Aminex HPX87-H ion exclusion column 

(injection volume, 10 ul) and 5 mM H2SO4 as the mobile phase (0.5 ml/min, 

45°C).  Growth, uptake, and secretion rates were calculated from a minimum of 

four steady-state time-points.  Final yield was determined from the amount of 

starting carbon source and amount of end fermentation products once all of the 

carbon source was depleted according to the equation 

𝑌𝑝
𝑠�

= � �Cproduct,i∗Pproduct,i

Csubstrate∗Usubstrate
�

𝑛

𝑖=1
 for n measured products, where 𝑌𝑝

𝑠�
 is the yield 

(mmol/mmol), Cproduct,i is the number of carbons for the ith product, Pproduct,i is the 

amount of product secreted (mmol) for the ith product, Csubstrate is the number of 

carbons for the substrate (i.e., glucose), and Usubstrate is the amount of substrate 

consumed (mmol).  pH was also monitored for anaerobic cultures.  

Evaluation of separation and extraction methods 

The separation methods tested involved centrifugation of the culture broth 

or by application of the differential method 37.  The differential method as 

described was modified to omit the use of an intermediate quenching solution for 
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the whole broth and filtrate sample.  Samples were instead directly extracted in 

organic solvent.  The extraction solvents tested were either cold, aqueous 80/20 

methanol/water (by %vol.) (80/20 MeOH/H2O) 38 at -80 °C or cold, aqueous 

40/40/20 acetonitrile with 0.1% formic acid/methanol/water (by %vol.) (40/40/20 

ACN/MeOH/H2O) at -20 °C (based on the method described in Rabinowitz et al, 

2007 38).  Internal standards were added to the first extraction solvent, and 

omitted in subsequent extractions.  A detailed description of the modified protocol 

can be found in the supplemental information. 

Comparison of the different sampling and extraction methods was based 

on 1) total log fold change of normalized endogenous feature signal intensity 

divided by isotopically labeled feature signal intensity for a representative group 

of compounds, and 2) log fold percent change in energy charge ratio 

ATP+𝐴𝐴𝐴 2�
𝐴𝐴𝐴+𝐴𝐴𝐴+𝐴𝐴𝐴

 compared to that of the designated control (i.e., separation by 

centrifugation and extraction with 80/20 methanol/water (by %vol.)).   

Metabolomics of anaerobic and aerobic batch cultures 

 Anaerobic and aerobic cultures were sampled at three time points using 

the rapid sampling apparatus during steady-state growth (0.2±0.003, 0.34±0.005, 

0.45±0.006) and (1.21±0.07, 2.13±0.06, 3.38±0.04) (OD600, mean±SD), 

respectively, as described previously using the differential method to separate 

intracellular metabolites along with the 40/40/20 ACN/MeOH/H2O extraction 

solvent.  The volume of the first extraction was always four times that of the 

sample volume, and 0.2 mL for the two subsequent extractions, with internal 
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standards added to the first extraction solution.  Reconstitution volumes and the 

amount of labeled biomass added to the extraction solvent were such that each 

sample contained 1 gDW/L of biomass and 1 gDW/L of metabolically labeled 

biomass to account for the differences in biomass between anaerobic and 

aerobic cultures.  The concentration of each sample was normalized to culture 

density, and the intracellular volume for E. coli used to determine the absolute 

concentrations was taken from Volkmer, et al. 201139.  Concentrations from 3 

biological replicates and 1 technical replicate were used to determine the 

average and variance for broth and filtrate samples at each time point.  The 

differential method was applied to those samples whose average filtrate 

concentration was found to be 80 percent or less than that of the average total 

broth to determine the average internal concentrations.  The internal variance 

was calculated by adding the variances of the broth and filtrate samples.  The 

final reported data are the averages of the average and variance of the three 

steady-state time-points.   

In silico analysis, modeling, and statistical analysis 

 All metabolic modeling was performed using the iJO1366 genome-scale 

metabolic network of E. coli 40.  All simulations were run using C++ in the 

Microsoft Visual Studios 10.0 environment with the IBM® ILOG® CPLEX® 

Optimization Studio v12.3 (IBM®) as the linear program solver.  Substrate uptake 

rates, in silico media compositions, and gene deletion simulations were done as 

described in Orth, et. al. 2011 40.  Metabolite essentiality 41, flux sum analysis 41, 

and parsimonious flux balance analysis (pFBA) 42 were performed as described 
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(see supporting information for a detailed description).  Thermodynamic 

feasibility analysis was performed based on the equations described in Henry et 

al., 2007 43 and method described by Zamboni et al., 2008 44 (see supporting 

information for a detailed description).  Statistical analysis and plots were done 

using Excel® and Matlab®.  P-values were calculated using a Student’s t-test.  

The reaction maps for Figure 6 were generated using Simpheny® (Genomatica) 

and data was mapped to the figure using in-house scripts. 
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Results and Discussion 

Model-driven analysis of E. coli’s metabolic pathways to determine target 

compounds 

Given the time and cost that it takes to develop a targeted analytical 

method, the question of which compounds to measure in a biological system is of 

paramount importance as the choice of compounds completely shapes the 

downstream method development.  For this purpose, the E. coli metabolic model 

iJO1366 was employed to generate a list of target compounds that are important 

for overall network function.  Metabolite usage in the model was calculated by 

summing metabolic fluxes that utilize a metabolite under a given set of 

environmental and genetic conditions.  While computational metabolite usage is 

not a true measure of a metabolite’s physiological level, the network usage of a 

compound provides a proxy to identify compounds that are highly utilized and/or 

change between different genetic and environmental conditions. Following this 

logic, network usage of the compounds in E. coli was simulated and scaled to 

total network usage of all compounds (Fig. 2).  Compounds between each 

condition that were found to have a high flux and/or high change in flux 

compared to the control were pooled and rank ordered in order to identify a 

reasonable number of compounds that could be manually curated (see 

Methods).  The top 15 compounds from this analysis included the adenosine 

nucleotides, the nicotinamide adenine dinucleotides, acetyl-CoA, coenzyme A, L-

glutamate, and phosphoenolpyruvate (PEP), indicating that these metabolites are 

important to overall network function.  Next, literature sources on bacterial 
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metabolomics, biochemistry textbooks, and the results from metabolite 

essentiality analysis were used to guide the manual curation step.  This step 

involved manually checking the pool of compounds to give priority to those that 

are essential for growth, known to have an important role in bacterial physiology, 

and may not have been identified by the in silico model.  For instance, 2-

oxobutanoate and L-threonine, which were not within the top 100 compounds 

identified in the previous analysis, were found to be essential for growth and 

given a higher priority on our list.  Similarly, the glutathiones were given 

increased priority for their role in regulating free radicals.  In total, 250 

compounds were identified that were desirable to measure in E. coli. Based on 

compound availability and instrumentation (see next section), 126 compounds 

from this list were optimized for detection. 

Development of a quantitative metabolomics method 

Analytical method to quantify target compounds 

An analytical method was chosen to optimize coverage and accuracy for 

the measurement of the targeted list of compounds. The target list was 

dominated by polar, charged species that are involved in central carbohydrate 

metabolism, amino acid metabolism, nucleotide metabolism, and redox balance. 

Consequently, an ion-pairing method 22 was chosen for its ability to separate 

polar species, and an AB SCIEX 5500 Qtrap was chosen for its high sensitivity 

for quantitation.  The platform was manually optimized for detection of each 

compound (see Methods).  All transitions and retention times are provided in 

Supplemental Table 1. 
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Experimental method to accurately measure the metabolite levels of anaerobic 

batch cultures 

Considerations for metabolomics sampling include the fast turnover of 

many intracellular compounds, cell leakage, and residual media that can hamper 

accurate metabolomics analysis 28.  Furthermore, a methodology suitable to 

study the range of growth conditions under which E. coli can thrive—including 

both anaerobic and aerobic batch culture—is needed.  Given these needs, a 

rapid sampling technology was developed and various sampling and extraction 

methods were explored to provide an accurate snapshot of intracellular 

metabolism. 

Rapid sampling apparatus 

A first consideration was overcoming the technical challenges involved in 

sampling anaerobic batch cultures for metabolomics.  One accepted approach 

for anoxic conditions is the use of an anaerobic chamber (see Methods). 

However, the use of organic solvents for quenching contaminates, the 

atmospheric composition of the chamber, and the overall design hampers fast 

sample handling if increased throughput is desired.  Therefore, a rapid sampling 

apparatus based on the previous work of Aragon et al, 2006 34 that could rapidly 

sample cultures for biological triplicate was constructed to overcome these 

shortcomings (Fig. 3).  The apparatus was first tested to ensure that it could 

sample accurately and reproducibly (Supplemental Fig. 2) by sampling cultures 

of different volumes containing water and by measuring the volume sampled 

gravimetrically.  For the pressures used in this work, the effect of culture volume 
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on sampling volume was negligible.  The generated sampling apparatus was 

found to eject a sample from the culture vessel into the extraction solution in less 

than a second.  The limiting factor in sample frequency was the speed at which 

the operator could change the purge vessel (i.e., the previous sample vessel to 

the next sample vessel).  For one operator, it took approximately 10 seconds, 

and for multiple operators, it took approximately 3 seconds to change the sample 

vessel.   

The developed rapid sampling apparatus was validated to ensure that it 

could reproduce culture conditions within the culturing vessel as compared to a 

laboratory ‘gold standard’ (i.e., a water bath for aerobic cultures and a 

temperature controlled anoxic chamber for anaerobic cultures). The results from 

this analysis are given in Table 1 and Supplemental Figure 1.  Comparisons 

between the sampling apparatus and our ‘gold standard’ culture conditions were 

based on growth rate, substrate uptake/secretion rates during steady-state, and 

overall carbon yield at the conclusion of the fermentation.  For all three criteria, 

the values obtained between the sampling apparatus and our culture conditions 

were found to be consistent (the mean growth rates, glucose uptake rates, and 

carbon yields deviated less than 3%, 4%, and 4% from the ‘gold standard’ 

values, respectively).   

Sampling and extraction methodology 

 Modified versions of several published methods were compared to select 

a sampling and extraction protocol for our experimental conditions. Several 

sampling methods 24, 37, 45 and extraction solvents 27, 38 were initially considered.  
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To differentiate internal from external compounds, separation by centrifugation or 

application of the differential method 37 were tested.  To precipitate proteins and 

extract metabolites, cold, organic extraction solvents consisting of 80/20 

methanol/water and 40/40/20 acetonitrile + 0.1% formic acid/methanol/water (by 

%vol.) were also tested.  In addition, the classic Bligh-Dyer cholorform/methanol 

extraction method 46 was initially tested, but an unacceptable degradation of 

phosphorylated compounds was found during initial experiments (data not 

shown), and the method was not pursued further. 

Each combination of separation and extraction was tested and assessed 

for steady-state, aerobic cultures using the rapid sampling apparatus (Fig. 4).  

Briefly, the criteria to judge the different approaches were total log fold signal 

change and log fold percent change in energy charge ratio.  A large difference in 

fold signal intensity (particularly for the phosphorylated compounds) was found 

between centrifuged samples and samples separated by the differential method.  

For compounds with slow turnover times (e.g., glutamate), differences were 

smaller.  A large difference in log fold percent change in energy charge ratio 

between sampling methods was also found.  It should be noted that on average, 

the calculated energy charge ratio for the optimized sampling and extraction 

method was 0.95 and 0.94 for anaerobic and aerobic conditions, respectively.  

This is within the physiological range of 0.8 – 1.0 37.  The findings above indicate 

that a sampling method that provides near instantaneous quenching of 

metabolism is needed for compounds with fast turnover times (e.g., ATP),. 

Therefore, it was decided to use direct extraction and application of the 
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differential method, and extraction by the acetonitrile-based solvent due to its 

higher log fold energy charge ratio.  

While providing the fastest possible arrest of cellular metabolism for liquid 

cultures, one drawback to the use of the method described here is ion 

suppression and interference from media components due to increased sample 

matrix.  Ion suppression from sample matrix, particularly in the early stages of the 

LC gradient, was evident.  Extracellular interference has been attributed to cell 

lysis, as well as specific and non-specific membrane transporters 28.  Due to the 

large volume of the medium, even small amounts of extracellular components 

can greatly distort the analysis if not properly accounted for 28.  We therefore 

limited our analysis to only those components that were found to have an 

extracellular concentration of less than 80% of that contained in the whole broth.  

This limited the number of components for which we could provide quantitative 

data out of the total that we were monitoring in each sample.  For example, 

cAMP was found in equal amounts in the whole broth and filtrate samples, and 

could not be included in this study. 

Interpretation and validation of the steady-state anaerobic and aerobic 

metabolomes of E. coli 

Of the total of 50 metabolites measured across both conditions which 

passed the quality control specifications (see Methods), 38 were measured under 

anaerobic conditions, 49 were measured under aerobic conditions, and 37 were 

measured in both conditions (Supplemental Table 2). Of the 37 shared 

metabolites, 15 were significantly different between the conditions (p-value < 
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0.01), of which 11 had a fold change greater than 2 between the two conditions 

(Fig. 5).  In order to understand these differences, a literature comparison was 

performed.  Enzymatic, expression, and various other data types applied to 

investigate various aspects of anaerobic and aerobic physiology over the last few 

decades were integrated to validate findings and provide contextual support for 

several of our other findings regarding differences between anaerobic and 

aerobic growth (Table 3).    

NADH, NADPH, Reduced glutathione, and L-glutamine were found to 

have large and statistically significant differences between anaerobic and aerobic 

growth.  The increased levels of NADH found in anaerobic cultures are indicative 

of an inactive electron transport chain 1, 47.  The reduced levels of NADPH and 

Reduced glutathione found in anaerobic cultures provide evidence for increased 

flux through glucose-6-phosphate dehydrogenase and a cellular response to 

oxygen radicals generated from an active electron transport chain during aerobic 

growth 48-50.  The decreased levels of glutamine (and glutamate) were found 

under anaerobic conditions compared to aerobic conditions, which indicate a 

more acidic cytosol and decreased flux towards glutamate precursors under 

anaerobic growth 51-54.  A more detailed discussion is provided in the 

supplemental information. 

Elevated levels of NTPs were also found in anaerobic cultures.  One 

possible explanation for this is that NTP generation is more closely linked to 

glycolysis under anaerobic conditions than under aerobic conditions.  NDP 

kinase is the primary source for NTPs under aerobic conditions.  NDP mutants 
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are able to synthesize NTPs through adenylate kinase under aerobic growth.  

However, adenylate kinase shows broad, but preferential, specificity 55 leading to 

imbalances in the NTP, which has been found to lead to increased mutagenesis 

56.  In contrast to aerobic growth, increased mutagenesis has not been found in 

NDP kinase mutants under anaerobic growth 56, suggesting that another enzyme 

provides the NTP synthesizing machinery.  Current evidence suggests that pykA 

is the dominant nucleotide kinase under anaerobic conditions 10.  PykA is 

positively regulated by FNR 57 and shows broad and largely non-preferential 

substrate specificity 10.  Interestingly, our metabolomics data indicate that the 

NDP kinase function of converting UDP to UTP at the expense of ATP is 

thermodynamically infeasible under anaerobic growth.  Removal of this reaction 

from the network yields no growth under anaerobic conditions.  However, upon 

addition of the C-, G-, U-, and dT-TP kinase activity to pyruvate kinase, maximal 

growth was predicted.  This was found to hold even when all reactions catalyzed 

by NDP kinase were removed from the network.  This provides modeling and 

metabolomics data to support the hypothesis that the NTP pool is largely 

generated through glycolysis via pyruvate kinase. 

Integrating measurements with modeling: assessing thermodynamics at the 

genome-scale  

Analysis of thermodynamics at the genomic-scale allows for the 

assessment of the thermodynamic feasibility of a metabolomics data set.  

Therefore, a thermodynamic feasibility analysis based on the equations 

described in Henry et al., 2007 43 and method described by Zamboni et al., 2008 
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44 was performed. In addition to adopting these analyses, additional work was 

performed to explore the cost of constraining reaction fluxes on the network, and 

to explore the overall feasibility of catabolic and anabolic pathways.  The analysis 

of the metabolomics data presented here resulted in the identification of one 

thermodynamically infeasible reaction and two reactions that were 

thermodynamically inconsistent with optimal growth. Specifically, the infeasible 

reaction was found under anaerobic conditions, and the two thermodynamically 

inconsistent reactions were found under both anaerobic and aerobic conditions. 

The results are presented in Table 2 and described further below. 

The nucleoside-diphosphate (NDP) kinase (ndk) reaction which converts 

UDP to UTP at the cost of ATP was found to be thermodynamically infeasible 

when analyzing the anaerobic data set with the iJO1366 E. coli model (Table 2). 

This reaction was investigated further.  There is evidence to suggest that under 

anaerobic growth, the nucleotide triphosphate (NTP) pool is maintained by 

pyruvate kinase 10.  Currently, in the reconstructed model, both the pykA and 

pykF gene products were assigned to only one reaction:  adp + h + pep --> atp + 

pyr, EC: 2.7.1.40.  There is also evidence that pyruvate kinase can transfer 

phosphate from PEP to other NTPs (CDP, GDP, UDP, or dTDP) to form pyruvate 

and the respective triphosphate by the predominantly anaerobically expressed 

pyruvate kinase isozyme, pykA 10.  As such, these reactions were temporarily 

added to the model to mimic the broad kinase activity of the pykA enzyme found 

in vitro.  Upon changing the NDP kinase reaction to account for enzyme 

promiscuity, no penalty in growth rate was predicted and the infeasibility 
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disappeared.  This indicated that NDP kinase is not essential for growth under 

anaerobic conditions, and that the thermodynamic infeasibility of the NDP kinase 

reaction was not a consequence of the metabolomics data, but an error in the 

metabolic model.   Therefore, this integration of metabolomic data with the model 

points to an oversight in promiscuity for an enzyme 58 that has been present for 

four major revisions of the widely-used E. coli metabolic reconstruction   

A thermodynamically inconsistent reaction identified in the integrated 

analysis corresponded to acetyl-CoA C-acetyltransferase (atoB) for both the 

anaerobic and aerobic growth conditions (Table 2).  Acetyl-CoA C-

acetyltransferase is a component of the beta-oxidation pathway that catalyzes 

the conversion of acetoacetyl-CoA and coenzyme A to acetyl-CoA, which is 

required for growth on acetoacetate 59.  Optimal growth is predicted to use the 

beta-oxidation pathway, which does not require the reducing power of NADPH to 

synthesize lipids.  Constraining the direction of flux through this reaction resulted 

in a 2.9% and 1.1% reduction in growth under anaerobic and aerobic conditions, 

respectively, due to the cost of utilizing NADPH for lipid synthesis.  Under normal 

physiological conditions, lipid synthesis proceeds first by carboxylation of acetyl-

CoA to malonyl-CoA, and then elongation continues using the reducing power of 

NADPH 60.  The energetic advantage of using the reversed beta-oxidation 

pathway for the production of fatty acids was recently demonstrated for 

metabolically engineered E. coli 61.   

 The reaction corresponding to the phosphoglycerate dehydrogenase 

(serA) gene product was found to be thermodynamically inconsistent for both the 
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anaerobic and aerobic growth conditions (Table 2).  Phosphoglycerate 

dehydrogenase catalyzes the first committed step to serine synthesis  62.  This 

one reaction has been shown to be thermodynamically unfavorable along with a 

high Km for 3-phosphoglycerate 62. The entire pathway (which serA belongs to) is 

instead driven in the forward direction by the subsequent reaction catalyzed by 

phosphoserine aminotransferase (serC) 62.  To evaluate this finding with the 

model, a pathway feasibility analysis for serine biosynthesis was conducted.  It 

was reasoned that the thermodynamics of a pathway, as compared to a single 

reaction, depends to a greater degree on physiologically relevant ratios of 

currency metabolites (e.g. ATP/ADP, NAD(P)/NAD(P)H, L-glu/L-gln).  For the 

serine biosynthetic pathway, the in vivo thermodynamics were found to be 

consistent with serine biosynthesis.  As another thermodynamic check of the 

data, we expanded this approach to conduct a similar pathway-centric 

thermodynamic analysis for glycolysis, the oxidative pentose phosphate pathway, 

aspartate, threonine, tryptophan, tyrosine, phenylalanine, and arginine 

biosynthesis, and de novo purine and pyrimidine biosynthesis (Supplemental 

Table 3).  Under all conditions the pathways were found to be thermodynamically 

feasible. Although disagreements and errors often point to new biology in 

integrated modeling analyses (as seen above), these consistent findings give 

confidence in the generated data sets and models as they are in agreement with 

previously reported findings. 

Metabolomics data coverage: 
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 The number of reactions that could be assigned a thermodynamic change 

in free energy from our measured anaerobic and aerobic metabolomics data was 

compared to the number of values that could be theoretically assigned by 

choosing a set of metabolites at random. This was done in order to assess the 

reaction coverage achieved by the model-driven approach to select metabolites 

in this study and was examined by reaction subsystem.  For 50 randomly chosen 

metabolites (i.e., the combined number of unique metabolites measured for 

anaerobic and aerobic conditions) repeatedly selected 10,000 times from the 

pool of 500 metabolites which were found to be used most in the cell (Fig.2, Step 

2), there was less than a 4% chance of achieving sufficient metabolite 

concentration coverage to make a single reaction call for any of the 38 

subsystems in the reconstruction. When analyzing the set of metabolites chosen 

for measurement in this work, it was possible to make at least one reaction call 

for 22 subsystems under either condition (22 and 18 for aerobic and anaerobic, 

respectively, see Supplementary Figure 3).  The mean and median numbers of 

reaction values estimated per subsystem were 3.2 and 2, respectively, for the 

aerobic set, and 2.7 and 1.5, respectively, for the anaerobic set.  This reaffirms 

the benefit of an a priori targeted analysis to identify compounds to maximize 

network coverage from a limited set of measurements.   
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Conclusion 

Model-driven analyses provide a context in which omics data types can be 

mapped onto genome-scale models to identify biological differences between 

conditions of interest and further improve the knowledge collected in GEMs.  This 

approach was applied to analyze data generated by LC-MS/MS from anaerobic 

and aerobic steady-state cultures sampled using an atmosphere-controlled 

sampling apparatus.  In particular, thermodynamic analysis was used to calculate 

in vivo reaction free energies from quantitative metabolomics data between these 

two conditions in the context of the GEM.  This analysis highlighted 

inconsistencies between modeling objectives and in vivo function.  An incorrect 

use of the beta-oxidation pathway for synthesis of fatty acids was identified, as 

well as an incorrect use of the dNTP synthesizing machinery for DNA replication 

under anaerobic growth.  This latter finding provided insight on enzyme 

promiscuity that is vital for anaerobic growth.  Thus, a combination of LC-MS-

generated metabolomics and modeling provide further support for the importance 

of enzyme promiscuity for normal physiological growth. 

Model-driven analyses can also provide a context for method 

development.  The predicted network usage under various growth conditions of 

interest was used to identify a target list of compounds for downstream 

metabolomics method development that we hypothesized would provide insight 

into bacterial biochemistry.  When compared to a set of randomly selected 

metabolites in the cell, the set chosen here facilitated the prediction of far more 

reaction and pathway thermodynamic values versus a list selected at random. 
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Therefore, the model-driven approach provided a means to get the most 

information from a limited set of resources (i.e., the number of metabolite 

measurements one can measure in one sample injection). Furthermore, the 

physiochemical properties of the target list guided the choice of analytical 

platform and experimental methodology.  Due to the general chemical liability of 

the majority of compounds in our target list and the growth conditions of interest, 

specific steps were necessary for an appropriate experimental method 

development.  Among others, this included the construction of a sampling 

apparatus for fast and accurate sampling of anoxic, liquid cultures.   

This study demonstrates how GEMs can be incorporated into a workflow 

that includes model-enabled method development and model-driven data 

analyses. The approach can be extended to different organisms where metabolic 

reconstructions are readily available and to additional growth conditions of 

industrial or environmental interest where a functional comparative analysis at 

the metabolic and reaction levels is desirable.   
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Figure 3.1: The GEM-enabled workflow utilized for the development of a metabolomics assay to 
study the biochemical differences between anaerobic and aerobic growth of E. coli K-12 MG1655.   
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Figure 3.2:  Identification of target compounds for subsequent method development. The process 
was initiated by considering all of the unique metabolites in the latest genome-scale metabolic 
reconstruction of E. coli (step 1). Next, simulations were performed under a wide range of 
potential genetic and environmental conditions to determine and rank order metabolites that are 
the most highly used and/or whose usage changes the most between conditions (step 2). 
Metabolite essentiality was also performed for anaerobic and aerobic conditions.  A reduced list 
of target compounds was generated by manually selecting compounds based on their rank, their 
essentiality to network function, and known biochemical or physiological importance from 
literature sources (step 3). Finally, the list was screened based on availability for purchase (step 
4). 
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Figure 3.3:  Schematic of the anaerobic rapid sampling apparatus.  A) Overview of the device, 
and B) Detailed view of the culture vessel caps. 
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Figure 3.4:  Separation and extraction solvent method comparison.  A) Table of combinations of 
separation and extraction solvent method tested, and workflow to decide upon an appropriate 
separation and extraction solvent method.  B)  Heat map of unlabeled to labeled signal ratios for 
compounds used for method development.  C) Energy change between different separation and 
extraction methods. 
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Figure 3.5: A comparison of anaerobic versus aerobic metabolism.   Compounds with a 
significant change (P<0.01) are highlighted in blue.  X-axis refers to log 2 fold changes in 
metabolite concentrations between anaerobic and aerobic steady-state cultures.  Y-axis refers to 
– log 10 p-values in metabolite concentrations between anaerobic and aerobic steady-state 
cultures. 
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Figure 3.6: A visual integration of metabolomics data with the metabolic model of E. coli.  
Intracellular concentrations of measured metabolites (aerobic on the left and anaerobic on the 
right) are mapped onto pathways from the model and concentrations are used to scale 
metabolites (nodes) by radius.  Intracellular concentrations for cofactor components are scaled by 
color.  The gray insert on each metabolite is scaled such that the percent of the area filled is the 
percent coefficient of variance.  Reaction links are scaled according to reaction free energy as 
calculated from the intracellular concentrations.  Gray metabolites and flux arrows were not 
measured or calculated.    
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Table 3.1:  Physiological comparison between anaerobic and aerobic cultures taken from the 
rapid sampling apparatus and those from our traditional culture conditions.   

  

Growth 
Rate 

Glucose Uptake 
Rate 

Carbon 
Conversion 

  
hr-1 mmol*gDW-1*hr-1 Yield (Yp/s) 

Rapid 
Sampler 

Anaerobic 
0.38 ± < 

0.01 13.7 ± 1.2 1.00 ± 0.07 

Aerobic 0.59 ± 0.01 7.81 ± 0.27 0.01 ± < 0.01 

Control Anaerobic 
0.39 ± < 

0.01 13.7 ± 0.4 0.97 ± 0.02 

Aerobic 0.61 ± 0.02 7.54 ± 0.56 0.00 ± < 0.01 
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Table 3.2:  Thermodynamically infeasible reactions.  * After removal of reactions for NDP kinase 
and addition of pyruvate kinase reactions (pykA) to account for broad substrate specificity for U, 
C, G, and dT-triphosphorylated nucleotides under anaerobic growth.   

 
Reaction 

Name 
Reaction 
Formula 

GrSTD 
(kJ/mol) 

Grlb 
(kJ/mol) 

Grub 
(kJ/mol) 

% reduction 
in growth 

% synergistic 
reduction in 

growth 

Aerobic 

acetyl-
CoA C-

acetyltran
sferase 

2 accoa[c]  
-> aacoa[c] 

+ coa[c] 
26.6 18.1 36.7 1.1 

5.9 phosphog
lycerate 

dehydrog
enase 

3pg[c] + 
nad[c]  -> 
3php[c] + 

h[c] + 
nadh[c] 

14.9 8.6 26.7 3.8 

Anaerob
ic 

acetyl-
CoA C-

acetyltran
sferase 

2 accoa[c]  
-> aacoa[c] 

+ coa[c] 
26.6 18.2 36.1 2.9 

5.8 

5.8* 

phosphog
lycerate 

dehydrog
enase 

3pg[c] + 
nad[c]  -> 
3php[c] + 

h[c] + 
nadh[c] 

14.9 10.9 27.3 3 

nucleosid
e-

diphosph
ate 

kinase 
(ATP:UD

P) 

atp[c] + 
udp[c]  -> 
adp[c] + 

utp[c] 

0 0.3 0.9 0*  
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Table 3.3:  Biological implications of differences found in the metabolite levels of anaerobic 
cultures compared to aerobic cultures.  

Finding Biological Implication Literature Support 
Increased NADH An inactive electron transport chain, a more 

reduced quinine pool, and the expression of 
the ArcAB two component system. 

1, 47, 63 

Decreased 
NADPH 

Reduced flux through the oxidative PPP, 
through isocitrate dehydrogenase, [and 

through the membrane-bound 
transhydrogenase (PntAB). 

19, 64 

Decreased 
NADPH 

Reduced need for protection against 
superoxide radicals (Increased expression of 

SoxRS and OxyR in aerobic cultures) 

47 

Decreased 
Reduced 

Glutathione 

Reduced NADPH synthesis, and reduced 
generation of oxygen radicals (Increased 

expression of SoxRS and OxyR in aerobic 
cultures) 

16, 47 
 

Decreased 
glutamate and 

glutamine 

Increased cytosolic pH (i.e. mild organic acid 
stress) 

52, 65, 66 

Decreased 
glutamate and 

glutamine 

Increased cytosolic ionic strength (i.e. mild 
osmotic stress) 

51, 67 

Decreased 
glutamate and 

glutamine 

Decreased flux through 2-oxoglutarate, and 
down regulation of gltA (citrate synthase) by 

arcA 

53, 54 

Relatively constant 
or slightly 
increased 

ATP/ADP ratio 

Increased DNA supercoiling maintained 
primarily by a reduction in Topoisomerase I 

activity during steady-state. 

18 

Increased dNTP 
pool 

A reduced number of replication forks. 68 

Increased dNTP 
pool 

Expression of the anaerobic ribonucleotide 
reductase (nrdDG), which does not appear to 

be strictly regulated by feedback from the 
dNTP pool. 

12, 13, 69 

Increased NTP 
pool 

Increased expression of pykA (coupling of NTP 
pool formation primarily through glycolysis 

instead of ribonuceotide diphosphate kinase 
activity). 

10, 56, 57 

Increased NTP 
pool 

Substrate preference of NTPs instead of NDPs 
by the anaerobic ribonucleotide reductase. 

9 
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CHAPTER 4: 

Fast Swinnex Filtration (FSF): A fast and robust sampling and extraction method 

suitable for metabolomics analysis of cultures grown in complex media 

 

Abstract: 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) provides 

a powerful means to analyze intracellular metabolism. A prerequisite to accurate 

metabolomics analysis using LC-MS/MS is a robust sampling and extraction 

protocol. One unaddressed area in sampling is a detailed examination of a 

suitable method for anaerobic cultures grown in complex media. Given that a 

vast majority of bacteria are facultative or obligate anaerobes that grow to low 

biomass density and need to be cultured in complex media, a suitable sampling 

and extraction strategy for anaerobic cultures is needed. In this work, we develop 

a fast-filtration method using pressure-driven Swinnex® filters (FSF). We show 

that the method is fast enough to provide an accurate snapshot of intracellular 

metabolism, reduces matrix interference from the media to improve the number 

of compounds that can be detected, and is applicable to anaerobic and aerobic 

liquid cultures grown in a variety of culturing systems.   Furthermore, we apply 

the fast filtration method to investigate differences in the absolute intracellular 

metabolite levels of anaerobic cultures grown in minimal and complex media.  
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Introduction: 

Metabolomics has played an instrumental role in furthering our 

understanding of intracellular metabolism1-10. Liquid chromatography tandem 

mass spectrometry (LC-MS/MS) based methods provide a powerful approach to 

interrogate the metabolome by combining throughput and sensitivity 11-16.  A 

prerequisite to accurate metabolomics analysis using LC-MS/MS is the 

optimization of the sampling and extraction protocol 17, 18.  For intracellular 

metabolites with a turnover on the order of seconds or less, it must be fast 

enough to provide an accurate snapshot of metabolism, but also produce a 

suitable sample for analysis.  For liquid cultures, meeting these demands is non-

trivial, difficult to achieve, but critically important if meaningful data is to be 

generated.   

Many bacteria are facultative or obligate anaerobes.  Consequently, the 

ability to assay bacteria from anaerobic cultures to improve our understanding of 

their biochemistry for scientific, therapeutic, and industrial endeavors is highly 

relevant.  Many of these bacteria require supplementation with complex nutrients 

such as yeast extract (YE), peptones, and blood components, among others, in 

order to be cultured in the lab.  This presents unique challenges to LC-MS/MS-

based metabolomics methods.  Anaerobic cultures often reach a much lower 

biomass than aerobic cultures.  For instance in our experience, stationary phase 

cultures of wild-type E. coli grown anaerobically in 4 g*L-1 of M9 minimal media 

reach a culture density of approximately 0.25 gDW*L-1 while stationary phase 

cultures of wild-type E. coli grown aerobically in the same media reach a culture 
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density of approximately 1.35 gDW*L-1.  As the biomass of the culture 

decreases, the interference from media components increases.  This is 

particularly problematic for anaerobic cultures where the amount of organic acids 

found in the culture medium that are produced by fermentation hamper the ability 

to accurately measure intracellular organic acid levels.  The problem of media 

interference is exacerbated for cultures grown with supplementation.  A common 

supplement for auxotrophic strains of E. coli is YE, which encompasses the 

water-soluble portion of autolyzed yeast.  Often the amount of YE added to the 

growth medium can be an order of magnitude greater than the culture density 

itself.  This makes accurate differentiation of intracellular from extracellular 

components inherently problematic if they are not fully removed.   

Many strategies exist for removing and differentiating intracellular from 

extracellular components.  These include fast filtration 5, 17, 19, fast centrifugation 

15, and direct extraction either from liquid cultures, such as shake flasks 20 or pH 

controlled bioreactors 6, 21-23, or from cultures grown on filters 24, 25.  Previous 

studies have shown that the time required to perform fast filtration with a typical 

filtration setup and vacuum pump is sufficient for compounds that turnover less 

quickly, but is not sufficient for the physiologically important compounds that 

turnover in the time frame of seconds 17.  Fast centrifugation appears to quench 

metabolism in a timely manner, but its application when working in an anaerobic 

chamber or with anaerobic cultures does not appear viable.  Direct extraction 

provides the fastest means to quench metabolism.  Unfortunately, the organic 

solvents needed to quench metabolism cause the bacterial membrane to 
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become permeable, resulting in cell leakage and inaccurate measurement of the 

intracellular metabolome 17, 26, 27.  If the culture density is sufficient, such as in a 

pH controlled bioreactor, the sample can be directly extracted and dilutions can 

be employed in order to reduce matrix interference 19, 21.  By taking a 

measurement of the culture filtrate in parallel, the intracellular concentrations can 

be determined from the difference of the whole broth and filtrate 19, 21.  When the 

culture density is not sufficient to allow for dilutions, the direct extraction and 

application of the differential method can still be employed, but the number of 

compounds that can be analyzed accurately can be limited due to matrix 

interference 20.    As an alternative, samples can be grown directly on the filter 

used to extract the culture 18, 24.  However, this approach does not allow for 

multiple filtrate and/or broth samples to be taken from the same culture at 

different time-points or phases of growth.  It also does not appear suitable for use 

with an anaerobic chamber (a popular culturing method) due to contamination of 

the chamber atmosphere with organic solvents if the extraction is performed in 

the chamber itself, or exposure to oxygen if the filter cultures are removed from 

the chamber prior to extraction.   

Several automated devices have been constructed to assist in rapidly 

sampling liquid cultures from bioreactors 22, 28-31 as well as from flasks 20, 32.  

While improving the reliability of rapid sampling, the devices are optimized for 

specific culture conditions, which limit their broad use.  For researchers who 

culture cells under a wide array of culturing systems, a more flexible sampling 

system is needed.  This is particularly true if samples need to be obtained from 
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cultures grown in an anaerobic environment or environmental samples need to 

be obtained from the field.   Most devices are designed to be used in conjunction 

with a direct extraction of the liquid culture, which causes problems for low 

biomass cultures and cultures grown with supplementation.  These problems 

include decreased column life-time, increased instrument maintenance, and 

reduced number of compounds that can be accurately quantified due to ion-

suppression and media interference. Thus, an alternative sampling method that 

reduces the amount of media included with the cell biomass while still quenching 

metabolism fast enough (i.e., on an equivalent time-frame to that of direct 

extraction methods) to provide an accurate snap-shot of intracellular metabolite 

levels is needed. 

 In this work, we sought to develop a rapid sampling and extraction method 

that 1) can be applied to a wide range of liquid culturing systems and 

environments (including anaerobic environments), 2) that provides sufficient 

sampling and quenching speed to arrest cellular metabolism in order to provide 

an accurate snap-shop of the intracellular metabolome, and 3) that minimizes 

matrix-induced interference for accurate analysis by LC-MS/MS.  We describe 

the steps taken to optimize a fast-filtration sampling and extraction method 

implemented using pressure-driven Swinnex® filters (FSF) to meet these goals 

and the resulting optimized method.  We show that by working with a syringe 

filter, we are able to quench metabolism at a comparable rate to that of the direct 

extraction approach.   Further, we show that the method is applicable to sampling 

liquid cultures from a variety of culturing vessels and conditions, and allows for 
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greater coverage of metabolites to be accurately quantified using LC-MS/MS.  In 

addition, we apply the method to investigate differences in the absolute 

intracellular metabolite levels of anaerobic cultures grown in minimal media and 

media supplemented with YE.  
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Materials and Methods: 

Chemicals and reagents: 

 Water, methanol, acetonitrile, acetonitrile + 0.1% formic acid, and water 

used for extraction were purchased from Honeywell Burdick & Jackson® 

(Muskegon, MI).  Ammonium formate and triethylammonium acetate were 

purchased from Sigma-Aldrich (St. Louis, MO).  Yeast extract was purchased 

from Fisher® Scientific (Pittsburgh, PA).  Metabolically labeled internal standards 

were generated as described previously 20 from batch cultures of E. coli grown on 

uniformly labeled 13C glucose, started from over-night pre-cultures of E. coli also 

grown on uniformly labeled 13C glucose.  Swinnex® filter holders and 0.45 uM 

filters (PES, mixed cellulose ester, and PVDF) were purchased from Millipore® 

(Billerica, MA). 

Biological material and culture conditions: 

 E. coli K12 MG1655 (ATCC 700926), obtained from the American Type 

Culture Collection (Manassas, VA),  were grown in 4 g/L glucose M9 minimal 

media 33 with trace elements 34 with or without 1 g/L of yeast extract.  Growth 

under aerobic batch consisted of shake flasks in a water bath maintained at 37C 

and aerated at 500 RPM.  Growth in an aerobic pH controlled bioreactors was 

used in both batch mode and in glucose limited continuous culture mode at two 

different dilutions rates (0.31 and 0.44 h-1) (see supplemental methods for more 

details of the chemostat experiments).  The steady-state for glucose limited 

continuous cultures was achieved after 3-5 residence times and was verified by 

biomass measurements. Growth under anaerobic conditions consisted of shake 
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flasks in an anaerobic chamber (COY; 37 °C; 10% CO2, balance N2).  Cultures 

were sampled during steady-state growth at an OD600 of 0.6 (aerobic batch), an 

OD600 of 1.0 (aerobic batch bioreactor), an OD600 of 3.0 (aerobic glucose 

limited chemostat) or at an OD600 of 0.3 (anaerobic batch).  All batch culture 

samples were inoculated from overnight pre-cultures to a starting OD600 of 

approximately 0.01.    

Sampling and extraction optimization: 

 2.0 mL of culture broth and culture filtrate were sampled and extracted 

using the FSF approach (Figure 1) or by direct injection into either pre-cooled 

organic solvent or liquid nitrogen when specified in the text.  The extraction 

solvents used were 80:20 methanol:water pre-cooled to -80°C or 40:40:20 

acetonitrile + 0.1% formic acid:methanol:water or 40:40:20 

acetonitrile:methanol:water with or without buffer (as specified in the text) pre-

cooled to -40°C.  The volume of extraction solvent loaded into the syringe was 

1.0 mL.  For samples taken using the direct extraction approach, the extraction 

solvent was 4x that of the sample volume for whole broth and filtrate samples.  

Samples were then serially extracted twice with 200 uL of extraction solvent as 

described previously 20. 

 For anaerobic cultures, a filtrate sample for each replicate was used to 

calculate the external metabolite concentration.  For aerobic cultures without 

supplementation, a pooled filtrate of replicates was found to be sufficient due to 

the larger fraction of biomass to media.  In addition, it was found that after two 

rounds of directly extracting the filter and vortexing, subsequent rounds of 



102 
 

extraction of the biomass did not improve yields of metabolites.  While true for E. 

coli, this would have to be reconfirmed for organisms with a different cellular 

membrane.  The extracts were centrifuged at 16000 RPM at 4°C for 5 minutes.  

The supernatant was saved and the biomass was discarded.  For acidic 

extraction solvents, the supernatant was neutralized with ammonium hydroxide 

(8 uL of 1 N ammonium hydroxide per 1 mL of extract containing 40% acetonitrile 

+ 0.1% formic acid), centrifuged again at 16000 RPM at 4°C for 5 minutes, the 

supernatant  saved and the precipitate discarded.  Extracts were evaporated to 

dryness (Thermo Scientific™ Savant SpeedVac™, Waltham, MA), reconstituted 

in water, and stored in the -80°C until analysis.  All extracts, extraction solvents, 

and filter disks contained in filter holders were kept on dry ice between vortexing, 

centrifugation, and pipetting steps. 

LC-MS/MS analysis and quantification: 

An XSELECT HSS XP 150 mm × 2.1 mm × 2.5 µm (Waters®, Milford, 

MA) with a UFLC XR HPLC (Shimadzu, Columbia, MD) was used for 

chromatographic separation.  Mobile phase A was composed of 10 mM 

tributylamine (TBA), 10 mM acetic acid (pH 6.86), 5% methanol, and 2% 2-

propanol; mobile phase B was 2-propanol.  Oven temperature was 40°C.  The 

chromatographic conditions are as follows:  0, 0, 0.4; 5, 0, 0.4; 9, 2, 0.4; 9.5, 6, 

0.4; 11.5, 6, 0.4; 12, 11, 0.4; 13.5, 11, 0.4; 15.5, 28, 0.4; 16.5, 53, 0.15; 22.5, 53, 

0.15; 23, 0, 0.15; 27, 0, 0.4; 33, 0, 0.4; (Total time [min], Eluent B [vol.%], Flow 

rate [mL*min-1])].  The autosampler temperature was 10°C and the injection 

volume was 10 uL with full loop injection.  An AB SCIEX Qtrap® 5500 mass 
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spectrometer (AB SCIEX, Framingham, MA) was operated in negative mode.  

Electrospray ionization parameters were optimized for 0.4mL/min flow rate, and 

are as follows:  electrospray voltage of -4500 V, temperature of 500 °C, curtain 

gas of 40, CAD gas of 12, and gas 1 and 2 of 50 and 50 psi, respectively. 

Analyzer parameters were optimized for each compound using manual tuning.  

The instrument was mass calibrated with a mixture of polypropylene glycol (PPG) 

standards.   

Samples were acquired using the Analyst® 1.6.2 acquisition software and 

Scheduled MRM™ Algorithm (AB SCIEX).  Integration was performed using 

MultiQuant™ 2.1.1 (AB SCIEX).  IDMS 35, 36 with metabolically labeled internal 

standards was used for quantification.  In brief, calibration curves of standards 

spiked with metabolically labeled internal standards were ran with each batch 

and used to back calculate the analyte levels in the whole broth and filtrate 

samples.  The analyte levels in the samples were scaled to the amount of 

biomass in each culture determined at the time of sampling by optical density 

using the conversion factor of cell biomass to cell volume derived by Volkmer et 

al, 2011 37 and experimentally derived conversion of cell density (gDW*L-1) to 

optical density of 0.45 for the used spectrophotometer.  The differential method 

was then applied to the whole broth and filtrate samples 21 to derive the 

intracellular concentration.  Linear regressions from calibration curves for 

compound quantification were based on peak height ratios and the logarithm of 

the concentration of calibrator concentrations from a minimum of four 

consecutive concentration ranges that showed minimal bias.  A peak height 
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greater than 1e3 ion counts and signal to noise greater than 20 were used to 

define the lower limit of quantification (LLOQ).  Quality controls and carry-over 

checks were included with each batch.  Due to the number of biological isomers, 

the integration of each compound is manually checked. 

 

Statistical analysis: 

 All statistical and correlation analyses were done using R 38 (R 

Development Core Team, 2011) or MetaboAnalyst 39.    
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Results and Discussion: 

A fast filtration method based on pressure-driven Swinnex® filters (FSF) 

was explored for its suitability for use with anaerobic cultures, and compared to a 

direct extraction of the whole culture broth and culture filtrate and application of 

the differential method 21 (see materials and methods).  An initial comparison 

between the direct extraction and application of the differential method and fast-

filtration methods showed that the number of compounds that can be accurately 

assayed was increased when using FSF (Figure 2), but the levels of compounds 

that turn-over rapidly (e.g., ATP) were decreased, resulting in a low energy 

charge ratio (Supplemental Figure S1).  Therefore, the first priority was to 

increase the speed at which metabolism was quenched using FSF.   

Directly freezing the Swinnex® holder and filter in liquid nitrogen 

immediately after filtering the culture broth appeared to be a viable strategy to 

quickly quench metabolism.  Unfortunately, cultures sampled using this approach 

were found to have a physiologically low energy charge ratio (Supplemental 

Figure S1).  When directly extracting the culture broth and filtrate and applying 

the differential method using organic solvent was compared to freezing the broth 

and filtrate in liquid nitrogen and then extracting the frozen broth and filtrate with 

organic solvent, it was deduced that the intermediate step of freezing in liquid 

nitrogen was insufficient to quench metabolism on the time-scale required to 

obtain an accurate snap-shot of metabolism.   From this finding, a means to 

expose the filtered biomass to the pre-cooled extraction solvent in a time-frame 

similar to that of the direct extraction approach was targeted.   It was found that 
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by injecting organic solvent into the syringe housing and filter using a second 

syringe immediately after filtering the culture broth, a dramatic increase in the 

energy charge ratio could be obtained (Supplemental Figure S1). 

 The type of extraction solvent used and the addition of buffers to control 

for pH during the extraction process on compound stability were explored.  In 

agreement with previous findings 18, 20, the combination of acetonitrile, methanol, 

and water was superior to the combination of only methanol and water for the 

more liable (i.e., phosphorylated) compounds (Supplemental Figure S2).  The 

use of a buffered extraction solvent did not show any improvements in increasing 

the concentration of the more liable compounds (Supplemental Figure S3).  

Therefore, acidic acetonitrile was used as the extraction solvent for subsequent 

tests. 

The material of the filter pad utilized in the extraction protocol was varied 

to understand its impact on the quality of the sample.   The comparison of 

different filter materials revealed that NADH was increased in the cellulose and 

PVDF filters by 2.2 and 2.1 fold over the PES filters, respectively; NADPH was 

increased in the cellulose and PVDF filters by 1.2 and 1.4 fold over the PES 

filters, respectively.  The loss of NADH and NADPH in the PES filters could have 

potentially been due to pi-pi bond interactions between the phenyl group of the 

PES and the niacin and/or adenine group of the NAD moiety.  Also, the oxidized 

sulfone group could have interacted with the reduced niacin structure.  The 

reduced levels of NADH and NADPH along with several other compounds (i.e., 

the nucleotide phosphates and glutathiones) with potentials for pi-pi bond 
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interactions resulted in a significant discrimination of the samples taken using the 

PES filters as determined by a partial least squares discriminatory analysis (PLS-

DA) (Supplemental Figure S4).  Based on these findings, and the fact that the 

cellulose filters displayed poor stability in organic solvent, the PVDF filters were 

used for subsequent tests.   

FSF using various syringe sizes was compared to vacuum filtration to 

ensure that the use of pressure did not affect metabolism prior to extraction.  

Aside from physical theory, there is empirical evidence that shows that the 

pressure generated by lower volume syringes can be much greater than larger 

volume syringes (personal communication with Millipore®). Thus, samples taken 

using 5, 10, 20, and 60 mL syringes were compared to samples taken using 

vacuum filtration.  The effect of syringe volume/pressure was found to be 

negligible.  Indeed, similar levels of AMP, ADP, and ATP were found across all 5 

conditions (Figure 3). Further, a detailed inspection of all metabolites assayed 

showed little difference between intracellular levels in each compound class 

across the different syringe sizes tested (Figure 4).   

Measured differences between the FSF samples and samples taken using 

the direct extraction method and application of the differential approach for all 

compounds assayed showed little variation (Figure 4). Importantly, the energy 

charge ratio between the filtered and directly extracted samples were 

approximately equivalent, indicating the speed of quenching metabolism using 

the optimized fast-filtration was equivalent to that of the direct extraction method 

(Figure 3).  The coverage of compounds was increased when using the FSF 
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method compared to the direct extraction method (Figure 4).  The levels of more 

stable compounds (e.g., amino acids) are similar between the FSF method and 

direct extraction method (Figure 4).  This indicates that the relative recovery of 

compounds (i.e., ratio of endogenous compounds to metabolically labeled 

internal standards) between the two methods is equivalent.  

The absolute recovery of compounds using the FSF method was tested.   

The signal intensity of 98 compounds in a neat mixture without any manipulation, 

after a dry-down in a centrivap, after extraction using the direct extraction 

method, or after extraction using the FSF method were analyzed (Figure 5, 

Supplemental Figure S6).  24.5% of the compounds were found to have a 

significant different in signal intensity between either of the groups (n=8, P-value 

< 0.01, ANOVA).  It was found that total signal intensity decreased from the neat 

mixture without any manipulation (1.18e7, 3.65e7), to the centrivap dry-down 

mixture (1.14e7, 3.57e7), to the direct extraction mixture (1.06e7, 3.46e7), and 

finally to the FSF mixture (9.54e6, 3.30e7) in both the significantly changed 

metabolites (Figure 5), and across all metabolites (Supplemental Figure SF6), 

respectively.  The observed trend correlates with a decrease in signal intensity as 

the number of sample manipulation steps increased.  A likely explanation for this 

trend is that as the number of sample manipulation steps is increased, a small 

amount of extracted material is lost.  However, because the decrease in signal 

intensity does not exceed 20%, minimal affect on acquisition and no discernible 

effect on quantitation would be expected when using any of the extraction 

methods used in this study.  In addition, the observed trend described above 
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would indicate that sample contamination or degradation is unlikely when using 

the extraction methods described in this study.  Taken together, these results 

indicate that the final optimized filtration method was able to improve compound 

coverage and quench metabolism at a rate comparable to the direct extraction 

method for almost all compounds assayed.  The optimized filtration method is 

shown in Figure 1.   

The suitability of FSF to accurately, reliably, and quickly sample in aerobic 

or anaerobic conditions from batch or chemostat cultures was investigated by 

comparing relevant physiological ratios from wild-type E. coli samples grown in 

glucose minimal media (M9).  The consistent ratios of energy charge (which 

would be expected for normal growing cells in glucose media regardless of the 

culture vessel or availability of oxygen) 40 were stable across the liquid cultures 

tested (Figure 3).  The similar ratio of redox equivalents (i.e., NAD+, NADH, 

NADP+, and NADPH) within aerobic cultures and anaerobic cultures, but 

differing between aerobic and anaerobic cultures, provides additional evidence 

that the method can accurately, reliably, and quickly sample from a multitude of 

culture conditions (Figure 3).  While not explored in this study, the method would 

be expected to allow for fast sampling from anaerobic bottle cultures, which are 

commonly used for strict anaerobic cultivation of microbes.  The method would 

also be expected to fare well in the field, where environmental bacterial samples 

must be obtained.   

Finally, in order to assess the impact of compound coverage on 

knowledge-gained per experiment, the optimized filtration method was applied to 
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investigate the metabolome of anaerobic cultures grown with and without YE 

supplementation.  Whether using FSF or the direct extraction approach, analyses 

revealed that anaerobic cultures grown with YE supplementation have increased 

levels of intracellular amino acids and several mono-nucleotide phosphates most 

likely due to the uptake of amino acids and their precursors from the culture 

medium 41 (Figure 6). However, the number of amino acids and mono-nucleotide 

phosphates were higher in the samples taken by fast filtration, and the significant 

reduction in levels of the Glutathiones and Acetyl-CoA were masked for samples 

taken by direct extraction.   

Twenty-two metabolites were quantifiable (see methods for cutoff) in both 

minimal and yeast extract samples using direct extraction, while 81 metabolites 

were quantifiable in both minimal and yeast extract samples using FSF.  For the 

samples taken by the FSF, 15 compounds were found to be significantly 

changed between anaerobic growth with and without YE, 6 of which were amino 

acids and 4 of which were mono-nucleotide phosphates (Figure 6b).  In contrast, 

for samples taken by the direct extraction approach, only 5 compounds were 

found to be significantly changed between the two conditions (Figure 6a).   Three 

of the compounds, including 2 amino acids and NAD+, were common to both 

sampling approaches.  The levels of glutamate and FAD were both found to be 

changed (increased and decreased, respectively) in the YE samples compared 

to the M9 samples for the samples taken by FSF, but they were not found to be 

significantly changed (p<0.01), nor did they have a fold change greater than two.  

The other amino acids, oxidized glutathione, ADP-glucose, UMP, dUMP, and 3’-



111 
 

5’-cyclic GMP, could not be quantified in the YE samples for the samples taken 

by direct extraction.  Acetyl-CoA and reduced glutathione were found to be 

elevated in the M9 samples compared to the YE samples for the samples taken 

by direct extraction, but their elevation was not significant (p<0.01).  The fewer 

number of compounds that could be detected in the samples taken by direct 

extraction and the variances in the compounds between replicates resulted in a 

poorer discrimination between the two groups (Supplemental Figure S5) as 

determined by PLS-DA.  This is exemplified by the change in axis scale between 

samples taken by fast filtration and direct extraction.   

These results indicate that when sampling low biomass cultures 

supplemented with complex media, the two methods can provide overlapping 

findings, but the detail and breadth of those findings can be severely decreased if 

matrix reduction strategies are not employed.  The reduced number of 

compounds and greater variance in the compounds measured when matrix 

reduction strategies were not employed limited downstream statistical and 

correlation analysis.  The matrix interferences from the culture medium include 

salts and phosphate buffers that known to cause ion-suppression 19.  Besides 

directly lowering the detection limits via ion-suppression, increased on column 

matrix increases the base-line signal noise that interferes with the detection of 

low-abundant metabolites.  The ability of the fast filtration method to provide a 

more suitable sample for analysis by LC-MS/MS compared to the direct 

extraction method allowed for more data points and information to be gained by 

the same experiment.  
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Conclusion: 

 LC-MS provides a powerful means to analyze intracellular metabolism.  

Unfortunately, the adverse effects of sample matrix can severely limit the 

information derived if matrix reduction steps are not included. These steps are a 

double edged sword in that matrix reduction steps often increase the time it takes 

to quench metabolism, which results in inaccurate metabolite levels for 

intracellular metabolites with fast turn-over times 19.  These difficulties are 

compounded further when working with anaerobic cultures, where metabolism 

must be quenched without the introduction of oxygen to the cells. 

 We have developed, validated, and described a fast-filtration method 

using pressure-driven Swinnex® filters (FSF) to overcome these challenges.  

The method provided fast sampling and quenching to obtain an accurate 

snapshot of metabolism.  The method increased the coverage of compounds that 

can be detected by reducing matrix interference from the culture medium, which 

greatly improves the information that can be derived from a given metabolomics 

experiment.  Because the method relies on pressure driven syringe filtration, it is 

flexible enough to sample anaerobic and aerobic liquid cultures grown in a 

variety of culturing systems.   The developed method was applied to analyze and 

detail the metabolomes of E. coli when growing anaerobically in minimal and 

complex media containing yeast extract, and key differences were reported. It is 

envisioned that this sampling modality will provide researchers with a convenient 

means to obtain accurate intracellular (and simultaneously extracellular if the 

filtered medium is retained) metabolomics samples beyond those tested in this 
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study.  Such samples could include environmental, anaerobic bottles, biofluids 

(e.g. blood and plasma), and samples from additional culturing conditions. 
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Figure 4.1: Fast filtration sampling and quenching using Swinnex® filters (FSF).  1) An accurate 
volume of culture broth was either sampled using a pipette and transferred to a syringe attached 
to a Swinnex® filter with the plunger removed (aerobic cultures) or collected using a syringe and 
18.5 gauge blunt needle (anaerobic cultures).  For the latter case, the plunger was then extended 
the volume of the syringe and then attached to a Swinnex® filter. Using a syringe volume that 
was a minimum of 2x greater than the liquid volume it was to contain allowed for a sufficient gas 
purge of the filter housing to remove residual culture or filtrate.  In practice, we recommend using 
the largest syringe possible.  2) The cells were separated from the culture broth and retained on 
the Swinnex® filter pad by rapidly expelling the culture and extra volume gas through the filter 
housing and into a collection vessel.  3) The syringe was quickly removed, and a second syringe 
loaded with 1 mL of extraction solvent and labeled biomass pre-cooled to -40°C was quickly 
attached to the filter housing.  The extraction solvent, labeled biomass, and extra volume gas was 
rapidly expelled through the filter into another collection vessel.  The extraction solvent and partial 
cell lysate as well as the filter in the filter housing was stored in the -80°C for further extraction. 
The same procedure was repeated for each biological replicate.  4) The filtrate from step 2 for 
each replicate was filtered through a fresh Swinnex® filter, and 5) extracted as in step 3.  The 
Swinnex® filter and extraction solvent were placed in the -80°C for further extraction.  6) The 
Swinnex® filter from step 3 or 5 was re-extracted with extraction solvent that does not contain 
internal standards.  The eluent was collected in a 50 mL conical tube.  7) The filter holder was 
unscrewed over the 50 mL conical so that any residual extraction solvent would not be lost.  The 
filter disk was removed and placed in the 50 mL conical using tweezers.  The inside of the filter 
housing that is attached to the syringe was rinsed with a small volume of the extraction solvent 
from the 50 mL conical to remove any cells that were detached from the filter disk. The 50 mL 
conical with extraction solvent and filter disk were then vortexed for 30 seconds. 8) The extraction 
solvent and partial cell lysate from step 3 or 5 taken during the sampling procedure were added to 
the 50 mL conical and vortexed for an additional 30 seconds. The extraction solvent and cell 
lysate were then aliquoted into two eppindorf tubes, and the 50 mL conical and filter disk were 
discarded. 9) The cell debris was pelleted by spinning at 16000 RPM at 4°C for 5 minutes.  The 
supernatant was saved in the -80°C for analysis and the cell debris was discarded.  Further 
details of the FSF protocol are provided in the supplemental material.  
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Figure 4.2: Sample matrix reduction by FSF.  The number of compounds which could be detected 
with less than 50% signal contribution from the extracellular medium was higher in FSF samples 
compared to those obtained by direct extraction of the whole broth and application of the 
differential method. This was true for both anaerobic, wild-type E. coli grown on glucose M9 
minimal media and anaerobic, wild-type E. coli grown on glucose M9 minimal media 
supplemented with 1 g*L-1 of YE.  For the data shown, compounds that are considered 
‘quantifiable’ are those that were found to have an average filtrate signal (n=3) of less than 50% 
compared to that found for the average intracellular filtration samples (n=3) or the average whole 
broth direct extraction samples (n=3) (i.e., 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

𝐰𝐰𝐰𝐰𝐰 𝐛𝐛𝐛𝐛𝐛
∗ 𝟏𝟏𝟏% < 𝟓𝟓% ).  Error bars represent 

standard deviations.  The P-value (two-tailed Student’s t-test) between the direct extraction and 
FSF are given above the bars. 
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Figure 4.3: A) Comparison of intracellular ATP, ADP, AMP, and energy charge ratio (EC) 
between aerobic, wild-type E. coli grown in glucose minimal media.  Cultures were sampled by 
vacuum filtration, by FSF using 5, 10, 20, and 60 mL syringes, and by direct extraction. 
Concentrations are averaged values (n≥3) in units of mM.  B) Comparison of relevant intracellular 
physiological ratios for wild-type E. coli grown in glucose minimal media under aerobic batch 
growth (Oxic Flask M9), in a bioreactor during batch growth (Reactor Oxic Batch M9), in a 
bioreactor at two different dilution rates (Oxic Dil1 M9 and Oxic Dil2 M9), and wild-type E. coli 
grown in glucose minimal media under anaerobic batch growth without (Anoxic Flask M9) and 
with (Anoxic Flask YE) 1g*L-1 of yeast extract.  Ratios were calculated from average 
concentration values (n≥3) in units of mM.  Error bars represent standard deviations.  Energy 

Charge = 𝐀𝐀𝐀+𝑨𝑨𝑨 𝟐�

𝑨𝑨𝑨+𝑨𝑨𝑨+𝑨𝑨𝑨
 and NAD(P)H/NAD(P)(H) = 𝐧𝐧𝐧𝐧𝐧+𝐧𝐧𝐧𝐧

𝐧𝐧𝐧𝐧𝐧+𝐧𝐧𝐧𝐧+𝐧𝐧𝐧𝐧+𝐧𝐧𝐧
. 
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Figure 4.4: Heat map comparison of intracellular compounds grouped by compound class for 
aerobic, wild-type E. coli grown in glucose minimal media.  Cultures were sampled by vacuum 
filtration, by FSF using 5, 10, 20, and 60 mL syringes, and by direct extraction and application of 
the differential method.  We found that the metabolite levels for individual compounds are similar 
between the different approaches.  In addition, it is evident that the cultures sampled using 
vacuum filtration or by FSF allow for quantification of more metabolites than when sampling using 
the direct extraction method.  Metabolite abbreviations are given in Supplemental Table S1.  
Metabolite levels are based on averages (n≥3) in units of mM.  
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Figure 4.5:  Heat plot of the mean ion count (n=8) for significantly different metabolites (P-value < 
0.01; ANOVA) in neat standard mixes that were extracted using different approaches.  Neat 
standard mixes were analyzed without any manipulation (ST), analyzed after a dry-down in a 
centrivap and reconstituted in water (CE), analyzed after extraction using the direct extraction 
method (DE), or analyzed after extraction using the FSF method (FSF).  The reconstitution 
volume for CE, DE, and FSF was the same as the initial volume of the neat standard mix.  The 
mixes contained 98 representative intracellular metabolites, and were prepared at a concentration 
of moderate signal intensity for the instrument used.  The full table of all 98 compounds is shown 
in supplemental figure S6.  Extraction conditions that showed significant differences for a given 
metabolite (Fisher’s Least Significant Difference (LSD)) are annotated next to the P-value.   
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Figure 4.6: Volcano plot between wild-type anaerobic E. coli cultures grown in 4 g*L-1 M9 
minimal media supplemented with or without 1 g*L-1 of yeast extract, and sampled by A) direct 
extraction or B) using the optimized FSF method.  22 metabolites were quantifiable (see methods 
for cutoff) in both minimal and yeast extract samples using direct extraction, while 81 metabolites 
were quantifiable in both minimal and yeast extract samples using FSF.  Metabolites with a p-
value greater than 0.01 and fold change greater than 2 are annotated on the plot (shown in blue).   
Out of the five metabolites that met the p-value cutoff of 0.01 in the direct extraction, three also 
met this criterion in the fast filtration measurement, and the remaining had p-values of 0.15 and 
0.21 for glu-L and fad, respectively.  The x-axis reflects the fold change between metabolites 
between the two conditions (i.e. log2(fold-change)).  The y-axis reflects the significance (P-value; 
two-tailed Student’s t-test) of the changes between the two conditions (i.e. -log10(p-value)). 
  



121 
 

References: 

1. Nakahigashi, K. Systematic phenome analysis of Escherichia coli multiple-
knockout mutants reveals hidden reactions in central carbon metabolism. 
Mol Syst Biol 5, 306 (2009). 

2. Link, H., Kochanowski, K. & Sauer, U. Systematic identification of 
allosteric protein-metabolite interactions that control enzyme activity in 
vivo. Nat Biotechnol 31, 357-361 (2013). 

3. Bennett, B.D. Absolute metabolite concentrations and implied enzyme 
active site occupancy in Escherichia coli. Nat Chem Biol 5, 593-599 
(2009). 

4. Ibanez, A.J. Mass spectrometry-based metabolomics of single yeast cells. 
Proc Natl Acad Sci U S A 110, 8790-8794 (2013). 

5. Jozefczuk, S. Metabolomic and transcriptomic stress response of 
Escherichia coli. Mol Syst Biol 6, 364 (2010). 

6. Taymaz-Nikerel, H. Changes in substrate availability in Escherichia coli 
lead to rapid metabolite, flux and growth rate responses. Metab Eng 16, 
115-129 (2013). 

7. Buescher, J.M. Global network reorganization during dynamic adaptations 
of Bacillus subtilis metabolism. Science 335, 1099-1103 (2012). 

8. Xu, Y.F., Amador-Noguez, D., Reaves, M.L., Feng, X.J. & Rabinowitz, 
J.D. Ultrasensitive regulation of anapleurosis via allosteric activation of 
PEP carboxylase. Nat Chem Biol 8, 562-568 (2012). 

9. Xu, Y.F. Regulation of yeast pyruvate kinase by ultrasensitive allostery 
independent of phosphorylation. Mol Cell 48, 52-62 (2012). 

10. Doucette, C.D., Schwab, D.J., Wingreen, N.S. & Rabinowitz, J.D. alpha-
Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I 
inhibition. Nat Chem Biol 7, 894-901 (2011). 

11. Bajad, S.U. Separation and quantitation of water soluble cellular 
metabolites by hydrophilic interaction chromatography-tandem mass 
spectrometry. J Chromatogr A 1125, 76-88 (2006). 

12. Cai, X. Analysis of highly polar metabolites in human plasma by ultra-
performance hydrophilic interaction liquid chromatography coupled with 



122 
 

quadrupole-time of flight mass spectrometry. Analytica Chimica Acta 650, 
10-15 (2009). 

13. van Dam, J.C. Analysis of glycolytic intermediates in Saccharomyces 
cerevisiae using anion exchange chromatography and electrospray 
ionization with tandem mass spectrometric detection. Analytica Chimica 
Acta 460, 209-218 (2002). 

14. Lu, W. Metabolomic analysis via reversed-phase ion-pairing liquid 
chromatography coupled to a stand alone orbitrap mass spectrometer. 
Anal Chem 82, 3212-3221 (2010). 

15. Buescher, J.M., Moco, S., Sauer, U. & Zamboni, N. Ultrahigh performance 
liquid chromatography-tandem mass spectrometry method for fast and 
robust quantification of anionic and aromatic metabolites. Anal Chem 82, 
4403-4412 (2010). 

16. Bennette, N.B., Eng, J.F. & Dismukes, G.C. An LC-MS-based chemical 
and analytical method for targeted metabolite quantification in the model 
cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83, 3808-
3816 (2011). 

17. Bolten, C.J., Kiefer, P., Letisse, F., Portais, J.C. & Wittmann, C. Sampling 
for metabolome analysis of microorganisms. Anal Chem 79, 3843-3849 
(2007). 

18. Kimball, E. & Rabinowitz, J.D. Identifying decomposition products in 
extracts of cellular metabolites. Anal Biochem 358, 273-280 (2006). 

19. Van Gulik, W.M. Fast sampling of the cellular metabolome. Methods Mol 
Biol 881, 279-306 (2012). 

20. McCloskey, D. A model-driven quantitative metabolomics analysis of 
aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is 
biochemically and thermodynamically consistent. Biotechnology and 
Bioengineering 111, 803-815 (2013). 

21. Taymaz-Nikerel, H. Development and application of a differential method 
for reliable metabolome analysis in Escherichia coli. Anal Biochem 386, 9-
19 (2009). 

22. De Mey, M. Catching prompt metabolite dynamics in Escherichia coli with 
the BioScope at oxygen rich conditions. Metab Eng 12, 477-487 (2010). 



123 
 

23. Taymaz-Nikerel, H., van Gulik, W.M. & Heijnen, J.J. Escherichia coli 
responds with a rapid and large change in growth rate upon a shift from 
glucose-limited to glucose-excess conditions. Metab Eng 13, 307-318 
(2011). 

24. Bennett, B.D., Yuan, J., Kimball, E.H. & Rabinowitz, J.D. Absolute 
quantitation of intracellular metabolite concentrations by an isotope ratio-
based approach. Nat Protoc 3, 1299-1311 (2008). 

25. Rabinowitz, J.D. & Kimball, E. Acidic acetonitrile for cellular metabolome 
extraction from Escherichia coli. Anal Chem 79, 6167-6173 (2007). 

26. Canelas, A. Leakage-free rapid quenching technique for yeast 
metabolomics. Metabolomics 4, 226-239 (2008). 

27. Link, H., Anselment, B. & Weuster-Botz, D. Leakage of adenylates during 
cold methanol/glycerol quenching of Escherichia coli. Metabolomics 4, 
240-247 (2008). 

28. Lange, H.C. Improved rapid sampling for in vivo kinetics of intracellular 
metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75, 406-415 
(2001). 

29. Schaub, J., Schiesling, C., Reuss, M. & Dauner, M. Integrated sampling 
procedure for metabolome analysis. Biotechnol Prog 22, 1434-1442 
(2006). 

30. Mashego, M.R., van Gulik, W.M., Vinke, J.L. & Heijnen, J.J. Critical 
evaluation of sampling techniques for residual glucose determination in 
carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol 
Bioeng 83, 395-399 (2003). 

31. Schaefer, U., Boos, W., Takors, R. & Weuster-Botz, D. Automated 
sampling device for monitoring intracellular metabolite dynamics. Anal 
Biochem 270, 88-96 (1999). 

32. Hiller, J., Franco-Lara, E., Papaioannou, V. & Weuster-Botz, D. Fast 
sampling and quenching procedures for microbial metabolic profiling. 
Biotechnol Lett 29, 1161-1167 (2007). 

33. Sambrook, J., and D. W. Russell Molecular cloning: a laboratory manual, 
3rd ed., vol. A2.2. (Cold Spring Harbor Laboratory Press, Cold Spring 
Harbor, NY., 2001). 



124 
 

34. Fong, S.S. In silico design and adaptive evolution of Escherichia coli for 
production of lactic acid. Biotechnology and Bioengineering 91, 643-648 
(2005). 

35. Mashego, M.R. MIRACLE: mass isotopomer ratio analysis of U-13C-
labeled extracts. A new method for accurate quantification of changes in 
concentrations of intracellular metabolites. Biotechnol Bioeng 85, 620-628 
(2004). 

36. Wu, L. Quantitative analysis of the microbial metabolome by isotope 
dilution mass spectrometry using uniformly 13C-labeled cell extracts as 
internal standards. Anal Biochem 336, 164-171 (2005). 

37. Volkmer, B. & Heinemann, M. Condition-dependent cell volume and 
concentration of Escherichia coli to facilitate data conversion for systems 
biology modeling. PLoS ONE 6, e23126 (2011). 

38. R Development Core Team  (R Foundation for Statistical Computing, 
Vienna, Austria; 2011). 

39. Xia, J., Psychogios, N., Young, N. & Wishart, D.S. MetaboAnalyst: a web 
server for metabolomic data analysis and interpretation. Nucleic Acids Res 
37, W652-660 (2009). 

40. Cortassa, S. & Aon, M.A. Altered topoisomerase activities may be 
involved in the regulation of DNA supercoiling in aerobic-anaerobic 
transitions in Escherichia coli. Mol Cell Biochem 126, 115-124 (1993). 

41. Selvarasu, S. Characterizing Escherichia coli DH5alpha growth and 
metabolism in a complex medium using genome-scale flux analysis. 
Biotechnol Bioeng 102, 923-934 (2009). 

 

 



125 

CHAPTER 5: 

A pH and solvent optimized reverse-phase ion-paring-LC–MS/MS method that 

leverages multiple scan-types for targeted absolute quantification of intracellular 

metabolites 

Abstract: 

Comprehensive knowledge of intracellular biochemistry is needed to 

accurately understand, model, and manipulate metabolism for industrial and 

therapeutic applications.  Quantitative metabolomics has been driven by 

advances in analytical instrumentation and can add valuable knowledge to the 

understanding of intracellular metabolism.  Liquid chromatography coupled to 

mass spectrometry (LC-MS and LC-MS/MS) has become a reliable means with 

which to quantify a multitude of intracellular metabolites in parallel with great 

specificity and accuracy.  This work details a method that builds and extends 

upon existing reverse phase ion-paring liquid chromatography methods for 

separation and detection of polar and anionic compounds that comprise key 

nodes of intracellular metabolism by optimizing pH and solvent composition.  In 

addition, the presented method utilizes multiple scan types provided by hybrid 

instrumentation to improve confidence in compound identification.  The 

developed method was validated for a broad coverage of polar and anionic 

metabolites of intracellular metabolism.  
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Introduction: 

New manipulation tools and an improved understanding of intracellular 

metabolism have benefited industrial and medical bioengineering pursuits.  The 

ability to model and manipulate the metabolism of microorganisms for the 

production of commodity chemicals from renewable resources has been 

demonstrated 1 and will continue to mature.  The ability to better model and 

simulate human metabolism to develop new antimicrobials 2 and personalize 

patient treatment 3, 4 is an active area of health research.   

A prerequisite of an accurate model is detailed knowledge of the 

underlying biochemistry.  Quantitative metabolomics has contributed greatly to 

the body of knowledge of intracellular biochemistry.  It involves the precise 

measurement of individual metabolite concentrations inside the cell, most often 

using isotope dilution mass spectrometry (IDMS) 5 (Fig.1).  Since quantitative 

measurements are expressed in absolute amounts, this information can be 

integrated into biochemical models for a deeper investigation into metabolism.  

This approach has allowed for a comparison to Michaelis-Menten constants 6,  in 

vivo calculations of reaction thermodynamics 7-10, construction and simulation of 

dynamic models of biochemical processes 11-15, novel discoveries of cellular 

function 16, enzyme activity 17, and allosteric regulation 18-22.  This information, 

when integrated with other omics data types, can be used to reveal different 

layers of cellular regulation 23-26. 

Many advances in LC methods have improved the ability to separate and 

resolve the polar and charged species of intracellular metabolism.  These 
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methods predominantly use hydrophilic-interaction-chromatography (HILIC) 27, 28, 

ion exchange (IE) 29, and reverse-phase ion-pairing (RIP) 30.  Some applications 

using aqueous normal phase (ANP) 31 and porous graphite carbon (PGC) 32-34 

have emerged.  Of the above-mentioned methods, ion-pairing methods have 

shown superior performance in terms of reproducibility, resolution, coverage, and 

sensitivity based on several head-to-head comparisons 35-37.  In particular, when 

compared with HILIC, ion-pairing methods have been found to have greater 

sensitivity due to improved separation of compounds that co-elute when using 

HILIC 35, and greater resolution of biological isomers (e.g., hexose phosphates) 

38.  A notable drawback to the use of ion-pairing is its inability to analyze 

compounds in both positive and negative mode due to ion suppression 35, 39.  

Consequently, it is often necessary to have a dedicated instrument in order to 

circumvent the need for lengthy cleaning cycles when switching to a method that 

uses the opposite polarity 35, 39.  Despite these caveats, ion-pairing methods 

using volatile ion-pairing agents and gradient elution 37-40 have enabled the 

separation of important biological isomers, provided a broad coverage of 

intracellular metabolites, and are MS compatible 35-37.   

Advances in mass spectrometry instrumentation have improved the 

analyst’s ability to detect, confirm, and accurately quantify the broad 

concentration ranges of compounds that comprise intracellular metabolism.  

Studies have shown that newer high resolution high mass accuracy mass 

spectrometers (HRMS), including time-of-flight (Q-TOF) and orbitrap type 

instruments, now offer sufficient linear range and sensitivity to fulfill the demands 
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of both qualitative and certain quantitative workflows 40, 41.  However, the QqQ 

remains the workhorse for targeted, quantitative analysis due to the greater linear 

range and sensitivity of single/multiple reaction monitoring scans (S/MRM) using 

triple quadrupole (QqQ or QTRAP) mass spectrometers 42, 43.  The large dynamic 

range of the QqQ is particularly important because the concentration ranges of 

intracellular metabolites can span >6 orders of magnitude.   

In this work, a pH and solvent optimized RIP LC-MS/MS method for the 

quantification of intracellular metabolites was developed using an ABSCIEX 

QTRAP 5500 system, where the mass analyzer is a linear ion-trap (TRAP).  First, 

a RIP-LC method is developed that builds on the extensive work of previous RIP 

methods to balance throughput and chromatographic resolution and improve 

sensitivity for complex intracellular matrices by modulating the solvent 

composition and pH of the mobile phases.  Next, an acquisition method for 

targeted quantification is developed and validated.  The quantification method 

leverages dual scan types to maximize coverage and improve confidence in 

compound detection.  Finally, the stability and suitability for implementation in 

academic or industrial settings was demonstrated.  The workflow utilizing the 

developed RIP LC-MS/MS for quantification of intracellular metabolites is shown 

in Figure 1.   
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Material and Methods: 

Standards and reagents: 

 Standards were purchased from Sigma-Aldrich (St. Louis, MO) or Santa 

Cruz Biotechnology, Inc. (Dallas, TX).  LC-MS reagents were purchased from 

Honeywell Burdick & Jackson® (Muskegon, MI).  Metabolically labeled internal 

standards were generated as described previously 44 from batch cultures of E. 

coli grown on uniformly labeled 13C glucose.  Calibration standards were 

generated from stock solutions freshly prepared or kept in the -80C for no longer 

than 3 days.  Calibration standards were then combined into mixes and aliquoted 

and lyophilized to dryness and stored at -80C.  Aliquots were reconstituted in 

water, serially diluted, and spike with metabolically labeled internal standards to 

generate a calibration curve that spanned the lower and upper limits of detection 

for each compound.   

Biological extracts: 

E. coli: 

 Pooled or replicate samples of E. coli K12 MG1655 (ATCC 700926), 

obtained from the American Type Culture Collection (Manassas, VA), were 

grown in 4 g/L glucose or glycerol M9 minimal media 45 with trace elements 46 

and sampled from a water bath that was maintained at 37 °C and aerated at 700 

RPM.  Samples were taken and extracted using a fast Swinnex® filtration 

approach described previously 47.    

Red blood cells (RBCs): 
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Pooled red blood cell (RBC) samples were taken from freshly drawn blood 

of anonymous donors and extracted as described in the supplemental methods.   

Instrumentation: 

A XSELECT HSS XP 150 mm × 2.1 mm × 2.5 µm (Waters®, Milford, MA) 

with a Prominence UFLC XR HPLC (Shimadzu, Columbia, MD) was used for 

chromatographic separation.  Mobile phase A was composed of 10 mM 

tributylamine (TBA), 10 mM acetic acid (pH 6.86), 5% methanol, and 2% 2-

propanol; mobile phase B was 2-propanol.  Oven temperature was 40°C.  The 

chromatographic conditions for methods 1 and 2 are described in Table 1 and 

detailed in the supplemental methods.  The autosampler temperature was 10°C 

and the injection volume was 10 uL with full loop injection.  An AB SCIEX Qtrap® 

5500 mass spectrometer (AB SCIEX, Framingham, MA) operated in negative 

mode with multiple reaction monitoring (MRM) was used for detection and 

quantification, with specific transitions shown in Table S-6.  Where specified, the 

MRM was coupled to an information dependent acquisition (IDA) consisting of 

either an enhanced product ion (EPI) scan for confirmation of compound identity 

or an enhanced resolution (ER) and EPI scan for elucidation of compound 

isotopomer distribution.  Electrospray ionization parameters were optimized for 

0.4mL/min flow rate, and are as follows:  electrospray voltage of -4500 V, 

temperature of 500 °C, curtain gas of 40, CAD gas of 12, and gas 1 and 2 of 50 

and 50 psi, respectively. Analyzer parameters were optimized for each 

compound using manual tuning.  The instrument was mass calibrated with a 

mixture of polypropylene glycol (PPG) standards.   
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Acquisition and quantification: 

 Samples were acquired using the scheduled MRM pro algorithm in 

Analyst® 1.6.2.  Enhanced production ion (EPI) scans and enhanced resolution 

scans were extracted and processed using Analyst®.  The compound library 

used for compound identification was generated by running sets of standards at 

a concentration range that allowed for good signal detection (i.e., greater than 

1e5 cps).  Samples were quantified using IDMS 5, 48 with metabolically labeled 

internal standards and processed using Multiquant® 2.1.1.  Linear regressions 

for compound quantification were based on peak height ratios and the logarithm 

of the concentration of calibrator concentrations from a minimum of four 

consecutive concentration ranges that showed minimal bias.  A peak height 

greater than 1e3 ion counts and signal to noise greater than 20 were used to 

define the lower limit of quantification (LLOQ).  Quality controls and carry-over 

checks were included with each batch.  Due to the number of biological isomers, 

the integration of each critical pair of compounds was manually checked.  

Evaluation of RIP method performance: 

 Categories corresponding to a reduction in baseline noise, a reduction in 

isobaric interferences, a reduction in carryover for E. coli and RBC samples, 

improvement in isomer resolution, improvement in LLOQ, and linearity were used 

to evaluate the performance of the RIP methods presented in this study.  A 

normalized score was calculated for each method for each category as described 

in the supplemental material to rank the performance of each method.  
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Results and Discussion: 

Chromatographic optimization: 

Prior to optimizing mass spectrometry acquisition parameters, a RIP 

method was sought that met the following criteria: (1) improved detection limits, 

and (2) balanced throughput and chromatographic resolution for intracellular 

metabolites.  Two recently published RIP methods (each method is described in 

the supplemental methods section and in Tables 1 and 2), which are designated 

methods 140 and 2 39, in addition to a third new method (method 3) described in 

Tables 1 and 2 were tested using the QTRAP LC-MS system.  Method 3 builds 

upon methods 1 and 2, and incorporates additional optimizations to the mobile 

phases and gradient programs.  Methods 1, 2, and 3 were compared with 

respect to their ability to meet the above criteria based on multiple 

chromatographic and detection parameters.  The optimizations made to method 

3 are first discussed, and then results of the comparison are presented.  The 

results of the comparison are summarized in Table 3.  Details of the calculations 

of the calculations of the comparison are expanded upon in Supplemental Tables 

S-2, S-3, S-4, and S-5, and in the supplemental material.   

Mobile phase optimization: 

Choice of solvent and composition was found to have a profound effect on 

lowering the baseline noise, reducing isobaric signals, decreasing carryover, and 

improving sensitivity of early eluting compounds.  The baseline noise and 

isobaric interference for organic acids were found to be a function of the elution 

strength of mobile phase A (Figure S-1).  By increasing the elution strength of 
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mobile phase A with the addition of 5% IPA, the baseline noise and isobaric 

signals were suppressed relative to weaker elution strength formulations of 

mobile phase A.  An equivalent amount of methanol instead of IPA (empirically 

found to be 17%) was found to reproduce the results, indicating that it was not 

the choice of modifier or specific amount used, but most likely the elution 

strength of mobile phase A.  

pH optimization: 

In RIP chromatography, slight changes to the pH of mobile phase A 

caused by modulating the concentration of TBA or acetic acid can drastically 

alter the retention, selectivity, and signal intensity of most phosphorylated and 

carboxylated compounds.  The work of Bennette et al, 2011 37, explored the 

effects of pH on reverse phase ion-pairing chromatography, and found 

differences in signal intensity for phosphorylated compounds when modulating 

the acetic acid concentration by as little as 1 mM.  We hypothesized that by 

increasing the pH closer to neutral, we could induce a second charge on the 

phosphate group (pKa ≈ 6).  We reasoned that this would confer increased 

retention by attracting additional ion-pairing agents (Figures 2a and 2b).  In 

addition, the decrease in acetic acid concentrationi would confer increased 

retention by enhancing the absorption of ion-pairing agent to the stationary 

phase, which in turn would increase retention of oppositely charged solutes 49-51.  

We also reasoned that the additional charge and decreased concentration of 

acetic acid might increase signal intensity by facilitating the negative ionization 

process through a pH change in the electrospray droplet 52-55.  During 
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evaporation of the electrospray droplet, the acetic acid would be removed faster 

than the TBA; this would increase the pH of the droplet, which could potentially 

further increase the percent charged state of the phosphorylated or carboxylated 

ion, resulting in greater signal intensity. Improved sensitivity for many 

phosphorylated and carboxylated compounds were found (Figure S-6 and Table 

S-3).  It should be noted that improvements in peak shape 56 as well as 

improvements to the ionization process 57 from the use of IPA also appeared to 

play an important role in improving sensitivity as well.  

For all phosphorylated and carboxylated compounds (with the exception of 

pyruvate, which decreased in retention), the retention time dramatically increased 

upon decreasing the concentration of acetic acid in mobile phase A from 15 mM 

(pH4.95) to 10 mM (pH6.86).  This was noticeable for changes in as little as 0.5 

mM in acetic acid concentration (Figures 2c and 2d).  It was observed that a 

change in pH also changed the selectivity of glucose-, mannose-, and fructose-6-

phosphate (g6p, man6p, and f6p) (Figure S-3).  At a mobile phase pH of 4.9, 

fructose-6-phosphate eluted after galactose 1-phosphate (gal1p), and the 

retention time difference between g6p and man6p allowed for near baseline 

separation when using either the 169 or 199 trace.  However, upon increasing 

the pH to 6.86, f6p eluted before gal1p, and the retention time difference 

between g6p and man6p decreased.  Interestingly, the increased pH was found 

to separate additional pentose-phosphate isomers in a glucose-grown wild-type 

E. coli sample that were unresolved at a lower pH (Figure S-5).  We have been 
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unable to purchase standards of sufficient purity to confirm the identity of the 

unknown pentose-phosphate isomers.  

The change in selectivity between the hexose phosphate isomers and 

general improvements in sensitivity for phosphorylated and carboxylated 

compounds found when using a higher pH provides further insight into the 

mechanism by which the pH-induced differences were caused.  We postulated 

that the increased pH above the pKa of the second acidic hydroxide moiety of the 

phosphate group allows for interaction with an additional ion-pairing agent.  This 

would confer the increased retention that we have observed, but could also alter 

the solvation sphere that would interact with the polar end-capping or lessen its 

interaction, which would confer changes in selectivity between the isomers.  

While the interaction of pH, stationary phase, ion-pairing agent, counter-ion, and 

organic modifier on analyte selectivity, retention, and ionization efficiency is a 

complex and greatly debated topic 57-62, our findings provided additional insight 

into the mechanisms by which changes in pH, counter-ion concentration, and 

organic modifier can be modulated to improve selectivity and sensitivity in ion-

pairing chromatography.  

Comparison of RIP method performance: 

Solvent blanks were injected using methods 1, 2, and 3 to assess baseline 

noise and determine if there were any isobaric signals present.  A high baseline 

lowers the sensitivity of the assay by masking low abundant metabolites in 

background interference; and isobaric signals can confound the ability to 

measure a metabolite altogether.  Methods 1 and 2 were observed to have high 
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baseline noise for most organic acids and were also observed to contain isobaric 

peaks corresponding to organic acid signals.  In contrast, both the high baseline 

and isobaric signals corresponding to organic acids are greatly reduced in 

method 3.  

Samples of RBC and E. coli extracts were ran at the same concentration 

and acquisition parameters followed by a series of blank injections using 

methods 1, 2, and 3 in order to assess carryover.  Carryover can corrupt analysis 

and severely diminish daily sample throughput by requiring injections of 

additional blanks to not only monitor carryover, but completely eliminate 

carryover between samples.   Method 1 was found to have carryover for 

compounds in RBC and E. coli samples, respectively, compared to none for 

methods 2 and 3 (Table 3, Supplemental Figure S-2).  Extensive system 

decontamination revealed that inadequate washing of the column was to blame 

potentially due to weaker elution strength of mobile phase B.  Method 1 employs 

100% methanol in mobile phase B while methods 2 and 3 employ 100% 2-

propanol.  Extending the isocratic wash step of method 1 resulted in negligible 

improvements to carryover (data not shown).  The difference in carryover found 

between using methanol and 2-propanol as the elution solvent indicates that for 

RIP methods aimed at separating compounds of intracellular metabolism run on 

modern instrumentation, traditional solvents such as methanol may be 

inadequate for complete displacement of the ion-pairing agent and negatively 

charged analytes from the column stationary phase. Consequently, a less polar 

solvent such as 2-propanol is needed.  
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Standards of representative biological isomers in a neat solution were in 

run in order to assess the balance between gradient run-time and resolution.  

The gradient-time and overall run-time of method 1 was shorter (15.5 and 25 

min, respectively) compared to the gradient times and overall run-times of 

method 2 (19 and 36 min, respectively) and method 3 (16.5 and 33 min, 

respectively).   However, methods 2 and 3 proved superior in their ability to 

resolve relevant biological isomers compared to method 1 (Table 3, 

Supplemental Figures S-3 and S-4).  In particular, method 3 provided 

comparable separation of hexose and pentose-isomers that we were readily able 

to detect in RBC and E. coli extracts compared to method 2 and superior 

separation compared to method 1, while using an intermediate gradient time and 

overall run-time.  This was achieved by modulating the mobile phase solvent 

composition and pH (as discussed previously).  Improved separation of other 

biological isomers was also noted for method 3.  AMP/dGMP, ADP/dGDP, and 

ATP/dGTP were found to be baseline resolved (Fig. 3b).  The separation 

between the nucleotide mono-, di-, and triphosphates was not found when 

employing the previous methods.  This separation is particularly beneficial in that 

isotope interference from a more abundant metabolite can mask the transition for 

a less abundant metabolite with a nominal mass difference of 1 amu less.  Given 

the narrow mass distribution between many of the nucleotide mono-, di- and 

triphosphates and their discrepancy in biological concentration (e.g., ITP and 

ATP), it is not uncommon for us to see multiple peaks for a given ion current 

window. 
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Finally, calibrators composed of standards spiked with metabolically 

labeled E. coli biomass were run to determine the sensitivity and linearity of the 

different methods for performing quantitative analyses.  All methods showed 

good linearity, but certain methods showed better sensitivity for certain classes of 

compounds (Table 3).  A substantial improvement in sensitivity for many of the 

amino acids, nucleosides, and nucleotides that elute early in the gradient was 

found when using methods 2 and 3 as compared to method 1 (Table 3, 

Supplemental Figure S-6, and Supplemental Table S-1).  This was most likely a 

result of the additional starting organic in mobile phase A, leading to a decrease 

in surface tension and improved ionization efficiency 56-58.  It was found that 

many phosphorylated and carboxylated compounds showed increased signal 

intensity and improved lower limits of quantification (LLOQ) using method 3 

compared to methods 1 or 2 (Table 3 and Supplemental Table S-1). Overall, 

method 3 was found to have a lower limit of quantitation (LLOQ) that was 

superior in most cases to methods 1 and 2 for many of the amino acids, 

nucleosides, and nucleotides as well as phosphorylated and carboxylated 

compounds.   

In summary, the results from the comparisons indicated that method 3 

was best able to meet the criteria for sensitivity while balancing sample 

throughput and resolution when implemented on the QTRAP system (Table 1). 

MS acquisition optimization: 

In addition to optimizing throughput, resolution, and sensitivity on the 

chromatographic side, optimization for confidence in detection and coverage on 
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the mass spectrometer side was targeted by leveraging the multiple scan-types 

afforded by hybrid instrumentation.  A minimum of a quantifying transition 

corresponding to the endogenous analyte and a transition corresponding to the 

heavy internal standard (most often a metabolically labeled heavy-carbon-13 

analog) is needed for targeted quantitative workflows of intracellular metabolism.  

However, for more robust compound identification, a second qualifying transition 

corresponding to the endogenous analyte is used.  The ratio of signal intensity of 

the quantifying transition to the qualifying transition is an intrinsic property of the 

molecule under the same ionization energy conditions and should remain 

constant between calibrators and samples, and can be used to confirm the 

identity of a compound.  When a qualifying transition does not exist, or there is a 

major discrepancy in the signal intensity between the quantifying and qualifying 

transition, the use of signal ratios becomes problematic.  To resolve this problem, 

a linear ion-trap was utilized to perform an additional confirmation using 

information dependent acquisition (IDA) enhanced product ion (EPI) scans (Fig. 

4a).  The EPI scan is a higher resolution full scan of the product ion spectra 

following fragmentation.  The EPI acquisition is triggered when the signal 

intensity for a given quantifying and qualifying MRM reaches a pre-specified 

threshold.  The product ion spectrum can then be matched against a spectral 

library to provide a second layer of compound identification (Fig. 3c).  A spectral 

library was generated by injecting pure standards of each target compound and 

extracting the product ion scans.   
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It was found previously that calibrators ran using method 3 showed good 

linearity and LLOQ (Supplemental Table S-1). The reproducibility of the 

quantification acquisition method in two different matrices of different origin (i.e., 

red blood cells and E. coli) was tested.  In general, for both sample matrices, the 

relative standard deviations for most compounds were less than 30% as 

determined from triplicate injections of each sample type (Table 4, Supplemental 

Table S-1).  The coverage of metabolites that were detected in both sample 

matrices indicates that the utilized method has sufficient sensitivity and resolution 

to readily measure a broad spectrum of compounds that are of importance to 

intracellular metabolism in complex matrices (Fig. 3a and Table 4).  The 

performance of calibrators acquired using the above quantification method, as 

well as the reproducibility measured using two complex sample matrices, 

demonstrated the ability of the method to enhance confidence in correct 

compound identification and provide accurate quantification of polar and anionic 

intracellular metabolites with a biomass of 10 μg or less on column. 

LC-MS platform stability: 

 In order to test the stability of the LC-MS/MS system, the retention time 

during a system stress test for a neat standard solution was tracked.  The system 

stress test consisted of varying the mobile phase A components +/- 5.0%, 

varying the tubing length +/- 6 inches, and several combinations of mobile phase 

A adjustments and tubing length.  The largest %RSD found for any compound 

was less than 15.8%, which corresponds to a 95% confidence interval of 6.65 

and 7.42 minutes (Fig. 5).  Since this variability affects similar compounds 
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equally, the ability to resolve biological isomers such as ribose 5-phosphate and 

ribulose 5-phosphate (Fig. 4 inset) is not compromised.  Retention time over the 

course of multiple batches of red blood cell and E. coli samples was also tracked.    

The retention time in relevant sample matrices was not found to be compromised 

(Fig. 5).  The low retention time variability of a neat standard solution injected 

periodically throughout the course of the LC-MS/MS methods life-time 

demonstrates that the method is also stable through multiple batches of columns, 

guard columns, and samples, as well as routine system maintenance (Fig. 5, 

Figure S-7 and Tables S-7 and S-8). 
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Conclusion: 

 The ability to sensitively and accurately resolve many active biological 

isomers and charged species using LC-MS has arguably made it the premier 

platform to investigate intracellular metabolism.  This fact is demonstrated by the 

plethora of high quality LC-MS-enabled studies that have emerged in recent 

years 14, 16, 18-21, 25.  This work describes the development and validation of a RIP-

LC-MS/MS method for quantitative investigations of intracellular metabolism.  

The method was validated for a broad class of intracellular metabolites including 

nucleotides, nucleotide bases, amino acids, sugar phosphates, organic acids, 

nucleotide phosphates, nucleotide sugar phosphates, energy and redox 

metabolites (e.g., oxidized and reduced glutathione, NAD(P)(H), and FAD), 

acetyl-CoA, and several vitamins. The method builds and improves upon existing 

RIP-LC methods by optimizing solvent composition and solvent pH in order to 

improve the balance between method throughput and chromatographic 

resolution, while also improving sensitivity.  A key feature of this method is the 

ability to leverage multiple scan-types provided by hybrid instruments (such as 

the QTRAP 5500) to improve the confidence with which compounds can be 

detected in complex sample matrices.  The ability to perform multiple scan-types 

during a single run provides an efficient means to interrogate a sample more 

thoroughly and with greater confidence that can be extended to a variety of 

hybrid instruments.  Finally, the method was also found to be stable and reliable 

for long-term use.    
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Figure 5.1: Overview of the LC-MS-enabled targeted absolute quantification workflow for 
investigations of intracellular metabolism using hybrid instrumentation.  The absolute 
quantification workflow starts with rapidly sampling and extracting biological cultures with 
extraction solvent spiked with labeled standards.  Labeled standards are also spiked into 
calibrators.  Samples and calibrators are further processed and then metabolites are separated 
and acquired on the LC-MS instrument.  A calibration curve is then constructed for each 
compound of interest in order to back-calculate the concentrations of analyte in the sample from 
the ratio of analyte to known amount of internal standard.  Product ion spectra acquired for each 
of the analytes can be used to provide further confidence in compound identity.  
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Figure 5.2: The effect of pH on ionization state and resulting change in retention time for glucose 
6-phosphate (g6p) (A and C) and for phosphoenolpyruvate (pep) (B and D).  We propose that by 
increasing the pH above the pKa of the second hydroxide moiety of the phosphate group, an 
increase in the dominant charge state of the compound in the solution as shown in the plot of 
microspecies distribution versus pH, and in the calculated pKa for the hydroxide moiety for g6p 
and pep (A and B) (see supplemental discussion).  For the case of g6p, a dramatic change in 
retention time results (C); for the case of pep, a change in retention time and signal intensity 
results (D).  A complete comparison of the resulting effect of signal intensity on the lower limits of 
quantification between the different methods is provided in supplemental table 1.  The 
microspecies distribution and pKa were calculated using ChemAxon®.   
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Figure 5.3: Example acquisitions using the LC-MS absolute quantification method.  A) 
Representative injection of red blood cell extracts using the absolute quantitation acquisition 
method.  The gradient profile is overlaid on the MRM traces.  302 transitions corresponding to 
100 compounds are monitored in a single run.  For most compounds, this includes the primary 
and secondary transition along with the uniformly labeled heavy carbon analog.  B) Separation of 
biological isomers in calibrators.  Shown are the baseline resolution of ribulose 5-phosphate (r5p) 
and ribulose-5-phosphate (ru5p-D), dGMP (dgmp) and AMP (amp), dGDP (dgdp) and ADP (adp), 
citrate (cit) and isocitrate (icit), and dGTP (dgtp) and ATP (atp).   
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Figure 5.4: Acquisition method diagram and example acquisition.  A) For quantitation, two MRM 
transitions (if two are available) are chosen per compound and scanned for during discrete 
retention windows during the LC gradient.  When the primary and secondary transitions exceed a 
specified threshold, an information dependent acquisition (IDA) is triggered that utilizes an 
enhanced product ion (EPI) scan.  The spectra of the EPI scan can then be compared to a library 
of product ion spectra for further compound identity confirmation.  B) Acquisition of NADP+ 
(nadp) in an E. coli matrix using the quantitation method.  The primary, secondary, and heavy 
transitions were acquired.  The product ion scan taken from the primary transition is then 
compared to a reference library of product ion spectra.  For this example, a 91.9% match of the 
endogenous analyte to the reference compound was found.   
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Figure 5.5: Retention time variability of representative compounds in a neat standard solution 
throughout the course of the methods life-time (SST), during a stress test (Stress Test), and in 
RBC (RBC) and E. coli (E. coli) samples.  The box describes the mean and interquartile range.  
The whiskers describe the distribution of the data.  The %RSD and 95% confidence intervals are 
given in Supplemental Tables S-6 and S-7.  4 columns from 3 different batches and 9 guard 
columns from 3 different batches have been cycled through during the life-time of the instrument.  
The stress test consisted of varying the mobile phase A components +/- 10.0%, varying the 
tubing length +/- 6 inches (approximately 10% of the internal LC tubing length), and several 
combinations of mobile phase A adjustments and tubing length.  A pooled sample of RBCs was 
injected 6 times interspersed throughout a two week period of continuously running RBC 
samples.  A pooled sample of E. coli was injected 6 times interspersed throughout a two week 
period of continuously running E.coli samples.  The retention time differences of biological 
isomers in the inset are ribose 5-phosphate (r5p) and ribulose 5-phosphate (ru5p-D). 
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Table 5.1: Columns and chromatographic conditions used and compared in this study. Method 1 
is based on the method described by Lu et al, 201040, method 2 is based on the method 
described by Buescher et al, 201039, and method 3 is described in this study. * Published method 
used a Waters® Atlantis T3 (150 mm × 2.1 mm × 1.8 µm) 

Column 
Dimensions 
and particle 

size 
Mobile phase A pH Mobile 

phase B Oven temperature Method 

Phenomenex® 
Synergitm Hydro-

RP 

100 mm × 
2.0 mm × 2.5 

µm 

10 mM TBA, 15 mM 
acetic acid, 3% methanol 4.95 Methanol Ambient 1 

Waters® 
XSELECT HSS 

XP
*
 

150 mm × 
2.1 mm × 2.5 

µm 

10 mM TBA, 15 mM 
acetic acid, 5% methanol 4.95 2-

propanol 40 °C 2 

Waters® 
XSELECT HSS 

XP 

150 mm × 
2.1 mm × 2.5 

µm 

10 mM TBA, 10 mM 
acetic acid, 5% 

methanol, 2% 2-
propanol 

6.86 2-
propanol 40 °C 3 
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Table 5.2: Chromatographic gradients and flow rates used and compared in this study.  Method 1 
is based on the method described by Lu et al, 201040, method 2 is based on the method 
described by Buescher et al, 201039, and method 3 is described in this study. 

Method 1 

Total time 
[min] 

Eluent B 
[vol.%] 

Flow rate 
[mL*min-1] 

0 0 0.2 
2.5 0 0.2 
5 20 0.2 

7.5 20 0.2 
13 55 0.2 

15.5 95 0.2 
18.5 95 0.2 
19 0 0.2 
25 0 0.2 

   Method 2 

Total time 
[min] 

Eluent B 
[vol.%] 

Flow rate 
[mL*min-1] 

0 0 0.4 
5 0 0.4 

10 2 0.4 
11 9 0.35 
16 9 0.25 
18 25 0.25 
19 50 0.15 
25 50 0.15 
26 0 0.15 
32 0 0.4 
36 0 0.4 

   Method 3 

Total time 
[min] 

Eluent B 
[vol.%] 

Flow rate 
[mL*min-1] 

0 0 0.4 
5 0 0.4 
9 2 0.4 

9.5 6 0.4 
11.5 6 0.4 
12 11 0.4 

13.5 11 0.4 
15.5 28 0.4 
16.5 53 0.15 
22.5 53 0.15 
23 0 0.15 
27 0 0.4 
33 0 0.4 
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Table 5.3: RIP-LC Method comparison.  Method 1 is based on the method described by Lu et al, 
2010 40, method 2 is based on the method described by Buescher et al, 2010 39, and method 3 is 
described in this study.  Explicit details of how the normalized score was derived for all criteria 
assessed are described in Supplemental Tables S-2, S-3, S-4, and S-5, and in the supplemental 
methods. 

Criteria Normalized score 

Method 1 Method 2 Method 3 

Blanks 
Max baseline TIC 0.00 0.38 0.65 

Isobaric interferences 0.56 0.56 1.00 

E. coli samples Compounds w/o carryover 0.90 1.00 1.00 

RBC samples Compounds w/o carryover 0.91 1.00 1.00 

Neat mixes 
Resolution of isomers 0.19 0.63 0.88 

Run-time 1.00 0.56 0.68 

Calibrators (LLOQ) 
improvement for amino 
acids, nucleosides, and 

nucleotides 

vs. Method 1   0.64 0.89 

vs. Method 2 0.36   0.79 

vs. Method 3 0.11 0.21   

Sub-total: Normalized sub-score 0.24 0.43 0.84 

Calibrators (LLOQ) 
improvement for phosphate 

containing compounds 

vs. Method 1   0.71 0.83 

vs. Method 2 0.29   0.58 

vs. Method 3 0.17 0.42   

Sub-total: Normalized sub-score 0.23 0.57 0.71 

Calibrators (LLOQ) 
improvement for organic 

acids 

vs. Method 1   0.37 0.67 

vs. Method 2 0.63   0.75 

vs. Method 3 0.33 0.25   

Sub-total: Normalized sub-score 0.48 0.31 0.71 

Calibrators (Linearity) Compounds w/ R2 > 0.98 0.98 0.93 0.98 

Total: Normalized total score 0.55 0.64 0.84 
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Table 5.4: The total number of intracellular compounds that can be quantified and the total 
number of intracellular metabolites quantified with a relative standard deviation (RSD) less than 
30% (n=3) in two representative matrices.  
Red Blood Cells* E. coli^ 
Quantified RSD < 30% Quantified RSD < 30% 

81 67 77 72 
* Red blood cells were extracted and processed as described in the material and 
methods.  ^ E. coli cells were grown on glycerol minimal media and extracted and 
processed as described in the material and methods. 
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i Increasing the concentration of TBA was also explored.  Increasing the concentration above 15 mM 
resulted in noticeable ion-suppression, and changes in TBA concentration were no longer pursued. 
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CHAPTER 6: 

MID Max:  A LC-MS/MS method for measuring the precursor and product mass 

isotopomer distributions (MIDs) of metabolic intermediates and cofactors for 

metabolic flux analysis (MFA) applications 

Abstract 

 The analytical challenges to acquire accurate isotopic data of intracellular 

metabolic intermediates for stationary, non-stationary, and dynamic metabolic 

flux analysis (MFA) are numerous.  This work presents MID Max, a novel LC-

MS/MS workflow, acquisition, and isotopomer deconvolution method for MFA 

that takes advantage of additional scan types that maximizes the number of 

mass isotopomer distributions (MIDs) that can be acquired in a given experiment.  

The analytical method was found to measure the MIDs of 97 metabolites, 

corresponding to 74 unique metabolite-fragment pairs (32 precursor spectra and 

42 product spectra) with accuracy and precision.  The compounds measured 

included metabolic intermediates in central carbohydrate metabolism and 

cofactors of peripheral metabolism (e.g., ATP).  Using only a subset of the 

acquired MIDs, the method was found to improve the precision of flux 

estimations and number of resolved exchange fluxes for wild-type E. coli 

compared to traditional methods and previously published data sets.   
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Introduction 

Metabolic labeling experiments involve the measurement of mass 

isotopomer distributions (MIDs) of metabolites at single or multiple time-points 

during dynamic or steady-state growth, or during isotopic dynamic or steady-

state following the introduction of tracer into the culture medium1.  GC-MS has 

traditionally been used to measure the MIDs of proteogenic amino acids derived 

from a single time-point taken at metabolic steady-state2-6.  Proteogenic amino 

acids are stable, abundant, and have a carbon backbone that yields a multitude 

of informative fragmentations after electron impact ionization2-6.  However, due to 

their slow turnover time, proteogenic amino acids are not suitable for capturing 

the transient isotopomer profiles of organisms that utilize a single-carbon 

containing compound (e.g., CO2 in plants)7, following a perturbation (e.g., after 

switching from one carbon source to another),8 or during dynamic batch culture 

fermentation9, 10.  Instead, intermediate metabolites with fast turnover that reflects 

the instantaneous biochemistry of the cell need to be measured.  Metabolic 

intermediates in the cell are often at much lower abundance than proteogenic 

amino acids and are far less stable.  Consequently, metabolic intermediates are 

difficult to accurately sample and extract11, 12, and are mostly measured by LC-

MS/MS due to its greater sensitivity and ability to resolve isomers of central 

carbohydrate metabolism, and softer ionization13-16.  The combination of lower 

abundance, instability, and limited carbon backbone can result in less informative 

fragmentation patterns than proteogenic amino acids. 
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Recent studies looking at the MIDs of metabolic intermediates using LC-

MS/MS and the ability to perform collision induced fragmentation have 

demonstrated the utility of measuring metabolic intermediates for metabolic 

labeling experiments9, 17, 18.  The structural information provided by measuring 

multiple fragments following collision induced dissociation (CID) has been shown 

to increase the accuracy of flux calculations in metabolic labeling experiments 

when measuring intracellular intermediates17, 19, 20, 20.  As an example, Ruhl et al, 

2011 presented a compact method of isotopomer detection in order to conserve 

dwell time and maximize the number of fragment isotopomers that could be 

elucidated in a given run18. 

This work presents MID Max, a novel LC-MS/MS workflow (Figure 1), 

acquisition method, and isotopomer deconvolution method for MFA that takes 

advantage of additional scan types provided by hybrid instrumentation (Figure 2) 

to expand the number of MIDs that can be acquired in a given run.  First, 

modifications to an existing sampling and extraction method are made to allow 

for an isotopic “snapshot” of the metabolic state.  Second, the developed method 

is shown to accurately and precisely measure more MIDs of precursor and 

product fragments of intracellular central carbohydrate intermediates, 

biosynthetic intermediates, nucleotide phosphates, and cofactors compared to 

previous methods.  Using only a subset of the acquired data, it is shown that an 

improvement in the precision of measured fluxes can be achieved over traditional 

approaches.   
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Material and Methods 

Standards and reagents 

 Uniformly labeled 13C glucose and 1-13C glucose was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA).  Unlabeled glucose and 

other media components were purchased from Sigma-Aldrich (St. Louis, MO).  

LC-MS reagents were purchased from Honeywell Burdick & Jackson® 

(Muskegon, MI) and Sigma-Aldrich (St. Louis, MO).   

Biological material 

Replicate samples of E. coli K-12 MG1655 (ATCC 700926), obtained from 

the American Type Culture Collection (Manassas, VA),  were grown in unlabeled 

or labeled glucose M9 minimal media21 with trace elements22 and sampled from a 

water bath that was maintained at 37 °C and aerated at 700 RPM during batch 

exponential growth in 500 mL Erlenmeyer flasks.   

Extraction and sampling: 

Samples were taken and extracted using a modified version of the fast 

Swinnex® filtration approach described previously23.   The modifications made 

included the use of 47 mm filter and filter housing to accommodate the increased 

amount of culture broth and overall biomass sampled (10 mL at an OD600 of 

1.0).  Further details are described in the supplemental material. 

Instrumentation 

A XSELECT HSS XP 150 mm × 2.1 mm × 2.5 µm (Waters®, Milford, MA) 

with a Prominence UFLC XR HPLC (Shimadzu, Columbia, MD) was used for 

chromatographic separation.  An AB SCIEX QTRAP® 5500 mass spectrometer 
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(AB SCIEX, Framingham, MA) operated in negative mode was used for 

detection.  Further details of the LC-MS/MS system and gradient used were 

described previously16.   The list of MRM transitions is provided in supplemental 

table S-3.  The AB SCIEX acquisition files for the method are available upon 

request.  Detailed protocols for running the method can also be made available 

upon request. 

Raw data processing: 

 MRM data was integrated using multiQuant® 3.0.1.  Product ions 

corresponding to each MRM transition were extraction using PeakView® 2.2.  

The quantitation methods for MultiQuant® and the precursor ion annotation 

method for PeakView® can be made available upon request.  The detailed 

protocols for using the software along with the methods can also be made 

available upon request. 

Product ion spectral library generation: 

 Product ion spectra were acquired for unlabeled standards by direct 

injection.  Unlabeled standards were diluted to an appropriate concentration for 

the detector in a 50/50 (v/v%) of water + 0.1% formic and Acetonitrile + 0.1% 

formic acid.  The syringe speed was 7 uL/min.  Source parameters are given in 

Supplemental Table S .  Parameters for declustering potential (DP), entrance 

potential (EP), collision energy (CE), and collision cell exit potential (CXP) were 

optimized for each metabolite prior to spectral acquisition.  Further details are 

described in the supplemental material. 

Calculation of isotopomers 
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Multiple reaction monitoring scans (MRMs) acquired from samples 

collected in triplicate and analyzed in duplicate (n=6) were integrated using 

MultiQuant® 3.0.1.  Mass spectras from EPI and ER scans for all samples 

analyzed were extracted using peakView® 2.2.  Precursor and product MIDs 

from MRM acquisitions were calculated using in-house scripts.  Mass spectras 

from EPI and ER scans were processed using in-house scripts.  Theoretical 

isotopomer spectra for each compound were calculated using open-source 

python modules.  The data processing scripts are hosted on Github 

(https://github.com/dmccloskey/MDV_utilities). 

Metabolic Flux Analysis 

 The E. coli model used for MFA included iRL201324.  MFA simulations 

were conducted with MATLAB® and INCA v1.325.  Confidence intervals 

observable fluxes were calculated using published methods26.   Acquired 

metabolite MIDs for Acetyl-CoA, AMP, ATP, FAD, and UMP were not included in 

the flux estimations.  See supplemental information for additional details.   
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Results and Discussion 

Sampling and extraction 

 A major challenge to stationary, non-stationary, and dynamic MFA 

experiments aimed at measuring the isotopic distribution of intracellular 

metabolites is to preserve an isotopic "snapshot" of metabolism at the time of 

sampling.  This is a non-trivial task11 given the rapid turnover, cell leakage, and 

general instability of intracellular metabolites.  It is made more problematic by the 

increased biomass needed to acquire the complete MID for a given compound.  

This problem was resolved by sampling and extracting samples using a modified 

version of the fast Swinnex® filtration approach described previously23.   The 

modifications made included the use of 47 mm filter and filter housing to 

accommodate the increased amount of culture broth and overall biomass 

sampled (10 mL at an OD600 of 1.0) without compromising the speed at which 

cultures were previously found to be sampled (Supplemental Figure 1). 

Information-dependent acquisition (IDA) method development 

A primary analytical goal of metabolic labeling experiments is the accurate 

acquisition of as many mass isotopomer distributions (MIDs) as possible to 

provide more data points with which to constrain the solution space when 

calculating flux ratios or absolute fluxes27.   MIDs for compounds can be obtained 

through either an enhanced resolution (ER, Supplemental Figure 2) scan of the 

precursor ion or a series of multiple MRM scans (Figure 3a and b) on the 

instrument used in this study.  Both scan types were compared when 

implemented on the QTRAP instrument at a nominal concentration of biomass.  It 
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was found that an ER scan was not able to accurately measure as many 

theoretical MIDs in a biological matrix as multiple MRM scans (Table S-1 and 

supplemental discussion).  Therefore, a general scheme to employ multiple MRM 

scans was selected that maximized signal intensity and minimized the number of 

MRM transitions needed to capture the entire theoretical precursor isotopic 

spectrum. 

An information-dependent acquisition (IDA) method was then constructed 

whereby an enhanced product ion (EPI) scan was triggered for any of the MRM 

transitions that corresponded to an isotopomer state for a given compound 

(Figure 2 and Supplemental Figure 3).  The IDA-EPI scan required less dwell 

time than using multiple MRMs that correspond to each of the different product 

fragments.  This allowed for greater sensitivity and conserved cycle time for 

additional compounds.  It was found that several masses corresponding to 

different isotopic states for several fragments could often be acquired for each 

EPI scan.  By normalizing each product ion spectra acquired per EPI scan to the 

contribution of the precursor isotopomer determined by the MRM scan, the 

product-ion spectra could be determined (Figure 3c). 

Product ion spectral library generation  

A library of product ion spectra was generated from the injection of pure 

standards in order to deduce the structural basis for the observed product ion 

peaks (Figure 4).  Structural annotation was first based on data from the 

literature14-16, 18, 28 and then from simulated theoretical fragmentation that had 

minimal mass error between the predicted and observed ion mass.  Simulated 
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product ion peaks that could be derived from multiple fragments with minimal 

mass error were either omitted or compared against the expected isotopomer 

spectra as described below.  All 240 product ion spectral files and 124 

annotations corresponding to 167 compounds that were generated during this 

process are provided as supplemental material (Supplemental Table S-12, 

Supplemental Files S-1, S-2, S-3).  Carbon positions of each fragment structure 

were assigned indexes based on historical mapping (e.g., carbon mapping of 

glucose in traditional MFA models) or assigned indexes based on the final 

carbon mapping network for those metabolites that were not measured nor 

included in traditional MFA models (Table S-4). 

Analytical method validation 

An extensive screening procedure was initially conducted to narrow down 

the number of compounds that would be included in the acquisition method.  A 

set of target metabolites that were consistently found to show good 

reproducibility, high sensitivity, and relatively large abundance in most biological 

samples analyzed were screened for use in the fluxomics acquisition method 

from a pool of over 100 compounds validated for the LC-MS/MS assay 

previously16.  Compounds with similar retention times that had the potential for 

overlap in their isotopomer transitions were removed.  Compounds with or 

without isotopic overlap were first confirmed or disconfirmed by running groups of 

pooled standards as well as concentrated pools of unlabeled E. coli biomass.  

Second, compounds with or without isotopic overlap were checked when running 

samples of labeled 13C E. coli biomass.  The use of uniformly labeled E. coli 
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biomass also served to identify compounds with ghost or non-sense peaks in any 

of the isotopomer transitions that would interfere with analysis.  Compounds that 

were removed due to isotopic overlap included many of the organic acids and a 

majority of the nucleotide mono-, di-, and tri-phosphates.  Additionally, many of 

the amino acids and nucleotides and bases were screened out due to scan rate 

considerations (i.e., dwell time) early in the chromatographic gradient.  

Compounds that were screened are listed in Supplemental Table S-11.  Those 

compounds that remained were further screened by running samples of 

unlabeled E. coli as described below.  

The ability of MID Max to reproduce the theoretical isotopic spectrum for 

samples of unlabeled E. coli biomass was tested5, 29.  The method was able to 

capture the theoretical isotopomer spectrum for 97 MIDs consisting of 74 unique 

metabolite-fragment pairs (32 precursor spectra and 42 product spectra) (Table 1 

and 2).  The MIDs included central carbohydrate intermediates, biosynthetic 

pathway intermediates, as well as cofactors and nucleotide phosphates, with less 

than 1% average absolute deviation from the theoretical (Table S-2).  Not 

surprisingly, it was found that the average absolute deviation for the fragment 

isotopomers determined only from the MRM scan (0.69%) is slightly lower than 

those determined by the EPI scans (1.09%).  This is due to the fact that errors in 

the MRM scan are propagated by the errors of the EPI scan when individual EPI 

scans are normalized to the contribution of the precursor isotope from the MRM 

scan.  However, for most metabolite-fragment pairs, this additional source of 

error was found to be minimal. 
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In addition, 29 MIDs were acquired with a higher (4.8%) average absolute 

deviation from the theoretical (Table 2).  The higher deviation from the theoretical 

is due to insufficient resolution to capture the full unlabeled MID spectrum.  It 

may be possible to capture the full MID spectrum on a different tracer (see 

below).  This indicates that the method may be able to acquire 126 MIDs in a 

single run.  This is more MIDs than what has been previously reported30. 

 Improved precision of measured flux values 

  The ability of the method developed here to acquire precise MIDs of 

peripheral metabolites in practice was tested.  Using MID Max, mass spectra 

acquired from wild-type E. coli grown on an 80/20 mixture of 1-13C/U-13C, and 

sampled and extracted during exponential growth were analyzed.  This tracer 

scheme is commonly used in MFA studies for its ability to successfully resolve a 

multitude of paths 2, 3.  The method was able to capture the precursor MIDs of 

peripheral metabolites and several fragments with acceptable precision (see 

Figure 5 for an example, and Supplemental Table S8).  Specifically, it was able 

to measure the MIDs for the precursor and multiple fragments for the five key 

periphery metabolites, Acetyl-CoA, AMP, ATP, FAD, and UMP, with an average 

relative standard deviation (RSD) of 18.4%. This result shows promise that these 

metabolites could be included in MFA modeling. 

The accuracy and precision of fluxes estimated through an MFA 

application was tested using measured metabolite MIDs of central carbohydrate 

metabolism (62 of 87 total fragments) acquired using MID Max. A previously 

validated MFA model24 was used in the analysis.  First, the effect of the 
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additional product ion scans on the precision of observable net fluxes was tested 

by including varying amounts of MIDs generated by the product ion scans.  An 

increase in estimated average net flux precision (from 0.056 to 0.050) was found 

as additional product ion scans were included in the estimation procedure (Table 

3).  Second, accuracy was tested by comparing flux values estimated using the 

acquired data to previously published results24, 31 using the same organism and 

MFA model during steady-state growth on glucose, but with GC-MS derived 

MIDs.  Flux estimations were found to agree with the previously published 

values24, 31 (Table 4). An average absolute deviation of 10.8% (flux normalized to 

glucose uptake, Supplemental Table S10) for all tracer schemes used in the 

study was found for all reactions not including the exchange of unlabeled carbon 

dioxide.  It should be noted that greater than 94% of the deviation (i.e., of the 

10.8%) from the published values could be attributed to the reactions 

corresponding to ATP maintenance, oxidative phosphorylation, and acetate 

exchange.  When those reactions were excluded, an average absolute deviation 

of 6.0% was found (Table 4).  Third, the precision of estimated flux values was 

compared using the same data sets.  It was found that the MIDs acquired using 

the method described here were able to estimate the same or a greater number 

of reactions with better precision for all of the tracer schemes tested in the 

published study (Table 4 and supplemental Table S10).  This included the most 

similar tracer ([1] + [U]Glc (4:1)) to the 80/20 mixture of 1-13C/U-13C used here.  

In addition, the method was also found to resolve a greater number of exchange 

fluxes than any of the individual tracers used in the published study (Table 4).  
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This most likely directly relates to the number of MIDs that MID Max is able to 

acquire as well as the ability to directly measure intracellular intermediates and 

their fragments. 
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Conclusion:  

MID Max, a LC-MS/MS acquisition method and isotope recapitulation 

algorithm was described that utilizes hybrid instrumentation and multiple scan 

types to increase the number of MIDs that can be measured in a single run.  A 

library of product ion scans and spectral annotation was generated in the 

process.  This is in itself a valuable resource to the scientific community.  The 

method was validated through a series of control experiments using pooled 

standards, unlabeled E. coli biomass, and uniformly labeled 13C E. coli biomass.  

It was shown that even when using a subset of the acquired data, flux precision 

can be improved and the number of resolved exchange fluxes increased.  In 

order to utilize the full data-set, a genome-scale MFA model will be needed.  The 

analytical workflow and methodology presented is scalable to improvements in 

instrumentation over what is currently available, can be applied to MFA 

experiments using tracer schemes other than 13C (e.g., deuterium 32), and 

presents advances over current analytical methods that can be used in 

stationary, non-stationary, or dynamic MFA experiments. 
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Figure 6.1: Overview of the LC-MS-enabled fluxomics experiment using hybrid instrumentation.  
Cultures grown on a single or a combination of heavy isotope tracers are rapidly sampled and 
extracted.  In parallel, or during a separate experiment, filtrate samples and biomass samples are 
taken periodically during steady-state growth.  Extracted samples are further processed and then 
metabolites are separated and acquired on the LC-MS instrument.  After integration of peaks for 
each sample and processing of acquired product ion spectra, precursor and product MIDs are 
calculated.  Filtrate samples are analyzed by HPLC to determine substrate uptake and secretion 
rates.  Biomass samples are analyzed by a spectrophotometer to determine the growth rate.  The 
MIDs, substrate uptake and secretion rates, and growth rate are fitted to a reaction network of 
metabolism.  The estimated fluxes that minimize the error between the predicted and measured 
values are then calculated. 
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Figure 6.2: LC-MS/MS acquisition method and example.  A) Acquisition Diagram.  When an MRM 
transition exceeds a specified threshold, an IDA is triggered that utilizes an enhanced product ion 
(EPI) scan.  The spectra of the EPI scans are then used to infer additional product isotopomers 
not captured by the MRM scan.  B) MRM acquisition of the ATP isotopomer spectra in an E. coli 
matrix using the metabolic labeling method.  Individual MRM transitions corresponding to 
isotopomers of ATP (a+0, a+1, …) were acquired.  C)  EPI acquisition of the ATP product 
isotopomers.  The product ion scans that reveal the labeling states of product ions (f1+0, f1+1, …, 
f2+0, f2+1, …) triggered by each MRM transition corresponding to an isotopomer of ATP are 
extracted, processed, and used to determine the product isotopomers.   
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Figure 6.3: Detection and deconvolution of precursor and product isotopomers.  A) A toy example 
of MRM transitions corresponding to a precursor with 3 carbons and a product with 2 carbons is 
shown.  The precursor isotopomers (A+0, A+1, …) were calculated by summing over the 
intensities of the transitions measured for each combination of product isotopomer that 
contributed to the a+0, a+1, … mass.  B) The product isotopomers (F+0, F+1,…) were calculated 
by summing over the intensities of transitions measured for each combination of precursor 
isotopomer that contributed to the f+0, f+1, … mass.  C) Additional product isotopomers 
(F1+0,F1+1,…,F2+0,F2+1,…) were calculated from the product ion scans (fs+0, fs+1, …) 
triggered by MRM scans corresponding to a precursor isotopomer (a+0, a+1, …).  Each 
additional product isotopomer was calculated by summing over the intensities of each isotopomer 
in each spectrum (f1+0,s+0, f1+0,s+1, …, f1+1,s+0, f1+1,s+1, …, and f2+0,s+0, f2+0,s+1, …, 
f2+1,s+0, f2+1, …) and normalizing to the corresponding precursor isotopomer (A+0, A+1, …) 
determined previously.   
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Figure 6.4: Product ion spectral library generation and fragment annotation.  A) Workflow used to 
map carbon positions to product ion spectra from the direct injection of pure, unlabeled 
standards.   Panels B and C correspond to examples using the workflow for glutamate (glu-L) and 
AMP (amp), respectively. 
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Figure 6.5: Measured MIDs of ATP measured from wild-type E. coli grown on an 80/20 mixture of 
1-13C/U-13C.  The structure of ATP is shown in the top right.  A) The calculated precursor MID 
calculated from MRMs.  B) The calculated precursor MID calculated from EPI scan.  C) The 
calculated product MID calculated from EPI scan.  
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Table 6.1: List of validated metabolites and fragments: 
Met ID Metabolite Name Fragment Formula 
23dpg 3-Phospho-D-glyceroyl phosphate C3H7O10P2- 
6pgc 6-Phospho-D-gluconate C6H12O10P- 
6pgc 6-Phospho-D-gluconate C6H10O9P- 
6pgc 6-Phospho-D-gluconate C5H12O7P- 
6pgc 6-Phospho-D-gluconate C5H12O8P- 

Accoa Acetyl-CoA C23H37N7O17P3S- 
accoa Acetyl-CoA C23H36N7O14P2S- 
accoa Acetyl-CoA C13H23N2O10P2S- 
accoa Acetyl-CoA C10H14N5O10P2- 
accoa Acetyl-CoA C10H12N5O9P2- 
accoa Acetyl-CoA C10H11N5O6P- 
acon-C Aconitate-C C6H5O6- 
acon-C Aconitate-C C6H3O5- 
acon-C Aconitate-C C5H5O4- 

akg Alpha-ketoglutarate C5H5O5- 
akg Alpha-ketoglutarate C4H5O3- 
akg Alpha-ketoglutarate C2HO3- 
amp AMP C5H4N5- 
amp AMP C10H13N5O7P- 
asp-L L-aspartate C4H6NO4- 
asp-L L-aspartate C4H6NO2- 
asp-L L-aspartate C4H3O4- 
asp-L L-aspartate C3H6NO2- 
atp ATP C10H15N5O13P3- 
atp ATP C10H14N5O10P2- 
atp ATP C10H12N5O9P2- 
atp ATP C10H11N5O6P- 

dhap Dihydroxyacetone phosphate C3H6O6P- 
fad FAD C27H32N9O15P2- 
fad FAD C17H18N4O8P- 
fad FAD C10H13N5O7P- 
fdp D-Fructose 1,6-bisphosphate C6H13O12P2- 
fdp D-Fructose 1,6-bisphosphate C6H10O8P- 
fdp D-Fructose 1,6-bisphosphate C4H8O6P- 
fdp D-Fructose 1,6-bisphosphate C6H8O7P- 
g1p D-Glucose 1-phosphate C6H12O9P- 
g6p D-Glucose 6-phosphate C6H12O9P- 
g6p D-Glucose 6-phosphate C4H8O7P- 
glu-L L-glutamate C5H8NO4- 
glu-L L-glutamate C5H6NO3- 
glu-L L-glutamate C4H8NO2- 

glyc3p Glycerol 3-phosphate C3H8O6P- 
glyclt Glycolate CH3O2- 
glyclt Glycolate C2H3O3- 
icit Isocitrate C6H7O7- 
icit Isocitrate C6H5O6- 
icit Isocitrate C5H3O3- 

mal-L Malate C4H5O5- 
mal-L Malate C4H3O4- 
met-L L-Methionine CH3S- 
met-L L-Methionine C5H10NO2S- 
pep Phosphoenolpyruvate C3H4O6P- 

phe-L L-phenylalanine C9H7O2- 
phe-L L-phenylalanine C9H10NO2- 
phpyr Phenylpyruvate C9H7O3- 
phpyr Phenylpyruvate C8H7O 
phpyr Phenylpyruvate C7H7- 

Pool_2pg_3pg 
Pool of D-Glycerate 2-phosphate and 3-Phospho-D-glycerate 

C3H6O7P- 
Pool_2pg_3pg C2H6O5P- 

prpp 5-Phospho-alpha-D-ribose 1-diphosphate C5H9O10P2- 
prpp 5-Phospho-alpha-D-ribose 1-diphosphate C5H12O14P3- 
pyr Pyruvate C3H3O3- 
r5p D-Ribose 5-phosphate C5H10O8P- 

ru5p-D D-Ribulose 5-phosphate C5H10O8P- 
s7p Sedoheptulose 7-phosphate C7H14O10P- 
skm Shikimate C7H9O5- 
skm Shikimate C6H5O- 
succ Succinate C4H5O4- 
succ Succinate C4H3O3- 
thr-L L-Threonine C4H8NO3- 
thr-L L-Threonine C2H4NO2- 
ump UMP C9H9N2O6- 
ump UMP C9H12N2O9P- 
ump UMP C4H3N2O2- 
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Table 6.2: Summary of the acquisition method validation on unlabeled E. coli biomass.   

 

Metabolite-
fragment 

pairs 

Absolute 
deviation from 
theoretical % 

RSD 
% 

MRM + EPI 97 0.90 9.49 

MRM 45 0.69 7.52 

EPI 52 1.09 11.19 

Partial 29 4.78 6.90 
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Table 6.3: MFA Model and net flux estimation statistics using a subset of the acquired MIDs.   

model fitted 
fluxes 

fitted 
fragments 

fitted 
dof 

fitted 
chi2 

chi2 
pass 

observable 
fluxes fluxes 

average 
observable 

flux 
precision 

iRL2013 (MRM + EPI) 3 62 224 243.4 TRUE 56 75 0.050 
iRL2013 (MRM) 3 36 119 134.6 TRUE 57 75 0.056 

iRL2013 (unique MRM + 
EPI) 3 47 164 186.3 TRUE 55 75 0.054 
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Table 6.4: Accuracy and precision using a subset of the acquired MIDs (i.e., iRL2013 
(MRM+EPI)) compared to previously published results using iRL2013 and GC-MS derived 
MIDs31.  *Reactions corresponding to the exchange of unlabeled carbon dioxide, ATP 
maintenance, oxidative phosphorylation, and acetate exchange were not included in the 
calculations shown.  Values considering all reactions are shown in Supplemental Table S-10.   

Tracer 

average absolute 
deviation of 

estimated flux 
values (% flux 
normalized to 

glucose uptake)* 

number of net 
fluxes with 
improved 

precision (65 
total)* 

increased number of 
resolved exchanged 

fluxes (21 total) 

[1,2]Glc 4.53 9 7 

[2,3]Glc 4.50 23 8 

[4,5,6]Glc 4.89 15 8 

[2,3,4,5,6]Glc 5.66 19 7 

[1] + [4,5,6]Glc (1:1) 4.72 21 8 

[1] + [U]Glc (1:1) 4.91 21 8 

[1] + [U]Glc (4:1) 5.16 27 7 

20% [U]Glc 4.74 35 8 

[1]Glc 6.29 29 8 

[2]Glc 5.00 15 6 

[3]Glc 6.23 33 8 

[4]Glc 17.48 39 10 

[5]Glc 5.14 5 6 

[6]Glc 5.63 13 9 
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CHAPTER 7: 

Modeling Method for Increased Precision and Scope of Directly Measurable 

Fluxes at a Genome-Scale 

Abstract:  

 Metabolic flux analysis (MFA) is considered to be the gold standard for 

determining the intracellular flux distribution of biological systems. The majority of 

work using MFA has been limited to core models of metabolism due to 

challenges in implementing genome-scale MFA and the undesirable trade-off 

between increased scope and decreased precision in flux estimations.  This work 

presents a tunable workflow for expanding the scope of MFA to the genome-

scale without trade-offs in flux precision. The genome-scale MFA model 

presented here, iDM2014, accounts for 537 net reactions, which includes the 

core pathways of traditional MFA models and also covers the additional 

pathways of purine, pyrimidine, isoprenoid, methionine, riboflavin, coenzyme A, 

and folate, as well as other biosynthetic pathways. When evaluating the iDM2014 

using a set of measured intracellular intermediate and cofactor mass isotopomer 

distributions (MIDs)1, it was found that a total of 232 net fluxes of central and 

peripheral metabolism could be resolved in the E. coli network. The increase in 

scope was shown to cover the full biosynthetic route to an expanded set of 

bioproduction pathways, which should facilitate applications such as the design 

of more complex bioprocessing strains and aid in identifying new antimicrobials.  

Importantly, it was found that there was no loss in precision of core fluxes when 
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compared to a traditional core model, and additionally there was an overall 

increase in precision when considering all observable reactions.  
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Introduction 

The intracellular flux distribution of metabolites is considered by many to 

define the functional state of the cell. A precise readout of the flux profile of an 

organism is important for discovering and refining our knowledge of the metabolic 

capabilities of organisms, 2-9 as well as to engineer organisms to more efficiently 

drive precursor metabolites towards product metabolites for the sustainable 

production of commodity chemicals and biotherapeutics 10-17. With limited 

experimental data, methods exist to predict the intracellular flux of the cell using 

genome-scale metabolic models (i.e., “M models”) (see 18 and 19 for a review). 

Furthermore, it has been shown that by incorporating the expression network 

with the metabolic network (i.e., “ME model”), more accurate predictions of 

intracellular fluxes can be achieved as more constraints are added 20-22. Even 

with these in silico constraint-based modeling approaches, the gold standard for 

assessing the intracellular flux distribution of the cell is via metabolic labeling 

experiments 23, 24.  

Once mass isotopomer distributions (MIDs) of labeled cellular 

components, either proteogenic amino acids 24-28 or central carbon intracellular 

metabolites 2, 29,have been determined, intracellular flux distributions can then be 

calculated using metabolic flux analysis (MFA). A prerequisite of MFA is a valid 

stoichiometric model of the organism’s metabolism and a valid mapping of the 

elements that comprise the labeled tracer through the network. Core models that 

account for the minimal amount of carbon metabolism have traditionally been 

used in MFA calculations 8, 30. These core models have fewer free fluxes, which 
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provides greater degrees of freedom and allows for greater statistical confidence 

in the MFA fitting procedure. Additionally, core models have a fast simulation 

time and an atom mapping network that is readily available in the literature 30. 

However, minimal core models do not account for cofactor usage, biosynthesis, 

or salvage, and thus do not provide flux information for many pathways that are 

important for understanding and engineering the physiology of the cell. While 

genome-scale atom mappings have emerged for various organisms 31, 32, and a 

recent study using a genome-scale model with MFA has emerged33, genome-

scale models have not been widely adopted in MFA. Several reasons for this 

include slower simulation times, a lack of available isotope measurement of 

metabolites outside proteogenic amino acids and central carbon intermediates, 

the nontrivial integration and reconciliation of genome-scale atom mapping 

models with genome-scale stoichiometric models, and a loss in flux precision due 

to the increase number of alternate biosynthetic routes33.  

Previous work to integrate 13C MFA with genome-scale modeling has 

been conducted. These attempts have used 13C MFA data to constrain core 

metabolic pathways while using FBA to solve the full genome-scale model or 

have included 13C MFA data as additional constraints in the FBA problem 34-36. 

Given that these approaches do not include a genome-scale carbon mapping 

network, the methods essentially extrapolate information from metabolic labeling 

experiments to the genome-scale instead of directly calculating the flux values 

based off of the MIDs themselves. This approach can be problematic as 

variability in labeling patterns due to the recycling of metabolic intermediates 
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from peripheral metabolic pathways is not captured33. In addition, information 

obtained from the labeling of cofactors and other peripheral metabolites cannot 

be included in the analysis. A more recent effort has demonstrated the ability to 

calculate fluxes at a genome-scale within the MFA framework33.  Irrespective of 

labeling substrate, the authors found that an inherent disadvantage of 13C MFA at 

the genome-scale is a loss in flux precision due to the increased number of 

alternate biosynthetic routes and carbon recycling from peripheral metabolism33. 

This work expands the scope of MFA to the genome-scale without a loss 

in flux precision. A genome-scale model based on the most recent E. coli 

reconstruction37 with a complete carbon mapping was constructed and compared 

to MFA models that account for varying degrees of cofactor usage, peripheral 

metabolism, and biomass composition. It was found that the increased scope 

gained when utilizing genome-scale models for MFA simulation does not come at 

a cost of loss in flux precision. It was shown that the precision of flux estimates 

using the genome-scale model can be improved through measurements of 

cofactor and peripheral metabolite MIDs.  
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Materials and methods 

Standards and Reagents: 

 Uniformly labeled 13C glucose and 1-13C glucose was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). Unlabeled glucose and 

other media components were purchased from Sigma-Aldrich (St. Louis, MO). 

LC-MS reagents were purchased from Honeywell Burdick & Jackson® 

(Muskegon, MI) and Sigma-Aldrich (St. Louis, MO).  

Biological Material: 

Replicate samples of E. coli K-12 MG1655 (ATCC 700926), obtained from 

the American Type Culture Collection (Manassas, VA), were grown in unlabeled 

or labeled glucose M9 minimal media38 with trace elements39 and sampled from a 

water bath that was maintained at 37 °C and aerated at 700 RPM during batch 

exponential growth in 500 mL Erlenmeyer flasks. Samples were taken and 

extracted using a modified version of the fast Swinnex® filtration approach 

described previously1, 40. 

Instrumentation and data processing: 

A XSELECT HSS XP 150 mm × 2.1 mm × 2.5 µm (Waters®, Milford, MA) 

with a Prominence UFLC XR HPLC (Shimadzu, Columbia, MD) was used for 

chromatographic separation. An AB SCIEX Qtrap® 5500 mass spectrometer (AB 

SCIEX, Framingham, MA) operated in negative mode was used for detection. 

Mass spectral data was processed using MultiQuant® 3.0.1and PeakView® 2.21 

In Silico constraint-based modeling, simulation, and atom mapping network 

generation: 
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 The E. coli models used for MFA included iRL2013 30, iJS201228, 

iDM2014_core (core model derived from iJO136637), and iDM2014 (genome-

scale model derived from iJO136637). All constraint-based modeling was 

conducted in python using COBRApy41. Atom mappings were taken from 

iJS201228, the EcoCyc database32, MetRxn database31 and KEGG reaction pair 

database42. Metabolic map construction and visualization was done using escher 

1.0.043.  

Metabolic Flux Analysis: 

 MFA simulations were conducted with MATLAB® and INCA v1.344. A 

wrapper from INCA to the Cobra Toolbox45 was written in order to utilize the 

more precise linear solvers (i.e., glpk http://www.gnu.org/software/glpk/) 

supported by the Cobra Toolbox. The scripts for the wrapper are available at 

https://github.com/dmccloskey/genomeScale_MFA_INCA.  MIDs were weighted 

by the standard deviation of biological and analytical replicates (n=6) or the 

accuracy as determined from unlabeled glucose labeling experiments46. 84 MIDs 

corresponding to the 32 metabolites were included in the fit for the genome-scale 

model (Supplemental Table S-10).    Standard deviations were calculated based 

off of 95% confidence intervals as described in Antoniewicz 200647 as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏−𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏
4

.  Observable fluxes were 

determined as described in Choi 201148.  Observable fluxes were those where 

the estimated flux value was at least four times larger than the 95% confidence 

interval and did not include the value zero. Standard deviations of observable 

fluxes were used to compare the precision of each model. Significant difference 

http://www.gnu.org/software/glpk/
https://github.com/dmccloskey/genomeScale_MFA_INCA
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between fluxes was determined by the 95% confidence intervals. Further details 

are described in the supplemental material. 

 MFA simulations were conducted on a 128 core cluster consisting of dual-

socket 2.6 GHz Intel Xeon E5-2670 processors with 64 GB of memory. Flux 

estimations and confidence interval calculations using iRL2013 and iDM2014 

took approximately a minute, and 4 hours, respectively. 
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Results and Discussion 

A tunable MFA Genome-scale model generation workflow: 

A genome-scale MFA model was constructed that accounts for metabolic 

content traditionally omitted from MFA models. This model accounts for cofactor 

usage, biosynthesis, and salvage pathways, as well as the carbon mappings of 

biosynthetic precursors, nucleotide phosphate, cofactor, vitamins, and other 

macromolecules. In addition to the full model, a core model of central 

carbohydrate metabolism that accounts for the stoichiometry of cofactors, but not 

the carbon mapping, was also constructed for comparison. The full model, 

iDM2014, and core model, iDM2014_core, were derived from iJO136637 (Figure 

1). The core model included the entire central carbohydrate metabolism, amino 

acid metabolism, and oxidative phosphorylation, as well as necessary transport 

reactions. Cofactors, vitamins, and other compounds that were contained in the 

biomass reaction, which could no longer be produced by the model, were 

replaced with their metabolic precursors (e.g., phosphoenolpyruvate, erythrose-

4-phosphate, etc.) to generate a modified biomass reaction composition. Prior to 

use in MFA simulations, the models were tuned for growth on glucose minimal 

media. This tuning involved the lumping of linear and/or coupled pathways of 

peripheral metabolism for the full model into a minimal number of reactions 

(Figure 1B). “No flux” reactions of peripheral metabolism were removed based on 

simulation results from FVA49 and parsimonious network usage (pFBA50) for 

aerobic, glucose minimal media conditions. The iterative procedure of reducing 

peripheral reactions without changing growth rate predictions is given in Figure 1. 
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This reduction strategy decreased the number of irreversible network reactions 

from 3219 in iJO1366 to 679 while retaining the biosynthesis of all components 

that comprise the biomass reaction composition. It is worthwhile to note that this 

tuning can and should be performed for any given substrate and media condition 

of interest to save computational time. 

 A workflow was developed to integrate carbon mapping transitions of 

nucleotides, cofactors, vitamins, and other metabolites into the central and 

peripheral metabolism of the stoichiometric model. Such data sets of 

experimentally-derived atom transitions that encompass all of E. coli metabolism 

do not yet exist. Some databases of computationally simulated atom transitions 

that encompass a majority of E. coli metabolism are available31, 32. However, the 

atom transitions of core and peripheral metabolism are often incomplete, contain 

equally probable alternate atom mappings, or biochemically incorrect atom 

mappings. This makes direct integration of simulated atom mappings with the 

stoichiometric model problematic without extensive manual curation. To this end, 

an atom mapping naming convention and procedure was developed that ensured 

uniqueness of each atom transition in a given reaction and allowed for the 

building of the atom mappings of peripheral metabolites not accounted for from 

their precursor metabolites in any database. A schematic of the naming 

convention and atom mapping procedure for peripheral metabolic reactions is 

given in Supplemental Figures S-1 and S-2. Other benefits that can be attributed 

to the procedure generated in this work include the ability to readily combine 

atom transitions of individual reactions into lumped reactions and the ability to 
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track the flow of carbon through macromolecule biosynthesis and degradation as 

precursor units instead of specific carbon positions. The latter is particularly 

beneficial due to the amount of manual curation of transitions that was often 

necessary when dealing with incomplete or alternate carbon mappings.  

Due to the fact that biochemical references for atom mappings from 

databases and previously published models are often incomplete and may 

contain inaccuracies, the robustness of the genome-scale model to incorrect 

atom mappings and addition or removal of nonessential reactions was explored 

(supplemental discussion). It was found that the accuracy of the genome-scale 

model was robust to small errors in atom mappings (i.e., the incorrect 

assignment of symmetry) and the addition or removal of non-essential reactions 

(Supplemental Table S7, Supplemental Figure S4 and S5). However, the penalty 

for including errors in atom mappings and additional reactions was found to be a 

loss in precision.  

A comparison of flux accuracy to previously published MFA models: 

The full and core iDM2014 models were compared to previously 

generated MFA models to evaluate and validate their content (Table 1). MIDs of 

intracellular intermediates and peripheral metabolites, and measured uptake, 

secretion, and growth rates from wild-type E. coli grown on an 80/20 mixture of 1-

13C/U-13C, sampled, and extracted during exponential growth, were used to 

determine the accuracy (this section) and precision (section 3.3) of MFA flux 

estimations for all the models described in Table 1. This tracer scheme is 

commonly used in MFA studies for its ability to successfully resolve a multitude 
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of paths25, 26. There is also evidence demonstrating that the resolution of 

estimated fluxes when using a genome-scale model is not significantly affected 

by the tracer scheme used33.  The models compared include the following: 

iRL2013 30, a traditional MFA model of core metabolism; iDM2014_core, a core 

model that accounts for cofactor mass balances (this work); iJS2012 28, a 

previously-published reduced genome-scale model that accounts for cofactor 

mass balances and all biomass components; and iDM2014, a genome-scale 

model (as described here) that accounts for cofactor mass balances, their 

mappings, and all biomass components. The iRL2013 model was specifically 

chosen as the representative traditional MFA model because it encompasses the 

content found in the majority of traditional MFA models, and has been 

extensively validated and utilized 30, 51. All net fluxes estimated are given in 

Supplemental Table S-1. The statistics of the fit and flux estimates are given in 

Tables 2 and 3, respectively.  

A comparison of flux estimations for all models examined here were found 

to be within ranges of previously published flux estimations of wild-type E. coli 

grown on glucose minimal media 2, 25, 28, 30 and similar to results found previously 

using the same tracer and experimental setup1. Only minor net flux differences 

(i.e., less than 0.005 fold change between intracellular reactions) for observable 

reactions and reaction identifiers that could be reconciled between models were 

found (Supplemental Figure S3 and supplemental discussion). Taken together, 

these findings validate the accuracy of the modeling methods by showing 

consistency across the models examined.  
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A comparison of flux precision to previously published MFA models: 

The number of observable fluxes (criteria described in materials and 

methods) and observable flux precision for either all net fluxes or a subset of 

representative net fluxes from core metabolism was compared for all models 

(Figure 2 and Table 3). Precision was determined from 95% confidence intervals 

as described in the methods. A more encompassing biomass reaction and the 

addition of mass balances for cofactors and additional metabolites did not appear 

to improve the flux precision. For example, compared to iRL2013, the precision 

of flux estimates did not improve when using iDM2014_core, which includes 

cofactor mass balances (0.11 vs. 0.14 for representative net fluxes from core 

metabolism). Compared to both iRL2013 and iDM2014_core, the precision of flux 

estimates did not improve when using iJS2012 (0.19 for representative net fluxes 

from core metabolism), which includes a full biomass objective reaction and 

cofactor mass balances. However, the addition of mappings for cofactors and 

additional metabolites did appear to improve flux precision. This is evident when 

comparing the precision of fluxes estimated using iJS2012, which does not 

include mappings for cofactors, and iDM2014, which does include mappings for 

cofactors (i.e., 0.19 vs. 0.10, respectively). This indicates that while increasing 

the scope of the model can generate a greater number of observable fluxes, the 

power to resolve those fluxes cannot be realized without corresponding atom 

mappings for metabolites in peripheral metabolism.  

In order to better understand the contribution of including additional MS 

measurements of cofactors and peripheral metabolites in conjunction with the 
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carbon mappings for cofactors and peripheral metabolites, the genome-scale 

model iDM2014 was resimulated without MS measurements for cofactors (results 

denotes as iDM2014*). First, it is important to note that the chi-squared statistics 

was not satisfied when using the genome-scale model without the additional MS 

measurements (Table 3). This may not be true for all use cases of the genome-

scale MFA model, but it highlights the importance of having an analytical method 

capable of measuring the MIDs of peripheral metabolites to compensate for the 

decreased number of degrees of freedom. Regardless, a reduction in the 

percentage of observable fluxes (43.2% vs. 42.1%) and a loss of precision was 

found for observable fluxes (0.22 vs. 1.60) from iDM2014 to iDM2014*. This 

difference highlights the need for additional measurements in peripheral 

metabolism to reliably constrain reactions in the periphery. Compared to 

iJS2012, the percentage of observable fluxes and net flux precision was 

markedly greater for iDM2014 even without MS measurements of cofactors 

(35.3% vs. 43.2% and 6.03 vs. 1.6 for the percentage of observable fluxes and 

average observable flux precision, respectively). This implies that both the MS 

measurement of cofactors and the carbon mappings themselves contribute to the 

overall number of observable fluxes and observable flux precision of the 

genome-scale model iDM2014. 

When comparing iDM2014 to iRL2013, a minor improvement in average 

observable flux precision was found in central carbohydrate reaction fluxes (0.10 

vs. 0.11, respectively). When considering all observable fluxes, an improvement 

in average flux precision was found (0.22 vs. 0.52, respectively).  Previous work 
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has shown that many of the flux ranges for peripheral metabolic pathways are 

constrained by the full biomass objective33, which may explain the increase in 

average observable precision found in this study.  However, unlike previous work 

where intracellular and cofactor MID measurements were not available, this 

study demonstrates a gain in flux precision for the genome-scale model in core 

and peripheral metabolism when the analytical capabilities to make such 

measurements are available (Table 3 and Supplemental Table S-9).  

Furthermore, the flux ranges of MFA estimated flux values compared to the flux 

ranges of FVA simulated minimum and maximum values was found to be 

improved by 2.6% (Supplemental Table S-11).  However, it was found that 27.1% 

of the reactions in peripheral metabolism were significantly different between the 

two methods.  This finding indicates that while the full biomass objective imposes 

constraints on the reactions of peripheral metabolism, the estimated flux ranges 

are neither as precise nor accurate unless direct measurement of peripheral 

MIDs are included.  This can be explained by the fact that the percentage of free 

fluxes in the periphery in iDM2014 was similar to the percentage of free fluxes in 

central metabolism (38.8% and 40.0%, respectively).  Therefore, this study 

demonstrates that the combination of improved analytical capabilities of MID 

Max1 and a condition-specific modeling tuning workflow can allow for precise flux 

estimations using MFA at a genome-scale.   

Increased scope of measured flux values: 

iDM2014 captures the recycling of metabolic intermediates from 

biosynthetic pathways back into central carbohydrate metabolism that are not 
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captured by traditional MFA models (Figure 4). For example, L-alanine and UDP 

are recycled back into the network through meurine biosynthetic pathways 52-54. 

The amount of meurine recycled per cell division has been estimated to be as 

high as 30% 54. Pyruvate can also be recycled from L-serine via serine 

deaminase. Several salvage pathways such as AMP nucleosidase (which 

recycles AMP to ribose-5-phosphate and adenine) are identified as active. 

Glycerol is recycled directly into glycolysis as a byproduct of lipid metabolism. 

The symmetric metabolite fumarate is a byproduct of several biosynthetic 

pathways that are reincorporated directly into central carbohydrate metabolism. 

Fumarate can be recycled from L-aspartate via aspartate transaminase or from 

(S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate via 

adenylosuccinate lyase. In addition, the genome-scale model captures the 

multiple biosynthetic routes to synthesize the metabolic intermediate AICAR 

(Figure 3). AICAR is synthesized from ribose-5-phosphate during histidine and 

purine biosynthesis along its incorporation into IMP. Similar to previous studies, 

CO2, glycolate, and formate were also found to be recycled from various 

biosynthetic processes33.  Thus, additional sources of variance in the carbon 

labeling pattern of metabolic intermediates are accounted for when including 

peripheral metabolism. 

A major benefit to using a genome-scale model for MFA is the direct 

measurement of peripheral metabolic pathway flux (Figure 4, Supplemental 

Figure 2, Supplemental Table 8). For example, the flux through biosynthetic, 

interconversion, and degradation pathways of amino acids is measured directly.   
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Thus, a genome-scale model for MFA could be more directly applicable to 

analyze the production of amino acids such as L-valine 55-57 and L-threonine 58, 

which have been targeted for overproduction using E. coli. The flux to isoprenoid 

biosynthesis is directly measured in a genome-scale model for MFA such as 

iDM2014. Isoprenoids such as carotenoids 59, 60 are high value precursors to the 

production of a number of flavors, fragrances, and medicines. In particular, the 

anti-malarial drug artemisinin 61-64 and anti-cancer drug taxol 65, 66 have been 

targets for overproduction using E. coli.  In addition, many biosynthetic pathways 

of cell wall formation are well resolved.  The enzymes of these pathways are high 

value targets for antimicrobial drug design67-69. 
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Conclusion:  

A workflow for generating genome-scale MFA models and integration with 

cofactor measurements of MIDs was detailed. The genome-scale model 

presented here, iDM2014, was tuned for growth on glucose. Other genome-scale 

models tuned for a desired environmental and/or genetic background can be 

readily produced using the workflow that was presented. iDM2014 was compared 

to a core version and previously published MFA models. A 414% gain in the 

number of calculated fluxes was found. These additional flux measurements 

include purine, pyrimidine, isoprenoid, methionine, riboflavin, coenzyme A, folate, 

and other biosynthetic pathways that are excluded from traditional MFA models. 

Importantly, the gain in the number of calculated fluxes was found without a loss 

in precision of estimated fluxes of central metabolism. The ability to directly 

measure an increased scope of reactions without compromising the precision 

with which those fluxes are estimated should be a valuable resource for the 

engineering of microorganisms for the synthesis of high value products from 

renewable energy sources and aid in the discovery and design of novel drug 

targets. 
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Figure 7.1: Schematic of the genome-scale and core MFA model generation and model 
generation workflow.  (A) Starting from the genome-scale reconstruction iJO1366, core and 
reduced models of E. coli metabolism were generated.  The core model (iDM2014_core) included 
all core metabolic pathways along with a core biomass reaction.  The reduced model (iDM2014) 
included core metabolism, the full biomass reaction, and a reduced peripheral metabolism.  (B) A 
workflow to reduce peripheral metabolism. Peripheral metabolism was iteratively linearized and 
pruned to maintain an optimal growth rate for the given experimental conditions using constraint-
based approaches.  Further details of the reduction procedure can be found in the main text and 
supplemental methods. 
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Figure 7.2: Net flux values calculated with different MFA models. Flux predictions, including 
precision, of key reactions in central carbohydrate metabolism calculated using the same data set 
and different models.  Circles represent the best net flux estimate; whiskers represent +/- the 
standard deviation as calculated from 95% confidence intervals.  All flux values are normalized to 
net glucose uptake.  iDM2014* denotes results when cofactor measurements corresponding to 
Acetyl-CoA, AMP, ATP, FAD, and UTP were omitted from the flux estimation using iDM2014. 
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Figure 7.3: A predicted flux map for central carbohydrate metabolism for wild-type E. coli using 
the iDM2014 MFA model. The flux map was generated using measured data for E. coli growing 
aerobically in glucose M9 minimal media.  Shown are core metabolic reactions along with the 
entry points of several recycled intermediate metabolites for biosynthetic and salvage pathways 
of peripheral metabolism.  Also shown are the multiple biosynthetic routes to synthesize AICAR 
and glycine that are not captured by traditional MFA models. A complete list of reaction and 
metabolite abbreviations is given in S-5. 
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Figure 7.4: A predicted flux map for select pathways in peripheral metabolism for wild-type E. coli 
using the iDM2014 MFA model that have been targets of metabolic engineering. The flux map 
was generated using measured data for E. coli growing aerobically in glucose M9 minimal media.  
The name for lumped reactions has been omitted. A complete list of reaction and metabolite 
abbreviations is given in S-5.  
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Table 7.1: MFA Model statistics 

Model 

irrev
ersi
ble 
reac
tion
s 

net 
reactio
ns 

metabo
lites 

reactio
ns with 
C-
mappin
gs 

metaboli
tes with 
C-
mapping
s 

full 
biomas
s 
reactio
n 

cofact
or 
balanc
e 

cofactor 
mappin
gs 

refe
ren
ce 

iRL2013 97 75 74 89 62 No No No 30 

iDM2014_
core 430 260 262 280 157 No Yes No 

This 
stud
y 

iJS2012 353 266 190 265 127 Yes Yes No 28
 

iDM2014 679 537 429 564 536 Yes Yes Yes 
This 
stud
y 
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Table 7.2: Flux estimation statistics. The degrees of freedom (DOF) are calculated as follows: 
number of measured fluxes + number of measured fragment isotopes – number of free fluxes. 
iDM2014* denotes results when cofactor measurements corresponding to Acetyl-CoA, AMP, 
ATP, FAD, and UMP were omitted from the flux estimation using iDM2014. 

model 
fluxes 
included 
in the 
estimation 

fragments 
included 
in the 
estimation 

χ2 χ2 
accepted DOF 

iRL2013 3 71 280.3 True 283 

iDM2014_core 3 72 172.9 True 163 

iJS2012 3 72 155.6 True 161 

iDM2014 3 86 178.7 True 195 

iDM2014* 3 72 129.4 False 60 
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Table 7.3: Comparison of estimated fluxes between models. Representative fluxes are given in 
the supplemental information. iDM2014* denotes results when cofactor measurements 
corresponding to Acetyl-CoA, AMP, ATP, FAD, and UMP were omitted from the flux estimation 
using iDM2014. 

  
all net fluxes representative core net fluxes 

(n=34) 

Model 

Number of 
observable 
fluxes 

Average 
observable 
precision 

number of 
observable 
fluxes 

Average 
observable 
precision 

(% of net 
fluxes) ) (% of net 

fluxes)  

iRL2013 56 (74.7%) 0.52 19 (55.9%) 0.11 

iDM2014_core 91 (35.0%) 3.42 19 (55.9%) 0.14 

iJS2012 94 (35.3%) 6.03 14 (41.2%) 0.19 

iDM2014 232 (43.2%) 0.22 17 (50.0%) 0.10 

iDM2014* 226 (42.1%) 1.6 16 (47.1%) 0.11 
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CHAPTER 8: 

Laboratory Evolution of Gene Knockout Strains Reveals Fundamental Principles 
of Adaptation 

 

Abstract: 

Adaptive laboratory evolution (ALE) enables a new line of biological 

inquiry.  ALE was used to study re-optimization of growth fitness of a pre-evolved 

Escherichia coli K-12 MG1655 in response to knock-out (KO) of major metabolic 

genes.  Metabolomic, fluxomic, transcriptomic, and genomic resequencing data 

allowed for detailed analysis of changes between the reference (Ref), unevolved 

KO (uKO), and evolved KO (eKO) strains.  Changes in these data sets revealed 

fundamental principles underlying adaptation.  First, the majority of cellular 

components in the eKO strains reverted to levels near those in the Ref strain, 

representing drivers towards optimality.  Second, the remaining cellular 

components took on variable levels in replicate endpoints, representing alternate 

optimal states. Third, KOs imbalanced metabolite concentrations that affected 

transcription factor activity and thus gene expression.  Mutations selected during 

ALE reprogrammed transcription factor responses in the Ref strain that 

malfunctioned after KO to produce the new optimal homeostatic state.  
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Introduction: 

Whole genome sequences and their functional annotations have now 

existed for over 20 years (Fleischmann et al., 1995).  The functions of many of 

the gene products in model organisms have been isolated and experimentally 

characterized. In contrast to our understanding of individual cellular components, 

our knowledge of condition-specific functions and biomolecular interactions that 

comprise biochemical networks is still limited.  Systems biology has arisen as a 

field to address these challenges in a bottom-up mechanistic fashion with a suite 

of computational capabilities to assess network functions (Bordbar et al., 2014; 

O’Brien et al., 2015). 

Even with advances in experimental laboratory methods and computer 

models of network functions, many gaps in our knowledge about biochemistry 

remain.  A method for discovering novel gene functions and novel biomolecular 

interactions involves the use of adaptive laboratory evolution (ALE).  ALE is an 

experimental method that introduces a selection pressure (e.g., growth rate 

selection) in a controlled environmental setting (Dragosits and Mattanovich, 

2013; Plucain et al., 2014; Tenaillon et al., 2016).  Using ALE, organisms can be 

perturbed from their evolutionary optimized homeostatic states, and their re-

adjustments can be studied during the course of adaptation to reveal novel and 

non intuitive component functions and interactions.  ALE has been applied to 

study adaptation to new environments (Applebee et al., 2011; Fong et al., 2005a; 

Ibarra et al., 2002; Tenaillon et al., 2012) and adaptation to genetic manipulations 

(Charusanti et al., 2010; Fong et al., 2006).  These studies have yielded 

https://paperpile.com/c/l8EmJW/BJ2z
https://paperpile.com/c/l8EmJW/LVmg+k5FM
https://paperpile.com/c/l8EmJW/LVmg+k5FM
https://paperpile.com/c/l8EmJW/29RV+GYt1+mooP
https://paperpile.com/c/l8EmJW/29RV+GYt1+mooP
https://paperpile.com/c/l8EmJW/pJPb+PIAS+loIN+lDZb
https://paperpile.com/c/l8EmJW/pJPb+PIAS+loIN+lDZb
https://paperpile.com/c/l8EmJW/rCwp+ag4I
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fundamental biological insight that is difficult to gain without direct observation of 

the evolution process (Conrad et al., 2011; Pál et al., 2014).  Automation of ALE 

has increased its scale and accuracy (LaCroix et al., 2015).  

In this study, the adaptation of E. coli K-12 MG1655 to major metabolic 

perturbations was examined.  First, a novel experimental design is introduced 

(Figure 1).  Major metabolic functions were removed (i.e., perturbations) through 

a series of gene KOs in a pre-evolved E. coli strain (i.e., optimized system).  

Automated ALE was then used to evolve the organism from the perturbed state 

to a new optimized states (i.e., recovery).  Multi-omic data sets were generated 

(i.e., system components) in the optimized, perturbed, and recovered states.  

Second, a high level analysis of the data sets is performed (Figure 2).  

Multivariate statistics were used to decompose omics data sets into dominant 

‘modes’ (Figure 2A).  Two primary modes emerged: 1) the transition between 

initial sub-optimal and re-optimized system of the majority of systems 

components, and 2) alternate re-optimized system configurations, respectively. 

Third, a model of systems adaptation is developed.  Based on detailed analyses 

and case studies (Figures 3-6, Figures S2-7, and Tables S2-7), an overall model 

of adaptation to metabolic perturbation is constructed (Figure 7A).  In this model, 

imbalances in metabolite levels, resulting from altered metabolic fluxes, triggered 

a multitude of network regulatory responses that were readjusted by mutations 

selected for during adaptive evolution (subsections i-vii). Fourth, principles 

underlying adaptation to metabolic perturbations are revealed (Figure 7B). The 

Results section is organized based on these four steps.  

https://paperpile.com/c/l8EmJW/nSCT+HdAM
https://paperpile.com/c/l8EmJW/0O2x
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Materials and Methods: 

Experimental Model and Subject Details: 

A glucose, 37°C, evolved E.coli derived from E. coli K-12 MG1655 (ATCC 

700926)(LaCroix et al., 2015; Sandberg et al., 2014) served as the starting strain.  

Lambda-red mediated DNA mutagenesis (Datsenko and Wanner, 2000) was 

used to create the knockout strains (DNA mutagenesis and PCR confirmation 

primers are given in Table S2).  Knockouts were confirmed by PCR and DNA 

resequencing.  Genes gnd, ptsH, ptsI, crr, sdhC, sdhA, sdhD, sdhC, tpiA, and pgi 

encoding for the reactions of 6-phosphogluconate dehydrogenase (GND), 

phosphotransferase sugar import (GLCptspp), succinate dehydrogenase 

complex (SUCDi), triophosphate isomerase (TPI), and phosphoglucose 

isomerase (PGI) were removed.  PPC was also deleted, but resulted in an 

auxotrophy for asp-L, and was not included in the study.  Genes aceE, aceF, zwf, 

and atpI-A encoding for the reactions of PDH, G6PDH2r, and ATPS4rpp could 

not be removed using the method of Datsenko, et. al.  All cultures were grown in 

25 mL of unlabeled or labeled glucose M9 minimal media (Sambrook and 

Russell, 2001) with trace elements (Fong et al., 2005b) and sampled from a heat 

block in 50 mL autoclaved tubes that were maintained at 37°C and aerated using 

magnetics.  

Method Details: 

Biological material, analytical reagents, and experimental conditions 

Materials and Reagents: 

https://paperpile.com/c/l8EmJW/0O2x+ELG8
https://paperpile.com/c/l8EmJW/XFTC
https://paperpile.com/c/l8EmJW/EAsL
https://paperpile.com/c/l8EmJW/EAsL
https://paperpile.com/c/l8EmJW/1Yk6
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Uniformly labeled 13C glucose and 1-13C glucose was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). Unlabeled glucose and 

other media components were purchased from Sigma-Aldrich (St. Louis, MO). 

LC-MS reagents were purchased from Honeywell Burdick & Jackson® 

(Muskegon, MI), Fisher Scientific (Pittsburgh, PA) and Sigma-Aldrich (St. Louis, 

MO).  

Reaction knockout selection:  

iJO1366 (Orth et al., 2011) was used as the metabolic model for E. coli 

metabolism; GLPK (version 4.57) was used as the linear program solver.  MCMC 

sampling (Schellenberger and Palsson, 2009) was used to predict the flux 

distribution of the optimized reference strain.  Uptake, secretion, and growth 

rates were constrained to the measured average value ± SD.  Potential reaction 

deletions were ranked by 1) averaged sampled flux, 2) the number of immediate 

upstream and downstream metabolites that could be measured, 3) the number of 

genes required to produce a functional enzyme.  Reactions involved in sampling 

loops, that were spontaneous, were computationally or experimentally essential, 

or were not actively expressed under the experimental growth conditions were 

not included in the analysis.  Also, reactions that would require more than one 

genetic alteration to abolish activity were excluded.  The top 9 reactions deletions 

from the rank ordered set of reactions that met the above criteria were chosen for 

implementation. 

Adaptive laboratory evolution (ALE): 

https://paperpile.com/c/l8EmJW/Nr43
https://paperpile.com/c/l8EmJW/vtUp
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Cultures were serially propagated (100 µL passage volume) in 15 mL 

(working volume) flasks of M9 minimal medium with 4 g/L glucose, kept at 37°C 

and well-mixed for full aeration. An automated system passed the cultures to 

fresh flasks once they had reached an OD600 of 0.3 (Tecan Sunrise plate reader, 

equivalent to an OD600 of ~1 on a traditional spectrophotometer with a 1 cm path 

length), a point at which nutrients were still in excess and exponential growth had 

not started to taper off (confirmed with growth curves and HPLC measurements). 

Four OD600 measurements were taken from each flask, and the slope of 

ln(OD600) vs. time determined the culture growth rates. A cubic interpolating 

spline constrained to be monotonically increasing was fit to these growth rates to 

obtain the fitness trajectory curves. 

Multi-omics data processing 

Phenomics: 

Physiological measurements for culture density were measured at 600 nm 

absorbance with a spectrophotometer and correlated to cell biomass.  Samples 

to determine substrate uptake and secretion were filtered through a 0.22 µm 

filter(PVDF, Millipore) and measured using refractive index (RI) detection by 

HPLC (Agilent 12600 Infinity) with a Bio-Rad Aminex HPX87-H ion exclusion 

column (injection volume, 10 ul) and 5 mM H2SO4 as the mobile phase (0.5 

ml/min, 45°C).  Growth, uptake, and secretion rates were calculated from a 

minimum of four steady-state time-points. 

LC-MS/MS instrumentation and data processing: 
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Metabolites were acquired and quantified on an AB SCIEX Qtrap® 5500 

mass spectrometer (AB SCIEX, Framingham, MA) and processed using 

MultiQuant® 3.0.1 as described previously(McCloskey et al., 2015).  Mass 

isotopomer distributions (MIDs) were acquired on the same instrument and 

processed using MultiQuant® 3.0.1 and PeakView® 2.2 as described previously 

(McCloskey et al., 2016a). 

Metabolomics: 

Internal standards were generated as described previously (McCloskey et 

al., 2014a).  All samples and calibrators were spiked with the same amount of 

internal standard taken from the same batch of internal standards.  Calibration 

curves were ran before and after all biological and analytical replicates.  The 

consistency of quantification between calibration curves was checked by running 

a Quality Control sample that was composed of all biological replicates twice a 

day.  Solvent blanks were injected every ninth sample to check for carryover.  

System suitability tests were injected daily to check instrument performance.   

Metabolomics samples were acquired from triplicate cultures (1 mL of cell 

broth at an OD600 ~ 1.0) using a previously described method(McCloskey et al., 

2014b).  A pooled sample of the filtered medium that was re-sampled using the 

FSF filtration technique and processed in the same way as the biological 

triplicates was used as an analytical blank.  Extracts obtained from triplicate 

cultures and re-filtered medium were analyzed in duplicate.  The intracellular 

values reported, unless otherwise noted, are derived from the average of the 

biological triplicates (n=6).  Metabolites in the pooled filtered medium with a 

https://paperpile.com/c/l8EmJW/t2ju
https://paperpile.com/c/l8EmJW/ICGR
https://paperpile.com/c/l8EmJW/pzPl
https://paperpile.com/c/l8EmJW/pzPl
https://paperpile.com/c/l8EmJW/ADsF
https://paperpile.com/c/l8EmJW/ADsF
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concentration greater than 80% of that found in the triplicate samples were not 

analyzed.  In addition, metabolites that were found to have a quantifiable 

variability (RSD >= 50%) in the Quality Control samples or any individual 

components with an RSD >= 80 were not used for analysis.   

Missing values were imputed using a bootstrapping approach as coded in 

the R package Amelia II(Honaker et al., 2011) (version 1.7.4, 1000 imputations).  

Remaining missing values were approximated as ½ the lower limit of 

quantification for the metabolite normalized to the biomass of the sample.  Prior 

to statistical analyses, metabolite concentrations were log normalized to generate 

an approximately normal distribution using the R package LMGene(Rocke et al.) 

(version 3.3, “mult”=”TRUE”, “lowessnorm”=”FALSE”).  A Bonferroni-adjusted p-

value cutoff of 0.01 as calculated from a Student’s t-test was used to determine 

significance between metabolite concentration levels.  The glog-normalized 

values or the median-normalized values to the reference strain (FC-median vs. 

ref) were used for downstream statistical analyses. 

Fluxomics: 

Fluxomics samples were acquired from triplicate cultures (10 mL of cell 

broth at an OD600 ~ 1.0) using a modified version of the FSF technique as 

described previously(McCloskey et al., 2016a).  MIDs were calculated from 

biological triplicates ran in analytical duplicate (n=6).  MIDs with an RSD greater 

than 50 were excluded.  In addition, MIDs with a mass that was found to have a 

signal greater than 80% in unlabeled or blank samples were excluded.  A 

previously validated genome-scale MFA model of E. coli with minimal alterations 

https://paperpile.com/c/l8EmJW/j9as
https://paperpile.com/c/l8EmJW/zsbI
https://paperpile.com/c/l8EmJW/ICGR
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was used for all MFA estimations using INCA(Young, 2014) (version 1.4) as 

described previously(McCloskey et al., 2016b).  The model was constrained 

using MIDs as well as measured growth, uptake, and secretion rates.  Best flux 

values that were used to calculate the 95% confidence intervals were estimated 

from 500 restarts.   

The 95% confidences intervals were used as lower and upper bound 

reaction constraints for further constraint-based analyses.  MFA derived 

constraints that violated optimality were discarded and resampled.   The 

descriptive statistics (i.e., mean, median, interquartile ranges, min, max, etc.) for 

each reaction for each model were calculated from 5000 points sampled from 

5000 steps using optGpSampler(Megchelenbrink et al., 2014)(version 1.1), which 

resulted in an approximate mixed fraction of 0.5 for all models.  A permuted 

pvalue < 0.05 and geometric fold-change of sampled flux values > 0.001 were 

used to determine differential flux levels, differential metabolite utilization levels, 

and differential subsystem utilization levels between models.  Demand reactions 

and reactions corresponding to Unassigned, Transport; Outer Membrane Porin, 

Transport; Inner Membrane, Inorganic Ion Transport and Metabolism, Transport; 

Outer Membrane, Nucleotide Salvage Pathway, Oxidative Phosphorylation  were 

excluded from differential flux analysis.  The geometric fold-change of the mean 

between models and the reference model were used for hierarchical clustering; 

the median, interquartile ranges, min, and max values of each sampling 

distribution for each reaction and model were used as representative samples for 

downstream statistical analyses. 

https://paperpile.com/c/l8EmJW/9x0g
https://paperpile.com/c/l8EmJW/0gPH
https://paperpile.com/c/l8EmJW/431S
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Transcriptomics: 

Total RNA was sampled from triplicate cultures (3 mL of cell broth at an 

OD600 ~ 1.0) and immediately added to 2 volumes Qiagen RNA-protect Bacteria 

Reagent (6 mL), vortexed for 5 seconds, incubated at room temperature for 5 

min, and immediately centrifuged for 10 min at 17,500 RPMs.  The supernatant 

was decanted and the cell pellet was stored in the -80°C.  Cell pellets were 

thawed and incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 

20% SDS for 20 minutes at 37°C. Total RNA was isolated and purified using the 

Qiagen RNeasy Mini Kit columns and following vendor procedures. An on-

column DNase-treatment was performed for 30 minutes at room temperature. 

RNA was quantified using a Nano drop and quality assessed by running an RNA-

nano chip on a bioanalyzer. The rRNA was removed using Epicentre’s Ribo-Zero 

rRNA removal kit for Gram Negative Bacteria. a KAPA Stranded RNA-Seq Kit 

(Kapa Biosystems KK8401) was used following the manufacturer’s protocol to 

create sequencing libraries with an average insert length of around ~300 bp  for 

two of the three biological replicates.  Libraries were ran on a MiSeq and/or 

HiSeq (illumina). 

RNA-Seq reads were aligned using Bowtie(Langmead et al., 2009)  

(version 1.1.2 with default parameters).  Expression levels for individual samples 

were quantified using Cufflinks(Trapnell et al., 2010)(version 2.2.1, library type fr-

firststrand)  Quality of the reads was assessed by tracking the percentage of 

unmapped reads and expression level of genes that mapped to the ribosomal 

gene loci rrsA-F and rrlA-F.   All samples had a percentage of unmapped reads 

https://paperpile.com/c/l8EmJW/9NIX
https://paperpile.com/c/l8EmJW/dWRy
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less than 7%.  Differential expression levels for each condition (n=2 per 

condition) compared to either the starting strain or initial knockout strain were 

calculated using Cuffdiff(Trapnell et al., 2010)(version 2.2.1, library type fr-

firststrand, library norm geometric).  Genes with an 0.05 FDR-adjusted p-value 

less than 0.01 were considered differentially expressed.  Expression levels for 

individual samples for all combinations of conditions tested in down-stream 

statistical analyses were normalized using Cuffnorm(Trapnell et al., 2010)( 

version 2.2.1, library type fr-firststrand, library norm geometric).  Genes with 

unmapped reads were imputed using a bootstrapping approach as coded in the 

R package Amelia II (version 1.7.4, 1000 imputations).  Remaining missing 

values were filled using the minimum expression level of the data set.  

Normalized FPKM values for gene expression were log2 normalized to generate 

an approximately normal distribution prior to any statistical analysis.  All 

replicates for a given condition were found to have a pair-wise Pearson 

correlation coefficient of 0.95 or greater.  

DNA resequencing: 

Total DNA was sample from an overnight culture (1 mL of cell broth at an 

OD600 of ~2.0) and immediately centrifuged for 5 min at 8000 RPMs.  The 

supernatant was decanted and the cell pellet was frozen in the -80C.  Genomic 

DNA was isolated using a Nucleospin Tissue kit (Macherey Nagel 740952.50) 

following the manufacturer's protocol, including treatment with RNase A.  

Resequencing libraries were prepared using a Nextera XT kit (Illumina FC-131-

https://paperpile.com/c/l8EmJW/dWRy
https://paperpile.com/c/l8EmJW/dWRy
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1024) following the manufacturer's protocol.  Libraries were ran on a MiSeq 

(illumina). 

DNA resequencing reads were aligned to the E. coli reference genome 

(U00096.2, genbank) using Breseq (Deatherage and Barrick, 2014)(version 

0.26.0) as populations.  Mutations with a frequency of less than 0.1, p-value 

greater than 0.01, or quality score less than 6.0 were removed from the analysis.  

In addition, genes corresponding to crl, insertion elements (i.e, insH1, insB1, and 

insA), and the rhs and rsx gene loci were not considered for analysis due to 

repetitive regions that appear to cause frequent miscalls when using Breseq.  

mRNA and peptide sequence changes were predicted using BioPython 

(https://github.com/biopython/biopython.github.io/).  Large regions of DNA 

(minimum of 200 consecutive indices) where the coverage was two times greater 

than the average coverage of the sample were considered duplications. 

Quantification and Statistical Analysis: 

Individual -omics statistical, graph, and modeling data analyses 

Structural analysis: 

Corresponding PDB files for genes with a mutation of interested were 

downloaded from PDB (Berman et al., 2003, 2000).  Structural models for genes 

for which there were no corresponding PDB files were taken from I-TASSER 

generated homology models (Xu and Zhang, 2013) or generated using the I-

TASSER protocol (Wu et al., 2007).  The BioPython predicted sequence changes 

and important protein features as listed in EcoCyc (Keseler et al., 2013) were 

visualized and annotated using VMD (Humphrey et al., 1996).   

https://paperpile.com/c/l8EmJW/oCUi
https://github.com/biopython/biopython.github.io/
https://paperpile.com/c/l8EmJW/BwV7+zWaE
https://paperpile.com/c/l8EmJW/a6FC
https://paperpile.com/c/l8EmJW/IhNv
https://paperpile.com/c/l8EmJW/j3Bu
https://paperpile.com/c/l8EmJW/sLmX
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System component statistical feature identification analyses: 

Network components (i.e., RNAseq, metabolomics, fluxomics, genomics) 

were pre-processed as described above, and subjected to a feature identification 

analysis pipeline.  Network components for each lineage were first subjected to a 

differential test (ref vs. KO, KO vs. endpoints, ref vs. endpoints, and endpoints 

vs. endpoints).  The criteria for significance for each of the data types are 

detailed below.   Metabolomics: pvalue < 0.01 and 0.5<fold_change<2.0 as 

calculated from a t-test of the g-log normalized metabolite concentrations.  

Transcriptomics: qvalue (0.05 FDR corrected pvalue) and abs (log2(fold 

change))>1.0 as calculated by Cuffdiff.  Fluxomics: pvalue < 0.01 and abs 

(geometric fold_change)>0.001 as calculated from re-sampled flux distributions 

that were constrained by the 95% confidence intervals derived from estimated 

MFA flux bounds (demand reactions and reactions in subsystems corresponding 

to Unassigned, Transport; Outer Membrane Porin, Transport; Inner Membrane, 

Inorganic Ion Transport and Metabolism, Transport; Outer Membrane, Nucleotide 

Salvage Pathway, Oxidative Phosphorylation were excluded).  Mutations:  

frequency > 0.1 (mutations in the reference strain and in repetitive regions were 

excluded). Components that met the significance criteria for any combination of 

comparisons from the differential test were used in the pairwise PLS-DA 

analyses and profile matching.  Counts of significant components for each 

lineage were based on components that met the significance criteria for Ref vs. 

eRef, or uKO vs. eKO. 
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Network components for each lineage were subjected to pairwise PLS-DA 

analyses (ref vs. KO, KO vs. endpoints, ref vs. endpoints, and endpoints vs. 

endpoints).  The components with a loadings 1 magnitude within the top 25% of 

all components and correlation coefficient > 0.88 for different combinations of 

comparison were selected from the pair-wise PLS-DA analyses.   

Network components for each lineage were subjected to profile matching.  

System component levels between Ref, eKO, and uKO were correlated 

(Pearson’s R) to six profiles in both positive and negative directions.  novel -, 

novel +, overcompensation -, overcompensation +, partially-restored -, partially-

restored +, reinforced -, reinforced +, restored -, restored +, unrestored -, 

unrestored + profiles were encoded in integer form as 1-1-0, 0-0-1, 1-0-2, 1-2-0, 

2-0-1, 0-2-1, 2-1-0, 0-1-2, 1-0-1, 0-1-0, 1-0-0, and 0-1-1.  System components 

were binned into profiles when a Pearson correlation coefficient > 0.88 was 

calculated. Only negligible changes in the assignment of profiles were found  

when using absolute or relative component units (e.g., mmol*gDCW-1vs. 

log2(FC vs ref)) or different correlation methods (i.e., Spearman). 

System component statistical sample trend analysis:  

Components identified from the differential tests (except for metabolomics) 

were used for sample trend analyses.  Hierarchical clustering was used to 

diagnose sample groupings and distances between samples (distance metric of 

Euclidean and linkage method of complete).  Principal component analysis (PCA) 

as encoded in the R package pcaMethods(Stacklies et al., 2007) (version 1.64.0, 

univariate scaling, centering, SVD PCA) was then used as a representative 

https://paperpile.com/c/l8EmJW/vCoN
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unsupervised method to project samples into component space, and confirm the 

relative magnitude and direction of component weights. PCA models were first 

constructed for the reference, knockout, and endpoint for each of the lineages to 

confirm that the primary component best separated the reference and endpoint 

from the knockout, and that the second component best separated the reference 

and knockout from the endpoint.  PCA models were then constructed for the 

reference, knockout, and all endpoints for each network perturbation.   The PCA 

models were validated using cross validation (CV type of Krzanowski, default 5 

segment with 5 CV runs per segment with minimum number of segments equal 

to the number of samples).   Partial Least Squares Discriminatory Analysis (PLS-

DA) was implemented using the R package pls(Mevik and Wehrens, 2007) 

(version 2.5, univariate scaling, centering, Canonical Powered Partial Least 

Squares (cppls) PLS-DA) was used to project replicate samples into component 

space.  PLS-DA models were first constructed for the reference, knockout, and 

endpoint for each of the lineages to confirm that the primary component best 

separated the reference and endpoint from the knockout, and that the second 

component best separated the reference and knockout from the endpoint.  PLS-

DA models were then constructed for the reference, knockout, and all endpoints 

for each network perturbation.   The PLS-DA models were validated using cross 

validation (default 10 segments with minimum number of segments equal to the 

number of samples). 

The distance between the ref and uKO strain along axis 1 (i.e., mode 1) 

was used as a threshold to determine whether an eKO strain matched the 

https://paperpile.com/c/l8EmJW/IudB
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general mode 1 and mode 2 trends identified in section 2a.  A relative distance 

for each eKO strain along axis 1 was calculated as follows: relative distance = 

distance(uKOj, eKOi,j)/distance(ref, uKOj) where i = endpoint replicate for a 

particular KO lineage and j = each KO lineage.  An eKO strain with a relative 

distance greater than 70% along axis 1 was determined to match the trend. 

Metabolite, flux, and gene set enrichment analyses: 

Metabolite and gene set enrichment analyses were conducted using the 

subsystem categories of iJO1366.  Flux and metabolite flux sum set enrichment 

analyses were conducted using the subsystem categories of iDM2015.  A pvalue 

< 1e-3 (hypergeometric test) was used to test for enriched subsystems.  Gene 

set enrichment analysis on differentially expressed genes was also performed 

using with R package topGO(Alexa and Rahnenfuhrer, 2010) with GO 

annotations for E. coli (Carlson, 2013).  A p-value < 0.05 (Fischer statistic, 

parent-child algorithm(Grossmann et al., 2007)) was used to test for enriched 

biological processes and molecular functions.   

Network distance and graph analyses: 

The inverse mean values from sampled flux distributions that were 

constrained by the 95% confidence intervals derived from estimated MFA flux 

bounds were used as weights in calculating the shortest path from metabolite A 

to B.  The iDM2015 network was deconstructed into a directed acyclic graph with 

metabolites and reactions composing the nodes and the connections between 

metabolites and reactions composing the links.  Metabolites that did not contain 

carbon were excluded from the graph network.  In addition, metabolites 

https://paperpile.com/c/l8EmJW/WdxZ
https://paperpile.com/c/l8EmJW/d2nZ
https://paperpile.com/c/l8EmJW/J132
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corresponding to co2, co, mql8, mql8h2, 2dmmql8, 2dmmql8h2, q8, q8h2, thf, 

ACP were also excluded.  Metabolites corresponding to udpglcur, adpglc, gam6p 

were substituted as glycogen_c, uacgam, uacgam, respectively, as they were not 

present in the lumped and reduced iDM2015 network.  The A*star algorithm as 

implemented in the python package networkX 

(https://github.com/networkx/networkx) (version 1.11) was used to calculate the 

shortest path of the graph network.  The distance from metabolite A to B was 

calculated as half minus 1 the computed shortest path. 

A redistribution of flux was defined as a change in path or path length 

between the reference and knockout and endpoint or knockout and endpoint.  A 

change in flux capacity was defined as a change in path or path length between 

the reference and knockout, but not between the knockout and endpoint.   

Nodes (i.e., metabolites) were categorized as Intermediates, Carriers, 

Biomass Precursors,  and/or Nucleotide Salvage Products as defined in Table 

S[].  The correlation (Spearman R, pvalue < 0.05) between path and path length 

and metabolite level was calculated between Intermediates and Carriers, 

Carriers and Biomass Precursors, Intermediates and Biomass Precursors, 

Carriers and Nucleotide Salvage Products, and Biomass Precursors and 

Nucleotide Salvage Products.  

Multi-component -omics statistical analyses 

Biomass to network component correlation analysis: 

 EcoCyc (Keseler et al., 2013) subsystems for the following biomass 

producing pathways were used in the analysis: Amines and Polyamines 

https://github.com/networkx/networkx
https://paperpile.com/c/l8EmJW/j3Bu
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Biosynthesis, Amino Acids Biosynthesis, Nucleosides and Nucleotides 

Biosynthesis, Fatty Acid and Lipid Biosynthesis, Cofactors, Prosthetic Groups, 

Electron Carriers Biosynthesis, Cell Structures Biosynthesis, and Carbohydrates 

Biosynthesis.  Gene identifiers from these pathways were mapped onto iDM2014 

via the GPR relation to identify biomass producing reactions and metabolites.   

The analysis was conducted at the level of individual lineages using the system 

component profiles of restored-, novel+, overcompensation-, partially-restored-, 

and reinforced+ to identify positively correlated (correlation coefficient > 0.88, 

Pearson, r) with growth (i.e., growth promoting) and negatively correlated 

(correlation coefficient < -0.88, Pearson, r) with growth (i.e., growth inhibiting).  

The number of significant biomass components were divided by the number of 

measured biomass components, and expressed as a percent.  A direct pairwise 

correlation between metabolite concentrations, transcript levels, and fluxes, and 

growth rate was also performed (units of log2(FC vs. ref)) between the reference 

strain, knockout, and endpoints for all or each knockout condition for comparison 

(data not shown).  Components that were positively correlated (correlation 

coefficient > 0.88, Pearson, r) with growth rate or negatively correlated 

(correlation coefficient > 0.88, Pearson, r) with growth rate were identified.  

Inter- and intra- component correlation analysis: 

A global pairwise correlation between metabolite concentrations, transcript 

levels, and fluxes was performed by comparing the agreement and disagreement 

between component profiles of restored+, novel+, overcompensation+, partially-

restored+, unrestored+, and reinforced+.  Components with matching profiles 
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with correlation coefficients > 0.88 (Pearson, R) were correlated; components 

with matching profiles with correlation coefficients < -0.88 (Pearson, R) were anti-

correlated.  A similar global pairwise correlation between metabolite 

concentrations, transcript levels, and fluxes was performed (units of log2(FC vs. 

ref)) for comparison (data not shown).  Components with a correlation coefficient 

> 0.88 (Spearman, r) were correlated; Components with a correlation coefficient 

< -0.88 (Spearman, r) were anti-correlated.   

Regulation to network component correlation analysis: 

Significantly correlated components were compared to annotated gene-to-

reaction, and metabolite-to-reaction interactions annotations in iJO1366, and to 

annotated transcription factor-to-gene, metabolite-to-transcription factor, 

metabolite-to-transcription factor-to-gene, metabolite-to-transcript, and 

metabolite-to-reaction regulatory interactions from the EcoCyc database (Keseler 

et al., 2013).  EcoCyc database identifier were mapped to iJO1366 identifiers 

using a combination of ChEBI (Hastings et al., 2013), MetaNetX (Bernard et al., 

2014; Ganter et al., 2013; Moretti et al., 2016), EC numbers, InCHi strings, and 

manual curation.  The mode of component interactions were encoded as either 

positive for reactant-reaction, activating, or stabilizing interactions, or negative for 

product-reaction, inhibiting, or de-stabilizing interactions.  The sign and 

magnitude of the correlation coefficient (Pearson, r) of matching categories was 

compared to the mode of interaction to determine agreement (correlation 

coefficient > 0.88 and positive mode, or correlation coefficient < -0.88 and 

negative mode).  The inverse was used to determine disagreement.  Similarly, 

https://paperpile.com/c/l8EmJW/j3Bu
https://paperpile.com/c/l8EmJW/j3Bu
https://paperpile.com/c/l8EmJW/3CJQ
https://paperpile.com/c/l8EmJW/RT9J+9gJi+KWTN
https://paperpile.com/c/l8EmJW/RT9J+9gJi+KWTN
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the sign and magnitude of the correlation coefficient (Spearman, R) was 

compared to the sign of the component interaction to determine agreement or 

disagreement for direct pairwise correlations (data not shown).   

The classification of global regulators follows the definition given by 

Martinez-Antonio, et al., (Martínez-Antonio and Collado-Vides, 2003).  Global 

transcription factors are defined to include CRP, IHF, FNR, FIS, ArcA, Lrp, and 

Hns.  A secondary level of regulators are defined to include NarL, Fur, Mlc, 

CspA, Rob, PurR, PhoB, CpxR, and SoxR.  The secondary level and lower level 

regulators (e.g., local transcription factors) were further broken into classes for 

local and general stresses. 

Regulator activation categorization: 

 A profile for the activation status of each regulator for each knockout 

evolution was determined.  The analysis was first limited to regulated entities that 

had only a single annotated regulator.  The analysis was then expanded to 

include all regulators and regulated entities.  A category weight for each 

regulated entity for each endpoint was calculated as follows: weight,i,j = 

abs(corr,i,j)*1/(nEPs,i)*1/(nRegulators,k) where i = endpoint, j = category, k = 

regulators, nEPs = number of endpoints per knockout evolution, corr = 

correlation coefficient, nRegulators = number of regulators per regulated entity.  

A confidence score for each regulator for each knockout was calculated as 

follows: confidence,i = sum(weight,i,j,k) where i = knockout, j = endpoint, and k = 

regulated gene.  A higher confidence score indicates a consistently higher 

https://paperpile.com/c/l8EmJW/8DRl
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correlation to the category across all regulated entities that are regulated by the 

regulator.   
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Results: 

1a.  Experimental design and nomenclature  

The KO perturbation and recovery ALE experiment was performed in the 

model organism Escherichia coli K-12 MG1655.  First, a starting strain in which 

the KO perturbations were implemented was chosen.  A previously evolved wild-

type strain was selected in order to isolate biological changes caused by 

adaption to the loss of a gene product from those caused by adaption to the 

growth conditions of the experiment.  The pre-evolved strain (denoted “pre-

evolved reference strain” or “Ref”) was a previously described strain isolated 

from an ALE of wild-type E. coli evolved on glucose minimal media at 37°C 

(LaCroix et al., 2015).  Ref was a non-mutator strain, had the fewest number of 

mutations of replicate ALE endpoints, and a relatively efficient conversion of 

glucose to biomass.   

Second, perturbations consisting of five separate reaction KOs that were 

predicted to result in large metabolic rearrangements based on in silico analysis 

(see Methods, Table S1) were implemented in Ref.  Genes (see Methods) 

encoding enzymes for the reactions of GND (gnd, 6-phosphogluconate 

dehydrogenase), GLCptspp (genes ptsH, ptsI, and crr corresponding to enzymes 

HPr, EI, and EIIA, respectively) SUCDi (genes sucA, sucB, sucC, and sucD 

corresponding to the enzyme Succinate Dehydrogenase), TPI (tpiA, 

Triosphosphate Isomerase), and PGI (pgi, Phosphoglucose Isomerase) were 

removed to generate strains uGnd, uPtsHIcrr, uSdhCB, uTpiA, and uPgi, 

respectively (denoted “unevolved knockout strains” or “uKO”). 

https://paperpile.com/c/l8EmJW/0O2x
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Third, replicates of the five knockout strains, as well as Ref, were 

simultaneously evolved on glucose minimal media at 37°C in an automated ALE 

platform (LaCroix et al., 2015; Sandberg et al., 2014) denoted “evolved knockout 

strains” or “eKOi” where i denotes the replicate number). The number of replicate 

endpoints were the following: 2 for “evolved reference strain” (denoted eRef), 3 

for eGnd, 4 for ePtsHIcrr, 3 for eSdhCB, 4 for eTpiA, and 8 for ePgi. 

Finally, the Ref, uKO, and eKO strains were subjected to multi-omics data 

generation under identical growth conditions.  This data generation consisted of 

measuring intracellular metabolite levels, gene expression levels, flux levels, and 

genomic mutations (i.e., system components).  Statistical and biochemical 

modelling methods were then applied to the measured data. 

1b.  Changes in fitness with enzyme KOs and ALE 

A statistically significant loss and recovery of fitness (i.e., growth rate) was 

found in three of the KO strains.  The initial fitnesses of uPgi, uPtsHIcrr, and 

uTpiAi were drastically reduced compared to the reference strain (81, 79, and 

80% decrease in fitness, respectively) while the initial fitnesses of uGnd and 

uSdhCB were minimally changed (9 and 6% decrease in fitness, respectively) 

(Figure 1, Supplemental Data).  A statistically significant increase in final fitness 

(Student’s t-test, pvalue<0.05) was found in all ALE endpoints of the ePgi, 

ePtsHIcrr, and eTpiA lineages (ave±stdev 284±20, 259±74, 164±7% increase in 

fitness, respectively) compared to the uKO for each lineage, while a non-

significant and minimal increase in final fitness was found in all endpoints of the 

eRef, eSdhCB, and eGnd lineages (ave±stdev 4±1, 3±4, 5±3% increase in 

https://paperpile.com/c/l8EmJW/0O2x+ELG8
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fitness) compared to the reference strain or unevolved knockout strains (uSdhCB 

and uGnd lineages), respectively.  The uKOs with the most drastically reduced 

initial fitnesses were not able to recover the fitness of the Ref, while all but one of 

the endpoints from the eSdhCB and eGnd lineages successfully recovered the 

fitness.   

1c.  Reference strain evolution confirmed the experimental design 

An insignificant fitness change and the fewest number of network changes 

were found in eRef strains compared to all eKO strains (Table 1).  The average 

numbers of significant component changes per eRef replicate at the metabolite, 

transcript, and flux levels were 2, 35, and 0, respectively. These changes in 

systems components were far fewer than in any of the other eKO strains, where 

the minimum number of corresponding changes were 19, 341, and 158.  The 

average number of genomic mutations per eRef replicate was also the lowest of 

all lineages, and were primarily found in cell wall biosynthesis genes.  Overall, 

these findings demonstrated that the use of a pre-evolved strain minimized the 

number of confounding component changes.   

In the next subsection, the multi-omic data sets generated were analyzed 

at the systems level where the results from multi-dimensional analysis of the 

multi-omics data sets will be described and interpreted.  Analysis at the 

mechanistic level follows where changes in eKO strains are detailed.  Systems 

level analysis reveals an overall view of the adaptive evolution process, while 

analysis at the mechanistic level details how adaptation to the loss of a particular 

enzyme was achieved. 
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2a. Evolution to optimal fitness after gene KO was captured in the two 

dominant modes   

The metabolite, transcript, and flux levels for each of the KO lineages 

were subjected to Partial Least Squares Discriminatory Analysis (PLS-DA) (see 

Figure 2 and Methods).  For almost all cases analyzed, the first mode separated 

the reference strain and evolved knockout strains from the unevolved knockout 

strain, while the second mode separated the reference and evolved knockout 

strains (74% of eKOs from all data types and lineages, see Methods).  In other 

words, the first mode accounted for a dominant transition between pre-optimized, 

perturbed, and re-optimized fitness states (i.e., captured systems fitness 

properties), while the second mode described alternate re-optimized states (i.e., 

capturing systems diversity, or a ‘plateau’ in the evolutionary landscape (Conrad 

et al., 2011)).   

Two KO lineages that did not match the trend in the fluxomics data are 

worth highlighting.  First, all eTpiA strains were not able to recover the distance 

to Ref along mode 1.  This was primarily due to the bifurcation of flux usage in 

lower glycolysis after removing the tpiA gene that forced flux through the 

methylglyoxal detox pathway.  Second, all eGnd strains were not able to recover 

the distance to Ref along mode 1.  This lack of recovery was primarily due to a 

complete loss of the oxPPP after removing the gnd gene, and reversal of flux 

through the non-oxPPP in order to generate ribose for nucleotide synthesis.   

2b. Profiles of changes in components reveals systematic variations 

between ALE lineages, KOs, and system components 

https://paperpile.com/c/l8EmJW/nSCT
https://paperpile.com/c/l8EmJW/nSCT
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In order to dissect the drive towards fitness (mode 1) and generation of 

diversity (mode 2) further, changes in each system component (i.e., metabolite, 

transcript, and flux level) between Ref, uKO, and eKO strains were grouped into 

six profiles (Figure S1A, see Methods): novel, overcompensated, partially-

restored, reinforced, restored, and unrestored.  The distribution between these 

six profiles for each component type are shown with horizontal bar charts in 

Figure S1B-D.  Several trends were found based on these six profiles.   

First, the occurrence of profiles varied between omics data types. Overall, 

the metabolite levels were the most distributed between the six profiles (i.e., had 

the least deviation).  In contrast, the transcript levels were dominated by the 

Restored profile, and flux levels were dominated by the Restored and Unrestored 

profile.  The more even metabolite distribution compared to the transcript levels 

or flux levels indicated that the changes in metabolite levels were less 

constrained to change than the gene expression and fluxes.  Second, distribution 

amongst the profiles varied between KOs.  The lineages with the greatest initial 

loss of fitness had a greater percentage of Novel, Overcompensated, Reinforced, 

and Unrestored profiles than the lineages with a smaller initial loss of fitness.  

This observation indicated that the larger the loss in fitness, the greater number 

of Innovative (as opposed to Restorative) network changes were required to 

regain fitness.  Third, the distribution amongst profiles also varied between 

evolved strain lineages.  This highlighted the biochemical differences in re-

optimized network configurations during adaptation to overcome the perturbation.  

See Figure S1 for statistics and examples of these three trends. 
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The biological significance of the differing distributions in profiles between 

system components, KOs, and evolved lineages were further detailed in 

analyses and cases studies (Figures 3-6, Figures S2-7, and Tables S2-7) 

presented in the following subsections.  The system component profiles are also 

used in all of the analyses presented below.  The subsections (i-vii) develop a 

proposed model of adaptation to metabolic perturbation (Figure 7).  This six-step 

model will be detailed with emphasis on the adaptation to the loss of PGI. 

3i. Component imbalance retarded fitness  

Alterations to biomass-producing pathways (e.g., amino acid biosynthetic 

pathways; See methods for all pathways, Figure S2, and Table S3) were 

examined in order to uncover the origins of the loss in fitness after the gene KO 

perturbations.  Component profiles (Section 2, Figure S2) that increased during 

evolution were categorized as growth-limiting (i.e., correlated with growth), those 

that decreased during evolution were categorized as growth-inhibiting (i.e., 

anticorrelated with growth) (see Methods). Metabolic flux was found to 

consistently be the most growth-limiting across all lineages (Figure S2A-C).  

Gene expression was found to consistently be the most growth-inhibiting across 

all lineages. An imbalance in metabolite levels in biomass-producing pathways 

was also apparent. 

Biomass-producing pathways that had more or less growth-limiting or -

inhibiting components were identified (Figure S2D).  These growth-limiting or -

inhibiting pathways were found to align with the metabolic perturbation created. 

For example, the pgi lineages were metabolite-inhibited for nucleoside/nucleotide 
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biosynthetic pathways.  The forced flux through the oxPPP after removing the pgi 

gene directed a disproportionate level of carbon into ribose-5-phosphate and 

towards de-novo purine/pyrimidine biosynthetic pathways.  This resulted in 

abnormally high levels of L-histidine, IMP, and UMP in uPgi that were 

Unrestored, Restored, and Reinforced in the ePgi strains (Figure S2E).  In a 

second example, the ptsHIcrr lineages were primarily inhibited by metabolite 

excess for the amino acid biosynthetic pathways.  The elevated levels of 

phosphoenolpyruvate after removing the ptsHIcrr genes resulted in an 

abnormally high level of aromatic amino acids compared to other amino acids in 

uPtsHIcrr that were Restored in most ePtsHIcrr strains(Chávez-Béjar et al., 

2012/7; Flores et al., 1996) (Figure 4C).  See Figure S2 for additional examples. 

This analysis revealed that the origins of the loss in fitness following 

perturbation were caused by an imbalance of system components that 

propagated to an imbalance in biomass-producing pathway usage.  The 

perturbation-specific response for each of the KO lineages indicated a unique set 

of growth limitations and inhibitions.  

3ii. Suboptimal pathway usage limited allocation of carbon to biomass 

precursors.  

Above, limitations in metabolic flux was found to be the most growth-

limiting system component.  In order to understand the effects of metabolic flux 

limitation on fitness, changes in pathway usage between the Ref, uKO, and eKO 

strains were calculated, and grouped into changed flux distribution (i.e., the 

pathway usage was changed) or changed flux capacity (i.e., the same pathway 

https://paperpile.com/c/l8EmJW/ROA1+WCAZ
https://paperpile.com/c/l8EmJW/ROA1+WCAZ
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was used but at a higher flux level, see Methods for extended definitions, Figure 

S3A-D).   

Changed flux distribution was found to be more prevalent than changed 

flux capacity.  Changed flux distribution was found to occur 55.6% of the time, 

while a change in flux capacity was found to occur 22.0% of the time across all 

perturbations and lineages (Figure S3E).  The remaining 22.4% of cases were 

unaffected. The ratio between the occurrence of changed flux distribution and 

changed flux capacity was consistent for the pgi, gnd, and ptsHIcrr lineages, but 

differed for sdhCB (84.5% changed flux distribution and 5.0% changed flux 

capacity) and tpiA (35.8% flux distribution and 26.6% changed flux capacity).  

This result indicated that the expressed enzymatic machinery post-knockout both 

proximal and distal to the network lesion was sub-optimally suited to distribute 

flux optimally towards biomass precursors.   

Several examples of changed flux distribution and capacity are worth 

highlighting.  In uPgi, the abnormally high levels of flux directed through the 

oxPPP  was initially re-routed through the ED pathway (Figure S3I).  Several 

ePgi strains retained the flux through the ED pathway to varying degrees, but 

most ePgi strains re-distributed flux through GND, and all increased the flux 

capacity through the non-oxPPP.  In another example, flux was initially re-routed 

through the ED pathway in uGnd (Figure S3F) in order to generate ribose 

through the non-oxPPP.  The ED pathway has a net yield of one ATP, NADH, 

and NADPH per molecule of glucose, whereas glycolysis has a net yield of two 

ATP and NADH (Nelson and Cox, 2013).  Instead, the eGnd strains limited the 

https://paperpile.com/c/l8EmJW/A6SY
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use of the oxPPP and increased the flux capacity through the higher energy and 

redox equivalent producing pathway of glycolysis.  Further examples are given in 

Figure S3. 

These results indicated that the initial flux distribution of the uKO strains 

following perturbation were often suboptimal, and required a change primarily in 

flux distribution and secondarily in flux capacity in order to restore fitness in the 

eKO strains.  The re-distributed and increased capacity of pathways contributed 

to a reallocation of carbon towards biomass precursors in the ratios that were 

required to recover optimal fitness.   

3iii. Perturbed metabolite levels triggered transcription regulatory network 

responses in uKOs. 

Perturbed metabolite levels were traced to known transcriptional 

regulatory network (TRN) responses (Cho et al., 2011a, 2015; Federowicz et al., 

2014; Gama-Castro et al., 2016; Kim et al., 2012).  Measured metabolite profiles 

were mapped to metabolite-activated TFs by comparing the relationship (i.e., 

positive or negative) between a metabolite profile, a TF that interacts with the 

metabolite, and the expression profiles of the TUs regulated by the TF (see 

Methods, Table S5).   

Strong evidence for changed TF activation profiles (analogous to the 

system component profiles, Figure S1) were identified for 75 TFs (Table S6, 

Figure S4).  These included 7 global TFs (i.e, CRP, Fis, IHF, ArcA, Lrp, FNR, 

and HNS (Martínez-Antonio and Collado-Vides, 2003)) and 68 local TFs (see 

Methods).  The activation profiles of 15 TFs (which included the 7 global TFs, 

https://paperpile.com/c/l8EmJW/4aAn+8CAI+nek4+tP2y+gfSa
https://paperpile.com/c/l8EmJW/4aAn+8CAI+nek4+tP2y+gfSa
https://paperpile.com/c/l8EmJW/8DRl
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and the 8 local TFs ArgR, CpxR, Cra, Fur, NsrR, OxyR, PhoB, and TyrR) were 

changed across all lineages.  The remaining 60 TFs appeared to be changed in a 

perturbation and lineage-specific manner.   

Interestingly, TF activation and their gene expression was not coincidental 

(ave±std 5.4±3.8, 4.1±2.6, and 70.5±6.1% agreement, disagreement, no 

significant change in expression profile per lineage, respectively, Table S4).  This 

result indicated that the majority of changed TF activation profiles were attributed 

to changed concentrations in their activators (e.g., through small-molecule 

binding) as opposed to changed TF gene expression levels.  Similar 

observations have been made for sigma factors and the expression levels of their 

regions in response to a key rpoB mutation(Utrilla et al., 2016).  Several 

examples of changed global and local TF activation profiles by changed 

metabolite concentrations are given below. 

The strongest example of a change in global TF activation was that for 

CRP.  CRP regulates hundreds of genes involved in a multitude of processes 

including alternate carbon metabolism(Deutscher, 2008), 

osmoregulation(Balsalobre et al., 2006), biofilm formation(Jackson et al., 2002), 

etc., and has been shown to coordinate optimal proteome allocation for different 

nutrient conditions based on the levels of cAMP(You et al., 2013).   A changed 

CRP activation was found in all lineages due to elevated levels of cAMP in the 

uKOs (Gunasekara et al., 2015).  CRP was not differentially expressed in any of 

the lineages, but Restored cAMP levels were mirrored by Restored gene 

https://paperpile.com/c/l8EmJW/LC6a
https://paperpile.com/c/l8EmJW/IOcF
https://paperpile.com/c/l8EmJW/6Ffg
https://paperpile.com/c/l8EmJW/L82l
https://paperpile.com/c/l8EmJW/vOKp
https://paperpile.com/c/l8EmJW/s2jm
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expression of transcription units (TUs) solely regulated by CRP-cAMP (Table 

S6).   

ArcA provided another example for global TF activation without a 

significant gene expression change. The restored activation profiles of ArcA 

(Alvarez and Georgellis, 2010) and several other iron-sulfur cluster homeostasis 

TFs found in all lineages could be linked to changes in TCA cycle intermediates 

as well as quinone pools (e.g., gnd and sdhCB, Figure 6).  The arcAB two-

component system in particular modulates genes in response to changes in 

respiratory conditions that are communicated via the intermembrane quinone 

pools.   

Local TF activation was also identified in the uKOs. A change in activation 

of the PurR regulator was found in pgi and several other lineages due to changed 

levels of purine degradation products.  Specifically, the purR dimer binds 

hypoxanthine and guanine, and regulates genes involved in purine metabolism 

(Cho et al., 2011b; He et al., 1990; Meng et al., 1990).  The concentration profiles 

of hypoxanthine and/or guanine matched the expression profile for purR-target 

genes, while the expression profile for purR itself did not (Table S5).   

Another example of local TF activation involved the use of small regulatory 

RNA. Abnormal elevations in glucose 6-phosphate (g6p) and an imbalance of the 

glycolytic intermediates in uPgi were found to induce a sugar phosphate toxicity 

response sensed through the TF SgrR and mediated through the action of the 

small RNA sgrS (Richards et al., 2013; Vanderpool and Gottesman, 2004, 2007).  

SgrR is thought to bind hexose phosphates and induce the expression of sgrS 

https://paperpile.com/c/l8EmJW/Zrzi
https://paperpile.com/c/l8EmJW/IDbJ+JpRm+6Pws
https://paperpile.com/c/l8EmJW/Tfjm+xA5g+ohtW
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(Figure S7).  It was found that the metabolite concentration profiles matched sgrS 

expression profiles.  SgrS transcriptionally regulates a number of genes that are 

involved in re-balancing glycolytic intermediates.  One target of sgrS attenuation 

is purR, which explains the opposing purR expression profile compared to its TF 

activation profile described above.  Interestingly, abnormal elevations of g6p and 

induction of SgrR and SgrR regulons were also found in ptsHIcrr.  Additional 

examples are provided in figure S4. 

Thus, the individual lineages provided clear examples of global and local 

TF activation through changes in activating metabolite concentrations through 

mechanisms that are well-established in the literature. The TFs examined here 

were associated with carbon metabolism, nitrogen metabolism, iron regulation, 

oxidative stress, DNA repair, and other stress responses that control the majority 

of known genes in E. coli.   

3iv. Transcription factor responses resulted in a misallocation of resources 

or amplification of processes reducing fitness in uKOs. 

The global and local TF responses that were triggered by changed 

metabolite concentrations in the uKOs strains were investigated further to assess 

their impact on the observed changes in fitness. A common theme that emerged 

was that many TF responses resulted in the upregulation of metabolic pathways 

and biological functions that were counterproductive to fitness.  Such adverse 

responses showed that regulatory circuits in the uKO strains were no longer 

‘tuned’ to support fitness of the metabolic network after gene KO.  
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One example of a counterproductive TF response was the activation of 

CRP by elevated cAMP levels. Such CRP activation generated a cascade of 

translation in alternate carbon metabolism operons (Hermsen et al., 2015; You et 

al., 2013).  These operons pertained to import and catabolism of sugars such as 

glycerol, maltose, mannose, etc., that were not present in the medium 

(Supplemental data).  Specifically, the glp regulon required for glycerol import 

and catabolism is up regulated by CRP-cAMP (Larson et al., 1992). This hard 

wired regulation led to massive up-regulation of the glp regulon in uPgi leading to 

unproductive allocation of the proteome to glycerol metabolism.  

In another example, the glucose-6-phosphate (g6p) concentration build-up 

in uPgi was so great that g6p spilled over into the periplasmic space (Bolten et 

al., 2007; Link et al., 2008) (Figure 3, upper panels).  High periplasmic g6p was 

sensed by the uhpAB two-component system, which in turn up-regulated 

expression of the hexose phosphate importer uhpT (Dahl et al., 1997; Maloney et 

al., 1990; Weston and Kadner, 1988). Increased expression of uhpT likely 

generated a loop whereby excessive g6p that spilled into the periplasmic space 

would be re-imported into the cytosol.  

These examples illustrate how the loss of an enzyme led to an 

unorganized, confused, and suboptimal allocation of resources by inducing 

previously evolved regulatory responses.  As shown below, these hardwired 

responses were modulated and re-wired during adaptation to achieve better 

fitness. 

https://paperpile.com/c/l8EmJW/vOKp+Yqkh
https://paperpile.com/c/l8EmJW/vOKp+Yqkh
https://paperpile.com/c/l8EmJW/bdS9
https://paperpile.com/c/l8EmJW/hPuz+7d5a
https://paperpile.com/c/l8EmJW/hPuz+7d5a
https://paperpile.com/c/l8EmJW/3nql+R7GC+OrB8
https://paperpile.com/c/l8EmJW/3nql+R7GC+OrB8
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3v. Alternate regulatory mechanisms abrogated counterproductive 

transcription factor responses. 

Cells contain multiple levels of counteracting regulatory mechanisms. 

Regulatory mechanisms at the flux level were identified that partially 

counteracted the adverse response to enzyme KO at the expression level (i.e, 

the activating TF response discussed above).  The agreement and disagreement 

between the system component profiles (described in Section 2b) and known 

biochemical pathways (Orth et al., 2011) and their regulation (Keseler et al., 

2013) was determined (see Methods, Figure S4).  A relatively low agreement 

between changes in gene expression profiles and metabolic flux profiles (i.e., 

gene-protein-reaction association, GPR) within each lineage was found (Table 

S4).  Specifically, an average agreement of 27.5% (stdev=17.4%, n=22) and 

average disagreement of 11.5% (stdev=6.8%,n=22) was found.  A similarly low 

agreement between types of literature-derived regulation were found (see 

Methods, Table S4).   

It was hypothesized that the low agreement found between genes and 

fluxes and between system component profiles and known regulation reflected 

either 1) counteracting regulatory mechanisms, 2) evidence for inaccurate or 

incomplete knowledge of the regulatory network (Covert et al., 2004; 

Koussounadis et al., 2015; Maier et al., 2009; Vital-Lopez et al., 2013), or 3) 

changes to regulation introduced through fixed mutations.  Evidence of 

competing layers of regulation for 89 regulators (i.e., any biological component 

that can effect a change in another component, e.g., TF or small-molecule) 

https://paperpile.com/c/l8EmJW/Nr43
https://paperpile.com/c/l8EmJW/j3Bu
https://paperpile.com/c/l8EmJW/j3Bu
https://paperpile.com/c/l8EmJW/OEvi+Ka8m+eL78+V6gj
https://paperpile.com/c/l8EmJW/OEvi+Ka8m+eL78+V6gj
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across 5887 regulated entities (i.e., any biological component that is subject to 

regulation, e.g., TU or enzyme) were found. Evidence of inaccurate or incomplete 

knowledge of the regulatory network in 38 regulators across 631 regulated 

entities were also found (Table S6).  While it is infeasible to investigate each 

discrepancy here, specific examples are given that illustrate the above three 

hypothesized mechanisms.  

In an example of counteracting regulatory mechanisms, a hierarchy of 

transcription factor control over gene expression was recapitulated.  The 

activation profile of Fis (Bradley et al., 2007; Cho et al., 2008; Weinstein-Fischer 

and Altuvia, 2007) was found to conflict with its consensus activation profile of 

the pyrD promoter in all of the pgi lineages, whereas the PurR activation profile 

was found to agree with pyrD expression profile (Bradley et al., 2007; Cho et al., 

2008, 2011b).  This indicated that pyrD expression was dominated by PurR 

regulation.  In another example, a restored activation of sgrS found in the pgi 

lineages and a novel activation of sgrS found in the ptsHIcrr endpoints 1 and 3 

negated the transcription factor regulation of sgrS target genes (Bobrovskyy and 

Vanderpool, 2016; Sun and Vanderpool, 2013).  Further examples are given in 

(Figure S4).  

Unresolved discrepancies in regulatory annotations were found. The 

expression profiles of regulons that were controlled only by Fur (Beauchene et 

al., 2015; Chen et al., 2007; Méhi et al., 2014) were found to be inconsistent.  

Specifically, the expression profiles for entS, exbB, exbD, fecI, fepC, fepD, fhuA, 

fhuE, ryhB, and yjjZ, conflicted with that of crl.  The discrepancies indicated that 

https://paperpile.com/c/l8EmJW/RAGF+r0uM+zmo8
https://paperpile.com/c/l8EmJW/RAGF+r0uM+zmo8
https://paperpile.com/c/l8EmJW/6Pws+RAGF+r0uM
https://paperpile.com/c/l8EmJW/6Pws+RAGF+r0uM
https://paperpile.com/c/l8EmJW/ltUL+dqj4
https://paperpile.com/c/l8EmJW/ltUL+dqj4
https://paperpile.com/c/l8EmJW/BfFE+r37P+biYJ
https://paperpile.com/c/l8EmJW/BfFE+r37P+biYJ
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another TF or transcriptional regulator is present that also controls the transcript 

levels of that gene or Fur can act as a dual regulator similar to entS (Lavrrar et 

al., 2002).  In fact, crl has been shown to also be regulated by ArgR (Cho et al., 

2011a) and positively regulated by CsrA(González Barrios et al., 2006).  In 

addition, yjjZ has also been shown to be positively regulated by OxyR (Seo et al., 

2015a) and positively and negatively regulated by Fnr(Federowicz et al., 2014). 

Discrepancies arising from changes to regulation introduced through 

mutation were also identified.  For example, the lon-specific promoter is activated 

by GadX (Gama-Castro et al., 2016; Seo et al., 2015b; Tramonti et al., 2008).  A 

mutation at the lon-specific promoter in the ePgi replicates 1-5 silenced the 

expression of lon thereby negating the regulation by GadX (Figure S7).  This 

silencing directly affected the expression of colanic acid and biofilm producing 

operons that are controlled by RcsA and RcsAB (Majdalani and Gottesman, 

2005).  The Lon protease degrades RcsA (Torres-Cabassa and Gottesman, 

1987).  

The examples given above indicate that the response of the uKO and 

eKOs recapitulated the effects of known regulation, but also revealed the effects 

of unknown or not fully characterized regulatory mechanisms.  The latter provide 

suggestions for new experimental lines of inquiry.  The examples of overlapping 

and competing layers of regulation also help explain and identify built-in 

regulatory mechanisms that mitigated the counterproductive regulatory 

responses. Adaptation and reconfiguration of regulatory mechanisms caused by 

mutations fixed during ALE are given in the next subsection.  

https://paperpile.com/c/l8EmJW/gofl
https://paperpile.com/c/l8EmJW/gofl
https://paperpile.com/c/l8EmJW/gfSa
https://paperpile.com/c/l8EmJW/gfSa
https://paperpile.com/c/l8EmJW/1FlQ
https://paperpile.com/c/l8EmJW/baHv
https://paperpile.com/c/l8EmJW/baHv
https://paperpile.com/c/l8EmJW/nek4
https://paperpile.com/c/l8EmJW/SAu4+4aAn+5dns
https://paperpile.com/c/l8EmJW/K6XP
https://paperpile.com/c/l8EmJW/K6XP
https://paperpile.com/c/l8EmJW/jiYw
https://paperpile.com/c/l8EmJW/jiYw
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3vi.  Mutations selected during adaptive evolution re-wired many 

counterproductive system responses. 

A large number of mutations were identified in the eKOs that either offset 

the counterproductive effects of global and local regulators (discussed above) or 

targeted specific pathways or imbalances.  In total, 673 mutations were found in 

the eKOs.  The mutations were found to primarily be single nucleotide 

polymorphisms (SNPs, 66%), were primarily located in coding regions (48%), 

and were primarily associated with membrane proteins and transcription factors 

(27 and 29%, respectively).  See Table S7, and Figure S5 for a detailed overview 

of all genomic mutations found in the eKO strains. 

Mutations were identified that offset the mis-regulation of global TFs.  For 

example, a substantial number of mutations affected regulators of carbon 

transport and metabolism processes that appear to offset the activation of 

operons induced by CRP-cAMP.  These included mutations to galR, malT, and 

crr in the ePgi strains (Figure S6).  A 22 nucleotide deletion in the small molecule 

binding domain of galR in ePgi07 appears to negate repression of galR 

controlled operons.  These include galETKM, galP, and mglBAC that encode 

enzymes for galactose catabolism, symport, and ABC transport, 

respectively(Weickert and Adhya, 1993).  These operons are also regulated by 

CRP-cAMP, and were not expressed in Ref.  The galactose importers have 

lesser affinity for the transport of glucose, which may give ePgi07 an additional 

route to import and catabalize glucose from the environment.  In addition, the 

mutation may have aided in conserving PEP for aromatic amino acid production, 

https://paperpile.com/c/l8EmJW/xcGL


258 
 

which was limiting fitness in all of the pgi strains (discussed in section 3i).  

Interestingly, mutations in galR or at the galR operon in ePtsHIcrr02/04 and in 

eTpiA01/03 also resulted in the upregulation of GalR controlled genes.  The 

prevalence of galR mutations may indicate that expression of the gal regulon 

may aid in increasing fitness when the ability to import glucose is impaired or the 

levels of PEP are inadequate for aromatic amino acid production.  Additional 

mutations that affected carbon transport processes included ptsG, galR, and 

nagC in the ePtsHIcrr strains (data not shown), and ptsG, galR, and nagA, nagC, 

and nagE in the eTpiA strains (data not shown).  

Mutations were also identified that offset the mis-regulation of local TFs.  

For example, the methylglyoxal pathway in tpiA was tuned to more efficiently 

convert methylglyoxal to lactate through mutations that altered methylglyoxal 

detox pathway gene expression.  There are four routes in E. coli by which 

methylglyoxal can be metabolized; one route involves the gloAB enzymes that 

utilizes glutathione to convert methylglyoxal to lactate (Figure S8).  Expression of 

gloA is repressed by NemR; repression is enhanced by elevated levels of 

methylglyoxal  (Ozyamak et al., 2013; Umezawa et al., 2008).  A mutation in the 

nemR promoter region in eTpiA03, and mutations in the nemR small-molecule-

binding domain or tetramerization regions in eTpiA01, 02, and 04 were found to 

offset NemR repression, and allowed for increased expression of gloA (Figure 5).  

The increased expression of gloA appeared to have provided a fitness advantage 

by increasing the conversion of DHAP to Lactate and subsequent conversion of 

Lactate to Pyruvate (Figure 5).  The levels of Pyruvate were severely depleted in 

https://paperpile.com/c/l8EmJW/01OUZ+h8Hnk
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uTpiA due to the forced bifurcation of flux that resulted from the loss of the 

triosephosphate isomerase enzyme. 

3vii.  Mutations selected during adaptive evolution also introduced 

innovations that targeted specific pathway or metabolite imbalances. 

Mutations were identified that targeted specific pathway or metabolite 

imbalances.  One of the clearest examples of this was in the pgi strains, where 

abnormally high flux levels through the oxidative pentose phosphate pathway 

resulted in the overproduction of NADPH.  Overproduction of NADPH was first 

buffered by glutathione (Supplemental data) and further mitigated through 

mutations in isocitrate dehydrogenase (Figure 3) and the transhydrogenases 

(Supplemental data). A point mutation at the 395 residue that changes the amino 

acid from positively charged (L-arginine) to negatively charged (L-cysteine) in 

isocitrate dehydrogenase was found in all ePgi replicates except replicate 7.  The 

mutation occurs 4 Angstroms from the phosphate moiety of NADP.  The 395 

residue has been shown to be directly involved in NADP-binding (Zhu et al., 

2005), and appears to allow the mutated enzyme to utilize NAD as a cofactor.  

The mutation was found to redirect flux through the glyoxylate shunt instead of 

the TCA cycle, and may provide a fitness advantage to the ePgi strains by 

limiting the production of NADPH in the TCA cycle. 

In another example of mutations that targeted specific imbalances, the 

ATP drain caused by the use of alternative glucose importers in ptsHIcrr resulted 

in a significant reduction in the energy charge, and the decreased availability of 

energy equivalents contributed to a loss in fitness (Balderas-Hernández et al., 

https://paperpile.com/c/l8EmJW/xgiV
https://paperpile.com/c/l8EmJW/xgiV
https://paperpile.com/c/l8EmJW/etph+G0Ee+8eMi
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2009; Fuentes et al., 2013; Valgepea et al., 2011) (Figure 4).  The loss of the 

ptsHIcrr genes also resulted in a lexA-mediated SOS response (Kreuzer, 2013) 

(data not shown).  The SOS response upregulated a plethora of DNA repair 

genes as well as genes known to confer a mutator phenotype.  The lexA-

mediated SOS response manifested in a large duplication that included the ATP 

synthase complex in ePtsHIcrr02/04 (Figure 4).  The increased gene dosage of 

ATP synthase complex genes most likely contributed to the significant increase 

in the energy charge that was found in ePtsHIcrr02/04.    

https://paperpile.com/c/l8EmJW/etph+G0Ee+8eMi
https://paperpile.com/c/l8EmJW/6frbK


261 
 

Discussion: 

Although mutations can be found and causality established at the 

genome-scale (Herring et al., 2006), the mechanisms and principles that underlie 

adaptation and laboratory evolution have not been revealed. Here, the 

combination of study design, automated ALE, multi-omic data sets, and statistics 

and bioinformatics revealed general, KO-specific, and lineage-specific 

mechanisms of adaptation. These are detailed in the case studies presented in 

the text, as well as in the main and supplemental figures. The three common 

principles of adaptation were revealed (Figure 7B) that build upon previous work 

that have investigated ALE (Carroll and Marx, 2013; Charusanti et al., 2010; 

Cooper et al., 2003, 2008; Gresham et al., 2008; Kvitek and Sherlock, 2011; 

Lenski et al., 2015; McDonald et al., 2009; Toprak et al., 2011).  They represent 

a first step towards developing a fundamental understanding of how cells 

mechanistically adapt to environmental and genetic change from a systems 

perspective that goes above and beyond general concepts of variability, 

heritability, and reproduction.      

The results of this study led to a model of systems adaptation (Figure 7A) 

whereby imbalances in metabolite levels from altered fluxes triggered a multitude 

of network responses that were readjusted by mutations selected for during 

evolution.  The mutations that fixed during ALE acted to rewire many existing 

hardwired responses and/or introduce novel network functions that addressed 

the imbalances that the initial KO lesion created.  Given the results of KO-specific 

case studies, caution should be taken when interpreting the results of single 

https://paperpile.com/c/l8EmJW/eaDa
https://paperpile.com/c/l8EmJW/5zsB+ag4I+Umtq+IAz2+NYDD+PBBJ+MaVW+EOyk+jooj
https://paperpile.com/c/l8EmJW/5zsB+ag4I+Umtq+IAz2+NYDD+PBBJ+MaVW+EOyk+jooj
https://paperpile.com/c/l8EmJW/5zsB+ag4I+Umtq+IAz2+NYDD+PBBJ+MaVW+EOyk+jooj
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gene KO experiments because it is difficult to assess causal network changes 

without considering the adaptive network response to the KO.  Novel 

mechanisms and inconsistencies, revealed through ALE, between measurement 

and known regulatory mechanisms identified in the case studies present 

opportunities for future discovery.   

Taken together, this study highlighted the need for an approach whereby 

genes and cellular components were not analyzed in isolation, but instead where 

genes, cellular components, and their interactions were analyzed in the context 

of the cells’ physiological functions.  The genetic perturbations made in this study 

and the subsequent ALE experiments represent clear examples of the 

importance of a systems perspective in understanding optimization and re-

optimization of cellular functions, and how cellular components, often surprising 

ones, must be adjusted to achieve optimal fitness. The study re-enforces the 

wisdom of the well known quote: “Nothing in biology makes sense except 

through the eyes of evolution” -- Theodosius Dobzhansky.  
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Figure 8.1: Evolution of knock-out strains from a pre-evolved (i.e. optimized) wild-type strain.  A) 
Experimental design using adaptive laboratory evolution (ALE) and enzyme knockouts to 
investigate system re-optimization following major metabolic perturbations.   B)  Wild-type (wt) E. 
coli (MG1655 K-12) was previously evolved on glucose minimal media at 37oC (LaCroix et al., 
2015).  An isolate from the endpoint of the evolutionary experiment was selected as the starting 
strain for knockouts of key metabolic genes and subsequent re-evolution, or systems re-
optimization.  C) Reactions disabled by the enzyme knockouts included the phosphotransferase 
sugar import system (ptsHIcrr), phosphoglucose isomerase (pgi), 6-phosphogluconate 
dehydrogenase (gnd), triophosphate isomerase (tpi),  and succinate dehydrogenase complex 
(sdhCB).  D) Adaptive laboratory evolution trajectories of the initial reference knockout (KOs) and 
evolved knockout lineages.  E) Counts of significantly different system components found for 
each evolved knockout relative to the unevolved knockout.  Counts of metabolomic, 
transcriptomic, and fluxomic data are given as the average and standard deviation of the percent 
of significant features compared to all features measured for the lineage; counts for mutations are 
given as the average and standard deviation of the number of significant features (See Methods 
for criteria for significance). 
  

https://paperpile.com/c/l8EmJW/0O2x
https://paperpile.com/c/l8EmJW/0O2x
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Figure 8.2: A multivariate analysis of biological network components as represented by different 
omics data types.  A) Partial Least Squares Discriminatory Analysis (PLS-DA) revealed a 
common trend in the two most dominant components: the primary component (PC1) most often 
corresponded to a movement away from (dashed line) and back to (solid line) evolved optimal 
fitness (i.e., optimal system configuration), while the secondary component (PC2) most often 
corresponded to a diversity among evolved optimal fitness states of different lineages  (i.e., 
optimal system configurations).  PLS-DA scores plots of the reference strain, initial knockout, and 
evolved endpoints for each lineage for metabolomics (B), transcriptomics (C), and fluxomics (D) 
data. The strain lineages denoted on the top of panel B also refer to the corresponding graphs 
below in Panels C and D.  All of the KO lineages matched the trend described above in the 
metabolomics data, one eKO did not match the trend in four of the five KO lineages in the 
expression data (i.e., all but eSdhCB), and one or more eKO did not match the trend in each of 
the KO lineages in the fluxomics data (see Methods for thresholds).    



266 
 

 

Figure 8.3:  Proximal and distal network responses to the loss of phosphoglucose isomerase 
(PGI).  Proximal: Knockout of PGI led to a hexose phosphate (panels A-C) and redox imbalance 
(not shown).  As an example, the magnitude of g6p in the initial knockout led to a deleterious 
cycle whereby leakage of hexose phosphate across the inner membrane (Bolten et al., 2007; Link 
et al., 2008) induced hexose phosphate re-uptake via the uhpBC two-component system and 
uhpT hexose phosphate transporter (Dahl et al., 1997; Maloney et al., 1990; Weston and Kadner, 
1988).  Other examples of the consequences of the PGI KO are provided in the Supplement. A) A 
network map and regulatory schematic of the reactions into and out of the g6p node. The reaction 
in red is removed through the PGI KO.  B) A mechanistic schematic of the uhpBC two-component 
system that sensed periplasmic hexose phosphate.  The transcription factor UphA positively 
upregulated the expression of the hexose phosphate importer uhpT.  C) Metabolite, expression, 
and flux levels near the node of perturbation.  Distal: A beneficial mutation that rewired the TCA 
cycle via a cofactor usage swap in isocitrate dehydrogenase (ICD) aided in alleviating the 
excessive conversion of NADP to NADPH (Panels D-G).  D) Network schematic of a segment of 
the TCA cycle. The reaction in red is catalyzed by ICD where mutations fix during ALE.  E) 
Crystal structure of ICD.  The mutated amino acids are highlighted in yellow.  F) Zoom in on the 
active site of isocitrate dehydrogenase showing the proximity of the mutated amino acid to the 
phosphate group of NADP.  The mutation occurs 4 Angstroms from the phosphate moiety of 
NADPH.  The 395 residue has been shown to be directly involved in NADPH-binding (Zhu et al., 
2005), and appears to allow the mutated enzyme to utilize NADH as a cofactor.  G) Mutation 
frequency and metabolite, expression, and flux levels near the mutated gene.  System 
components near the ICDHyr reaction in the ICD mutant strains are significantly changed. 
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Figure 8.4: Proximal and distal network response loss of the Phosphotransferase System (PTS). 
Proximal: Knockout of the primary glucose importation system (ptsHIcrr) increased the availability 
of PEP for aromatic metabolite production, but caused a drain in available ATP through the 
upregulation of secondary glucose importation systems that utilize ATP instead of PEP (Panels 
A-C).  A) A network and mechanistic schematic of the PTS system. The metabolite conversions in 
red are removed through the ptsHIcrr KO. B) A schematic of passive/active glucose importers.  C) 
Metabolite concentrations of the aromatic amino acids L-phenylalanine (phe-L), L-tryptophan (trp-
L), and L-tyrosine (tyr-L), and their precursor phosphoenolpyruvate (pep).  Also shown are the 
metabolite concentrations for L-histidine, which is derived from ribose, and energy charge ratio 
calculated as (atp + adp/2)/(atp +adp + amp).  Distal: Knockout of ptsHIcrr also induced a lexA-
mediated SOS response (Kreuzer, 2013) (not shown).  This manifested into a large chromosomal 
duplication event that resulted in an increased gene dosage of ATP synthase complex genes that 
most likely aided in restoring the energy charge (Panels D-F).  D) Reads vs. genome position.  
Inset highlights the duplicated region near 4MB.  E) Schematic of the ATP synthase operon 
genes.  F) Expression levels of the ATP synthase complex genes.  ePtsHIcrr02/04 ATP synthase 
genes are significantly elevated; note that the energy charge for ePtsHIcrr02/04 is not 
significantly different than Ref. 
  



268 
 

 

Figure 8.5: Proximal and distal network response to loss of triose phosphate isomerase (TPI).  
Proximal: The removal of TPI forced a bifurcation of flux in glycolysis through a pathway that 
involved the toxic intermediate methylglyoxal (mthgxl) (panels A-E).  The bifurcated flux is 
rejoined by the lactate dehydrogenase (LDH) reaction.  A) A network schematic of middle 
glycolysis.  Shown along with removed TPI (shown in red) are the reactions catalyzed by fructose 
bisphosphate aldolase (FBA), glyceraldehyde 3-phosphate dehydrogenase (GAPD), and 
methylglyoxal synthase (MGSA). B) Flux levels of reactions near the gene knockout.  C) Network 
schematic of lactate and pyruvate conversion.  D) Regulatory schematic showing the feedback 
loop that up-regulates the conversion of D/L-Lactate to pyruvate when elevated levels of 
intracellular lactate were sensed by the transcription factor lldR.    E) Metabolite, expression, and 
flux levels involved in the regulatory feedback loop.  Distal: Mutations that affect the transcription 
factor NemR that allowed for expression of the gloA detox pathway(Ozyamak et al., 2013) 
(Panels F-H).  F)  Schematic of the nemRA-gloA operon (see Figure S8 for expression profiles of 
the methylglyoxal detox pathways).  NemR exerts negative feedback on the operon that is 
enhanced by increased levels of methylglyoxal (mthgxl) (Ozyamak et al., 2013; Umezawa et al., 
2008).  gloA is co-expressed with nemR and nemA genes.  A mutation that alters NemR binding 
to the regulatory region is annotated in red.  G) Crystal structure of NemR (Gray et al., 2015).  
Chains A, B, C, and D are highlighted in gold and grey; the regulatory region is highlighted in 
cyan; mutations are annotated in red.  H)  Mutation frequency and expression profiles of nemR 
and nemR-associated genes.  The lineages with mutations have increased expression of the gloA 
detox pathway.  
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Figure 8.6: Perturbations in separate network locations yielded similar expression states in the 
uKOs due to similar metabolite levels.  Removal of the succinate dehydrogenase complex 
(sdhCB), which decoupled the TCA cycle from oxidative phosphorylation, and removal of 6-
phosphogluconate dehydrogenase (gnd), which re-routed flux through upper glycolysis, the ED 
pathway, and the pentose phosphate pathway (PPP), resulted in similar expression profiles of 
TCA cycle genes as a result of increased levels of intracellular four-carbon acids (Panels A-D).  
A) Reactions catalyzed by succinate dehydrogenase (SUCDi) and fumarate reductase (FRD2, 
FRD3) in the TCA cycle.  B) Schematic of the frd operon and regulation by DcuR.  Also shown is 
a schematic of the dcuRS two component system(Janausch et al., 2004).  Elevation in four-
carbon acids (e.g., succinate, fumarate, malate, and oxaloacetate) were detected by the dcuRS 
two-component system in the uKO strains.  Phosphorylated DcuR activated expression of the 
fumarate reductase operon genes.  Metabolite levels of fumarate (fum), succinate (succ), and 
citrate (cit), and expression levels of fumarate reductase (frdA, frdB, frdC, frdD) and succinate 
dehydrogenase (sdhA, sdhB, sdhC, sdhD) genes for gnd (Panel C) and sdhCB (Panel D).  The 
similar metabolite levels in the uGnd and uSdhCB activated a network response that resulted in 
the upregulation of frdABCD genes in uGnd and uSdhCB, and downregulation of sdhABCD 
genes in uGnd.  De-coupling of the TCA cycle from oxidative phosphorylation triggered an 
attenuated anaerobic response in gnd and sdhCB that involved a complex interaction of TFs 
ArcA, CRP, SoxR, SoxS, Fur, and Fnr, and small RNAs fnrS and ryhB (Panels E-H). E) 
Regulatory schematic of the signal transduction cascade triggered by the oxidized status of the 
membrane bound quinones ubiquinone (q8 and q8h2) and menaquinols (mql8, mqn8, 2dmmql8, 
and 2dmmq8), and anaerobic metabolites (e.g., lac-D).  F) Regulatory interaction diagram 
between the different regulators.  Metabolite and expression profiles of key components involved 
in the regulatory cascade for  gnd (Panel G) and sdhCB (Panel H).  Note the similar 
downregulation of fnr in response to ArcA activation through increased levels of lac-L and 
changes in the oxidized status of the membrane bound quinones, the upregulation of fnrS in 
response to activation of CRP-cAMP through increased levels of cAMP, and the downregulation 
of soxS in uGnd and uSdhCB.  



270 
 

 
Figure 8.7: A model of systems adaptation and general principles of ALE that were revealed.  A)  
A model of biological systems adaptation following the KO of key metabolic enzymes.  The pgi 
lineages are used to exemplify each of the mechanisms (i-vii) found to occur during adaptive 
evolution.  i. Component imbalance retarded fitness: Metabolites were found to be a mix of 
growth limiting and growth inhibiting, expression was found to be growth inhibiting, and fluxes 
were found to be growth limiting in amino acid biosynthesis pathways in the pgi lineages.  ii. 
Suboptimal pathway usage limited allocation of carbon to biomass precursors: The forced flux 
through the oxidative pentose phosphate pathway in PGI was re-distributed through the oxidative 
and nonoxidative branches.  iii. Perturbed metabolite levels triggered transcription regulatory 
network responses in the uKOs: cAMP levels were highly elevated in uPgi and restored to varying 
degrees in the ePGI strains.  iv. Transcription factor responses resulted in a misallocation of 
resources or amplification of processes reducing fitness in uKOs:  The elevation in cAMP levels 
resulted in the up-regulation of operons that are positively regulated by CRP in pgi, including the 
mal operons that encode enzymes for glycogen synthesis and turnover.   v. Alternate regulatory 
mechanisms abrogated counterproductive transcription factor responses: vi. Mutations selected 
during adaptive evolution re-wired many counterproductive system responses: A mutation that 
truncated the mal operon activator, MalT, peptide was found in ePgi06 that appears to silence 
expression of the mal genes.  vii. Mutations selected during adaptive evolution also introduced 
innovations that targeted specific pathway or metabolite imbalances.  
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Table 8.1: Counts of significantly different network components found for each evolved knockout 
relative to the unevolved knockout.  Counts of metabolomic, transcriptomic, and fluxomic data are 
given as the average and standard deviation of the percent of significant features compared to all 
features measured for the lineage; counts for mutations are given as the average and standard 
deviation of the number of significant features (See Methods for criteria for significance). 

 Metabolomics Transcriptomics Fluxomics Mutations 

Comparison Ave % of 
total  

STD % 
of total 

Ave % of 
total  

STD % of 
total 

Ave % 
of total  

STD % 
of total 

Ave STD 

ref vs. 
eRefs 

2.2 0.0 0.4 0.1 0.0 0.0 6.5 0.7 

uGnd vs 
eGnd 

41.1 1.1 14.8 0.3 17.0 0.8 10.7 7.4 

uPgi vs 
ePgi 

29.9 5.2 3.8 2.8 43.0 3.8 14.0 7.3 

uPtsHIcrr 
vs. 

ePtsHIcrr 

20.8 2.8 19.1 2.7 38.3 1.9 12.0 4.8 

uSdhCB vs. 
eSdhCB 

24.4 5.9 10.4 0.5 13.8 5.5 7.7 2.3 

uTpiA vs. 
eTpiA 

36.9 2.9 10.5 0.8 40.2 0.1 19.7 7.4 
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Table 8.2: General principles of ALE uncovered and their implications 

General principle Implication 
The dominant mode of adaptation to perturbation 
involved general and perturbation-specific network 
responses that were often re-balanced and 
modulated during the evolution process. 

The initial network response to 
perturbation is sub-optimal, and requires 
adaptive evolution to re-optimize and 
achieve homeostasis. 

The network state of each endpoint had unique and 
quantifiable differences.  These differences were 
often attributed to mutations selected for during 
adaptation. 

There is a diversity of system 
configurations that can be found during 
evolution to achieve the same 
physiological goal. While many omics 
measurements are restored, there is a 
subset that determines the uniqueness of 
alternate evolutionary outcomes.  

System re-optimization during adaptation involved 
both proximal and distal changes relative to the 
location of perturbation (i.e., deleted reaction) in the 
network that reflected coordinated interaction of 
many layers of system components (i.e., 
metabolites, proteins, RNA, DNA, etc.).  The 
primary drivers behind these changes were 
metabolites. 

Biological systems should not only be 
analyzed from a component perspective, 
but must also be understood on a systems 
level where each component has multiple 
and often non-intuitive functions that 
extend beyond our current annotations. 
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CHAPTER 9: 

Conclusion 

 

 Much progress has been made in establishing the causality of mutations 

that occur during adaptive laboratory evolution (ALE) on organism physiology.   

In contrast, little progress has been made in detailing the mechanisms and 

overarching principles of evolution that govern the adaptive process.  Using E. 

coli as a model organism, a set of gene knockouts in key metabolic pathways, 

and ALE, this thesis sought to lay the ground work for identifying the underlying 

mechanisms and principles of adaptation.  First, a workflow for measuring 

intracellular metabolite concentration for over 100 metabolites in central 

carbohydrate metabolism, amino acid metabolism, cofactor and nucleotide 

biosynthesis and energy metabolism from sampling and extraction to separation 

and acquisition is described.  Second, a workflow for measuring over 74 unique 

intracellular mass isotopomer distributions (MIDs) for metabolic flux analysis 

(MFA) at the genome-scale is described.  And finally, a platform that integrates 

the above metabolomics and fluxomics data and additional –omics data types, 

with statistical and biochemical modelling techniques was developed and applied 

to interrogate, analyze, and interpret the adaptive changes found in response to 

metabolic perturbation.  Mechanisms of adaptation were found, and several 

overarching principles of evolution were uncovered. 
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