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Abstract

Traffic data from a 4-mile long congested rural road in Orinda, California, are used to

show that traffic delays and vehicle accumulations between any two generic observers

located inside a road section can be predicted from the traffic counts measured at the

extremes of the section. The traffic model does not require “recalibration” on the day of

the experiment, and works well despite what appears to be location-specific driver

behavior.
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1 INTRODUCTION

The purpose of this paper is to determine if traffic behavior upstream of a bottleneck can

be predicted on a large scale, even in the presence of phenomena that are not reproducible

at a more detailed level. The analysis focuses on traffic accumulations and waves, the

main determinants of queue spill-backs (i.e., traffic backups). The paper develops a

methodology to calibrate the parameters of a prediction procedure, and then demonstrates

the calibration and prediction process with the data set described in Smilowitz et al.

(1998). Familiarity with the data set in this reference is not necessary, but may help those

readers who wish to extend or test the ideas about to be presented. As explained in that

reference, the data set is available at: http://www.ce.berkeley.edu/~daganzo/spdr.html on

the world-wide-web.

This data set contains detailed observations of both queued and unqueued vehicle

arrivals upstream of an actuated traffic signal on two different days. These data were

collected along a single lane of a two-lane highway with virtually no points of access or

egress and negligible passing; see Figure 1. Smilowitz et al. (1998) describes the field

experiment, the data reduction procedure that included (minimal) filtering of bad data,

and the overall results. The data were summarized in the usual way by cumulative curves

of vehicle number (N-curves). Visual inspection of the N-curves revealed that queues

appeared to form and dissipate in predictable ways and showed no evidence of traffic

instabilities at locations that were not queued. Interestingly, although the traffic signal

pulses faded within one-half mile, other oscillations arose within the queue farther

upstream and, in fact, grew in amplitude. These oscillations never propagated beyond the

end of the queue, however.

Additional analysis of the N-curves has shown phenomena consistent with earlier

findings, as well as other behavior that cannot be explained easily by current models. For

example, the data showed that the forward propagation of disturbances first noted in

Cassidy and Windover (1995) for unqueued traffic (i.e., when the travel times between

observers include no appreciable delay) occurred repeatedly and consistently. This is

interesting because the test site was four miles long and these disturbances had ample
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time to disappear. It was apparent that an N-curve downstream of an unqueued (or “free

flowing”) segment could be predicted quite accurately from the N-curve upstream of the

segment simply by translating the upstream N-curve to the right by the free-flow travel

time across the segment. As an illustration of this, Figure 2 shows the propagation of a

disturbance from the upstream-most observer, N(1,t), to all the downstream observers.1

The curve N(x,t) represents the cumulative number of vehicles to pass observerx by time

t. Note that a similar headway was observed at locations 2,3,4, 5, and 6, and that there

was no queuing delay anywhere between observers 1 and 6. When traffic was queued

(i.e., travel times were larger than the minimum), as occurred between observers 6, 7 and

8, disturbances did not propagate in that manner and this is illustrated by the N-curves of

these observers which do not include a gap G1. We shall see later that when traffic was

queued its behavior was dictated, as one might expect, by downstream rather than

upstream flows.

Unexpected queued traffic behavior.Looking at periods in which there were long queues

(such as the one depicted in Figure 3), we see that the cusps of curve N(8,t), which

corresponds to a location about 250 feet upstream of the traffic signal, were usually

“rounded” and the troughs were usually “sharp”. This seems to indicate that the

acceleration wave was transmitted from the location of the traffic signal to observer 8

sharply (as a “shock”) and that the deceleration toward the end of the queue was not.

The latter effect could be explained if most drivers were to decelerate in two

stages: (i) first taking their foot off the acceleration pedal (coasting) as soon as they

recognized that they would have to stop, and (ii) waiting to apply the brakes until the last

minute. The signal to coast would then be transmitted very rapidly and the signal to

brake more slowly. The passage of the coasting signal would be marked by the beginning

of the curvature of each cusp, and the passage of the braking signal by the end of the

curvature. If this were true, one would expect these curved cusps to grow from one

observer to the next (e.g. from 8 to 7) and this appeared to happen in most cases.

1Gaps similar to G1 were observed repeatedly, usually directly ahead of trucks and buses. Presumably,
these heavy vehicles could not climb quickly a long uphill grade that led to the site of the Smilowitz et al.
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However, the acceleration shocks did not always remain sharp.2 Close

examination of the data reveals that both the cusps and the troughs could become rounded

upstream of observer 7, and that the pattern was not consistent. We note, however, that

the traffic signal could be seen by drivers from location 7 (1/4 mile away), but not from

location 6 (1/2 mile away). This suggests that drivers may have been motivated to not

miss the ‘green’ phase when they were close to the signal and that they might have driven

differently farther upstream. The erratic pattern, however, suggests that wave

propagation and the detailed shape of the N-curves were influenced by the idiosyncrasies

of the particular drivers affected by each wave.3

The particular form of smoothing that was observed is noteworthy because it is

inconsistent with the kinematic wave (KW) theory of traffic flow. The observed driver

behavior is also inconsistent with existing car-following theories, but this is not

elaborated here because the focus of this paper is the prediction of accumulation with the

kinematic wave theory.

If the KW theory with constant wave speed held (i.e., with a linear flow-density

curve in the queued regime) as formulated in Newell (1993),4 we would expect the N-

curves for observers 7, 6, 5, and 4 to be identical or very similar to N(8,t) except for a

vertical and horizontal translation. There would be no “rounding” of the cusps and

troughs. The KW theory also implies that if the flow-density relationship were curved

rather than straight, then only the cusps or only the troughs should become smooth,

depending on whether the flow-density relation were convex or concave. Furthermore,

the particular form of smoothing should continue as one moves upstream from one

observer to the next, until the oscillations disappear. Obviously, the long period

oscillations that are shown in Figure 3 for curves N(4,t) and N(5,t) should not have arisen

if the KW theory were valid at this fine level of detail.

(1998) study.
2 An acceleration shock will remain sharp as long as drivers accelerate reasonably fast somewhat
independently of the precise motion of the car in front.
3 Windover (1998) found erratic wave speeds but less smoothing when looking at freeway data. We
conjecture that, with the threat of lane changing in a multilane traffic setting, drivers may be more motivated
to follow closely and be less idiosyncratic.
4Newell (1993) was first to relate the N-curves to the kinematic wave theory of traffic flow proposed by
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In view of this, this paper seeks to determine if the KW theory will predict

approximate vehicle accumulations and trip times between observers on a larger scale.5

The paper is organized as follows. First, a simple methodology that will be used to

calibrate the KW theory and predict the N-curves is reviewed in section 2. This

methodology is applied to experimental data in section 3. The results are interpreted in

section 4. A brief summary of the main findings is then presented in section 5.

2 REVIEW OF KW THEORY WITH PIECEWISE LINEAR N-CURVES

The procedures in Newell (1993) can be streamlined when the N-curves are piecewise

linear. This simplification will allow us to estimate the parameters of the prediction

procedure in a simple way, and to obtain the predictions quickly and easily. This section

reviews this methodology as it applies to a queued section enclosed by two observation

points: “U”- upstream and “D”-downstream. The downstream N-curve will be labeled

ND and the upstream curve NU.

The use of piecewise linear approximations is justified because the KW procedure

is a “contraction mapping” in the space of N-curves. That is, if the KW procedure is

applied to two ND curves then the maximum separation that results between the two

predicted NU curves is at most equal to the maximum separation between the two input

ND curves (Daganzo, 1997).6 Therefore, if one approximates to within an acceptable

tolerance level a raw input ND curve by a piecewise linear curve, and then applies the KW

procedure to the piecewise linear curve, one can be assured that the result will be within

the same tolerance level. This is useful because the KW procedure can be simplified

Lighthill and Whitham (1955) and Richards (1956).
5Our study site is unique in that vehicles cannot pass for a long distance. If a single driver decides to slow
down (s)he can affect the whole platoon of cars behind and have a large microscopic effect. This is less
likely to happen in multi-lane freeway traffic. We are not sure whether this peculiarity of our site favors or
disfavors the KW model, although we lean toward the latter position and believe that a successful test with
the Smilowitz et al. (1998) data bodes well for similar tests with multi-lane freeway data.
6A similar result holds for errors in the flow-density relation; i.e. the maximum vertical separation between
two NU curves built from two different flow-density relations cannot exceed the product of the maximum
density discrepancy in the two relations and the length of the UD section.
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significantly when dealing with piecewise linear N-curves. The simplifications arise from

three postulates that are equivalent to the KW theory but pertain to operations on

piecewise linear N-curves (Daganzo, 1997). For the purposes of the present paper, only

the first two postulates in that reference will be needed. They are explained below.

The first postulate (stationary reproducibility) states that vehicle accumulations

should be replicable within a queue for any (long) time interval in which the average flow

for the interval is the same. More precisely, if a downstream curve ND does not deviate

much from a straight line with slopeq for an extended period of time, and traffic is

queued, then curve NU should become approximately parallel to ND and remain above ND

by a reproducible number of vehicles, mUD(q). This separation is the average

accumulation of vehicles between observers “U” and “D”. We will say that the stationary

reproducibility postulate holds approximately if the NU and ND curves fluctuate within

reasonable bounds about parallel trendlines that are mUD(q) vehicles apart, and if this

separation only depends on the slopeq. The separation should not depend on anything

else; e.g., the history of the system. Note that the postulate can be satisfied approximately

even if there are stop-and-go oscillations, and that it could be useful (if proven true) even

if the remaining postulates of the KW theory are not accurate.

This postulate is also interesting because it applies to inhomogeneous road

sections and does not require that one define a “density” for every point on the road.

Instead, vehicle accumulation (an observable number with no ambiguity) becomes the

fundamental variable to be predicted. In what follows, the relationship mUD(q) will

replace the "fundamental diagram" of KW theory. An example of such a curve is shown

in Figure 4a.

If one believes that on a particular road the accumulation mUD(q) between any two

points U and D only depends on these points through the distance that separates them and

one also believes that the dependence is proportional (i.e., the road is homogeneous), then

there may be some merit in normalizing the accumulation-flow relation by distance and

writing ♠(q) = mUD(q)/LUD for the resulting function of q. This normalized vertical

separation,♠� q), has units of “density”, but will be called here the normalized average
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accumulation to avoid confusion with the various possible definitions of density.7

The second postulate states that the transition between two neighboring stationary

states propagates as a wave from D to U. This is depicted in Figure 4b, where the

transitions at U and D are idealized by breakpoints in the N-curves.8

If the slopes (q1, q2) and the separations (mUD(q1), mUD(q2)) between the two sets

of parallel lines are given, we see from the geometry of the figure that the “N-vector” that

points from one breakpoint to the other must also be given. Simple geometric

considerations reveal that the dimensions of the horizontal and vertical components of

this vector, w12 and n12, are related to the slopes and separations by: w12 = -� m/� q

(where� m = mUD(q1) - mUD(q2) and � q = q1 - q2 ) and n12 = mUD(q1) + q1w12. The time-

component of the N-vector represents the wave trip time, and the count-component the

number of vehicles that encounter the wave between locations U and D.

These two quantities have simple graphical interpretations on an accumulation-

flow plane, such as Fig. 4a, that contains the two stationary states. Consideration of this

figure shows that w12 is the negative slope of the line connecting the two state-points and

n12 is the intercept of said line with the accumulation axis.9

In the special case where the mUD(q) relationship is linear, we see from Figure 4a

that the coordinates of the N-vector are independent of the two states. This means that all

the N-vectors of a piecewise linear curve ND with multiple breakpoints must be identical

and that the NU curve is therefore an exact translation of the ND curve in its totality, as

originally noted in Newell (1993).

Procedures based on the above-mentioned ideas will be used in the next section to

determine the mUD(q) curves that best fit the data observed on one day at the Smilowitz et

al. (1998) site, and then to predict the N-curves at the same site on adifferentday.

7The reader can verify that the normalized average accumulation is simply Edie’s (1963) generalized
definition of density for the time-space rectangle describing the intervening space between the observation
points for the (long) time interval during which the system is stationary. This quantity is unambiguously
defined even if the two observation points are so close that a single vehicle doesn’t fit in between.
8In the KW theory, some transitions tend to spread and in those cases the corners of the N-curves become
smoother as the wave moves upstream. This complication can be captured by means of a third (stability)
postulate, as explained in Daganzo (1997). Because corner effects do not change the predictions
significantly when the stationary states persist for a long time, as will be the case in this paper, the third
postulate is not introduced here.
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3 APPLICATION TO EXPERIMENTAL DATA

In order to apply the methodology of Section 2, two input curves are required: a

piecewise linear approximation of the downstream-most observer, ND, and an mUD(q)

relationship. Both input curves were obtained from the data set mentioned in the

introduction. Recall that it contains detailed data for eight locations along a congested

single lane of a two-lane road fortwo days of observation.

To control the statistical degrees of freedom in this application, data from thefirst

day were used to calibrate an accumulation-flow relationship, and this relationship was

then used with the ND curve from thesecondday to predict the upstream NU curves. The

process was then repeated using thesecondday's data for calibration, and thefirst day’s

data for prediction. These tests should help determine if time-dependent vehicle

accumulations can be predicted from day to day.

Constructing ND

The downstream-most observer in the experiment was located 246 feet upstream of a

vehicle-actuated traffic signal. Thus, the N-curves constructed from data collected at

observer 8, N(8,t), exhibited the cyclic pulses of the traffic signal. A piecewise linear

approximation of N(8,t) that averaged out these pulses was then constructed using as few

breakpoints in the curve as possible while ensuring that the maximum separation between

the true and approximated curves remained within a reasonable tolerance. The design

tolerance chosen for our study was twenty vehicles. This set-up allowed us to create

intervals of stationary flow that were long relative to the wave trip time so as to ensure

that our two simple postulates suffice to describe the KW solution (see footnote 8).

Breakpoints were determined by visual inspection of the trend changes in N(8,t).

In order to stay within the design tolerance, seven and eight breakpoints were used on the

first and second days, respectively. The resulting tolerances were sixteen vehicles on the

9Note the similarity with the interpretation of the same variables in Newell (1993).
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first day and nineteen on the second day. Our procedure was visual, but the piecewise

linear approximation could also be constructed using a mathematical program to select

the coordinates of the breakpoints that would minimize the deviations of the linear

approximation from the true N(8,t). This may be useful in practical settings where the

procedure may have to be repeated many times.

Accumulation-flow relationship

To obtain a relationship between stationary accumulation and flow, both the average

flows at the downstream-most observer and average accumulation of vehicles between

the observers were measured. The average flows were taken to be the slopes of the

segments in the piecewise linear approximation described above. The average

accumulations were simply the average vertical separations between each segment of the

piecewise linear curve and the corresponding portions of the curves recorded by the other

observers.

The average accumulations, given by the average vertical separation between

curves, were measured only during periods of stationary flow. To estimate such

accumulations, each linear section of the approximation of N(8,t) was translated upwards

toward a target curve until the deviations from the target were minimized. Our estimate

is then the vertical separation between the original and translated segments.

As an illustration of this procedure, Figure 5 presents the approximation of N(7,t)

obtained from one of the segments of N(8,t) on day 1. Since changes in flow were not

instantaneously felt by upstream traffic, the average flow segment for a given interval was

first shifted to the right slightly by an approximate wave trip time and then upwards. The

wave trip time was estimated using a wave speed of 12.5 mph. Since the stationary flow

intervals were long relative to the wave trip times (see Figure 5), the results are not

sensitive to the particular wave trip time used. (Note the small size of this shift, i.e.

segment AB, relative to the length of interval.) The vertical shift (segment BC)

minimizes the vertical deviations between N(7,t) and the shifted segment. Note that this

shift is not the average vehicle accumulation; as shown in Figure 5, the average vehicle

accumulation (i.e. the vertical separation between the two parallel linear segments) is
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always smaller than this shift.

For each period of stationary flow, the average vehicle accumulations between the

downstream-most observer, N(8,t), and subsequent queued upstream observers were

measured with this procedure. As a result, accumulation-flow data points were obtained

for each pair of observers (i.e., observers 7 and 8, observers 6 and 8, etc.). The resulting

data set contains seven or fewer data points for each pair of observers.10 Although each

observation represented the state of the system for an extended period of time, we felt that

there was not enough information in these data to estimate reliably a separate mUD(q)

curve for each pair of observers. This was true in particular for the observers farthest

upstream because the queue only reached these locations for brief intervals of time and

this resulted in even fewer data points. In view of this, the site was initially treated as a

homogeneous highway so that accumulation could be normalized and then pooled and

compared for all observers combined. We shall see later that the homogeneity hypothesis

did not hold for all the stretches of our road.

The normalized accumulation-flow data points are plotted in Figure 6. Unlike

conventional flow-density diagrams, Figures 6 and 8 display flow on the x-axis and

normalized accumulation on the y-axis. This is our way of stressing that flow is the main

determinant of vehicle accumulations in queued traffic.

Data points including many vehicles (e.g. those arising from long stationary

intervals) are likely to yield more accurate average accumulations than data points

including fewer vehicles. Likewise, data points where individual vehicles are observed

for a long time (e.g. those corresponding to pairs of observers located far apart) are also

likely to be more reliable. Therefore, to capture both of these effects, our observations

were weighted by the total vehicle-hours included in each data point. The sizes of the

circles in Figure 6 reflect this weighting. This is roughly analogous to weighting data

points by the inverse of their variances. Although one could argue for other weightings,

we note that the observations line up well and that a fitted curve would not be

significantly affected by the weighting.

Because the nature of the normalized accumulation-flow relationship was not
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known a priori, both a piecewise linear line and a single line were constructed for these

data points. As Figure 6 shows, both approaches produced similar results.

Predicting NU

The N-curves for queued locations upstream of N(8,t) on day 2 were estimated using the

methodology described in section 2. Given the flow in each section of the piecewise

linear approximation of N(8,t) forday 2, the normalized accumulation of vehicles

between observers was obtained from the♠(q) relationship developed from theday 1data

(Figures 6a and b). These normalized accumulations were multiplied by the distances

between observers to obtain the upward shifts that were applied to the various segments

of N(8,t) to construct the upstream N-curves as shown in Fig. 4b. Because the N-curves

obtained with the two♠(q) curves in Figure 6a and Figure 6b only differed by a few

vehicles when the curve separation was greatest,11 the predicted N-curves are only

presented for the linear case of Figure 6a.

These results are displayed in Figs. 7a-c. The dark lines in these figures are the

predictions and the light curves are the true observations. Dark lines are not included

where traffic was not queued. The numbers across the top of each figure are the observer

numbers corresponding to the N-curves. Note with the exception of N(3,t) the closeness

of the true and predicted curves, which suggests that the methodology worked well for

most observers.12 The results are discussed in more detail in the next section.

The process was then repeated usingday 2data to calibrate two♠(q) relationships

(Figure 8a and b) and then using these relationships to reconstruct theday 1 N-curves.

The estimated♠(q) relationships are shown in Figs. 8a and 8b, and the predictions for day

1 obtained with the linear♠(q) relation of Fig. 8a in Figs. 9a-c. As in the previous case,

the predictions based on the non-linear♠(q) were similar and are not presented. Note that

the results are qualitatively similar to those previously obtained for day 2.

10These seven data points correspond to the seven intervals of stationary flow.
11The validity of this statement can be easily verified without constructing the curves; see footnote 6.
12 The linear segments for N(2,t) are not displayed because this observer was rarely queued. The (short)
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4 ANALYSIS

Normalized Accumulation-Flow Relationship

Closer analysis of the normalized accumulation-flow plots highlighted several interesting

points. Although individual♠(q) points recorded for the first day of observation spanned

a relatively narrow range of flows, the linear relationship between normalized

accumulation and flow that resulted (Figure 6a) was similar to that produced with data

from the second day (Figure 8a) for the full range of flows. In fact, a comparison of Figs.

6a and 8a reveals that the two lines coincide for the highest accumulations (low flows)

observed and only diverge by 7 vehs/mile for the lowest accumulation (high flows). The

slopes of the two lines are also similar, yielding wave speed estimates of 10.7 MPH (Fig.

6a) and 11.7 MPH (Fig. 8a).

Although the two piecewise linear approximation of the♠(q) relationship (Figures

6b and 8b) were close to each other, it is apparent from the figures that they did not curve

in the same way on both days. Therefore, our data did not suggest that♠(q) was

significantly curved in the range of flows observed. In any case, we have already stated

that the small (possibly spurious) curvatures that arose each day could not and did not

have a significant effect on the accumulation predictions.

Prediction of N-Curves

As shown in Figures 7 and 9, the predicted N-curves for locations within the first mile

upstream of the reference location (i.e. curves 4, 5, 6 and 7, upstream of 8) lay on or very

near the true N-curves. At these locations, discrepancies between predicted and observed

N-curves were not, in general, greater than the deviations between the piecewise linear

approximation of N(8,t) and the true N(8,t). Table 1 summarizes the maximum error in

the prediction of the N-curves for observers 4 through 7 on both days.13 Only in one

N(2,t) segments that arise also lie above the true curve.
13Some average flows observed on the second day were outside the range of average flows observed on the
first day. Therefore, some of the normalized accumulations predicted for the second day were based on
extrapolated data. Despite this difficulty, the predictions for the second day are quite accurate. This
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instance did the error exceed that of the input N(8,t). In addition, we also see from

Figures 7 and 9 that for the most part the predicted and observed curves remained within

ten vehicles of each other, even for the most distant of the 4 observers, and that accuracy

did not deteriorate significantly with distance. Furthermore, when larger fluctuations did

appear, these fluctuations did not prevent the predicted line from reapproaching the

observed line in later intervals.

N-Curve Maximum Deviation (number of vehicles)
First Day Second Day

Input
N(8,t) 16 vehicles 19 vehicles

Predicted Curves
N(7,t) < 16 vehicles 17 vehicles

N(6,t) 19 vehicles 13 vehicles

N(5,t) < 16 vehicles 16 vehicles

N(4,t) < 16 vehicles 19 vehicles

Table 1: Maximum Error in Prediction of N-Curves (measured in number of vehicles)

As marked in Figures 7 and 9, there was some over-prediction for the third

observer N(3,t) during most intervals when the queue reached that observer on both days.

This means that for a given queue discharge rate drivers spaced themselves more widely

(and traveled faster) upstream of observer “4” than downstream. This observation could

be explained in several possible ways: (i) distance measurement errors, (ii) a possible

“end-of-the queue” effect, if drivers were to behave differently when approaching a

queue, (iii) a location-specific effect such as an inhomogeneity in the road, or (iv) failure

of the theory. We dismissed (i) because the careful distance measurements in Smilowitz

et al. (1998) were reconfirmed on another visit to the site. We also dismissed (ii) because

N(4,t) was not overpredicted in the same manner when the queue reached only to the

fourth observer. On the other hand, we considered (iii) seriously because the over-

prediction of N(3,t) occurred on both days. Although observation of the “4-3” road

segment revealed that it includes a change in grade, we did not conclude that this is the

cause of the problem because wider spacings were also observed between observers “3”

suggests that the estimation methodology is robust.
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and “2”, and because other explanations are also possible. (Since this road is used by

commuters who must be aware that their wait cannot be changed by driving aggressively

in the queue, it is also possible that they may have been allowing themselves more

comfortable spacings at locations far upstream of the bottleneck, quite independently of

the roadway geometry.) We do not speculate further about this issue here because the

cause of the over-prediction may not be needed to predict accumulations; e.g. if we find a

recipe that is reasonably accurate despite inhomogeneous traffic behavior. This

possibility is examined below.

To this end, a separate♠(q) relationship was derived for observer 3 using only

data from the first day. This was done by plotting only the accumulations between the

downstream-most observer and observer 3 on day 1 and fitting a straight line through

these points. The resulting relationship was then used to construct the predicted N(3,t)

curve for the second day in the usual way. Figure 10 presents the result. The figure only

includes the time interval from 7:20 am to 8:10 am because traffic was only queued at

observer 3 inside this interval. The improved prediction supports the theory that traffic

back-ups can indeed be estimated with the KW theory despite location-specific traffic

behavior.

Predictions of N(3,t) for day 1 could not be similarly tested because there were not

enough data points from day 2 to estimate a separate♠(q) curve for observer 3.

Predictions of N(2,t) could not be tested at all in a similar way because the queue only

reached location “2” on one of the days.

In any case, the results strongly suggest that it is possible to predict N-curves quite

accurately over distances comparable with one mile and for time periods encompassing

several hours without the need for calibrating a model on the day of the predictions.14

Visual inspection of the results showed good prediction of the transition between

states. The most striking way to see this is by imagining that each segment of a predicted

14Data from the two days in our data set were not completely independent since, as discussed in Smilowitz
et al (1998), day 2 N-curves were adjusted to account for clock errors and these minor adjustments were
based on free flow conditions observed on day 1. It should be stressed, however, that the impact of these
adjustments on our results are minimal because free flow conditions change only by a small amount from
day to day. The errors, which are imperceptible to the eye, were estimated to be at most a few seconds.
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N-curve is introduced in sequence as one steps through time, and to note what would

happen to the figure if the introduction of a new segment was delayed or omitted. The

effect is shown particularly well in Figure 7c. Note how just as soon as the true and

predicted N-curves diverged by an amount greater than the design tolerance, another

segment was introduced into the solution. If the transition from one stationary state to

another had not occurred close to that moment, the discrepancy between predicted and

observed N-curves would have grown too large. This indicates that the theory works

similarly well during the transitions between states as it does during periods of stationary

flow. Note in particular that the change in trend between states (positive or negative)

seems to propagate fairly cleanly and sharply from observer to observer, in agreement

with postulate (#2).

Queue Formation and Dissipation

Although this is not the main focus of this paper, Figs. 7, 9 and 10 also shed some light

on the queue formation and dissipation process.

An N-curve at a location “j” that has undergone several episodes of queued and

unqueued traffic can be constructed by taking the lower envelope of the predicted

(queued) curve from N(8,t), obtained as described above, and the curve obtained by

shifting N(1,t) to the right by the “free-flow’ trip time from “1” to “j”. This is the

simplified KW recipe recommended in Newell (1993). In other words, if the simplified

KW theory holds then the shifted N(1,t) curves should be above and to the left of the

shifted queued curves obtained from N(8,t) when traffic is queued, and they should be

below and to the right at other times. The reader can easily verify from Figs. 7, 9 and 10

that this is the case (approximately) with our data.

Single Shift Method

As mentioned earlier, the predictions did not change much with the piecewise linear♠(q)

curves; therefore a linear relationship between normalized accumulation and flow seems

reasonable for our site. We have already seen that when this relationship is linear the

(piecewise linear) downstream N-curve can be translated as a whole, in a single shift,
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upwards and to the right in order to construct any of the upstream N-curves. Because the

shift is independent of the piecewise linear approximation used for the N-curve, the

procedure can be applied to an N-curve with as many break-points as desired; i.e. it can

be applied to the raw data curve. This simplifies matters further.15 We will refer to this

methodology as the “single shift” method.

This method worked well and a sample of the results are shown in Figure 11.16 Over

short distances, the predicted N-curves matched the true N-curves well. However, over

longer distances, the maximum deviations in predictions appeared to be just slightly

larger than the maximum deviations using the linear approximation procedure. This

occurs because the KW wave does not correlate well the detailed wiggles in the curves

near the bottleneck with those upstream of it, as was qualitatively noted in Smilowitz, et

al. (1997). This suggests that the finer details of the N-curves do not propagate as a

simple KW wave at our site, although their gross behavior does. Fortunately, it is this

gross behavior that is the most important determinant of traffic back-ups.

5 CONCLUSION

The results presented here suggest that, even when queued traffic appears to behave in a

manner that is inconsistent with the kinematic wave theory on a fine level of detail, a

reproducible relationship between normalized accumulation and flow exists. The results

also suggest that it is possible to predict vehicle accumulations and queues approximately

on a coarse level of detail.

Cumulative counts inside queues were predicted with errors bounded by an

acceptable error in the input data. Error tolerances of sixteen and nineteen vehicles in the

input data led to smaller prediction errors with only one exception, despite the long

duration of the study. We also observed that predictions did not deteriorate appreciably

during the transition between states; i.e. that these transitions seem to propagate sharply

15An advantage of the single shift method is that it can be applied without smoothing the data and therefore
can be used for real-time predictions.
16Corrections for inhomogeneity in the road between observers 3 and 4 were incorporated in this application
as well.
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through the traffic stream.

Although the research methodology did not require an assumption of a single

wave speed, the single wave speed was found to work well. This should not be

surprising, however, because of the relatively narrow ranges of flow that arose in our site.

Therefore, we are not yet ready to accept this conclusion for more extreme situations (e.

g. when traffic is stopped). To explore this further it would be beneficial to consider

other sites. Yet, it is reassuring to note that the normalized accumulation measured at

this site during the brief episodes when traffic was completely stopped was very close

(approximately 5-10% higher) to the intercepts of the extrapolated curves.

To be sure, we still do not know what is it that drivers do to generate some of the

patterns observed in our data. In particular, we do not understand the source of the long

period oscillations observed at locations 4, 3 and 2 on both days, and whether this is a

peculiarity at our site. Thus, it is important to look into this issue further, both, with this

data set and at other sites.

It is also important to remember that our test site is a single lane road with no

passing. Therefore, the experiment should be repeated with data from multi-lane

highways to see which of the phenomena also occur there. However, given the fact that

the methodology performed well for this site, where individual drivers can have a more

significant impact, it is not unreasonable to expect that time-dependent back-ups can also

be predicted similarly well (or perhaps even better) on facilities where passing is possible.

We hope that the results in this paper will encourage others to verify or disprove our

findings. This is desirable because an ability to predict traffic back-ups is a prerequisite

for managing freeway networks effectively.
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Figure 2: Forward-moving propagation of disturbances in free-flowing traffic
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Figure 6a: Normalized Accumulation-Flow Relationship
Linear Construction
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Figure 6b: Normalized Accumulation-Flow Relationship
Piecewise Linear Construction
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Figure 7.a: Day 2: Predicted N-curves
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Figure 7.b: Day 2: Predicted N-curves
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Figure 8a: Normalized Accumulation-Flow Relationship
Linear Construction
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Piecewise Linear Construction
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Figure 9.a: Day 1: Predicted N-curves
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Figure 9.b: Day 1: Predicted N-curves
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Overprediction of N(3,t)

600

700

800

900

1000

1100

1200

1300

1400

7:12

7:19

7:26

7:33

7:40

7:48

7:55

8:02

8:09

Time (hr:min)

V
e

hi
cl

e
C

ou
nt

(c
ar

s)



1400

1500

1600

1700

1800

1900

2000

2100

2200

7:55

8:02

8:09

8:16

8:24

8:31

8:38

8:45

8:52

9:00

Time (hr:min)

V
e

hi
cl

e
C

ou
nt

(c
ar

s)

1 2 34 5 6 7 8

Figure 9.c: Day 1: Predicted N-curves
Vehicles 1400-2200

Overprediction of N(3,t)



1 2 3 4 5 6 7 8

Figure 10: Day 2: Predicted N-curves
with correction for inhomogenous road
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