
UC Berkeley
Building Efficiency and Sustainability in the Tropics 
(SinBerBEST)

Title
Selecting Building Predictive Control Based on Model Uncertainty

Permalink
https://escholarship.org/uc/item/11w9w5zt

Author
Maasoumy, Mehdi

Publication Date
2014-06-04
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11w9w5zt
https://escholarship.org
http://www.cdlib.org/


Selecting Building Predictive Control Based on Model Uncertainty

Mehdi Maasoumy1, Meysam Razmara2, Mahdi Shahbakhti2, and Alberto Sangiovanni Vincentelli3

Abstract— Model uncertainty limits the utilization of Model
Predictive Controllers (MPC) to minimize building energy
consumption. We propose a new Robust Model Predictive
Control (RMPC) structure to make a building controller robust
to model uncertainty. The results from RMPC are compared
with those from a nominal MPC and a common building Rule
Based Control (RBC). The results are then used to develop a
methodology for selecting a controller type (i.e. RMPC, MPC,
and RBC) as a function of building model uncertainty. RMPC
is found to be the desirable controller for the cases with an
intermediate level (30%-67%) of model uncertainty, while MPC
is preferred for the cases with a low level (0-30%) of model
uncertainty. A common RBC is found to outperform MPC or
RMPC if the model uncertainty goes beyond a certain threshold
(e.g. 67%).

I. INTRODUCTION

Total primary energy consumption in the United States

increased from 78.3 quads in 1980 to 97.8 quads in 2010,

of which the building sector accounts for 41% [1]. The

building sector is also responsible for about 40% of green-

house gas emissions and 70% of electricity use in the

United States. 41.4% of energy consumption in buildings

is directly related to the space heating, ventilation and air

conditioning (HVAC) [1]. Therefore, reducing the energy

consumption of buildings by designing smart control systems

to operate the HVAC system in a more efficient way is

critically important to address energy and environmental

concerns.

Design and validation practices in the building industry

show the importance of a model-based design flow for

building controls. To attain energy efficiency, control algo-

rithms need to be tailored to the physical properties of the

building at hand rather than being an adaptation of a standard

sequence designed for a typical building.

MPC provides a potential building energy saving of 16%-

41% compared to the commonly used rule-based HVAC con-

trollers in the market as shown in [2]–[6]. At each iteration

of MPC, a prediction of future states is obtained through

forward evolution of the system dynamics. The predictive

cost is then calculated and constraints on future states and

inputs are applied, leading to a large optimization problem,

which is solved to obtain the optimal control action. MPC for

building HVAC systems has desirable characteristics such as
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robustness, tunability, and flexibility [4]. Application of MPC

for building energy control has been reported in [4]–[13].

Different variations of nominal MPC such as distributed [12],

[13], robust [9], [14] and stochastic [8], [15] model predictive

control strategies have been also reported. All these MPC

techniques rely on accurate building models to achieve

optimal performance of HVAC system and provide sufficient

comfort level.

Hence, reducing model uncertainty is crucial for success-

ful realization of building model-based controllers. However,

uncertainty is an inevitable attribute of every model. For

building models, model uncertainty is even more remarkable

due to the substantial contribution of outside and inside

thermal heats (realized as disturbance in our model) in

the climate of the building, and unpredictability of the

environment conditions such as wind speed and direction,

ambient temperature, solar radiation and cloudiness of sky,

and to some extent indoor factors such as human behavior.

In this paper we provide a systematic approach to:

• Design model-based building controllers which are ro-

bust to model uncertainties;

• Assess the overall performance of different control type

over a range of model uncertainty in terms of both

energy consumption and provided comfort level and

• Propose a guideline to pick the right type of controller

based on the level of model uncertainty.

This paper builds on top of our previous work on de-

veloping a parameter adaptive building (PAB) model pre-

sented in [16] and centers on designing and analyzing the

performance of three types of controllers: 1) a controller

which is insensitive to model uncertainty (i.e. a typical on-

off control), 2) a controller which is somewhat sensitive to

model uncertainty (i.e. nominal MPC) and 3) a controller

which is robust against model uncertainty (i.e. Robust MPC)

for building HVAC system.

II. PARAMETER-ADAPTIVE BUILDING MODEL

A. System Dynamics

1) Heat Transfer: A building is modeled as a graph in

which there are two types of nodes: walls and rooms. n
is the total number of nodes, m of which represent rooms

and the remaining n−m nodes represent walls. We denote

the temperature of room ri with Tri . The wall node and

temperature of the wall between room i and j are denoted

by (i, j) and Twi,j
, respectively, and is governed by the

following equation:

Cw
i,j

dTwi,j

dt
=

∑

k∈Nwi,j

Trk − Twi,j

Ri,jk

+ ri,jαi,jAwi,j
Qradi,j

(1)



where Cw
i,j , αi,j and Awi,j

are heat capacity, radiative heat

absorption coefficient and area of wall between room i and

j, respectively. Ri,jk is the total thermal resistance between

the centerline of wall (i, j) and the side of the wall where

node k is located. Qradi,j
is the radiative heat flux density

on wall (i, j). Nwi,j
is the set of all of neighboring nodes

to node wi,j . ri,j is wall identifier which is equal to 0 for

internal walls, and equal to 1 for peripheral walls (i.e. either

i or j is the outside node). Temperature of the ith room is

governed by the following equation:

Cr
i

dTri

dt
=

∑

k∈Nri

Tk − Tri

Ri,ki

+ ṁrica(Tsi − Tri)+

wiτwi
Awini

Qradi
+ Q̇inti

(2)

where Tri , C
r
i and ṁri are the temperature, heat capacity and

air mass flow into the room i, respectively. ca is the specific

heat capacity of air, and Tsi is the temperature of the supply

air to room i. πi is window identifier which is equal to 0
if none of the walls surrounding room i have window, and

is equal to 1 if at least one of them has a window. τwi
is

the transmissivity of glass of window i, Awini
is the total

area of window on walls surrounding room i, Qradi
is the

radiative heat flux density per unit area radiated to room i,
and Q̇inti is the internal heat generation in room i. Nri is

the set of all of the neighboring room nodes to room i. The

details of building thermal modeling and estimation of the

unmodelled dynamics is presented in [4], [6], [7].

The heat transfer equations for each wall and room yield

the following system dynamics:

ẋt = f(xt, ut, dt, t)

yt = Cxt (3)

where xt ∈ R
n is the state vector representing the temper-

ature of the nodes in the thermal network, ut ∈ R
lm is the

input vector representing the air mass flow rate and discharge

air temperature of conditioned air into each thermal zone, and

yt ∈ R
m is the output vector of the system which represents

the temperature of the thermal zones. l is the number of

inputs to each thermal zone (e.g. air mass flow and supply

air temperature). C is a matrix of proper dimension and the

disturbance vector is given by

dt = g(Qradi
(t), Q̇int(t), Tout(t)) (4)

2) Disturbance: Following the intuitive linear relation

between Tout, Q̇int, Qrad and the building temperature rise

we approximate g with an affine function of these quantities,

leading to:

dt = aQradi
(t) + bQ̇int(t) + cTout(t) + e (5)

where a, b, c, e are a constant to be estimated. We approxi-

mate the values of Qradi
(t) and Q̇int(t) using Qradi

(t) =
τTout(t) + ζ and Q̇int(t) = µΨ(t) + ν. By substituting for

Qradi
(t) and Q̇int(t), and rearranging the terms, we obtain:

dt = (aτ + c)Tout(t) + bµΨ(t) + aζ + bν + e

= āTout(t) + b̄Ψ(t) + ē
(6)

Fig. 1. Architecture of the building control system utilizing the PAB model
from [16]. Updated model parameters are obtained from UKF estimation
process at each time step. At the next time step, MPC uses the model with
updated parameters to calculate the optimal inputs. Inputs are implemented
on the system and at the next sampling time new states (temperatures) are
measured and sent to the PAB model, and this process repeats. Black dotted
lines connecting the traditional control system to the building are replaced
by the red solid lines connecting the estimation module to the MPC block
and the MPC block to the building.

where ā = aτ + c, b̄ = bµ, and ē = aζ + bν + e. Therefore,

only measurements of outside air temperature and CO2

concentration levels are needed to determine the disturbance.

The values of ā, b̄, and ē are estimated along with other

parameters of the model.

3) Additive uncertainty: To account for model uncertain-

ties, we use an uncertain system dynamics, based on the

following state update model:

xk = f(xk−1, uk−1, dk−1, wk−1)

zk = h(xk) + vk (7)

where wk and vk are the process and measurement noise.

B. Architecture

We utilize the building thermal model that was developed

in [16]. The architecture of the PAB model along with control

structure from this work is shown in Fig. 1. Measurement

data from various sensors such as temperature and airflow

throughout the building are stored in a data repository.

Historical data is used to perform off-line, one-step model

calibration. The obtained parameters from model calibration

is sent to the Kalman filter algorithm as an initial set of

parameters. As the new measurements arrive, Kalman filter

updates the parameters. Updated parameters are then used to

update the mathematical model used in the MPC algorithm.

C. Estimation Algorithm

In order to estimate the unknown parameters of the system

we augment the states of the system with a vector pk which

stores the parameters of the system, with a time evolution

dynamics of pk+1 = pk. The dynamics of the system is

nonlinear, thus a nonlinear Kalman filter, namely unscented



Fig. 2. Estimated room temperature using UKF in the PAB model.

Fig. 3. Required information for designed RBC, MPC and RMPC
controllers in this study.

Kalman filter (UKF), is used as detailed in [16]. The PAB

model with updated parameters using UKF is validated

against historical data [16] of an office building as shown

in Fig. 2.

III. CONTROLLER DESIGN

For control design, we use the linearized version of the

state update equation (7), with sampling time of 1 hour and

using the Euler linearization method, as given by

xk+1 = Axk +Buk + E(dk + wk) (8)

where the uncertainty wk ∈ R
r is a stochastic additive

disturbance. The set of possible disturbance uncertainties is

denoted by Wk and wk ∈ Wk, ∀k = 0, 1, ..., N−1. For this

study, we consider box-constrained disturbance uncertainties

with uniform distribution, given by

Wk = {w : ||w||∞ ≤ λk} (9)

We study a traditional rule-based control (RBC), i.e. on-

off control, a nominal MPC and a robust MPC (RMPC).

Fig. 3 shows the required information realizing each of these

three controllers. The MPC assumes that the model is perfect

(no uncertainty), and the RMPC assumes that the model is

uncertain and hence computes a robust control action for the

specified class of uncertainty given as constraint on wk . The

goal of RMPC is to satisfy constraints on states and inputs

for all the uncertainties within a specified class. The results

from MPC and RMPC are compared to a conventional rule

based control (RBC) for a typical building. To be consistent

and to perform a fair comparison, we use the same time

constants ∆t for all controller implementations.

A. Rule-Based Control (RBC)

The rule based controller use in this paper is a con-

ventional on-off HVAC controller. The time constant of

the control implementation is ∆t. The controller opens the

dampers of conditioned air flow to the thermal zones when

heating is required and keeps it fully open for the duration

of ∆t. In the next time step the controller checks the

temperature again and adjusts the damper position if the

room temperature is within the comfort zone, or keeps it

open if the room air temperature is still outside the comfort

zone. In on-off control, position of the dampers can be either

the min value or the max value. When system goes to the

cooling mode, supply air temperature changes accordingly.

The experimental data presented here is for the heating mode

only.

B. Model Predictive Control (MPC)

A model predictive control problem is formulated with

the objective of minimizing a linear combination of total (l1
norm) and peak (l∞ norm) control input (i.e. airflow). Fan

energy consumption is proportional to the cubic of the air-

flow. Hence minimizing the peak airflow would dramatically

reduce fan energy consumption. We implement the control

inputs obtained from the MPC using the linearized system

dynamics of the model on the original nonlinear model for

forward simulation.

The alternative would be to use the actual nonlinear

function of fan energy consumption. However, this approach

would lead to nonlinear MPC which is much slower than

linear MPC to solve. Hence, we use the proposed cost

function (10a) to achieve better computational properties.

Also in order to guarantee feasibility (constraint satisfaction)

at all times, we implement soft constraints. The predictive

controller solves at each time step t, the following optimiza-

tion problem:

min
Ut,ǭ,ǫ

{|Ut|1 + κ|Ut|∞ + ρ(|ǫt|1 + |ǫt|1)} (10a)

subject to:

xt+k+1|t = Axt+k|t +But+k|t + Edt+k|t (10b)

yt+k|t = Cxt+k|t (10c)

U t+k|t ≤ ut+k|t ≤ U (10d)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t (10e)

εt+k|t, εt+k|t ≥ 0 (10f)

where constraints (10b) and (10d) should hold for all k =
0, 1, ..., N − 1 and (10c), (10e) and (10f) should hold for

all k = 1, 2, ..., N . Ut = [ut|t, ut+1|t, · · · , ut+N−1|t] is

vector of control inputs, ǫt = [εt+1|t, · · · , εt+N |t] and ǫt =
[εt+1|t, · · · , εt+N |t] are the slack variables used to take into

account the soft constraints on room temperature to avoid

feasibility issues. yt+k|t is the thermal zone temperature

vector, dt+k|t is the disturbance load prediction, and T t+k|t

and T t+k|t for k = 1, · · · , N are the lower and upper

bounds on the zone temperature, respectively. U t+k|t and

U are the lower and upper limits on the airflow input by



Fig. 4. Schematic of the robust model predictive control implementation.

the variable air volume (VAV) damper, respectively. Physical

limit on maximum airflow generated by fans is not time

varying, hence time invariant constraint U . Note that based

on ASHRAE requirements for Air Change per Hour (ACH)

of rooms, there has to be a minimum non-zero airflow during

occupied hours for ventilation purposes, hence U > 0. ρ is

the penalty on the comfort constraint violations, and κ is the

penalty on peak power consumption.

At each time step only the first entry of Ut is implemented

on the model. At the next time step the prediction horizon

N is shifted leading to a new optimization problem. This

process is repeated over and over until the total time span of

interest is covered.

C. Robust Model Predictive Control (RMPC)

The crucial question in robust control is how to exploit

knowledge about uncertainty. Typical knowledge can be

bounds on uncertain parameters in the system, or bounds

on external disturbances, such as the disturbance load to the

building. In this paper we consider additive uncertainty to the

system model as previously described in (8). A schematic of

the robust optimal control implementation on the nonlinear

building model is depicted in Fig. 4. In RMPC algorithm

the cost function is the same as in the MPC case (10a), with

input constraints similar to (10c), (10d), (10e), (10f), but with

the following update state equation:

xt+k+1|t = Axt+k|t +But+k|t + E(dt+k|t + wt+k|t) (11)

to be evaluated for all k = 0, 1, ..., N−1, and the uncertainty

variable constrained to

wt+k|t ∈ Wt+k ∀ k = 0, 1, ..., N − 1 (12)

The only difference with respect to the MPC algorithm

is the introduction of the additive uncertainty term w in

the state update equation. The disturbance set W is one

of the ingredients that determines the type of optimization

problem we end up with. When the uncertainty set W in a

Linear Programming (LP) is a polyhedron, then the robust

counterpart is also an LP [17].

1) Feedback predictions: Ideally the closed-loop min-

max problem should be solved as given by

min
uk|k

max
wk|k

· · · min
uk+N−1|k

max
wk+N−1|k

N−1
∑

j=0

p(xk+j|k, uk+j|k)

(13)

where we incorporate the notion that measurements will be

obtained in future times. p(.) is the performance index. In-

stead of solving this intractable problem, the idea in feedback

prediction, is to introduce new decision variables nk+j|k , and

parameterize the future control sequences in the future distur-

bances and nk+j|k such as uk+j|k = mk,jwk+j|k + nk+j|k .

To incorporate feedback predictions, we write the feedback

predictions in a vectorized form U = Mw + n where n

and w are given by n = [n
′

k|k, n
′

k+1|k, · · · , n
′

k+N−1|k]
′

, and

w = [w
′

k|k, w
′

k+1|k, · · · , w
′

k+N−1|k]
′

. Where (.)
′

represents

the transpose of a matrix or vector. The only requirement

for matrix M is that this matrix is causal in the sense that

uk+j|k only depends on wk+i|k , i ≤ j. The choice of M is

not obvious. In [18] it is shown through simulation examples

that the choice of M is crucial for good performance of

the min-max controller. However, M can be incorporated as

a decision variable in the online optimization problem. We

propose a method denoted as Two Lower Diagonal Structure

(TLDS):

2) Two Lower Diagonal Structure (TLDS): By analyzing

the structure of the optimal matrix M, it was observed that

the parameterization of the input does not need to consider

feedback of more than past two values of w at each time,

therefore we propose the following disturbance feedback:

ui := mi,i−2wi−2 +mi,i−1wi−1 + ni

=

i−1
∑

j=i−2

mi,jωj + ni ∀i = 2, 3, ..., N − 1
(14)

and the corresponding parameterization matrix M is an N×
N matrix that has the entries on the second and third diagonal

of M below its main diagonal as decision variables and 0

elsewhere as in (15).

Mi,j and ni are stored in the two following matrices as

follows:

M :=































0 0 · · · · · · · · · · · · 0
0 0 · · · · · · · · · · · · 0

m3,0 0 · · · · · · · · · · · · 0

m4,0 m4,1
. . . 0

0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
...

0 · · · · · · mI 0 0
0 . . . . . . 0 mII mIII 0































(15)

where mI = mN−2,N−3, mII = mN−1,N−3, and mIII =
mN−1,N−2, and:

n :=
[

n0 n1 n2 . . . . . . . . . nN−1

]

(16)

The main problem with the min-max formulations based

on existing parameterization in the literature is the excessive

number of decision variables and constraints [18]. The reason

is the high-dimensional parameterization of matrix M. In this

proposed structure, we have tried to overcome this problem

by exploiting the sparsity of the feedback gain matrix to

enhance the computational characteristics of the optimal

problem.



IV. PERFORMANCE METRICS

To compare the overall performance of the proposed con-

trollers we define indices to measure the energy consumption

and comfort level provided by each controller. In addition,

we define a new index to evaluate the overall performance

of each controller considering both the energy and comfort

indices.

A. Energy Index

The energy index Ie in (kWh) is defined as:

Ie =

∫ 24

t=0

[Pc(t) + Ph(t) + Pf (t)] dt (17)

where cooling power Pc, heating power Ph and fan power

Pf are determined by:

Pc(t) = ṁc(t)cp[Tout(t)− Tc(t)] (18a)

Ph(t) = ṁh(t)cp[Th(t)− Tout(t)] (18b)

Pf (t) = αṁ3(t) (18c)

where cp = 1.012(kJ/kg.oC) is the specific heat capacity of

air and α = 0.5(kW.s3/kg3) is the fan power constant [19].

Using these constants, the fan power values, in (kW), can

be calculated. Tc and Th are output temperature of cooling

and heating system, respectively.

B. Discomfort Index

The discomfort index Id in degree Celsius hour (oCh) is

defined as the integral of all the temperature violations over

the course of a day:

Id =

∫ 24

t=0

[

T̂ .1B(t)c(T (t))
]

dt (19)

where T̂ = min
{
∣

∣T (t)− T (t)
∣

∣ , |T (t)− T (t)|
}

and B(t) =
[T (t), T (t)] is the allowable temperature boundary at time t
and 1 is the indicator function.

C. Overall Performance Index

A good control performance means not only low energy

consumption, but also low resulting discomfort. To assess the

overall performance of the controllers, we need to examine

both Ie and Id at the same time. Using the two indices

defined above we define a third index called Overall Per-

formance Index (IOP ). The intuition behind this new index

is to take into account the energy and discomfort index in

one single term. IOP is defined as:

IOP =
(I∗d − Id)/||Id||∞

Ie/||Ie||∞
(20)

where I∗d is the maximum allowed discomfort which is

selected according to the required probability of maintaining

room temperature within the comfort zone, and ||.||∞ denotes

infinity norm or the maximum value of energy indices among

all three controllers. Negative value of IOP means that the

discomfort index is not within the preferred range. The lower

the Id and Ie are, the higher the IOP will be. Therefore,

the higher the IOP , the better the overall performance. In

Fig. 5. Control input and resulting temperature profile for the existing
controller on the building (denoted as Measurements in the figure), RBC,
MPC, and robust MPC controllers.(δ = 60%)

this study, the limit on the allowed discomfort index is

heuristically chosen to be I∗d = 0.5(◦Ch) to ensure adequate

comfort level.

V. COMPUTATIONAL RESULTS

To illustrate the effectiveness of the controllers proposed in

Section III, we assess their performances for different model

uncertainty values denoted by δ:

δ =
λ

||d||∞
(21)

where λ is the l∞ norm bound of the uncertainty and

d = [d
′

1, d
′

2, ..., d
′

N ]
′

is the disturbance realization vector.

In general, model uncertainty can be obtained by comparing

the simulation results of a given model of a building for a

period in the past, with historical data of same building over

the same time period.

Time constant ∆t = 1 (hr) is used for all the following

simulations. We implement the introduced model predictive

controllers with a prediction horizon of N = 24. The choice

of N = 24 is to provide a good balance between performance

and computational cost for the MPC framework.

We use the following numerical values for parameters

in (10). U = 63 CFM (0.03 m3/s), and U = 5 CFM
(0.002 m3/s) are the lower and higher limit on air mass

flow during occupied hours, [T .|t T .|t] = [20 22]oC during

occupied hours, and [T .|t T .|t] = [19 23]oC is used during

unoccupied hours. For the simulations we use κ = 0.75 and

ρ = 50.

Optimal controller and the resulting room temperature

with the presence of a box-constrained uncertainty in four

cases are depicted in Fig. 5. Measurements, as shown in

black, shows the air mass flow and temperature recording

for the room using a simple existing control policy of the

building HVAC system which controls the fan speed by

turning it on and off by the start and end time of occupancy

hours. RBC, MPC, and RMPC refer to algorithms described

in Section III-A, III-B, and III-C.

Controller performances are evaluated based on indices

introduced in Section IV. We use YALMIP [20] to set up the
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Fig. 7. Energy index Ie versus additive model uncertainty (δ). We generate
data with similar approach as in Fig. 6.

MPC problem in MATLAB. Problem is solved using CPLEX

12.2 [21]. We performed mass simulations for different

values of δ. Fig. 6 and Fig. 7 depict the results from

these simulations. Monte Carlo simulations were performed

to obtain the mean and standard deviation of energy and

discomfort index for various values of model uncertainty.

Comfort: It can be observed from Fig. 5 and Fig. 6

that the RMPC is the only controller that is able to keep

the temperature within the comfort zone, at all times, i.e.

maintaining minimum level of discomfort (Id ≤ I∗d ) for all

δ ≤ 80%, while RBC still performs well, MPC fails to do

so, resulting to Id > I∗d for all δ ≥ 40%. Fig. 6 depicts how

discomfort index Id, varies with additive model uncertainty

δ. As shown in Fig. 6, RMPC manages to keep the perfect

comfort level (Id = 0), for additive model uncertainty up

to δ = 70%, while the MPC maintains the perfect comfort

level for uncertainty bounds up to δ = 20%. Since RBC is

not a model-based control technique, its performance does

not depend on values of δ, hence the straight horizontal line

in Fig. 6 (Id = 0.25oCh).
Energy Consumption: Fig. 7 depicts the variations of

energy index Ie, versus model uncertainty. It is clear that the

Fig. 8. Energy saving of MPC and RMPC compared to RBC as a function
of model uncertainty.

energy index for RMPC increases dramatically with δ, while

the energy index for MPC only changes slightly. However,

this comes with the drawback of increased discomfort index

for MPC. Fig. 7 also shows energy consumption of RBC

(Ie = 1.43 × 104 kWh). MPC for all values of δ leads

to a lower amount of energy consumption than RBC, but

RMPC leads to more energy consumption than RBC soon

after δ = 40%.

Consider the case where δ = 70%. MPC will lead to a

discomfort index of 1.7oCh on average, while the RMPC is

able to maintain the temperature below a discomfort index

of 0.016oCh on average. However this level of comfort pro-

vided by the RMPC comes at a cost of energy consumption

of more than 2 times of the MPC case.

Due to the trade-off between comfort and energy consump-

tion, the choice of which controller to pick is not obvious,

and depends on various factors such as criticality of meeting

the temperature constraints for the considered thermal zone

in the building, and price of energy at that time of the

day/year, as well as uncertainty level of the model.

MPC and RMPC versus RBC: Fig. 8 demonstrates

savings of MPC and RMPC versus RBC. As shown, the

maximum theoretical energy saving of MPC compared to

RBC is 36%, and that of RMPC is 30% for the building

studied. These saving values decrease as model uncertainty

increases. Energy saving of MPC versus RBC stays positive

for all values of model uncertainty, while energy saving of

RMPC versus RBC is positive only for model uncertainty

values up to about 34%, and is negative for larger model

uncertainties (i.e. RMPC consumes more energy than RBC).

The result of an extensive study in [22] shows that MPC

HVAC control can potentially provide 16%-41% building

energy saving compared to rule-based controllers, which

complies with our findings. The saving also depends on

various factors including climate zone, insulation level, and

construction type.

For evaluation of energy consumption and provided com-

fort level, we have compared the overall performance of the

three controllers using the overall performance index, IOP .

The results, as shown in Fig. 9, suggest that for model uncer-

tainties less than 30% MPC performs best among the three

controllers studied here. For model uncertainties between



Fig. 9. Overall performance index for RBC, MPC and RMPC as a function
of model uncertainty. The red zone demonstrates the region which MPC
outperforms RMPC and RBC as it yields a higher IOP . The green zone
represents the region that IOP of RMPC is higher than that of MPC and
RBC. RBC dominates in terms of IOP in the blue zone. In the gray zone
the resulting discomfort index is not acceptable.

30% and 67% RMPC is the best, and for model uncertainties

larger than 67%, RBC leads to better overall performance

than model-based control techniques. This information can

be of utility for choosing a controller type for building HVAC

system based on how detailed and accurate the building

model is, in capturing time-varying dynamics of a building.

VI. CONCLUSION

Model uncertainty is unavoidable for building HVAC

system. In this paper, we characterized the impact of

model uncertainty on model-based controllers, i.e. model

predictive control (MPC), and robust model predictive

control (RMPC). Closed-loop RMPC uses uncertainty

knowledge to enhance the nominal MPC. The RMPC is

shown capable of maintaining the temperature within the

comfort zone for model uncertainty up to 70%. Closed loop

RMPC outperforms nominal MPC controllers considering

the provided level of comfort. However, higher comfort

comes at the cost of dramatically higher energy consumption

for RMPC. For the case study considered in this paper,

we found the best choice for controller type, taking into

consideration overall performance, ranges from MPC

(up to 30% uncertainty) to RMPC (between 30% and

67% uncertainty), and then finally to RBC (above 67%

uncertainty) controllers as the model uncertainty increases.
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