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Abstract

Essays in Market Dynamics

by

Curtis Matthew Kephart

In Hotelling Revisits the Lab: Equilibration in Continuous and Discrete Time

we investigate experimentally the impact of continuous time on a four-player Hotelling

location game. The static pure strategy Nash equilibrium (NE) consists of firms paired-

up at the first and third quartiles of the linear city. In a repeated simultaneous move

(discrete time) treatment, we largely replicate previous findings in which subjects fail

to converge to the NE. However, in asynchronous move (continuous time) treatments

we see clear convergence towards the NE.

In Stability in Competition? Hotelling in Continuous Time we study

Hotelling’s classic location duopoly model in continuous time with flow payoffs accu-

mulated over time and the price dimension made explicit. In an experimental setting,

subjects chose price and location in treatments varying only by the speed of adjustment.

We find that the principle of minimum differentiation generally holds, with little dis-

tance between subjects’ location decisions. Price decisions, however, tend to be volatile,

which is arguably consistent with theory. Our data also support recent literature that

the ability to respond quickly increases cooperation.

Aggregate Dynamics in a Large Virtual Economy: Prices and Real Activ-

ity in Team Fortress. Virtual economies are growing as internet technology continues

ix



to advance. We analyze a large and complete set of transaction data from the Team

Fortress 2 virtual economy, which was designed to allow decentralized barter as the sole

exchange institution. A small subset of goods emerges endogenously to act as media

of exchange. Taking one of these money goods as numeraire, we generate daily prices

for thousands of goods. We then generate macroeconomic indicators, including nominal

growth and inflation. We find evidence of a particular sort of nominal rigidity related

to the circulation of multiple types of currency goods, and also find some localized asset

price bubbles associated with announcements by the game designers.
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Hotelling Model Experiments
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Chapter 1

Hotelling Revisits the Lab:

Equilibration in Continuous and

Discrete Time

Written with second coauthor Daniel Friedman, University of California, Santa Cruz,

dan@ucsc.edu

Appears in the Journal of the Economic Science Association [44]

1.1 Introduction

In his seminal model of spatial competition, Hotelling [38] analyzed the behavior

of two sellers of a homogenous product choosing price and location in a bounded, one-

dimensional marketplace. The model has since been expanded to allow numerous sellers

to interact strategically in more general marketplaces. As the preeminent model of

2



spatial competition, it has been widely applied, e.g., in industrial organization to analyze

geographic competition and product differentiation [50], and in political economy as a

tool to analyze voting dynamics [24].

Here we investigate the dynamic foundations of this static model. How does the

ability to quickly adjust product characteristics, and quickly respond to competitors’

repositioning, affect firm behavior? The question is theoretical but quite relevant to

21st century applications as firms adopt new technology and new management prac-

tices that encourage them to compete on agility and positioning. Product cycles (and

rebranding) seem to be accelerating in consumer electronics and lifestyle goods, while

in other industries like enterprise software – for example in web-base applications like

those for analytics and customer relationship management – permit their makers to

continually tweak their product and respond to competitor repositioning.

Outside of voter analysis, empirical tests of the Hotelling model have been sparse.

For differentiated products, for example, there is often no consensus on how best to

define the attribute space, and most firms have been understandably reluctant to allow

access to their data.

Experimental methods offer an empirical approach that avoids these problems, but

the results so far have been mixed at best. Brown-Kruse et al. [8] and Brown-Kruse

and Schenk [9] investigate a duopoly model with varying customer densities over a finite

one-dimensional action space. Collins and Sherstyuk [17] look into a three-agent model

with inelastic demand and uniform prices. There exists no pure-strategy equilibrium in

this set-up [26]. Shaked [64] finds a unique mixed strategy equilibrium in which players

3



randomize uniformly over the second and third quartiles. Collins and Sherstyuk [17]

find little support for Shaked’s equilibrium hypothesis.

In work most closely related to this paper, Huck et al. [39] investigate the four-

player implementation of the location-only model. Eaton and Lipsey show that all

Nash equilibria are in pure strategies with two players located back-to-back at the first

quartile, and the remaining two players similarly located at the third quartile. Like

Collins and Sherstryuk, Huck et al. find that the empirical distribution of locations is

quite different than this NE distribution — subjects exhibit a “W-shaped” distribution

of locations, with significant clustering near the second quartile (the median) as well as

near the first and third quartile.

Using novel software for conducting economic experiments, we investigate the four-

player location-only model with no prices, uniform customer density, inelastic demand

and a bounded, finite action space. We compare a discrete time treatment with two

continuous time treatments in which subjects are able to adjust their locations either

with (or else without) a speed limit. We replicate earlier results that human subjects

generally fail to converge to the distinctive equilibrium in discrete time, but establish for

the first time that they do converge fairly reliably to the equilibrium in both continuous

time treatments.

4



1.2 Hotelling Location Model

Each firm i = 1, 2, , n chooses a location si ∈ [0, 1]. Firms produce homogenous goods

with identical mill prices and linear transport costs. Each of a uniform continuum of

consumers inelastically purchase a single unit at the lowest delivered price, i.e., from

the closest firm.

Payoffs are determined as follows. Sort the strategy profile (s1, s2, ..., sn), so S[1] =

min{s1, s2, ..., sn}, S[2] is the second lowest location, ..., and S[n] = max{s1, s2, ..., sn},

so S[1] ≤ S[2] ≤ ... ≤ S[n]. If there are exact ties (si = sj), then average the payoffs

defined below over all feasible assignments of the tied players.

Normalizing unit profit to 1.0, firm i’s payoff is the length of its territory. As

illustrated in Figure 1.1, that territory (except for the ‘edge’ players [1] and [n]) extends

from the midpoint of the interval [S[i−1], S[i]] with the firm just below to the midpoint

of the interval [S[i], S[i+1]] with the player just above. Thus the payoff function is

Πi =
1

2
(S[i+1] − S[i−1]), i = 2, ..., n− 1 (1.1)

with

Π1 = S[1] +
1

2

(
S[2] − S[1]

)
(1.2)

Πn = (1− S[n]) +
1

2
(S[n] − S[n−1]).
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Sorted Actions: 

Action space: 

 

		≈ market share  

 and player profits 

Figure 1.1: Hotelling Linear City action space

Equilibria in this game are sensitive to the number n of competing firms. It is well

known that for n = 4 there is a unique pure NE.

Proposition. The Hotelling location game for n = 4 players has a unique pure

Nash equilibrium, up to relabeling of players. The unique sorted equilibrium profile is

S[1] = S[2] = 1
4 and S[3] = S[4] = 3

4 .

That is, in NE players are paired “back-to-back” at the first and third quartiles. It

is easy to check that this is indeed a NE: by equation (1.2) a deviation to [0, .25) or

to (.75, 1] clearly shrinks the deviator’s territory and payoff, while by (1.1) a deviation

to (.25, .75) shifts the deviator’s territory but does not increase payoff. For a complete

formal proof, see appendix B of Huck et al. [39], and for a proof of the uniqueness of

pure NE, see Eaton and Lipsey [26].

1.2.1 Dynamic Considerations

In previous laboratory examinations of the Hotelling location-only game Collins and

Sherstyuk, Huck et al., subjects were given random initial positions and allowed to select

new actions simultaneously in discrete time, i.e., in a finitely repeated game. Although

6



the stage game is symmetric and constant sum (the total payoff is always 1.0), the

players face considerable strategic uncertainty — to chose well, they must accurately

predict their opponents’ next location choices. The difficulty of predicting increases

considerably as the number of players increases beyond n = 2. Players may also face a

coordination issue; namely, where should each player go in the NE configuration? Thus

it is easy to question the relevance of the static pure Nash equilibrium to a game with

this type of dynamic structure.

To help understand what we might see in the dynamic game we ran computer sim-

ulations. In a discrete location space with 101 grid points and random initial locations,

our automated agents played their myopic best response: in period t + 1 each player

allowed to move chooses a location that would maximize payoff given the period t lo-

cation profile of the other players. Of more than 1000 simulations each of 600 periods

in which agents moved simultaneously (everyone allowed to move every period), none

(0%) converged to the NE and most locations were in the vicinity of the midpoint. (We

tried several variants, but achieved convergence to NE in simultaneous move simulations

only when initial locations were quite close to the NE and moves were limited to small

increments.) By contrast, in more than 1000 asynchronous simulations in which players

move one at a time in fixed order, all (100%) converged to NE, most of them within 200

periods in fixed order, all (100%) converged to NE, most of them within 200 periods

and from a diverse set of initial locations. See the Online Supplementary Materials for

more details.

These simulations suggest that the static model’s predictive power may hinge on

7



the dynamic specifications. Moves are almost always asynchronous in continuous time,

so in that respect it is similar to our turn-based simulations.

1.2.2 Testable Predictions

Our human subject experiment is designed to test two hypotheses suggested by the

preceding theoretical discussion.

Hypothesis 1: Observed average deviations from the static Nash equilibrium (NE)

will decrease over time in all treatments.

Hypothesis 2: Smaller average deviations from NE will be observed in continuous

time (asynchronous) treatments than in the discrete time (synchronous) treatment.

1.3 Experiment

The experiment was programmed in ConG, software designed to implement contin-

uous time economics experiments Pettit et al [57]. Subjects choose their target location

using their mouse to click or to drag a slider, the black rectangle seen at the bottom

of the screen in Figure 1.2. Subjects may also use the left and right arrow keys to

shift locations incrementally. The horizontal position of the large green dot (currently

with a score of 63.6) and black rectangle indicates the subject’s current location, and

other players’ current locations are indicated with smaller dots of different colors. The

vertical height of each dot indicates the players’ current flow payoffs, also indicated by

the number displayed by each players’ dot. Accumulated flow payoffs are shown in the

“Current Points” field, while points earned in all previous paid periods are indicated in

8



Figure 1.2: Hotelling game interface for Continuous Treatments.

the “Previous Points” field.

1.3.1 Treatments

We study three main treatments. The first is discrete time (“Discrete”). Periods are

divided into n equal-length subperiods. Within each subperiod, subjects are freely able

to move their location target using the mouse or arrow keys, but subperiod payoffs are

determined solely by the target location profile chosen at the very end of the subperiod.

Only at that point do subjects see the other players’ chosen locations. Subjects see a

progress bar filling smoothly to indicate when the subperiod will end, and a “Subperiods

Left” field counts down until the end of the period (neither are visible in the continuous
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time UI shown in Figure 1.2). Payoffs for the entire period are the integral across

subperiods of the piecewise constant flow payoffs, or equivalently, the average of the

lump sum subperiod payoffs. A video of this and the other two treatments may be seen

online at http://youtu.be/NX6L1mV9iII.

The other two treatments are continuous time. In continuous-time slow (“Slow”)

when subjects select a new target location their current position moves toward the target

at a constant rate (the “speed limit”). The chosen speed limit is such that it would take

30 seconds to traverse the entire interval.

In continuous-time instant (“Instant”), the subject’s current position moves imme-

diately to the chosen target, with no perceptible delay. Actual latencies in our lab are

less than 50 milliseconds; that is, no more than 50 ms elapse from the time a subject

clicks a new location until the time when the effect of that click is revealed on all sub-

jects’ displays. Of course, human reaction times are considerably longer than that, and

subjects perceive the action as continuous in this treatment.

1.3.2 Procedures

Treatments are varied across sessions. Subjects are matched and rematched within

“silos” of six subjects, and most sessions involve two silos. Sessions run for twelve

periods, each period lasting three minutes. Discrete time periods are broken into 60

subperiods of 3 seconds each.
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Table 1.1: Matching protocol

Period

Subject 1 2 3 4 5 6 7 8 9 10 11 12

1 R1 4p 4p 4p 4p R2 4p 4p R3 4p 4p R4

2 R1 4p 4p R2 4p 4p 4p R3 4p 4p R4 4p

3 4p R1 4p 4p R2 4p 4p 4p R3 4p R4 4p

4 4p R1 4p R2 4p 4p R3 4p 4p R4 4p 4p

5 4p 4p R1 4p R2 4p R3 4p 4p 4p 4p R4

6 4p 4p R1 4p 4p R2 4p R3 4p R4 4p 4p

Note: Player assignments are shown for each 6-player silo. The four subjects labelled “4p” in each
column play the Hotelling location game that period; the other two subjects each play against three
automated agents (“robots”) using one of four algorithms (R1 to R4) described in the text.

As shown in Table 1.1, each period a different subset of six subjects in the silo

play the n = 4 location game, while the two excluded subjects each play in a separate

four-player game against three automated agents (“robots”). Robots reset their target

position every 30 seconds following a specified sequence. For example subjects matched

with robots in periods 1 through 3 face algorithm R1. The robot algorithms are held

constant within each three-period set (periods 1-3, 4-6, 7-9 and 10-12). Subjects were

told ahead of time that in one-third of periods their counterpart players would be players

controlled by an automated computer program, and each subject faced each sequence

once.1

1The location sequences for each robot group are as follows, R1: [0.25,0.5,0.75], [0.12,0.33,0.55], [0.23,0.76,0.85],
[0.35,0.59,0.64], [0.25,0.26,0.75], [0.23,0.75,0.76], [0.45,0.5,0.8]. R2: [0.2,0.3,0.58], [0.29,0.59,0.6], [0.55,0.75,0.85], [0.25,0.26,0.74],
[0.29,0.35,0.75], [0.23,0.75,0.76], [0.33,0.5,0.66]. R3:[0.75,0.5,0.25], [0.88,0.67,0.45], [0.77,0.24,0.15], [0.65,0.41,0.36],
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Within each time treatment, each subject has equivalent opportunities to profit in

robot periods, and so profit differences measure individual subjects’ relative ability to

best respond. However, opportunities differ across time treatments — e.g., robots in

Instant are sitting ducks for 30 seconds at a time while in Slow they often are moving

steadily and the human subject is also constrained by the speed limit — so profit

comparisons are less meaningful across treatments.

Our matching procedure balances several considerations. By the “Folk theorem,” a

vast number of location configurations are supported in equilibrium with infinite horizon

fixed matchings, and even with a finite horizon one might see fairly arbitrary conven-

tions emerge as epsilon equilibria. Random matchings seem better suited to test static

non-cooperative game predictions, but randomizing over large subject pools over many

periods has two drawbacks. It produces relatively few “independent” observations, and

enables a few confused subjects to “contaminate” a large fraction of the data.2 Our

solution was to match a different set of four subjects each period within a relatively

small silo. Each silo gives us an independent observation, and confines possible contam-

ination. As a bonus, the extra two subjects in each silo each period enabled individual

performance comparisons against robots.

Sessions were conducted in the LEEPS laboratory at the University of California,

Santa Cruz in February and March 2013. A total of 54 human subjects (randomly

[0.75,0.74,0.25], [0.77,0.25,0.24], [0.55,0.5,0.2]. R4: [0.8,0.7,0.42], [0.71,0.41,0.4], [0.45,0.25,0.15], [0.75,0.74,0.26], [0.71,0.65,0.25],
[0.77,0.25,0.24], [0.67,0.5,0.34]

2In pilot sessions, post-experiment surveys and relatively low earnings for a few subjects indicated
persistent confusion. Several other players exposed to one of these confused individuals exhibited less
systematic behavior later in the session, even when no longer playing against that individual.
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assigned into 9 silos) were drawn from the LEEPS Lab subject pool using recruitment

package ORSEE [35]. Sessions lasted about 90 minutes, starting with instructions (re-

produced in the Online Supplementary Materials), two practice periods and a quiz,

followed by the 12 periods specified in Table 1.1, and finally cash payment. Subjects

were told that they would be matched with three robots (algorithms unspecified, but

subjects found it obvious that they were not human) in one-third of the periods, and

with three other human participants in the room (silos unspecified, and their existence

was not obvious to subjects) in the other two-thirds. Sessions also included a standard

Holt-Laury risk preference test, but the elicited values turned out to provide negligible

explanatory power and, to conserve space, are not discussed further.

Our location game is constant sum, and points were scaled so that each period the

total score of all four players summed to 400 – or 100 points per-player per-period on

average. Subjects received a $5 show-up fee and between $0.025 and $0.034 for each

point earned over the entirety over the session in excess of 1000 points, including both

all-human periods and robot periods. Participating subjects received an average total

payment of $14.22.

1.4 Results

The three panels of figure 1.3 show the overall distribution of locations by treat-

ment in the last half of each session (periods 7-12). In the first panel for the Discrete

treatment, there is little evidence of the NE configuration. There are modest modes
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Note: Location distributions are from the later half of sessions, excluding any period involving robots.

Figure 1.3: Relative frequency distribution of player locations, by treatment.

near the NE quartile points 0.25 and 0.75, but also a mode near the non-NE quartile

(median) point 0.50, and a noticeable aversion to edge locations. The data of Huck

et al. [39] has similar properties, but all three modes are sharper and location choices

between the modes are less common than in our data. The second panel from the Slow

treatment shows that we have strong modes in the vicinity of both NE quartile points,

and no mode at 0.5; indeed, choices distant from .25 and .75 are rare and transient.

The third Instant treatment panel shows sharp modes at the NE quartile points, and

rather little activity elsewhere. (The small mode at 0.5 mainly reflects the behavior of

a single player who stubbornly occupied that position for a number of periods in one

session, despite unimpressive payoffs.)

The histograms in Figure 1.3 suggest better convergence to NE in Instant than in

Slow, and little or no convergence in Discrete. To test our hypotheses more formally,

we define a metric for the average absolute distance.

from NE, as follows. Sort the players’ time-t locations as usual: S[1]t is the location
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Figure 1.4: AvgAbsDist by period and treatment

of the “left most” player at time t, S[2]t is second from the left, etc., so that S[1]t ≤

S[2]t ≤ S[3]t ≤ S[4]t. Then AvgAbsDist at time or subperiod t is:

AvgAbsDistt =
1

4

(∣∣S[1]t − 0.25
∣∣+
∣∣S[2]t − 0.25

∣∣+
∣∣S[3]t − 0.75

∣∣+
∣∣S[4]t − 0.75

∣∣) (1.3)

Clearly AvgAbsDist = 0 at a NE profile, and is bounded above by 0.5 (achieved when

all S[i]t = 0 or all = 1). Ten million Monte Carlo simulations indicated that its expected

value for a sample drawn from a uniform random distribution is 0.1715, with a median

of 0.1646.

The overall median value of AvgAbsDist in our Discrete data is 0.1417, not much

different from the random benchmark of 0.1715, while the median values in Slow and

Instant, 0.0639 and 0.0461 respectively, are substantially lower. However, looking at

the overall average AvgAbsDist of each session period we can reject the null hypothesis

that the median is 0 in each treatment.
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Figure 1.5: AvgAbsDist by second, by treatment over the period.

Is there a trend towards NE across periods? Figure 1.4 plots AvgAbsDist in human-

only location games averaged period-by-period over all silos in each treatment. In the

two Continuous treatments we do see a trend towards 0 (i.e., towards NE) after the

first few periods, but it seems to level off thereafter. In Discrete periods, AvgAbsDist

is not much below the random benchmark (the gray dashed line) and has no noticeable

downward trend.

Are there trends within a typical period? Figure 1.5 plots AvgAbsDist in human-

only location games averaged second-by-second (or, for Discrete, subperiod-by-subperiod)

over all periods in each treatment. The software initializes subjects at uniform random

locations, thus at time zero AvgAbsDist is about 0.17, as expected. Again, in the

Discrete treatment, there is little trend towards NE within the period, while in the

continuous treatments there is a clear trend at first but it stagnates after about 40

seconds.

Our main hypothesis tests are based on the following variant of the regression model
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of Noussair et al. [53], applied to human-only data from latter half of all sessions (periods

7 through 12):

AvgAbsDistjt = β1

(
1

t

)
+β21 ·D1

(
t− 1

t

)
+β22 ·D2

(
t− 1

t

)
+β23 ·D3

(
t− 1

t

)
+ujt

(1.4)

where AvgAbsDistjt is the observed average absolute distance from the pure Nash

equilibrium configuration, in treatment j at time t – each 100 milliseconds in continuous

time or subperiod t in the case of discrete time. D1 is a dummy variable that is equal

to 1 if the observation is from treatment j = 1, Discrete time. Likewise the dummies

D2 and D3 are for observations from the Slow and Instant time treatments respectively.

Finally, u is the random error that is normally distributed with mean zero.

The model offers an estimate of the direction of convergence. The β1 term has the

interpretation as the y-axis intercept, i.e. where the time series starts at time t = 1.

The coefficient β2j can be interpreted as the value AvgAvgDistjt converges toward as

t → ∞ in treatment j, since t−1
t → 1 as t → ∞. Equation (1.4) imposes a single

origin coefficient, and imposes equal convergence target coefficients β2j across silos and

periods, but allows those targets to vary across treatments.

Estimates are shown in Table 1.2. Since we observe repeated interactions with

individuals in the same silo, we cluster errors at the silo level and report standard errors

corrected first-order autocorrelation using the Newey-West method for panel data sets,

(see Newey and West [52]).

Result 1: Locations in the Discrete time treatment remain far away from the Nash
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equilibrium profile.

Support for Result 1: Coefficient estimate β̂21 = 0.140 in Table 1.2 is statistically

and “economically” very different from zero. There is a weak tendency for the distance

from NE to decrease over time, inasmuch as β̂21 is less than the estimate β̂1 = 0.264 of

the origin parameter, but the main point is that the estimated asymptotic distance β̂21

is not much below the random benchmark of 0.17.

Result 2: Continuous time treatments exhibit convergence toward the pure Nash

equilibrium.

Support for Result 2: The estimated asymptotic distances from NE in the Slow and

Instant treatments are β̂22 = 0.063 and β̂23 = 0.048 respectively. These are statistically

different from zero, but “economically” speaking they are much closer to zero than to

the random benchmark 0.17. We find significant differences between the discrete and

each continuous time treatment convergence targets estimates (H0: β21 6= β22, β21 6= β23

at p < 0.001 in pairwise test correcting first order autocorrelation, and clustering errors

at the silo level). We conclude that behavior moves decisively towards (but not all the

way to) the Nash equilibrium in these treatments.

Result 3: Convergence toward NE is better in the continuous Instant treatment

than in the continuous Slow treatment.

Support for Result 3: The coefficient estimate β̂23 = 0.048 for Instant is less than

the estimate β̂22 = 0.063 for Slow, though these estimates are not statistically different.

A more nuanced picture can be obtained by comparing the empirical distributions of

average absolute distance from NE across treatments, as in Figure 1.6. One can see
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Figure 1.6: Observations of Average Absolute Distance

that the Discrete treatment has a vastly different distribution compared to the two

continuous treatments, and that Instant has a much larger fraction of tiny distances

(on or very near NE) than Slow. The Figure also shows that the distributions for the

continuous time treatments are close for distances exceeding about 0.1, i.e., the upper

tails are similar.

Table 1.3 lists the percent of AvgAbsDist observations for which it is implied that

subjects are 1 percent and 5 percent away from the pure Nash equilibrium, i.e. the

percent of AvgAbsDist observations less than 0.0025 and 0.0125 respectively. Regard-

ing “within 5 percent” as close, we see that in 26 percent of observations players in

continuous Instant treatments are close to the equilibrium configuration, compared to

just 6 percent of observations in the continuous Slow treatment and much less than 1

percent of Discrete time observations. Regarding “within 1 percent” as close, the ratios

of the percent of close-to-NE observations swings even more sharply towards the Instant

treatment although, of course, the percentages are smaller than for the less stringent

criterion for closeness.
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Result 4: In the Instant treatment, groups of players that perform well against

robot agents tend to converge more closely towards the pure NE.

Support for Result 4: We compute the average group normalized robot score, ρ,

for each four-human-players group.3 Column (2) of Table 1.2 shows that including this

explanatory variable in equation 1.4 yields a very significant coefficient estimate of -

0.035. That is, a standard deviation increase in a group’s average ability against robots

is associated with a 3.5% smaller deviation from NE, holding treatment effects constant.

Column (3) of Table 1.2 shows that the strength of this effect varies by treatment.

The interaction ρDS = −0.005 is statistically but not economically significant, while

the interaction ρCS = −0.018 is three times larger but only marginally significant. The

very significant Instant treatment interaction, ρCI = −0.045 indicates that how well

the four-player group did in our automated agent periods is particularly important in

achieving convergence to the static NE in the continuous Instant setting.

1.5 Discussion

Our interest in Hotelling location games led us to focus on the n = 4 player case.

Our laboratory data replicate the negative result of Huck et al. [39] that behavior fails

to converge in the Discrete time treatment. Thus we reject the Testable Hypothesis

1 for this treatment. More importantly, we have identified (as far as we know, for

3Details are as follows. For each player i, we compute the total payoffs Ri against robots, and
find the average R̄τ and standard deviation στ across all players in each treatment τ . The normalized
individual score ρi = Ri−R̄τ

στ
is comparable across individuals and treatments. These individual level

scores are averaged across the four players matched in a given group, providing a indication of group’s
overall ability. Group-level ρ is used to match with group-period level AvgAbsDist time series.
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the first time) conditions that lead to good NE convergence. In both continuous time

treatments, Slow and Instant, we get convergence to a neighborhood of (but not precisely

to) NE both within a typical period and across periods. The neighborhoods are tighter

under Instant, as confirmed by parametric tests in the tradition of Noussair et al. [53].

This supports Testable Hypothesis 1 for these treatments, and also supports Testable

Hypothesis 2.

We believe that our results have a practical implication: Hotelling location models

now seem more relevant to understanding behavior in the wider world than might pre-

viously have been supposed. In particular, in terms of product positioning in a space of

features or perceived characteristics, our Instant and Slow treatments capture impor-

tant aspects of competition in the 21st century. In some situations (e.g., introducing

new products) firms are able to place their product anywhere in the spectrum, while

in other situations (e.g., repositioning) product development and marketing can only

gradually adjust the way consumers perceive their product. Our results suggest that

static Nash equilibrium may have predictive power in both situations.

There also may be theoretical implications, regarding the dynamic foundations of

static Nash equilibrium in general and not just for the particular spatial model we in-

vestigate. Many early game theorists, including John Nash, offered intuitive dynamic

arguments that later generations of theorists formalized as learning in games or evolu-

tionary games; for a now-classic summary see Fudenberg and Levine [30]. Our work

speaks to a followup question: when (and how) do continuous time dynamics alter con-

vergence to static NE relative to discrete time dynamics? Friedman and Oprea [29]
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and Bigoni et al. [5] find that continuous time dynamics dramatically delay convergence

to the inefficient stage game NE in prisoner’s dilemma games, i.e., they support co-

operation in the finite horizon repeated game. Dorsey [23] and Oprea et al. [54] find

that, by itself, continuous time is insufficient to reliably delay convergence to the in-

efficient NE in four player voluntary contribution public goods games, perhaps due to

coordination issues. Deck and Nikifarakis [21] study a challenging pure coordination

game: minimum effort or weakest link played on a circle network. Their results suggest

that strategic uncertainty impedes convergence to the more efficient static NE. Our own

results, including the simulation exercises, provide additional evidence.

Definitive answers to the followup question await further work, but theorists pon-

dering that question may wish to distinguish the impact of asynchronous responses

from rapid responses. Coordinating on a static NE (which emphasizes unilateral best

response) may be aided mainly by asynchronous response opportunities, while coordi-

nating on an efficient profile (not an issue in a Hotelling location model) may be aided

mainly by rapid responses.

Several new avenues of laboratory research now come into focus. First, we note that

unexplained discrepancies remain between our Discrete time results and those of Huck

et al. [39]. They obtain sharper modes than we do, including the contra-NE mode at

the center location.

A broader avenue is to apply the continuous time treatments to more general

Hotelling models, including the no-edge case (the circle), joint decisions of price and

location, and different numbers of players. Another broad avenue is to separate the
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impact of continuous time per se from the impact of asynchronous choice. Our agent-

based simulations suggest that taking turns in discrete time suffices to achieve Nash (or

near-Nash) equilibrium behavior, but we do not yet know whether humans will agree.
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Dependent variable:

Average Absolute Distance

(1) (2) (3)

β̂1: Intercept
0.264∗∗∗

(0.0160)
0.264∗∗∗

(0.0152)
0.264∗∗∗

(0.0144)

Convergence Targets by Treatment

β̂21: Discrete Time
0.140∗∗∗

(0.0004)
0.140∗∗∗

(0.0022)
0.140∗∗∗

(0.0003)

β̂22: Continuous Slow
0.063∗∗∗

(0.0068)
0.063∗∗∗

(0.0047)
0.063∗∗∗

(0.0052)

β̂23: Continuous Instant
0.048∗∗∗

(0.0080)
0.048∗∗∗

(0.0036)
0.048∗∗∗

(0.0042)

Average Group Normalized Robot Score

ρ̂
-0.035∗∗∗

(0.0053)

ρ̂DS : Discrete Time
-0.005∗∗∗

(0.0005)

ρ̂CS : Continuous Slow
-0.018∗

(0.0091)

ρ̂CI : Continuous Instant
-0.045∗∗∗

(0.0058)

Adjusted R2 0.616 0.6742 0.6835
Residual Std. Error 0.052 0.04789 0.0472

F Statistic
26,297∗∗∗

(df = 4; 65488)
27,110∗∗∗

(df = 5; 65487)
20,210∗∗∗

(df = 7; 65485)
Number of Observations: 65,492 65,492 65,492

Note: Standard errors in parentheses; ∗∗∗ indicates p < 0.01 and ∗ indicates p < 0.1. Data are from
periods 7 through 12 fof all games involving four human players.

Table 1.2: Estimates of Equation 1.4
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Discrete
Continuous

Slow
Continuous

Instant
Periods 1-3 0.0% (0.0%) 0.01% (2.53%) 0.3% (8.76%)
Periods 4-6 0.0% (0.0%) 0.02% (4.33%) 0.41% (22.08%)
Periods 5-9 0.0% (0.19%) 0.01% (6.59%) 8.5% (33.51%)
Periods 10-12 0.0% (0.0%) 0.74% (12.05%) 6.28% (39.06%)

Overall 0.0% (0.05%) 0.20% (6.38%) 3.87% (25.86%)

Note: Entries are the fraction of observations within 1 percent of Pure NE (AvgAbsDist ≤ 0.0025),
and within within 5 percent of Pure NE in parentheses (AvgAbsDist ≤ 0.0125). Observations consist
of subject location configurations sampled ten times a second in continuous time treatments, and each
subperiod in the Discrete time treatment.

Table 1.3: Attainment of Near-Equilibrium Location Formations by Treatment

25



Chapter 2

Stability in Competition? Hotelling in

Continuous Time

A version of this paper is coauthors with Liam Rose, University of California, Santa

Cruz, lrose1@ucsc.edu.

2.1 Introduction

Hotelling’s seminal paper Stability in Competition [38] characterized the stylized

fact that individuals buy commodities from different sellers despite modest differences

in price, and the work continues to garner citations at an impressive pace even 85 years

after its publication. The model is often taught and discussed as a simple location model

in which firms decide how to position their product in a linear product space. This space

is generally taken to be location, although the model has been adapted extensively to

numerous phenomena ranging from industrial organization to politics.
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In the classic setup, firms face a constant price and a uniformly distributed mass of

potential consumers that will buy at most one unit from one of the firms as determined

by a specified utility function. Consumer utility is decreasing linearly in distance, and

as such consumers will purchase the homogenous good from the closest vendor. With

two firms in the market, this results in the firms locating adjacent to each other at the

midpoint; this is to say, the firms produce identical products. This is known as the

principle of minimum differentiation.

However, Hotelling suggested but did not prove that this spatial competition would

lead to a price equilibrium between firms. This has since been proven to be incorrect

for his specification of the model with linear transportation costs, as firms can always

improve profits by moving to a new position after a competitor’s move, be it a new

location or a new price point. The absence of a pure strategy Nash equilibrium contrasts

starkly with the “folk wisdom” that firms minimize the distance between one another

and thereby maximize payoffs.

This contrast between formal theory and folk wisdom motivates our empirical work.

With theoretical work unable to provide a clear equilibrium on such an entrenched

model, we turn to the lab to test the predictions that Hotelling attempted to elucidate.

We adhere closely to the original model and question whether Hotelling’s Law — another

name for the principle of minimum differentiation — holds. We also test whether the

ability to rapidly adjust location and price can induce firms to cooperate to achieve

higher profits. In a continuous time setting in the laboratory, we examine variants of

the Hotelling model in which pairs of anonymously matched subjects can adjust their
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price and location during four-minute periods. Treatments vary in how often they are

allowed to adjust their position, ranging from free adjustment on either dimension to

being limited to adjustment on only one dimension during set blocks of time. Subjects

accrue flow payoffs throughout the period that depend simply on their location and price

positions relative to their counterparts in that moment in time. Subjects are randomly

rematched after each period, with sessions lasting 12 periods.

Our results indicate that despite theoretical ambiguity suggesting otherwise, Hotelling’s

principle of minimum differentiation largely holds. We also demonstrate that free and

unlimited adjustment leads to higher payoffs for subjects, while limiting adjustment

lowers prices and payoffs and increases competitive behavior. We provide circumstan-

tial evidence that collusion arises from signaling from one of the subject pairs, either

through momentary jumps to desired positions or willful loss in payoffs while waiting for

a counterpart to fall in line. However, non-competitive behavior is not widely observed,

and it is clear that the Hotelling model is not one that leads easily to a settled state.

As such it should only be used very cautiously when explaining duopolies, whether they

are political parties competing for voters or ice cream push-carts on a beach.

Section 1 provides background on Hotelling’s seminal model and its theoretical de-

velopment, and Section 2 recalls his original notation. Section 3 details the experimental

design, Section 4 gives the results of the experiment, and Section 5 concludes.
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2.2 Background

It is appropriate to distinguish between horizontal and vertical differentiation. With

horizontal differentiation, not all consumers will agree on which firm or product is pre-

ferred. With fixed prices, Hotelling’s model only discusses horizontal differentiation in

the form of a location choice by the firm. Despite most colloquial discussion leaving the

analysis there, Hotelling actually included prices and devoted a significant portion of his

paper to discussing vertical differentiation. With vertical differentiation, all consumers

will agree which product is preferred, all else held constant. The dimension is taken to

be be price for the purposes of this discussion, although it could also be product quality

with prices held constant.

2.2.1 Evolution of Hotelling’s Original Model

The original model has been appropriated to attempt to explain a wide range of phe-

nomena, concentrated most densely in the political science and industrial organization

literatures. These applications range from voting habits (Downs [25]) to entry deter-

rence (Schmalensee [63]) to competition in specific industries (Baum and Mezias [4] for

hotels, Calem and Rizzo [13] for hospitals, and Iyer et al. [42] for religions, as examples).

Unfortunately, however, many of these applications do not take into account how

sensitive the Hotelling location model is to small changes to the setup and set of as-

sumptions. Eaton and Lipsey [26] detail equilibria for more than two players, and show

that minimum differentiation does not generalize easily even if local clustering tends
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to emerge. With four players, for example, the equilibrium has two players on each of

the first and third quartiles. With three players, however, there is no way to satisfy

the pure equilibrium conditions. Salop [62] changed the linear city to a circle — among

other alterations — which results in maximum differentiation in product space, such

that firms are evenly distributed around the circle.

Perhaps most significantly, D’Aspremont et al. [20] show that the principle of mini-

mum differentiation does not hold due to the non-existence of a price equilibrium when

firms are not sufficiently far from each other. This is because demand is discontinu-

ous when firms are located close together. They propose a simple modification to the

consumer utility function — quadratic instead of linear transport costs — that restores

the continuity of demand and allows for a price equilibrium anywhere. However, this

changes the sign of the derivative of the firms’ profit functions with respect to location

from positive to negative; this is to say, firms then locate as far from each other as

possible.

This prompted a number of authors to implement alterations to the model to rem-

edy this equilibrium non-existence problem. Graitson [33] assumes “maximin” behavior,

in which a firm that is too close to an opponent sets a price that maximizes its profit

function taking the other firm’s price to be zero. This leads to a “maximin equilibrium”

which gives an equilibrium with firms located at the first and third quartiles charg-

ing Nash-Cournot prices. Neven [51] integrated the D’Aspremont et al. suggestion

of quadratic transport costs and gave the model two stages, where firms first engage
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in horizontal differentiation before choosing a price.1 He shows that a pure strategy

price equilibrium exists for every pair of products, and confirms that firms maximize

horizontal differentiation in equilibrium.

Generally, subsequent work — Cremer et al. [18] and Irmen and Thisse [41], for

example — followed the quadratic transport costs approach, although [28] examined

a range of utility costs of transportation and showed that not all specifications re-

sulted in maximal differentiation. However, the problem of equilibrium existence within

Hotelling’s original setup lingered, and increasingly nuanced approaches attempted to

tackle the problem.2 Close relatives of the Hotelling model — such as Shaked [64] — give

the model an entry decision stage or alter the dimensions on which firms compete. More

modern work has seemingly strayed even further from the original setup to attempt to

capture real world phenomena, particularly in the IO literature. We cannot even begin

on an exhaustive list here, as the original paper had over 8000 listed citations at the

time of writing. Two things are clear from the existing literature, however. First, the

predictions of the model are sensitive to small changes to the setup. Second, the model

has defied many efforts to cleanly characterize its equilibrium, with the possibility of a

pure-strategies equilibrium having been been definitively eliminated.

But despite the result-altering breakthroughs, Hotelling’s conclusions are still widely

cited — if only casually — with the equilibrium difficulties frequently ignored. This

1Hotelling himself hinted at a two stage approach when prices were decision variables, for the reason
that prices are easier to adjust than locations or product variety. Other papers — such as Graitson [33]
and Economides [27] — tacitly followed this approach.

2See Gabszewicz and Thisse [32] for an early overview and Caplin and Nalebuff [14] for an approach
that gives the additional assumptions and conditions needed for a pure strategy price equilibrium.
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paper explores the applicability of his original result as well as the robustness of the

more nuanced conclusions of subsequent models in an experimental setting.

2.2.2 Previous Experimental Work

There have been a number of attempts to test the Hotelling model in an experimen-

tal setting. Brown-Kruse et al. [9] — along with its predecessor, Brown-Kruse et al. [8]

— investigate a two-player uncertain endpoint model, but focus on the effect of com-

munication on collusion. They find that communication led participants to locate near

the quartiles to maximize joint profit, but the principle of minimum differentiation did

seem to hold in their results when communication was limited. Huck et al. [39] were the

first to test a four-person Hotelling game, but found little support for the equilibrium

hypothesis. Kephart and Friedman [44] showed that the four-player Nash equilibrium

emerged more quickly with the ability to adjust location instantly.3

Very few authors have included vertical differentiation in an experimental setting.

This could be due to the equilibrium existence problems discussed above, or due to

a lack of technological capability. To our knowledge, only three works have tested a

game with price as a choice variable in addition to location. The first attempt was

by Mangani and Patelli [48], who specified their model with quadratic transport costs

such that theory would suggest subjects should maximally differentiate in the location

dimension to relax price competition. The authors tested this with three treatments:

a two-stage location then price game mirroring Neven’s setup, a treatment with only

3The four-player location-only game has its own form of the principle minimum differentiation as
the equilibrium, with players located back-to-back on the first and third quartiles.
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periodic location adjustments, and a treatment in which price and location were chosen

in the same period. The one-shot game in the last of these treatments does not have

a theoretical benchmark. Subjects, however, tended toward the center of the location

space, although still 20-30 percent of the action space away from their counterparts, on

average. The authors suggested risk aversion as an explanation, but not direct tests

this.

Kusztelak [45] allowed limited communication between subjects as well as also in-

cluding quadratic transport costs. In his first treatment, prices were automatically

computed, reducing the game to a location-only decision with 101 discrete location

fields (between 0 and 100). Subjects behaved as expected with maximal differentiation

in this treatment. But when a price decision was added in the second treatment, the

differentiation decreased significantly, with over 40 percent of location in the center of

the action space. He hypothesizes that increased model complexity reduces differentia-

tion, and also tests a market with two horizontal decision variables along with the price

decision variable in the final treatment.

Finally, Barreda et al. [3] attempted to test the hypothesis that firms use product

differentiation to relax price competition by focusing on a limited, discrete location

decision. Specifically, subjects could only choose among either seven or eight location

slots, depending on the treatment. In their most relevant treatments, the authors found

less product differentiation than theory would predict, and relatively few high prices.
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2.2.3 Our Contribution

Our work contributes to the literature in several important ways. First, this experi-

ment is the cleanest test to date of a simple two-player Hotelling model with horizontal

and vertical decision variables and linear transport costs, thus giving a better view

into how Hotelling’s seminal result fairs in an ideal setting. Second, this experiment is

the first to test the model in continuous time. Our work also takes a novel approach

by blurring the sharp distinction between the continuous choice model and sequential

models, providing insight on how the model should be applied and the effect the ability

to adjust quickly affects firms behavior. Finally, superior lab software and program-

ming gives participants a more intuitive interface and faster learning experience to allay

concerns of participant apprehension skewing results in the competitive setting.

2.3 Model and Predictions

First, we begin by recalling Hotelling’s assumptions and notation. There are cus-

tomers evenly distributed on a line of length l, with firms A and B selling a homogenous

product with zero production cost.4 Each customer consumes one unit of the good, and

will buy from the seller who gives the least delivered price. Firms locate at points a

and b respectively, such that a is the distance from 0, b is the distance from l, a+ b ≤ l,

and a ≥ 0,b ≥ 0. For simplicity, we normalize l to be 1 in our experiment. Firms also

set prices pA and pB, respectively. Transport costs are linear and are denoted by c.

4This experiment only examines the two-player game, but can be generalized to n sellers. See
Brenner [6] for a derivation of the model with more than two players.
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Figure 2.1: Player Configurations Under Three Cases

First, consider the case that price and location are chosen simultaneously. Payoff

functions for A and B are given by:

πA(pA, pB, a, b) =



apA + 1
2(l − a− b)pA + 1

2cpApB −
1
2p

2
A if |pA − pB| ≤ c(l − a− b)

lpA if pA < pB − c(l − a− b)

0 if pA > pB + c(l − a− b)

πB(pA, pB, a, b) =



bpB + 1
2(l − a− b)pB + 1

2cpApB −
1
2p

2
B if |pA − pB| ≤ c(l − a− b)

lpB if pB < pA − c(l − a− b)

0 if pB > pA + c(l − a− b)

Figure 2.1 diagrams three player configurations corresponding to the three cases in

player a’s payoff function.

These profit functions are clearly discontinuous at the points where the delivered

price of one firm is equal to the price of a rival at the rival’s location. At these points,
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a whole group of consumers will be indifferent between the two firms. D’Aspremont et

al. showed that there is a Nash-Cournot equilibrium point only if sellers are sufficiently

far from each other, or such that:

(
l +

a− b
3

)2

≥ 4

3
(a+ 2b)l (2.1)

(
l +

b− a
3

)2

≥ 4

3
(b+ 2a)l (2.2)

When sellers locate close to one another, it is optimal for them to undercut each other

and capture the entire market. But if 2.1 and 2.2 hold, then both ∂πA/∂a and ∂πB/∂b

are strictly positive, implying each firm should move closer to her rival. Once the firms

are relatively close to one another, 2.1 and 2.2 are violated, implying a Nash equilibrium

does not exist.5 Therefore, subjects in the experiment have an incentive to push toward

the center, then try to undercut each other in the price dimension to grab the entire

market. This prediction would see subjects follow each other closely in the action space,

with frequent adjustment to price and location and large volatility in profits.

A possible evasion of this problem is to assume the maximin strategy introduced

by Graitson. Here, the seller charges the profit maximizing price if she is likely to

be undercut by her competitor when charging the Nash-Cournot price, and the Nash

equilibrium price if not. Graitson proves that a socially optimal equilibrium — i.e.

one that minimizes transport costs — exists with this strategy in which firms charge

5It is worth noting that there is a trivial Nash equilibrium at p∗A = p∗A = 0 if a = b. This follows
from Bertrand competition, in which there always exists an equilibrium uniquely determined by zero
prices.
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Nash-Cournot prices and locate at the first and third quartiles.6

In the two-stage game, firms first simultaneously choose location, then simultane-

ously choose a price with full information from the first stage. Apart from this feature,

the setup is the same as above. Dasgupta and Maskin [19] prove that each price-setting

stage has an equilibrium in mixed strategies and Osborne and Pitchik [55] examine the

equilibrium that results from firms using mixed strategies in this stage. They charac-

terize — but are unable to prove the existence of — a unique perfect equilibrium in

the first stage in which each firm locates 0.27 from the endpoints of the unit interval,

which is clearly quite close to the equilibrium that arises from minimax behavior. In

the price-setting stage, for a symmetric location pair, the equilibrium price strategy is a

union of two intervals — such that the CDF will be kinked. Prices then fall between .5

and 1, with most of the probability weight falling on price of 1. This prediction would

see participants in the experiment at or near the profit maximizing positions.

In both versions, players can gain higher profits from collusion, but have incentive

to cheat. This mirrors the classic Prisoner’s Dilemma, albeit with far more intermediate

outcomes. Friedman and Oprea [29] showed that continuous time treatments greatly

increase cooperation; as such, we would predict successful non-competitive behavior to

be much more prevalent in continuous time treatments.

With the uncertainties in the equilibrium conditions in mind, we turn to the labora-

tory to answer lingering questions about the results and behavior of firms in Hotelling’s

6Similar to Graitson, Takatoshi [66] purposes that firms will maximize on one dimension and minimize
on the other in the two-stage game.

37



classic model of competition.

2.4 Experimental Design

The experiment was performed in sessions differing only in the timing of the game.

We study three treatments: Discrete, Continuous Instant, and Continuous Slow. Ses-

sions included of just one of the treatments, and consisted of two practice periods fol-

lowed by 12 potentially paid periods. Subjects were randomly matched into two-person

pairs, and rematched with a new counterpart each period. Periods lasted 4-5 minutes

with random endings for subject pairs to avoid endgame effects, although practice pe-

riods lasted for 30 seconds. Sessions contained six participants, and subjects could be

re-matched to any other subject at the start of another period.7 Note that for all treat-

ments, there was no difference between counterparts in any of the game’s parameters.

In all treatments, participants choose their location and price by clicking in the x-y

action space.

In all treatments participants choose their location and price by clicking in the x-y

action space. Action selections could be made with pixel precision. In some previous

laboratory investigations action selection grids have been limited from the single digits

to several dozen discrete actions available. Our implementation - with several hundred

thousand available x-y coordinates available to participants8 - approximates continuous

7In some pilot sessions, we had eight-subject sessions that were divided into four-subject silos. While
subjective, we felt that groups of this size could be risky in terms of subjects being able to identify a
counterpart they had previously been paired with, potentially altering behavior.

8We implement an action space that is 425 pixels square, resulting in about 180,000 potential location
and price combinations available to subjects
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action selection far more closely.

In the Discrete treatment, subjects played an n-stage game in which location is

selected first, followed by price with full information about location decisions. Subjects

were given 3 seconds to choose their location, indicated by a progress bar on the top of

their computer screen. The screen then adjusts to reflect the location the subject and

her counterpart have chosen, and subjects were given 3 seconds to choose price, again

indicated by a progress bar. We define these 3 second intervals as subperiods. Subjects

had four subperiods of price decisions before they were allowed to readjust location.9

Figure 2.3b gives a screenshot of the user interface for this treatment. “Flow” payoffs

are shown as bars in the graph on the right, and are updated after every subperiod.

The blue dot indicates the subject’s position in the last subperiod, while the green dot

indicates her counterpart’s position. The black line shows the subject’s current choice

for that subperiod, while the grey line simply follows the mouse.

In the Continuous Instant treatment, subjects chose both location and price freely

and instantaneously.10 A screenshot of this treatment is shown in Figure 2.3a. Flow

payoffs are shown in the graph on the right, and are updated continuously. The blue

dot indicates the subject’s current position, and the pink dot shows her counterpart’s

current position. The grey crosshairs simply follow the mouse.

The Continuous Slow treatment is identical to the previous treatment except for

9In pilot sessions, we also ran treatments in which location- and price-setting subperiods alternated,
with no discernible difference in subject behavior.

10The latency between a subject’s click and seeing the action on the computer screen is around 50
milliseconds, or far faster than human reaction time. This latency did increase slightly during periods of
very frequent position adjustment by subjects, but not above tolerable levels that would disrupt subject
behavior.
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(a) Continuous Time

(b) Discrete Time

Figure 2.2: User Interfaces
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a “speed limit” on subject movement in action space. When a subject chooses a new

location and price coordinate, a grey dot appears at that location while her actual

position adjusts slowly to that point. If a subject wants to change direction while

her position is adjusting, a new grey dot appears and her position immediately begins

to adjust to the new target. As an analogue to the discrete time treatment, subject

position could be adjusted four times quicker on the price dimension than on the location

dimension.

In all treatments, subjects were given information about their current payoffs. The

user interface included the linear transport costs running away from their position, the

cutoff that determined the edge of the area they control, and a shaded region showing

the area they control.

Subjects in all sessions were randomly selected using online recruiting software

ORSEE, [35], at the University of California, Santa Cruz from our pool of volunteers,

who are primarily undergraduates from all major disciplines. All were inexperienced,

i.e., had never participated in a Hotelling experiment in our lab. Written instructions

given for each treatment are included in the web appendix11, and these instructions were

also read out loud. Following this, subjects saw a short, silent instructional video with

on-screen text, which was read aloud as it appeared.12 Pink noise — a full-frequency

audio process that can be used to mask ambient noises — was played in the background

to prevent subjects from hearing the mouse clicking of other subjects. Sessions lasted

11The web appendix is at www.cazaar.com/home/research
12Instruction videos are also available at the web appendix.
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80-90 minutes each, and subjects were paid their point total multiplied by $20 for two

periods, which were decided by an overt dice roll by one of the participants. Following

both pilot and paid sessions, we noticed only small differences in subject behavior be-

tween Continuous Instant and Continuous Slow treatments. Therefore, we follow the

advice of List et al. [47] and substitute one discrete time session for one continuous

slow session. Average earnings were $16.21, and breakdown by treatment is available in

Table 2.1.

Treatment Number of Subjects Average Payout

Continuous Instant 24 $18.39
Continuous Slow 24 $14.67

Discrete 24 $16.71
Total 72 $16.59

Notes: “Average Payout” includes the $5 show-up fee.

Table 2.1: Subjects and Payouts by Treatment

2.5 Results

2.5.1 Subject Price and Location Decisions

To provide an overview of the results, Figure 2.3 gives heat maps of all players’

price and location decisions by treatment, respectively. In these figures, “hotter” colors

mean players spent more time in these positions, while “cooler” colors indicate little

time was spent in that area of the action space. The most striking feature of these

figures is the heat distribution between continuous and discrete time treatments. Subject

positions were clearly more concentrated in continuous time treatments, with discrete
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Discrete Continuous Slow Continuous Instant

Mean Median Mean Median Mean Median

Price 0.5787 0.606 0.5117 0.492 0.5855 0.597
(0.0184) (0.0247) (0.0070) (0.0096) (0.0062) (0.0090)

Profit 0.2534 0.2325 0.2380 0.1980 0.2729 0.2550
(0.0096) (0.0141) (0.0041) (0.0058) (0.0037) (0.0059)

Notes: Means and block bootstrapped standard errors of prices and profits by treatment.

Joint profit maximizing would lead to prices equal to 1 and profits equal to 0.5.

Table 2.2: Summary Statistics, by Treatment

time positions more evenly distributed in the action space. In continuous time, players

tended to be centrally located on the x-dimension, while price positions varied more by

treatment. Prices in Continuous Instant treatments tended to be the highest of any

treatment, with a strong concentration around the highest possible price. Putting a

speed limit on adjustment lowered prices and diminished the congregation around the

highest prices.

Table 2.2 gives basic summary statistics by treatment. In the Continuous Instant

treatment, subjects had the highest average prices and profits of any treatment. When

subjects can adjust price quickly but not location, prices were lower than with instant

adjustment, and median payoffs were the lowest of any treatment. For comparison,

if both subjects exhibited joint profit maximizing behavior, prices would be one and

profits would be equal to 0.5 for each subject in the pair.

While the straightforward summary statistics show relatively little difference be-

tween treatments, examining within subject pairs tells a different story. Table 2.3 gives
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Notes: These figures show all players’ price and location decisions by treatment. The
heat maps run from cool to hot colors, with “hotter” colors indicating that players spent
more time in those positions.

Figure 2.3: Heat Maps of Subject Price and Location Decisions by Treatment
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summary statistics on mean and median distance from a subject’s counterpart, with

“distance” specified as purely location, purely price, and euclidean distances. Note that

both axes are scaled to one, so that a distance of .1 is very close while a distance of .5

is quite far from a counterpart. Subjects were much closer together on all measures of

distance in the continuous treatments, such that the discrete stage game tended to push

subjects apart in the action space. This can be seen easily in the heat maps discussed

above. Price distance is consistently lower across treatments, even in the Continuous

Time treatment that did not inhibit location adjustment in any way. Note that the me-

dian distances are consistently smaller than the mean distances. Observationally, this

is due to some subjects consistently moving away from their counterpart to attempt to

avoid the intense competition that characterized many subject pairs. This can be seen

particularly clearly in the Continuous Instant treatment, where the median distance

between counterparts in the price dimension is just six percent of the action space.

We have documented where subjects tended to locate in both dimensions, but we

also wanted to characterize their movement when they did make adjustments. For this,

we present in Figure 2.4 a form of an empirical vector field in which average subject

movement from a given position is shown. Here, vectors show the average direction that

subjects moved starting from that neighborhood. In the background, colors map to the

percentage of observations in that neighborhood for which players changed their action

set. Darker colors indicate that subjects tended to change their price/location decision

in that area more often, with the direction of the change following the overlaid vector,

on average.
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Discrete Continuous Slow Continuous Instant

Location Distance (distance on x-axis from counterpart)

Mean 0.2529 0.1288 0.1578
(0.0093) (0.0022) (0.0021)

Median 0.205 0.0875 0.1020
(0.0125) (0.0019) (0.0029)

Price Distance (distance on y-axis from counterpart)

Mean 0.1714 0.1140 0.1097
(0.0046) (0.0016) (0.0016)

Median 0.109 0.074 0.062
(0.0052) (0.0013) (0.0015)

Euclidean Distance (from counterpart)

Mean 0.3433 0.1921 0.2122
(0.0086) (0.0024) (0.0026)

Median 0.3097 0.1534 0.1615
(0.01) (0.0025) (0.0035)

Notes: Mean and median distances on specified dimension by
treatment. Block bootstrapped standard errors in parentheses.
Axes are scaled such that maximum differentiation on one
dimension would give a distance of one.

Table 2.3: Comparison to Counterpart Statistics by Treatment
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Notes: These figures show all players’ price and location decisions by treatment. Arrows
indicate average direction of action set changes starting from the arrow’s neighborhood.
The heat maps run from cool to hot colors, with “hotter” colors indicating that players
were more likely to change their action set while in that neighborhood.

Figure 2.4: Vector Fields of Subject Position Adjustments by Treatment
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Subject adjustments vary greatly by treatment. In the Discrete treatment, subjects

tend to decrease high prices and raise low prices, and tended to change their actions no

matter where they were positioned. Beyond this, however, behavior is somewhat erratic.

Movement in the Continuous Slow treatment is a bit more clear, with subjects tending

to adjust towards the center. The heatmap for Continuous Slow is a bit deceptive,

since action changes were rate limited by the “slow” speed limit. The heatmap for

this treatment shows changes in players target location and prices, which were far less

frequent than in either Discrete or Continuous Instant treatments. But the clearest

story emerges from the Continuous Instant treatment. Here, the lower edges of the

figure are darker as subjects made more frequent adjustments to avoid being “boxed

in” by a counterpart. Prices tended to be adjusted upwards until about 0.6 — which

was the median in this treatment — and downward above that. Central locations with

medium to high prices tended to be the most stable action sets.

2.5.2 Non-competitive Behavior

As detailed previously, subjects have an ever-present incentive to undercut on either

dimension. Thus, it may come as somewhat of a surprise that we see mean and median

price decisions between 0.5 and 0.6. We compile non-competitive behavior rates for

player pairs. Informally, non-competitive behavior is a situation where two players are

able to settle into relatively stable and jointly profitable positions. To capture this

sense, for our analysis we define ρik as the fraction of time player pair i maintain jointly

positive profits within 10 and 20 percent of each other — and by implication refrain
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10% 20%

Mean Median Mean Median

Discrete 0.0846 0.0607 0.1685 0.1379
(0.0146) (0.0069) (0.0202) (0.0178)

Continuous Slow 0.1131 0.0892 0.2185 0.1894
(0.0169) (0.0088) (0.0225) (0.0192)

Continuous Instant 0.1425 0.0985 0.2535 0.1980
(0.0278) (0.0077) (0.0298) (0.0092)

Notes: Mean and median non-competitive behavior rates with
bootstrapped standard errors. The percentage refers to the threshold
defining when subjects are not exhibiting competitive behavior.

Table 2.4: Non-competitive Behavior Rates by Treatment

from undercutting one another — in session k. Although these are conservative and

arbitrary thresholds, our results are robust to a range of changes to this threshold.

Table 2.6 shows mean and median non-competitive behavior rates by treatment for

the two thresholds for the last six periods of sessions.13 The continuous time treatments

were clearly more conducive to non-competitive behavior than the discrete time treat-

ment, with rates exceeding a quarter of the period on average. Note again that median

values were generally well below mean values. This is because some subject pairs were

able to quickly come to an agreeable state — thus spending large portions of periods

in cooperation — while others could only manage short-lived tacit agreements, or none

at all. As one might expect, non-competitive behavior increases with fewer adjustment

restrictions.

13Despite having two practice periods, we focus on settled behavior here to avoid any learning effects
from the opening periods. The results from all periods are shown in Table 2.6 in the appendix.
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Figure 2.5: Collusion Evidence, Successful Collusion
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more aggressive counterpart.

Figure 2.6: Collusion Evidence, Unable to Collude
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Note that we refrain from calling the behavior discussed above “collusion.” Aside

from the issues of using a somewhat loaded term, it is true that subjects in this game

can be both non-competitive and earning trivial payoffs. However, a player would be

better off undercutting and taking the entire market for any non-zero counterpart price,

and our definition above encapsulates this wider notion of eased competition.

Even though subjects clearly displayed more anti-competitive behavior in continuous

time, it is somewhat puzzling that non-competitive rates were relatively low. Figure

2.5 gives circumstantial evidence of how players were able to coordinate. It shows

a subject pair in the middle of the session playing a Continuous Instant treatment.

Shaded regions indicate non-competitive behavior between subjects. In the bottom

panel on each figure, the thick lines are smoothed flow payoffs for each subject, while

the actual flow payoffs are shown in the background. In the very beginning of the

period, player 4 — the orange player — immediately adjusts her price to the maximum

allowed (normalized to one) and her location to the middle. Notice that this reduced

her payoff to lower than her counterpart’s while she waited for her counterpart to fall in

line with her strategy. The subject pair colluded for almost the entirety of the period,

indicated by the blue bars in the payoff figure. The subject pair obtained much higher

than average payoffs in this period as a result. Note that we are comfortable using the

word “collude” here, as joint maximizing profits surely fits any definition of the term.

On the other hand, Figure 2.6 shows a typical case of players following each other in

the action space throughout the period. Player 4 is the same player that aggressively

pushed for a collusive state in Figure 2.5, but is now matched with a more competitive
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Mean Median

Continuous Instant 0.6235 0.6162
(0.0161) (0.0149)

Continuous Slow 0.5402 0.5646
(0.019) (0.0217)

Discrete 0.5992 0.5914
(0.0255) (0.0311)

Notes: Mean and median non-competitive
behavior rates with bootstrapped standard
errors. Steady Positive Payoffs refers to
spells in which both players in a subject
pair have positive flow payoffs.

Table 2.5: Steady Positive Payoffs Non-Competitive Rates by Treatment

player. Notice that she repeatedly attempts to drive the prices is higher, thus taking

a momentary loss. But Player 4’s counterpart immediately undercuts her, forcing her

to be drawn into tight competition. At the end of the period, Player 4’s payoffs are

much lower than her counterpart’s due to her attempts to ease competition. This kind

of behavior was typical in the game, as “aggressive colluders” were only able to coax

anti-competitive behavior out a relatively low number of counterparts.

We define an alternative state of non-competitive behavior that we call Steady Posi-

tive Payoffs. This concept abstracts away from a specific threshold, with a subject-pair

in this state when both subjects have positive payoffs. The subject-pair’s spell in Steady

Positive Payoffs is then broken if one of the players undercuts her counterpart causing

their profits to fall to zero. The rates that come from this definition are reported in
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Table 2.5. This shows that subjects were able to carve out some portion of the market

well over 50 percent of the time. As expected, the Continuous Instant treatment had

the least intense competition. However, Continuous Slow treatments had lower non-

competitive rates by this measure, and were lower than even the Discrete treatment.

We speculate that this is a consequence of the location adjustment speed limit, which

seemed to drive subjects to compete more aggressively on price alone and undercut

more frequently.

Similarly, we examine the connection between a subject’s tendency to undercut her

counterpart, her counterpart’s tendency to undercut, and the subject’s payoff. This

relationship is shown visually in Figure 2.7. The subject’s tendency to undercut is

shown on the x-axis, given as a count of the number of times a subject undercuts her

counterpart — such that the counterpart’s flow payoffs are reduced to zero by the move

— in a specific period. This is plotted against the number of times that subject was

undercut by her counterpart in the same period. As such, there is intentional “double

counting” in the figure, with a subject being counted both as a subject and as another

subject’s counterpart. The colors represent the subject’s payoff, with “hotter” colors

indicating higher payoffs (note that the counterpart payoff is not shown in the figure).

If multiple subject-pairs occupy the same cell, then the average payoff is taken.

We first note that abstaining from these aggressive undercuts are beneficial to the

subject only if her counterpart exhibits similar restraint. This can be seen easily by the

hot spot in the lower-right corner. It is clear that subjects that were more aggressive

than their counterparts tended to have higher payoffs, as evidenced by the darker spots
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Figure 2.7: Subject-Pair Tendency to Undercut and Payoffs

55



0.0

0.1

0.2

0.3

0.4

2 4 6 8 10 12
Period

C
oo

pe
ra

tio
n 

(P
os

iti
ve

 P
ro

fit
s 

w
ith

in
 2

0%
)

Treatment

CI

CS

DS

Smoothed Cooperation Rates Over Sessions, by Treatment Groups

Notes: This shows smoothed non-competitive behavior rates by period, separated by
treatment. Rates are measured by the 20 percent threshold, with 90 percent confidence
intervals shown in the background.

Figure 2.8: Learning Effects

on the lower right section of the figure. Conversely, the subject’s payoffs suffered if

she met a counterpart that was more aggresive than her, as seen by the light areas

in the top-left. We find this revealing of the incentives subjects faced in the game,

as this shows that they consistently did better by being more competitive than their

counterparts. However, it is also clear that successful collusion leads to higher payoffs,

with high payoffs for the subject when both she and her counterpart did little to no

undercutting. Finally, if both players were particularly aggressive and in relatively equal

proportions, both subjects saw their payoffs suffer, as evidenced by the lightest region

in the middle close to the 45 degree line.

Exit surveys from our experiments indicated that subjects did not initially attempt

to come to tacit agreements with their counterparts, even among subjects with high non-
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competitive behavior rates. As such, we examine learning effects by treatment in Figure

2.8. It shows non-competitive behavior rates by period with the 20 percent threshold.

Early in the sessions, rates were not statistically different between treatments. These

differentiate relatively quickly, however, with continuous time treatments increasing and

the discrete time treatment decreasing in non-competitive behavior. Our data from the

Continuous Slow treatment are noisier, and hence is not as stable as the other two

treatments and is not distinguishable from the Continuous Instant treatment.

2.6 Discussion & Concluding Remarks

Our principal findings can be summarized briefly. First, subjects tended to locate

close together in the middle of the action space, especially in continuous time treatments.

In the Continuous Instant treatment with instantaneous price and location adjustments

as well in the Continuous Slow treatment with delayed price adjustment, subjects were

heavily congregated in the center, and were only 10 percent of the action space away

from their counterpart on average. This lends strong support to Hotelling’s principle of

minimum differentiation.

Second, non-competitive behavior was higher in continuous time treatments. Our

results are consistent with previous laboratory experiments that showed the ability

to respond quickly can increase cooperation, though in this case it is not as nearly

dramatic as in a simpler game such as a Prisoner’s Dilemma. Our results show that

the free and instantaneous adjustment gives the least intense competition, and we give
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circumstantial evidence of subjects aggressively pushing for a collusive states at the

expensive of short-term payoffs.

However, this eased competition was far from ubiquitous, averaging about 25 percent

of the time in settled behavior in the Continuous Instant treatment compared to roughly

17 percent in the Discrete treatment. Many subject-pairs failed to settle on a price

equilibrium, even if one of the subjects in the pair was a willing collaborator. This,

combined with our previous findings, can only lead us to conclude that Hotelling was

largely correct in the principles and predictions of Stability in Competition, even if the

model outlined in the seminal paper refused to yield an identifiable equilibrium. A

passage from the original paper itself is particularly salient:

“For two independent merchants to come to an agreement of any sort is
notoriously difficult, but when the agreement must be made all over again
at frequent intervals, when each has an incentive for breaking it, and when
it is frowned upon by public opinion and must be secret and perhaps illegal,
then the pact is not likely to be very durable.”

With this in mind, we make a quiet appeal to economists, political scientists, and

teachers of economic theory to use caution with their use of the “folk wisdom” version

of the Hotelling model. Many applications of Hotelling’s model — from gas station

placement and even to homogeneous price voting theory — should be viewed with

extreme caution in light of the instability — especially on the price dimension — shown

in our experiment. For instance, according to the median voter theorem in a two-party

system, political parties should track to the center to capture the maximum amount of

votes. But it is clear that this works only if party differences can be characterized only

by horizontal differentiation, as introducing vertical differentiation — as we followed
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10% 20%

Mean Median Mean Median

Continuous Instant 0.1605 0.1072 0.2669 0.2053
(0.0313) (0.0076) (0.0334) (0.0143)

Continuous Slow 0.1413 0.1006 0.2623 0.2311
(0.0191) (0.0126) (0.0201) (0.0184)

Discrete 0.097 0.0712 0.1734 0.1489
(0.0137) (0.0088) (0.02) (0.0169)

Notes: Mean and median non-competitive rates with bootstrapped
standard errors. The percentage refers to the threshold defining
when subjects are not competing.

Table 2.6: Non-competitive Rates by Treatment, All Periods

Hotelling in doing so here — will obscure the clean result and require robust cooperation

to achieve some degree of stability.

59



Part II

Economics of a Virtual Economy
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Chapter 3

Aggregate Dynamics in a Large Virtual

Economy: Prices and Real Activity in

Team Fortress 2

[A] synthesis of macro and micro approaches is

required to analyze policies instituted at the

national level with general equilibrium impacts

∼ James Heckman [36]

3.1 Introduction

Heckman’s Nobel-lecture proposal is to estimate all macro-level indicators directly

from micro-level data. That proposal is difficult to implement in major national economies,

but it is entirely feasible in some large virtual economies such as the one we study here.

A version of this paper is a working paper with coauthor Matthew Baumer, mbaumer@ucsc.edu
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The object of our study is the virtual economy of Team Fortress 2 (TF2) developed

and overseen by Valve Software. This economy and others like it hold great potential

for researchers: millions of users engaging in billions of economic transactions involving

thousands of different types of goods; the game designers are near-omnipotent social

planners able to create and destroy goods and implement policy at will; and they gather

essentially complete micro data that enables precise construction of macro variables.

The TF2 economy has some features that are unusual, even for a virtual economy.

There is no explicit currency good, and trading occurs exclusively through decentralized

barter. Goods are homogeneous and of known quality (i.e. there are no “lemons” as

in Akerlof [1]). Items are also durable and do not depreciate due to “wear and tear”

in the way that a physical item would. Another issue likely important is that items

are indivisible and can only be exchanged in discrete quantities (e.g. it is impossible to

trade half of a common currency item, the treasure key, as keys are not capable of being

split). There is also a significant amount of activity that is due to a very small number of

very active individuals, which we will refer to as “high net worth individuals” (HNWIs).

These quirks will be leveraged in future papers to discuss the issue of the spontaneous

emergence of money, the emergence of trade intermediaries, and information brokerage

services by applying concepts from network theory to map the interactions between

different types of user.

Our approach advances ideas presented in Castronova et al. [16] and Castronova [15]

by implementing more rigorous economic indicators of aggregate economic behavior

in a large virtual economy. But there are also some crucial differences in our work:
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Castronova studies Everquest II, a economy with explicit currency (gold pieces) and in-

game posted-price markets available to the users, thus trade in that environment would

not be considered barter or decentralized in any sense. Our work also more directly

adheres to methodology commonly used in modern empirical economic techniques.

Everquest II and TF2 are far from the only such examples of large virtual worlds

with economic activity: “Second Life” is an entire virtual world, complete with in-game

real estate, stores, jobs, and of course other people. “World of Warcraft” has players

fight monsters and each other with the hope of saving the realm from the great evil

that threatens it and has players engaging in money-mediated trade with each other to

facilitate this end.

Even the NYSE has made its operations completely digital. Traders physically

standing on the trading floor on Wall Street in fact have their business conducted

through computer servers located in Mahwah, New Jersey. The NYSE and its affiliated

traders have had almost 200 years to develop their institutions; what commerce in

virtual economies will look like once it matures is an open question.

3.2 Research Questions

Q1: What is the trend in real growth per-capita and how can we explain this

trend?

Our primary goal is a basic macroeconomic characterization of this large virtual

economy. We will examine the dynamics of real growth and explain what are the
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economic causes of dynamics. We also will perform a decomposition of nominal growth

into its constituent components: growth of the price level, real growth, and population

growth.

Q2: How do macroeconomic aggregates (e.g. the price level) respond to macro-level

shocks?

An appealing consequence of the complete nature of our dataset is the ability for us

to pinpoint precisely what might be causing, for example, bouts of inflation or deflation.

There are also numerous exogenous policy changes and events that appear to have

influenced this economy and can be detected in our indicators.

Q3: How do markets for individual items respond to micro-level shocks?

A quirk of this environment is that there are numerous unexpected events that can

be taken as exogenous by market participants. For example, a number of cosmetic

items were suddenly “retired”, meaning they were removed from the store and new

items of these types could no longer be acquired, fixing their number in the economy.

We might expect this intervention to increase prices – essentially a negative shock to

supply – but it is also possible that market participants’ speculation “overshoots” the

new (post-announcement) fundamental value.

3.3 Environment and Data

Team Fortress 2 is a competitive multiplayer first-person-shooter game which has

two teams of typically 6 to 10 combatants vying for supremacy. Winning could result
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Figure 3.1: Daily TF2 Players

Note: Count of unique players logged into TF2 over day. Seven day moving average applied.

from (depending on the game mode) killing enough of your opponents (but don’t worry,

death is only temporary!), capturing a briefcase full of valuable intelligence from the

heart of your opponent’s base and sneaking it back to your home base, or successfully

pushing a cart full of explosives to your opponents base to blow them up. One round

of the game typically takes ten to twenty minutes. Each player in a game chooses their

character class from nine different options such as quick and agile Scout, the pro-social

Medic, or the deceptive Spy and try to do their best to help their team achieve glorious

victory.

3.3.1 Economic Environment

TF2 debuted in 2007 and initially followed the standard video game business model:

players pay for a copy and can play to their hearts’ content. Then, in 2008, a new

dimension was added to the game: an item system which allowed users to collect virtual
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goods which would customize the look and play style of their characters. As people

played, they would randomly receive item drops (and some special items could result

from completing a list of in-game achievements), but there was no way to exchange

items with each other. A September 2010 update introduced two institutions which

continue on until today: a barter platform to exchange items with other players, and

a virtual store where items could be directly purchased from Valve using a credit card.

Figure 3.1 displays the number of active players on a daily basis. In November 2013

alone, there were more than 2.1 million different users that spent some amount of time

playing TF2. At the end of July 2011, TF2 went “free-to-play” (F2P), removing the

requirement to purchase a game license before people are allowed to play, at which point

the game generated revenue only by selling in-game items on the official store.

An item in the context of the Valve marketplace is any virtual good that can be

stored in a player’s inventory (henceforth referred to as a “backpack”) and be traded.

These may include TF2 items, installation licenses for other games on Valve’s digital

distribution platform called Steam, and items from games other than TF2 on the Steam

platform. Backpacks have finite space, but the capacity is large enough (300 item slots)

that most users are unlikely feel this constraint. As well, there are “backpack expanders”

that can be purchased from Valve for $.99 which loosen this constraint by granting an

additional 100 item slots.

The process of successfully completing a trade is as follows: Find a trading partner

through communication channels that can be internal or external to TF2, add them

to your contact list, request a trade session, arrange an exchange in that session which
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makes both parties happy, and then execute the trade after multiple layers of confirma-

tion. This is a quite inconvenient system for the market participants, but it represents

an opportunity for inquiring economists to study actual human behavior in an environ-

ment in which we are theoretically well versed. It is important to point out that the

economy by construction was designed to support only barter.

Our sample consists of a full log of all transactions occurring between 9 August

2011 and 31 May 2013, a 661 day interval. There were more than 70 million barter

transactions, which averages out to more than 100,000 trades per day or over one trade

per second. This is the primary source of the data set which we will use to do the

following analysis. Across these 70 million individual transactions, over 300 million

virtual items changed hands. There were 4,267,832 unique traders participating in the

barter market, with the median trader conducting 4 exchanges, and with approximately

one third of traders exchanging ten or more items over the sample period. Some traders

participated in a large number of trades; the top ten accounts by trade count each

conducted over 150,000 barter transactions.

The Team Fortress 2 trading environment represents the largest dataset of a barter

exchange market that we are aware of. This is all the more remarkable since barter

markets today tend to emerge in environments which feature weak institutions and

consequently have meager record-keeping.

User Privacy: In order to protect the privacy of individuals involved in the TF2 Economy, user
identities were were anonymized, timestamps masked, and any data containing unique user identifiers
was held on Valve Corporation machines. Though the researchers were given access to the full log
of market transactions, all other company supplied metrics removed users who marked their Steam
backpacks to private.
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Note: Due to length of tail, top 10% of traders are not visible. Includes trading of non-TF2 game items
and “Steam” game licenses. Does not include players who did not trade at least once.

Items in TF2 have various types. There are consumables that are used in conjunction

with other items (e.g. a can of paint that can be used on a cosmetic that changes the

item’s color palette, or a name tag that lets the player choose a custom name for their

item) and durables which can be used for as long as the owner wishes and do not undergo

any sort of depreciation as a result of use. All durables have associated class restrictions;

some durables can be equipped by any class and others can only be equipped by one or

a few classes.

In addition, each individual item is designated one of a number of different “qual-

ities”, which serve primarily to signal scarcity and characteristics of the item. These

include:

• Unique: counterintuitively, the most common item quality
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• Unusual: adds a custom effect to the item such as flames erupting from the item’s

surface and are overall the rarest and most sought after quality

• Strange: track various statistics for the player when worn

There are a few other qualities of items, but they are generally simple variations of

unique.

Players can gain items from a number of different sources: random drops from

playing (although there is a cap of how many items can be received per time period from

this source), direct purchase from the “Valve store” using real cash, special promotions

(e.g. holidays, as a reward for completing some achievement, or as an incentive for

buying another game), trading with other players, by opening crates which require

a key which is then consumed along with the crate, and through a crafting system

introduced in December of 2009.

From observation of the set of items most commonly used as a unit of account

on independent community-created trading posts, there is evidence that the widely

accepted commodity currencies include three denominations of “metals”, as well as

“keys”, “Bill’s Hats”, and “Earbuds”. The three different types of metals in order of

increasing value are scrap, reclaimed, and refined metal. There exists an in-game system

that allows conversion of one denomination into another in either direction at the rate of

3 lower valued to 1 of the next higher valued. For example, anyone can convert 3 scrap

metals into 1 reclaimed, then combine that reclaimed with 2 more reclaimed to create a

refined, then break that refined back into 3 reclaimed. There is no cost associated with
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these conversions beyond the time it takes to perform the necessary mouse clicks.

Metals result from scrapping (deleting) weapons from your backpack and are used

in combination with other metals and items to create new items via predefined recipes.

Keys only originate from store purchases and may be used to open crates that contain

new items with various probabilities. Crates are analogous to raffle tickets; if you pay

the cost of one key to open a crate, you will most likely get an item worth somewhat

less than the key but there is a small chance to get a very valuable item worth much

more.

Metals and keys are created and consumed regularly. Bill’s Hats and Earbuds, in

contrast, entered the market as promotional items given away in the past and can no

longer be found or purchased directly from Valve. Their supply is bounded by the

current number in existence and slowly shrinks due to people quitting the game or

deleting them.

Once a player is in possession of an item, they will not lose it unless they either trade,

delete, or consume the item in the case of consumables. At the end of 2012, the ability

for players to sell items directly to other players for Valve store credit in an official

centralized posted-price marketplace was added. This store credit is denominated in

the player’s local currency and is redeemable for TF2 items purchased from the Valve

store as well as the purchase of licenses for other games from Valve’s digital distribution

platform called “Steam”.

This demonstrates an important distinction between this economy and the physical

world; in order to produce a good there are raw materials that necessarily must be
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consumed due to conservation of mass. But the production of an additional good in

this virtual economy requires no more than a additional line saved to a database. There

is still technically an upper bound on how many items can exist, but for practical

purposes this horizon is infinite and the marginal cost of production of these goods is

zero for Valve.

Another distinction between this environment and physical economies comes from

the nature of consumption. Most real goods are actually consumed at some rate and

once they are used up, are no longer usable again. This does not happen in TF2. Most

consumption is of goods which are perfectly durable (with the exception of tools, but

tools either result in or modify durables). We can then think of the size of this economy

as being the aggregate value of the stock of durables and tools.

3.3.2 Data

Much of our data takes the form of logs documenting barter transactions of virtual

items between two users. These are lists of transactions linked to users and the individual

items associated with the trade. These data were supplied to us via a half terabyte sized

relational database from which we generated observations in the form of Table A.1. Each

row in the transactions log represents the movement of a single item and is associated

with a unique trade identifier, two unique player identifiers (one for the sender of the

item and one for the recipient), a unique item-level identifier which no two items share

(AssetID), and an identifier for the specific item type which identical items would share

with each other (EconAssetClass). For example, if a player possesses two unique quality
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“Bill’s Hats” that are otherwise identical, they would share an EconAssetClass but also

each will be associated with unique AssetID that represents the specific individual item.

When an item is traded its old AssetID is removed from the originating user’s inventory

and a new one is created for the user receiving it. Thus, we can track both individual

items as well as individual classes of items, defined as items which share a type and

quality which makes them functionally identical.

TradeID PartyA PartyB Time AppID AssetID NewAssetID Origin EconAssetClass
1 1203 1876 1351926000 440 38818 41361 1 100
2 4256 172 1351927010 440 39425 41362 0 194921
2 4256 172 1351927010 440 41359 41363 1 158535
3 993 8384 1351928320 440 41339 41364 0 207

Table 3.1: Example data snippet

We present as an example Table 3.1. By looking at trade IDs, we can classify each

individual trade into categories such as simple monetary trades or simple barter trades,

as will be discussed in detail later. Party A and B allow us to track the trading behavior

of individual traders and the AssetID and NewAssetID let us track the movements of

individual items as they pass from user to user. Origin indicates which user is the

recipient of the item transfer and EconAssetClass is the identifier which lets us determine

the specific item type that was traded. In this fabricated example, the first trade was a

one-way exchange where a player with ID number 1876 gave an item to another player

with ID number 1203 and received nothing in return. The item that was given away

was of type 100. The next trade involved the player 4256 giving an item of type 194921

to player 172 and receiving an item of type 158535 in exchange.
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3.4 Estimating Prices from Barter Data

Our approach to generating prices for individual items is to define one good among

the emergent currencies to be our numeraire, calculate spot exchange rates between the

other currencies and our numeraire, and convert goods exchanged for those alternative

currencies into the corresponding value in terms of the numeraire. This approach gives

us price estimates which allow for direct value comparisons between all items. We also

generate statistics for each item including daily turnover, number of trades, and stocks.

The question of how to define which goods are used as “currencies” and which are

not is not a trivial one, but this discussion is not something we shall delve into in this

paper. Since the different metals can be converted costlessly into each other in either

direction at the rates mentioned previously, we convert all price observations involving

metal into the equivalent value in terms of refined metal.

From all of the goods used as commodity currencies, we choose keys to be the

numeraire. Keys were selected because they appear to have the most stable value,

likely due to the fact that their supply is allowed to expand as well as contract and the

price is anchored to the dollar since keys can only be produced in the economy through

direct purchases from the Valve store at a price of $2.49 per key. The other potential

currency goods either were introduced later on (Bill’s Hats and Earbuds) or displayed

rapid expansion of supply (faster than the growth of population) causing instability in

In upcoming work we will rigorously identify goods that appear to be the most “money-like” based
on their characteristics in the data, but for this paper we will simply take money goods for granted and
assign currency status to those items which are used as a unit of account in the major community-run
pricing resources.
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FX - Money for Money

SM - Simple Monetary 

SM.Keys - Simple 
Monetary with Keys

SM.Mix - Simple 
Monetary with Mix

Basket on Side 1 Basket on Side 2

SB - Simple Barter

OW - One-Way

EE - Everything Else

EE.SM - Simple 
Monetary in EE

EE - All other trades

All Money Goods
of any type or mix

All Money Goods
of any type or mix

All Key(s) Non Money Good(s)
of one type

All Money Goods
of any type or mix

Non Money Good(s)
of one type

All Money Goods
of any type or mix

Non Money Good(s)
of one type

Non Money Good(s)
of one type

Any Item(s) Empty

Money Goods
of any type or mix

Non Money 
Good(s)
of one type

Figure 3.3: List of Trade Classification Types.

estimated prices.

We define a simple monetary (SM) trade observation as an exchange involving a

single non-currency item type and any basket of commodity currency items. In order

to use SM trades to estimate prices that are comparable to each other, prices need to

be measured in a common unit, which we refer to as “synthetic keys”. A synthetic key

price is the equivalent key-value of a good perhaps exchanged for non-key money(s). We

calculate daily exchange rates between different types of money items by looking at the

74



subset of trades that are money for money (FX), which are defined as trades which

have only money goods on both sides. See Figure 3.3 for a complete classification of all

possible trade types.

By looking at these FX trades, we generate daily inter-money exchange rates as

follows. Define QKMit as the quantity of keys traded for metals on date t in transaction

i, where transaction i is among the subset of trades involving only metal on one side

and only keys on the other. QMK
it is likewise the quantity of metals (expressed in terms

of refined) traded for keys in the same exchange. A single metal/key exchange rate

observation is thus,

RKMi,t =
QKMi,t

QMK
i,t

The daily spot metal/key exchange rate is then the median of all i exchange rate

observations on date t (weighted by the number of keys in each observation), allowing

us to value any quantity of metal in terms of the going rate for keys at that moment.

By a similar process we derive daily synthetic key values of Bill’s Hats and Earbuds.

Over 910,000 transactions inform our FX sample (approximately 1,300 a day), of which

700,468 are metal-for-keys exchanges, 107,651 are Bill’s Hat for some combination of

metals and keys, and 104,566 involve Earbuds for some metal-key combination. Spot

Bill’s Hat and Earbuds exchange rates are based on trades involving keys and/or metals,

converting metals into synthetic keys at the day’s metal/key exchange rate.

Using these spot exchange rates to express all SM trades in terms of keys, a simple
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monetary price observation is as follows:

PSMit =
V S.Key
2,it − V S.Key

1,it

QSM1,it

Where V S.Key
2,it is the value, in terms of synthetic keys, of the all-money side of a

SM trade, V S.Key
1,it is the synthetic key value of any currency goods on the side of the

trade that involves a non-money item, and QSM1,it is the quantity of the non-money good

involved in the SM trade. V S.Key
1,it can be thought of as a cashier making change when

a larger than necessary denomination of currency is used to make a purchase.

Figure 3.4: Price time series and meta data.

Note: A typical individual item price time series. Scatter points reflect individual transactions and their
implied valuation. Multicolored lines reflect various temporal aggregate methods deriving daily prices.

Over 9 million trades provide SM price observations, or an average of approximately

14,000 per day. We aggregate our sample of asynchronous price observations on time

period and EconAssetClass (item type) to generate price time series for each individual
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variety of item. Figure 3.4 demonstrates our price time series for an arbitrarily chosen

item, namely a stylish sombrero hat called “Old Guadalajara” which is wearable only

by the Pyro character class. Notice that there are discrete bands above and below the

price trend line; this is a consequence of the indivisibility of the currency goods. Prior

to October 2012, the first of these bands are .1-.15 keys away from each other, which

would correspond to the value of one reclaimed metal at contemporary market exchange

rates.

An additional 8.5 million trades offer Simple Barter (SB) item value observations as

well – trades that involve only two non-money items. However, we only use SM price

observations and did not incorporate SB prices because they appear to have a more

complicated valuation method than SM trades. It appears that when traders meet, if

the buyer of the specific item does not or can not pay in currency items, they must pay

a premium with their non-money items, meaning the trade won’t be balanced in terms

of value. This would simply introduce mean-zero noise to valuations if we assume that

all items are equally sought after by barter traders. But if some items were relatively

more sought after than other for barter exchange, there would be some item-specific

fixed term that would need to be controlled for. We therefore choose to exclude SB

observations from our price estimations as we determined that the number of SM trades

is sufficiently large that our estimation process will be precise.

Our temporal aggregation approach assumes that each item at every moment pos-

sesses an underlying “fundamental market valuation” based on its characteristics and

relevant market conditions. We then take each individual price observation as a noisy
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signal for that item’s contemporary fundamental value. That is, we assume SM price

observations are drawn from their true values, plus some error process. It is worth men-

tioning that some items appear to have reasonably complex profiles, such as bimodality

in price, which we take as further evidence of the economic significance of currency

indivisibility.

To estimate the price of a given item on a given day, we start with a seven day

window centered on that day and collect all observed SM transactions involving that

item. We then clean out observations beyond the 1st and 9th price deciles as there

are outliers which, for thinly traded items, can lead to a large amount of volatility. To

estimate prices using a rolling average, we then apply a weighting function to these price

observations based on temporal distance from the day in question and widen the time

window beyond one day if necessary.

A distinguishing characteristic of this environment is the constant addition of new

types of items that players can buy or find. This methodology involves taking observed

transactions around a given day and using those to estimate spot prices. This approach

is not ideal for pricing items soon after their introduction because there will be rela-

tively few observations. To mitigate this issue, we also develop a hedonic pricing model

that imputes prices of items based on observable characteristics and supplement price

estimates directly as above with estimates from this hedonic model for use in our price

index. This hedonic model will be discussed further in the next section.

See Appendix for more details regarding determination of appropriately wide time windows.
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3.5 Methods

3.5.1 Market Capitalization

We now turn to characterizing the size and growth rate of the TF2 virtual economy.

Due to the relative lack of production, GDP is not an appropriate measure for this.

We instead calculate the “market capitalization” which we are defining as the total

key-value of aggregate item stocks held by active players, where a player is designated

“active” if they have played within 90 days. To calculate this, we take the level of

existing stocks of each item in each time period and multiply them by the prevailing

price in that time period, then sum over all items. We will denote aggregate nominal

wealth in period t as Wt and is defined as

Wt =

Nt∑
i=1

pi,tSi,t

where at time t there are Nt total different goods, pi,t is the price of good i and Si,t

is its outstanding stock. One quirk of this economy is that a large majority of existing

goods do not undergo any sort of depreciation. This means that value is constantly

being created but relatively rarely being destroyed; compare this to, for example, the

value created by a pig farmer. He creates value by raising pigs and selling the pork,

but this value ceases to exist once the pork is eaten. Keys and metals are consumed in

a similar fashion to this pork, but it is rare for other economically significant items to

disappear. But this begs the question: even though item stocks should be increasing
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over time, is the real wealth of the average individual agent increasing along with it?

The nominal growth of all active players’ inventory holdings can be written

Wt+1 = GtWt (3.1)

where Wt represents the nominal wealth and Gt represents the growth rate of nom-

inal wealth in period t. Gt is the product of three components, population growth GPt ,

per-capita real growth GRt , and growth of prices (i.e. inflation) GIt . Thus, we can take

logs of equation 3.1 to find (where lower cases denote log levels):

∆wt = wt+1 − wt = gPt + gRt + gIt (3.2)

To better understand the causes of shifts in nominal aggregate wealth, we will take

advantage of this decomposition but before we can do this we will need measures for

each of these components.

3.5.2 Törnqvist Price Index

The simplest starting point for a basic price index is a Laspeyres index which uses

a quantity basket fixed to a base year and estimates price increases by allowing prices

to adjust in each time period:

PLaspeyrest =

∑N
i pitqi0∑N
i pi0qi0
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However, there is a particular problem with direct implementation of a basic Laspeyres

index: New items are constantly being introduced. If we choose a base period early in

our timeline, we will leave out all of the items which were introduced later on which are

likely to be economically important. But if we choose a base period late in our timeline,

since there are some items which did not exist early in the sample, we can have no prices

for items in early periods. And, indeed, this is a significant issue for our environment.

At the beginning of our data set, there are about 630 different item types traded, and

at the end there are over 1600. The common alternative to a basic Laspeyres index

is a Paasche index. Paasche indices suffer from a closely related issue; they take the

quantity index from the current year in the denominator rather than quantities from

the base year. But we can have no prices in the base time period for items which were

introduced later on since we have no observed trades of goods that did not exist. Our

strategy for solving this problem is twofold. First, we use a modified Törnqvist index

rather than Laspeyres or Paasche. Second we use a hedonic model to estimate what

prices for goods would have been just before their introduction.

Our modified Törnqvist [67] index modeled after the way the US C-CPI-U handles

its upper level price indices. The Törnqvist index is superlative and built from Translog

preference functions. A Törnqvist price relative is as follows:

PT
t,t−1 =

Pt
Pt−1

=

n∏
i=1

(
pi,t
pi,t−1

) 1
2
(
pi,t−1qi,t−1

Vt−1
+
pi,tqi,t
Vt

)

For more details, see Cage et al. [12] and Bureau of Labor Statistics [11] and ILO-IWGPS [40].

See chapter 18 of the Export and Import Price Index Manual [31] released by the IMF for a detailed
discussion of superlative indices
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where Vt is the total nominal value of all goods in the quantity basket in period t,

thus
pi,tqi,t
Vt

is the expenditure share of good i in period t. The quantity index we use to

calculate was built by drawing a weekly sample of active players from the population and

observing what those players were holding in their backpack. For a detailed description

of our sampling methodology, please see Appendix A.7.2.1.

The Törnqvist index helps to avoid the problem discussed above with the simple

Laspeyres: since the base period for each calculation is the previous period, the number

of new items introduced between base and current periods are minimized. As well, since

the weights are value shares, new items being introduced simply decreases the weights

of already existing items so the index does not increase due to increasing quantities of

items. The chain Törnqvist price index from base period t = 0 to period T is thus:

Chain PT
T =

T∏
t=1

(
PT
t,t−1

)

One issue with our approach is due to the existence of items which are untradable

- that is we observe no prices – but which appear in our representative bundle. These

items certainly have a non-zero value and they do enter and leave people’s inventories,

but we have no choice to exclude these from our index. This is the same way that

national statistical offices handle non-priced services like family household services.
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Figure 3.5: New item price time series.

Note: Each sparkline represents an item’s price over its first fifty days.

3.5.3 Hedonic Pricing Model

Another potential issue is that newly introduced items generally exhibit a common-

ality in price trajectories. Most new items start at a premium relative to similar items,

and then steadily trade lower in price. Figure 3.5 displays the price dynamics of items

starting with their introduction and tracing the time path of their log prices for the first

fifty days thereafter. Log prices are used to shrink the visual distance between item

time series, hopefully helping to focus on general price dynamics. Note that there are

clusters of new items around Halloween and the December holidays. Items with high

starting prices (log price greater than 2.5, about 12 keys or more) appear to hold their

value in most cases, but items with lower initial values nearly always trend downward.

The Törnqvist price relative discussed above ignores items for which price informa-
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tion is not present in adjacent periods, and thus the initial premium price on most new

items is not captured by the existing methodology. Though this issue is likely mitigated

by the fact that new items are infrequently traded and seen in relatively few inventories

when first introduced–and so their weights would be quite low–the omission of item

introductions likely biases our price index downwards.

We deal with the problem of new item introductions by implementing a hedonic

pricing model (Rosen [59] and Diewert [22]) which estimates the prices of items based

on that item’s characteristics compared to the characteristics of other items with known

prices. A similar hedonic price imputation approach is used by national statistical bu-

reaus to estimate prices in conditions of changes in quality. We use the hedonic method

as a best estimate of the initial values of each item based on the item’s observable char-

acteristics. This is accomplished by regressing dummies for each of these characteristics

interacted with time dummies on each item’s prices over time. For a given time period,

this gives an estimated value for each characteristic an item can have. If we apply the

assumption that an item’s value is approximated by the sum of values of its parts, we

can estimate the price of an arbitrary item given only its vector of characteristics. We

then use these imputed prices as our best estimates for the value of items the day before

they are introduced.

We impute unobserved prices via the following hedonic price model:

ln(pit) = α+ δtDt +
K∑
k=1

(βkt · xik) + εit for t = 0, 1, ..., T (3.3)
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For the price pit of item i in period t. Dt are fixed-effect time dummies (by week),

xik is a dummy indicating whether or not item i possesses item characteristic k (such

characteristics are time invariant), with error epsilon which has the standard assumption

of being equal to zero in expectation. Thus δt is the parameter for the fixed effects of

week t and βkt is the parameter on characteristic k in week t.

The different characteristics xik we include in this model are item quality, class

equipability as some items can be used only by certain classes and others can be used

by any class, item equip slot such as weapon or hat, and finally a dummy indicating

items held by a large proportion of active players which took a value of 1 if 3% or more

of users held the item and applied to less than 25% of items. We believe that these

characteristics sufficiently describe different items. We are limited by the fact that a

certain degree of the differentiation between items is due to non-quantifiable aesthetics

(e.g., two items can be identical with respect to the observables mentioned above, but

one of them might have art design that is in some sense “more attractive” and thus

would command a premium), but we believe that the number of different items is large

enough that these will be sufficiently averaged out when we conduct our regression.

3.6 Results

Our primary goal is the characterization of macroeconomic growth of this virtual

barter environment. This requires the development of an aggregate price index and

hedonic pricing models. Next, we present possible explanations for some of the ob-
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Figure 3.6: Aggregate PI using Chain Törnqvist with Hedonically Imputed Prices

served macro-level behavior. We conclude with our analysis of the impact of micro-level

shocks on individual items with evidence of an asset price bubble, the first bubble to be

documented in a barter market as far as we are aware.

3.6.1 Aggregate Price Level

In Figure 3.6, we present the calculated chain Törnqvist price index. Overall, the

price level based on representative backpack contents is relatively stable with slight

deflation until approximately mid-December of 2011, when there is a surge of inflation

that is possibly related to a Christmas event which brought an influx of new users into

the game and introduced holiday-themed items from new crates. This is followed by a

dip towards the end of the first quarter of 2012 which proved to be temporary as prices

return to their initial level and remain there for several months before seeing steady

inflation until October 2012, where we see the most striking feature of our price index.
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Starting with the Halloween event of 2012, we see a sustained deflationary period. Our

index returns to its initial level around March 2012 and keeps falling until the end of

our sample.

3.6.2 Insights from the Hedonic Model

The hedonic hypothesis postulates that for any given period, a good is a bundling

of potentially time-varying price determining characteristics along with some possible

aggregate price level effects that change from period to period. Plotted in Figure 3.7

are the coefficients on the weekly fixed effect dummies Dt along with their first and

second standard errors bands. These can be interpreted as an estimate for changes in

the overall price level in a given week relative to the first week. Compare Figure 3.6

to Figure 3.7; with the exception of a peak in the first quarter of 2012 which does not

appear in Figure 3.7, the dynamics are remarkably similar. These are both estimating

the same thing using entirely different methodology but both tell generally the same

story.

Figure 3.8 plots how item characteristics have evolved over the sample using the

hedonic model from equation A.7.2.7. In Figure 3.8 we see the evolution of value

premiums based on item quality. For example, haunted items tend to have their highest

premiums around Halloween (technically, we observe haunted items’ least discounts

Since item-level characteristics are fairly well defined in this context – item quality, character class
equipablility, and broad item type – it may be informative to run a simplified hedonic regression which
eliminates time-variation in the β coefficients. Results from such a model could be interpreted as the
average value placed on each observable characteristic for items in our sample and are presented in
Appendix ??.
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Figure 3.7: Time dummy estimate from simple hedonic price model.

Note: Dark and light gray ribbons reflect first and second standard error bands respectively. Coefficient
estimates on time dummies from model Equation ??.

around Halloween – haunted items are essentially identical to unique items, except for

their text color and quality designation), but haunted quality items otherwise tend to

trade at a discount relative to unique items. Unusuals clearly trade at a consistent

and increasing premium relative to uniques and other qualities. Interestingly, in the

weeks preceding Halloweens, unusuals exhibit an increase in their value premium. This

is possibly due to the introduction of a number of highly coveted Halloween themed

visual effects (e.g. circling ghosts, cauldron bubbles, and “Demonflame”) at this time.

Vintage items exhibit a consistently increasing premium relative to uniques. Vintages

are defined by having been in existence prior to the introduction of item trading. These

likely show steady increase due to the fixed nature of their supply.
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Figure 3.8: Coefficient estimates on time dummies interacted with item quality.

Note: Showing how premiums relative to unique have evolved over the trading sample. Standard error
bands shows in transparent ribbons. Halloween 2011 and 2012 are indicated by vertical grey dashed
lines.

3.6.3 Aggregate Value and Growth

Figure 3.9 shows the total nominal value of all items in active players’ inventories

(what we call “market capitalization”) on a daily basis. This is calculated by taking

the daily price of each item multiplied by the outstanding quantity in active players’

inventories, and summed over all items. We estimate that on the last day of our sample

the total value of the economy was approximately 10 million keys – or using a very

conservative US Dollar value exchange rate of $2 per key (keys are available on the

store at a price of $2.49, which acts as a price ceiling) – $20 million. Expanding stocks

to include all TF2 items from all users’ inventories, not just active players, market
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Figure 3.9: Nominal aggregate value of active TF2 player inventories.

Note: Keys are sold on the store for $2.49 each

capitalization on the last day is over 50 million keys, or over $100 million. Note that

towards the end of our two year sample there appears to be a decline in aggregate value.

This is explained by the decline in price level causing the bulk of commonly-held items

(usually traded for metals) to drop in value with respect to our numeraire.

In previous sections, we elucidated the trends of the price level and per-capita real

wealth. Applying those along with data regarding changes in active population to the

decomposition presented in Equation 3.2 results in Figure 3.10. The levels displayed

are all in percentage terms with respect to the levels in period 0. E.g. at the beginning

of July 2012, the nominal economy is approximately 120% larger than it was at the

beginning, of which approximately 10% can be attributed to growth in the price level,

35% of which can be attributed to growth in real per-capita wealth, and the remainder

attributed to growth in the number of active players.
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Figure 3.10: Growth of nominal active player wealth

Note: Nominal growth since August 2011. Aggregate nominal value of active player wealth is the
product of prices, population, and per-capita real inventory values. The natural log of nominal wealth
is thus plotted as the stack of these logged components.

We see that real per-capita inventories generally displayed a slowly increasing contri-

bution to the total growth for the duration of our sample. It also shows that practically

all of the volatility displayed in Figure 3.9 can be explained by volatility in the popu-

lation of active players and that there is actually a steady and increasing contribution

to economic growth from the real per-capita component. This signifies a healthy and

growing economy, even during periods which players are rapidly switching between being

active and inactive.

Prices consistently increase after January 2012 until a peak in October 2012, there-

after steadily pulling down net growth until the end of the sample. It can be seen that

the contribution from prices disappears (and in fact becomes negative) on precisely the
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date just after January 2013 at which the price index in Figure 3.6 shows that the price

level dips below its starting point of 100.

3.6.4 Nominal Rigidities and the Decline of the Price Level

Here, we present a plausible case in which this decreasing value of metals can trans-

late to a decreasing aggregate price level. We observe that items tend to be primarily

traded for a single currency. Low value items tend to trade for metals, mid value items

tend to trade for keys, high value items tend to trade for Bill’s Hats, and very high

value items tend to trade for Earbuds as a result of the indivisibility of these curren-

cies. It is therefore difficult to profit from currency arbitrage across “value-tiers” of

items. It is this combination of price rigidities across currency denominations along

with depreciation of metals that may have led to the sustained deflation we observe.

Our best explanation for the deflation towards the end of the sample is monetary and

due to the quirks of a barter system with multiple de facto commodity currency goods.

See Figure 3.11 for the daily spot exchange rates between keys and each alternative

currency. Notice that decline in the price level starts at the end of 2013 – as seen in

the price index in Figure 3.6 – syncing up with a sustained appreciation of keys against

metals in Figure 3.11. This appreciation is quite significant: at the beginning of our

sample it took a little more than two refined metals to purchase a key, but towards the

end it took nearly six metals. Thus, the metal-price of keys more than doubled over this

period. Also interesting to note is that the path of Bill’s Hats/Key and Earbuds/Key

exchange rates track each other closely (with a few exceptions near the end of the
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Figure 3.11: Inter-money exchange rates

Note: Daily median exchange rate with three-week smoothing. Grey ribbons reflect first and third
quartiles of observed daily exchanges, meaning 50% of trades occurred within gray ribbon. 31 Oct 2012
indicated by a black dotted line in the top figure.
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sample). This may imply that the higher-value currency goods are better substitutes

for each other than the low-value metals, and is also likely due to the fixed nature of

supply of these goods compared to the increasing supply of metals and keys.

To illustrate this point, consider how profitable arbitrage would occur if one currency

(metal) is becoming devalued relative to the other currencies but metal prices remained

fixed. One would trade metals for goods, then trade those goods for non-metal curren-

cies, then trade the non-metal currencies back for more metal than they started with.

This is only worth it if costs associated with trading the goods for non-metal currency

is lower than the surplus from completing the cycle.

If these search and transactions costs are large enough, it is not worth it to engage

in the arbitrage that would keep prices constant across all currencies. We see that as

metal-key exchange rates decline and the value of metal to decreases, this does not

appear to fully translate to the metal-price of metal-denominated items. Indeed, we see

that for most metal-denominated items, their key-prices fall as metal depreciates. Thus,

as the key-price of metals drops, the key-prices of metal-denominated items tend to drop

with it. This leads to the component of our quantity bundle which consists of items

that are primarily traded for metals to drop in lock-step with the metal depreciation.

If this component of the aggregate quantity index is “large”, it alone can drive large

movements in our aggregate prices.

We argue that this is due to frictions imposed by a barter market. If buyers were

equally willing to pay with keys as metals for the purchase any good, it is likely that

the prices of goods as denominated in the more consistently valued currency would be
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constant and there would be an increase in the price in terms of the currency which sees

a declining value. But, if most traders will only offer metals for some subset of goods

because it is impractical to trade for goods which are worth a tenth of a key or less

using keys or higher value currencies, such a scenario is plausible.

We now present evidence for the presence of nominal rigidities discussed above,

which would imply that items which happen to be priced in terms of metals – likely

due to their low value and therefore difficulty in trading with indivisible higher value

commodity currencies – have their value linked to the value of metals.

We investigate this by linking the frequency that metal is used to pay for items to

the price change from Oct 2012 to the May 2013. We estimate the following weighted

OLS model:

ρi = β0 + β1 ·mi + εi

In this regression, mi represents the value proportion of SM trades for item i in

which the item trades for metal and thus 1−mi is the value proportion of trades which

the item was exchanged for non-metal currencies. For example, an item that always

traded for metals would have an mi of 1 and an item for which half of the value of

trades was from metals and half was from keys, mi would be .5. The regression relies on

value share percentages derived from October 2012 observations and these value share

percentages hold a 0.95 correlation with observations in May 2013, implying that these

value shares seem relatively stable over our time horizon. The dependent variable ρi

represents the percent change of the price of item i with respect to this item’s price in
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October 12, 2012, just before the start of the deflationary period.

The model is weighted by the total value of each item i in the month of October 2012,

thus more economically significant items were given heavier weights. We only looked at

items for which prices were observed in both Oct 2012 and May 2013, there were 1,288

such items. We remove observations for which percent price changes were above the

99th or below the 1st percentile, leaving 1256 items with prices in both periods.

The interpretation of this regression is straight forward: the sign of the coefficient

on mi tells us if items which were primarily traded for metals tended to undergo price

increases (positive β1) or price decreases (negative β1) over the period of deflation which

started in October 2012.

Dependent variable:

Percent Change in Price

Metal Value Share −0.1867∗∗∗ (0.0406)
Constant −26.0422∗∗∗ (1.4763)

Observations 1,256
R2 0.0166

Table 3.2: Regression Estimates from WOLS of Price Change on the Trading Value
Share of Metal.

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our regression coefficients are reported in Table 3.2. It shows that on average,

items that traded 100% with metals tended to experience an 18% decrease in price

compared to items which never traded for metals. This is evidence that items which
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Figure 3.12: Price time series of the unique (normal) quality Fancy Fedora.

Notes: The date of the store retirement announcement is indicated by a dashed red line, and the actual
retirement date is indicated by the second dotted line, in blue.

trade primarily for metals tend to have a corresponding decline in price. But the decline

in price is also less than the decline in the exchange rate of metals (approximately 50%

from October 2012 to May 2013, as can be seen in Figure 3.11) which means that this

is likely only a part of the whole story.

3.6.5 Response of Individual Items to Micro-level Shocks

We conclude our results with a discussion of the impact on individual items of micro-

level shocks. Notice in Figure 3.12, the price of the Fancy Fedora starts high and over

a few months drops down and stabilizes, as is typical for newly introduced items. But

The price time series was generated using trailing price estimates rather than the centered prices
discussed above. This was because centered prices cause price estimates to increase before the announce-
ment which is not representative of what was happening in the market on this day.
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at the beginning of 2013, there is a sudden spike in interest. This is driven by a 10 Jan

2013 announcement, as indicated by a red dashed line, that this hat and 8 others would

be “retired” on 25 Jan 2013 as indicated by a blue dotted line. Retirement of these

items means that they are no longer acquirable except by trading with other players

and thus the total supply would be capped at the current level on 25 Jan.

This announcement led to rampant speculation on these items which drove up the

price by approximately 120% over the two week time period between announcement

and retirement. But this price boost ultimately proved to be temporary as the price

falls almost as rapidly as it surged in the first place. This represents the first evidence

of a possible speculative bubble in a barter market that we are aware of.

Figure 3.12 also shows the stocks of Fancy Fedoras. On January 10, 2013 there were

178,400, which increased by 2.26% to 182,440 by January 25th. Our best explanation is

that there was a sufficient quantity of these hats in existence to satisfy the demand for

them for the purpose of durable consumption at the price of approximately 0.2 keys, but

the retirement announcement caused a positive demand shock as market participants

anticipated a negative future supply shock, driving up current prices (red dashed line).

Soon after this negative supply shock took place (blue dotted line), it became clear

that the act of fixing supply did not actually do much to shrink quantity available

and – as well as the fact that there are likely a large number of close substitutes and

the influx of supply by speculators after the January 10 announcement – meant that

people interested in durable consumption of the item could simply buy a different hat

that didn’t see the price more than double. Thus, the announcement and subsequent
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retirement did not effectively change long run demand and had a small but positive

effect on long run supply, so the price returned to its initial level and the speculators

that went long on them figuratively lost their shirts.

Another item example demonstrating clear market responses to micro-shocks is the

strange Scattergun, a strange-quality version of the default class weapon of the Scout.

Strange quality items are notable because they record some sort of player statistic while

the player uses the item (e.g. a counter that tracks total number of other players killed

with the gun).

On 9 October 2012, as shown in Figure 3.13 with a red dotted line, these stranges

were suddenly made available from a newly introduced and particularly ubiquitous series

of locked crates and found inside these crates with a probability of approximately 20%.

The effect of this policy shock on supply can be seen in Figure 3.13. The total stock on 9

Oct 2012 was approximate 71,000 and had been increasing at the rate of approximately

50 per day for months. After this new crate was introduced the rate of increase of

the inventory stock suddenly exploded: after one month there were more than 101,000

strange Scatterguns in existence. And after three months, the stock had doubled.

The impact of this sudden large positive supply shock can clearly be seen in the

price of the gun, depicted in Figure 3.13. In contrast to the story of the Fancy Fedora,

in which the retirement of an item did not appear to have a long lasting impact on

the market supply or demand leading to long run prices being the same as before the

retirement, this event obviously actually impacts the long-run supply which causes an

unambiguous decrease in long-run market price. Thus, individual prices in the economy
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Figure 3.13: Price time series of the strange quality Scattergun.

Note: The red dotted line is at October 9th, the date which the item became more widely available.

do indeed appear to respond to specific micro-level shocks in the ways consistent with

basic microeconomic intuition given the direction of the shocks to supply and demand.

3.7 Conclusion

With this work, we present an examination of an economy which is interesting for at

least two reasons. First, it is a remarkably rich dataset which documents a true barter

market, the likes of which have been pondered by economists for centuries. Second, it’s

a virtual economy consisting entirely of non-tangible goods which people nonetheless

assign value to.

Our primary goal was to calculate macroeconomic growth in this novel environment

and concluded that an increasing component of nominal growth was due to increases in
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real per-capita holdings. Per-capita real wealth displays a slow and steady growth for

the duration of our sample and most of the volatility in aggregate economic value can

be explained by volatility in the active player population.

We presented a hedonic pricing model which we used to impute prices for a Törnqvist

price index. We show that not all classes are created equal when it comes to item values.

The index indicates that the price level tended to rise until October of 2012, at which

point the price level starts declining due at least in part to the declining value of metals.

We then traced the source of this depreciation of metals to a shock to both the stocks

of metals and keys as well as the rate of increase of their respective supplies. We then

demonstrated that items which trade for metals tended to have prices that decreased

as the value of metals declined, indicating possible nominal rigidities. But the price

decline was less than the decline of the value of metals, so this is likely not the only

thing affecting these items. Thus, we did find evidence that macro-indicators responded

to macro-level shocks.

Finally, we find in these virtual economies evidence of the same sorts of forces which

evidently influence “real world” markets in our micro-level case studies. If a credible

central authority makes some decree that could increase expectations of future prices,

prices move in that direction. If there is a sudden exogenous positive supply shock in

the market for a specific good, the price of that good falls. These goods are but two

of many items that have been impacted by idiosyncratic shocks, and their behavior is

mirrored in similar goods which were subjected to similar shocks. None of this news

should be surprising, but it supports our position that other such virtual economies
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(which are certainly only going to become more common in the coming years) are fertile

ground for further research and the fact that these virtual economies will typically have

impeccable record keeping should be enough to get researchers excited.

Future work will investigate the emergence and evolution of number of fundamental

market institutions in the tradition of Radford [58], Burdett et al. [10], and Lankenau

[46] and we will search for the origin of media of exchange and the development of trade

intermediaries by mapping trade networks and behaviors of these intermediaries. In

doing so, we hope to answer questions related to how much surplus such intermediary

activity brings to the economy as a whole, and how is that surplus is distributed amongst

various types of users, deep questions that go to the heart of classic economic inquiry

and are issues which many modern economists have struggled to answer empirically.

See Smith (1776) [65], Jevons (1885) [43], and Menger (1892) [49]
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Appendix A

Valve Economy - Macroeconomic

Analysis Methodological Appendix

A.1 Introduction

In the paper “Aggregate Dynamics in a Large Virtual Economy: Prices and Real

Activity in Team Fortress” authors Matthew Baumer and Curtis Kephart examine

economic activity in a large virtual economy designed to allow decentralized barter as the

sole exchange institution. This paper explores in detail the technical considerations and

methodological steps taken to map these barter transactions logs to standard economic

metrics.
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A.2 Overview of the trading platform

This section briefly introduces background information about Valve, the Steam

videogame platform, games on the platform, and the Steam Trading marketplace.

Valve Corporation maintains Steam, an internet based platform for the distribution

and administration of digital rights related to PC games. On Steam, users may purchase

and sell videogames, and the platform offers tools for social networking and connecting

to multiplayer games. As of February 23, 2015 Valve states Steam supports over 125

million active users and over 4500 games. On a single day Steam has served nearly 10

million concurrent users.

In addition to distributing other makers games, Valve also creates and distributes

its own licenses. Prominently in the Steam virtual economy are Team Fortress 2 (TF2)

and DOTA2 (D.O.T.A. once stood for Defense of the Ancients).

TF2 is a lighthearted online multiplayer first-person-shooter. Two teams compete

on maps for various objectives (capture the flag, deathmatch, king of the hill, etc.).

Players choose from nine character classes. Each character class has its own particular

strengths, weaknesses weapons and other items (some weapons and other items may

only be used by certain classes, other items may be used by more than one, or all

classes). Many items are purely cosmetic (e.g. hats, sunglasses, or paint that changes

the color of a weapon, hat, or sunglasses).

TF2 was originally released for sale in October 2007. On June 23 2011 the game

was made free-to-play. Any person could play the game at no costs. To help support
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the game Valve Software introduced a game-linked store in which users could purchase

virtual items (weapons, apparel, etc.), complimenting the items players receive while

playing the game.

Up to this point players had no way to exchange or transfer the items they possessed.

If a player purchased an item in the store, were awarded it for achieving some milestone,

or were given it by the game randomly they could not gift or trade the item with others.

On August 9 2011 Valve Software offered the ability to exchange or gift items, effectively

creating a secondary market for its digital items (August 9 2011 marks the beta release

of Steam Trading, it became available to all users September 6 2011, and technically

some form of trading was permitted as of Sept 30 2011 on a very limited basis).

Our dataset starts on August 9 2011 and ends May 31 2013. Trades in the first

half of our log mostly involve TF2 items. In June 2012 Valve introduced their game

DOTA2. The game also incorporated virtual goods that could be traded and quickly

became popular. By the end of our sample about half of all items traded on the platform

were DOTA2 items, with the remaining mostly TF2 items, in addition to some game

licenses and items from other games.

An item in the context of the Valve marketplace is any virtual good that can be

stored in a player’s inventory and be traded. These may include TF2 items or items

from other games, or installation licenses for other games on Steam. User inventories

have finite space, but the capacity is large enough (300 item slots) that most users

are unlikely feel this constraint. As well, there are backpack expanders” that can be

purchased from Valve for $.99 which loosen this constraint by granting an additional
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100 item slots.

A trade is completed by the following process: find a trading partner through com-

munication channels that can be internal or external to to your game, add the counter-

party to your contact list, request a trade session, arrange an exchange in that session

which makes both parties happy (which may be a one-way transfer), and then execute

the trade after multiple layers of confirmation.

One important note is that Steam Trading was designed to support only barter.

According to sources in Valve trading was simply a feature implemented to please a

user base demanding the ability to gift and trade their virtual items and game licences.

Goods could not be explicitly traded for any close proxy to money on Valve’s platform

until over a year later, December 12th 2012. Though, many third party agents emerged

to offer the ability for players to sell or purchase items for money.

Secondly, since our dataset is limited to transactions executed on the Steam Trading

platform, we may miss other transfers of value in the economy. For example, a large

number of trades are one-way trades, where parties to the trade appear to be transferring

items from one person to another with nothing in exchange. Many of these transfers are

likely to in fact be third party trades, where a user is buying or selling an item with a

marketmaker, escrow service, or speculator for cash or other value. Though we observe

all transfers of items, we would not observe transfers of value outside the Steam Trading

platform, whether that be cash, credit, or favors.

The trading dataset constitutes one of the largest and best documented datasets of

a barter market. This is all the more remarkable since barter markets today tend to
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emerge where institutions are weak or where market transactions are prohibited, thus

recordkeeping is consequentially poor. This dataset bears witness with a remarkable

degree of richness to a plethora of economics institutions and phenomena.

A.2.1 Dataset

This section outlines the structure of our dataset. It borrows heavily from Baumer

and Kephart (2015).

Much of our data takes the form of logs documenting barter transactions of virtual

items between two users. These are lists of transactions linked to users and the individual

items associated with the trade. These data were supplied to us via a half terabyte sized

relational database. The Table A.1 below gives of the form of the transaction log.

Each row in the transactions log represents the movement of a single item and is

associated with a unique trade identifier, two unique player identifiers (one for the sender

of the item and one for the recipient), a unique item-level identifier which no two items

share (AssetID), and an identifier for the specific item type which identical items would

share with each other (EconAssetClass). For example, if a player possesses two unique

quality Bill’s Hats” that are otherwise identical, they would share an EconAssetClass but

also each will be associated with unique AssetID that represents the specific individual

item.

Technically, when an item is traded its old AssetID is removed from the originating

user’s inventory and a new one is created for the user receiving it. Thus, we can track

both individual items as well as individual classes of items, defined as items which share
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a type and quality which makes them functionally identical.

TradeID PartyA PartyB Time AppID AssetID NewAssetID Origin EconAssetClass
1 1203 1876 1351926000 440 38818 41361 1 100
2 4256 172 1351927010 440 39425 41362 0 194921
2 4256 172 1351927010 440 41359 41363 1 158535
3 993 8384 1351928320 440 41339 41364 0 207

Table A.1: Example data snippet

By looking at trade IDs, we can classify each individual trade into categories such

as simple monetary trades or simple barter trades, as will be discussed in detail later.

Party A and B allow us to track the trading behavior of individual traders and the

AssetID and NewAssetID let us track the movements of individual items as they pass

from user to user. Origin indicates which user is the recipient of the item transfer and

EconAssetClass is the identifier which lets us determine the specific item type that was

traded.

In this fabricated example, the first trade was a one-way exchange where a player

with ID number 1876 gave an item to another player with ID number 1203 and received

nothing in return. The item that was given away was of type 100. The next trade

involved the player 4256 giving an item of type 194921 to player 172 and receiving an

item of type 158535 in exchange.

The database has tables listing characteristics of each EconAssetClass, and logs on

each AssetID. Due to user privacy concerns the company declined to offer any informa-

tion on Party IDs other than what we are able to glean via transaction logs. Timestamps

were slightly masked, Unix time (seconds since the epoch) being offset by some unknown

117



amount that allowed us to know the transactions date but not the precise time of day.

A.2.2 Economics of videogame players

One may wonder, are the actions of users of a videogame close to those of economies

we care about? Items are not produced through capital and labor in the sense we are

used to. They arrive randomly while playing the game, or are purchased at fixed rates

via a store with zero marginal costs to the retailer. Players play for fun, not for survival.

Very few of the items available aid much with gameplay, and many of the most valuation

reduce a player’s effectiveness. Though some free-to-play videogames sell virtual items

to improve game performance (“pay-to-win” or “freemium” games), in this marketplace

nearly all items serve a purely cosmetic role (e.g. hats, sunglasses) or cosmetic variation

of functional items (e.g. the festive or haunted variety of most weapons).

It is true, a videogame is not a national or a city economy, with economic decisions

directly affecting one’s well-being. Institutional and policy choices do not influence the

physical health and welfare of lives. A video game’s equivalent to a recession is not

likely to to result in anyones unemployment. No one pretends that matters of the game

are more than of local and passing significance. But in the context of the game - for

players that play it - these matters can be of the highest order of importance. This is

the case even in games in which acquirable items are not vital to player performance.

Items signal fashion and accomplishment. Ones social standing may be assessed merely

by the presence of a subtle cosmetic feature. The exchange of virtual goods may be of

supreme importance for some, more important than the gameplay for which the items
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were originally intended to supplement.

In many ways this study shows the pervasiveness of economic concepts considered

almost trivial in their universality — economic concepts which are now practically taken

for granted — but for which we can show in with non-trivial amount of observational

richness. Further, the details of the dataset allows us to understand some poorly ob-

served economic phenomena, such as the spontaneous emergence of commodity cur-

rencies, the formation of a basket of of commodities used as media of exchange, the

development of middlemen services, and the effect of market design features on the

functioning of this barter economy.

Where the macroeconomy will be subject to the random whims of market forces,

the supply of natural resource and development of technology, the vagaries of demand,

imperfect recordkeeping, and the choices of government institutions, many aspects of

a video game economy are in complete control by a central authority, with near om-

nipresent documentation.

A.2.3 Market summary statistics

Date Event
October 2007 TF2 Released
June 23 2011 TF2 goes free-to-play
August 9 2011 Steam Trading introduced
June 1 2012 DOTA2 free-to-play with trading
May 31 2013 End of our sample

Our sample constitutes 661 days of trading data, running from August 9 2011 when

Steam Trading was introduced until May 31 2013. In this sample there are 70,118,655
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trades, involving 4,171,719 unique trader IDs.

On what constitutes a trader, it should be noted that an individual may possess

more than one trading account, and more than one individual may possibly control a

single trader identifier. Going forward we will generally work with a unique trader ID

as if they are a unique trader (the identifier PartyA and PartyB in the trade sample

above). However, any analysis should be aware of this issue.

On the first day of the sample there were 3,551 trades involving 4,667 traders. On

the final day of the sample there were 304,995 trades involving 181,094 traders. Clearly

trading activity grow greatly over this time, and in fact was continuing to grow into the

end of our nearly two year sample. The highest number of daily trades was on May 24

2013 with 447,258 trades involving 220,502 traders.

Figure A.1 plots the growth in daily trading volumes. Spikes in trading activity

around the end of December 2011, July 1 2012, October 20 through mid November

2012 and the end of December 2012 correspond with special events and sales on the

Steam platform or in TF2. These times often brought an influx of newly active players

to the game and to trading.

A.2.3.1 Trading by Game

All goods traded on Steam are either associated with a game (all items are associated

with only one game) or with a license to play a specific game. Figure A.2 below breaks

down items traded each day by the game the item is linked to. Percentages are based

on nominal counts of virtual goods traded on that day and do not weight by price.

120



0

100,000

200,000

300,000

400,000

2011
October

2012
January

2012
April

2012
July

2012
October

2013
January

2013
April

2013
July

Date

Figure A.1: Number of Trades, Daily

For the first half of the sample the vast majority of items exchanged were from the

game TF2, with some trading of Steam licences (which gives digital rights to download

games from Steam’s platform). June 1 2012 also marks the release of a new game

DOTA2. After the release of DOTA2 trading in its items quickly take off. By the end

of our sample a full half of items traded (based on nominal counts) are DOTA2 items.

A.2.4 What is an item?

In a game like Team Fortress 2 there are many types of items, from weapons (items

usable by players in combat) to purely cosmetic items such as hats (items in which

player characters wear on their heads). Some items transform others, for example in

TF2 a Paint Can will change the color of certain items, a Name Tag will attached a
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Figure A.2: Percent of Items Traded, by Game

name to an item, a key will unlock a Crate revealing a hidden new item, each of these

items are destroyed in the process.

But the objects users may trade are not exclusive to virtual items linked to a game,

they may also include games themselves. Players may trade unclaimed game licenses

which they possess, essentially the right to access and play a particular game on Valve’s

Steam gaming platform.

We define an “item” in the context of the Steam Trading marketplace as any virtual

good that can be stored in a player’s backpack (a player’s personal inventory) and

traded. These may include in-game items (from TF2 or Dota 2) or installation licenses

for games.
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Many goods fit most of this description but are untradable. From a player’s point

of view these non-traded goods may be otherwise identical to traded goods. However,

since we are unable to observe transactional information we exclude them from our

analysis.

A.2.4.1 Item Granularity

In thinking about what an item is there is also a question; at what level of item

should we focus our analysis? There are several levels to consider:

• Application ID (or AppID for short) Each game has an AppID. Items originate

and are only useful in the game linked to its AppID. For example TF2’s AppID

is 440, the AppID used to indicate a game license is 753.

• Definition Index (DefID) This might be thought of as the highest level of an item.

All items with the same DefID have the same 3D design and headline name —

but they may vary by color, particle or other special effects, age in the game,

quality, and going price on the community market.

• “Quality” is a simple classification to help differentiate items with the same DefID

(see TF2wiki at wiki.teamfortress.com on Quality for more information). Ta-

ble A.2 lists all item TF2 qualities and their description. Other game like Portal

and Dota2 items may also have qualities, but these will usually differ from TF2’s,

e.g. DOTA2’s items qualities possess markedly different meanings.
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• Economic Asset Class (EAC). This is the lowest level of what constitutes an item,

without looking at individual items owned by individual players. Items with the

same EAC will share DefID, quality, and all other distinguishing characteristics

like color and particle effects.

• AssetID tracks each individual item. Each virtual item in existence is given a

unique AssetID when a player receives it. Even if an item changes hands via a

trade, the item will lose its old AssetID and receive a new one.

Consistent with convention in the Valve marketplace, the combination of DefID,

AppID, and Quality is the primary item level on which we conduct our analysis. That

is, for the sake of prices, turnover and other metrics, we define a unique “item” as the

combination of DefID, AppID and Quality.

Items sharing the same DefID and game may vary widely in going price. Variation

in the going price of same-DefID items depends on how these items are differentiated.

Differentiating characteristics such as color, visual effects, the item’s history and others

are fully encapsulated by Economic Asset Class. However EAC has proven too granular

a view of items, with pricing data often too shallow (some DefID AppID Qs share

hundreds of EACs), and many items that are otherwise similar or the same may vary

by EAC. Item quality appears to encapsulates most of the ways same-DefID-AppID

items are differentiated in the marketplace.

Two items that differ by EAC but share the same DefID AppID Q will usually hold

the same characteristics that annecdotally define the good’s economic value, these EACs
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will usually trade at the same value in the marketplace at any given moment.

A.2.4.2 Additional Ad-Hoc Item Specifications

We do occasionally deviate from the DefID-AppID-Quality level when calculating

certain item prices.

• Some items should be even further distinguished from the DefID-AppID-Quality

level. For example the “Rare Supply Crate” (DefID: 5068, AppID: 440 and

Quality: 6, Normal) has three different types. These different crates different

in value based on the expected value of their contents (Thus these items include

a “set.supply.crate.series” field, indicating the crate type. E.g. 5068 440 6 ...)

• Some items may be “gift wrapped” (in fact, some items are untradeable unless

gift wrapped). The DefID-AppID-Q of that item is trade is that of the item “A

Carefully Wrapped Gift”. Thus to discover the actual item traded, we must look

into the gift to discover the enclosed DefID, game and quality.

A.2.4.3 Where Do Items Come From?

Items in TF2 may come from one of the following sources (see TF2 wiki online

documentation on Obtaining Items for full details):

• Item drop system. Items randomly given to users after playing a certain about

of time. “Like mana from Heaven.”
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• Achievements. As users meet certain character class specific milestones (e.g.

achieving a certain number of types of kills) they may be awarded an item.

• Store Purchases. Some items may be bought directly from Valve (Mann Co.

Store for TF2 items and the or DOTA2 store for DOTA2 items) at a gener-

ally fixed posted price. However, not all items have been for sale at the store,

some items have been permanently removed from the store, and some prices have

changed. Some items were created by non-Valve-employees, these people receive

a percentage of their item’s sales.

• Crates. An item acquired by a crate opening. Crates may only be opened by

keys, in the process destroying both the key and the crate.

• Crafting. An item created via crafting (combining items and metals to form new

items). Only certain items can be created by crafting, and only certain items can

be used to craft new ones.

• Gifts.

• Trading. Of keen interest of this study.

• Promotions.

• Events.

• Dueling.
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• Community contribution. Some items that are added to the store are the

result of development by community designers whom then share in the profits

resulting from sales of the items which they created. People that submit an item

which is accepted get a copy of the item in a special quality (typically one-of-a-

kind

• Steam Community market. Starting December 12 2012 (announcement) users

could sell certain items to other users in exchange for “Steam Wallet” money (a

balance good for purchases on Valve’s gaming platform).

A.3 Methodology

A.3.1 Methodology motivation and outline

Party A Party B

List of Items
From A’s inventory,

to B’s inventory

List of Items
From B’s inventory,

to A’s inventory

Transaction Data

Figure A.3: A Valve Trade

As briefly introduced, data are logs documenting barter transactions. For our date

range these are the complete list of individual items traded, linked to counterparties

to the trade and timestamps. Standard macroeconomic metrics like inflation, Real and
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Quality English name — description
NULL Normal/Unique – Null maps to unique.
0 Normal – Stock weapons. People familiar with the game inform us that

normal and unique goods are essentially of the same quality.
1 Genuine – Item was obtained during a pre-order special.
2 NA – empty
3 Vintage – Either the item was obtained (1) before Valve went free to play

(June 23 2011), or (2) before the item system started (not clear on the
date, but before Aug. 2011).

4 NA – empty
5 Unusual – Item come with effects that visually separate it from others.

Generally high value stores
6 Normal/Unique – Essentially a “normal” good. (Our analysis groups

Null, 0 and 1 qualities into the same “normal” group)
7 Community – If a person is recognized by Valve for making a large con-

tributions to the community, they get an item with a different color of
text, (e.g. people who work on the wiki, server operators, people who do
something for which Valve chooses recognize them). Very rare items

8 Developer – An item given to developers. (Very rare)
9 Self-made – Given to creator of item. Described as “the most original

item” and “the die that casts the first item of this type”. If multiple people
made the item, then multiple people will get a self-made. Items of this
quality are usually quite valuable.

10 Customized – unclear description. Very rare and essentially unused.
11 Strange – An item that originated from a crate. (Players cannot buy a

strange item from the store, the only way to acquire a strange items is via
the secondary market or via crates)

12 Completed – unused.
13 Haunted – Seasonal for Halloween (limited time, seasonal item). E.g.

spells, full moons. Kind of like unusual.,All turn on and off at same time
(2-3 week window around Halloween

14 tobor a – unknown

Table A.2: List of TF2 Item Qualities
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Nominal Gross Domestic Product require prices, we thus first derive detailed price time

series for all relevant items, in addition to item stocks and flow data.

One issue with a barter economy is we do not observe any explicit price information

since there is no officially designated currency. No money or close money-proxy was

incorporated into the online trading system until the introduction of the Marketplace,

well into our sample. Our methodology estimates prices by aggregating valuations im-

plied by “going rates” in the transactions we observe. It should be noted that there have

emerged third party websites offering going rates for many items in TF2 and DOTA2,

however the first of these websites arrived months into our sample. Additionally, many

websites vary their pricing methodology, with some set by editorial board, some by vot-

ing, others sampling trading logs of voluntarily submitted trades, and we do not have

complete logs of how these prices have changed over time.

Since we cannot observe how much money (whether Dollars, Euros, Yen or something

else) were traded for items, it begs the question: How should we define a price in a barter

economy? And how one might observe sufficient prices to aggregate into a time series?

Based on discussions with economic minded individuals working at Valve as well as

affiliated with various Steam trading community resources, we were informed that the

Valve Steam economy uses several items as media of exchange. These “Money Items”

are listed in the Table below. There are four primary types of money goods: metals,

keys, Bill’s Hats, and Earbuds.

Here we briefly outline the methodology organizing our analysis to come:
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1. Item Price Time Series

(a) Money Items. Building A Synthetic Key. Our first goal is to calculate daily

exchange rates between money items (e.g. given an Earbud for sale, how

many keys or how much metal can we expect in return?). With a time series

of such inter-money rates we are able to convert any basket of money items

into a value of synthetic keys (keys are chosen as numeraire because they

are anecdotally known as the dominate money item, however many disagree,

suggesting refined metals should be our unit of account). We calculate these

exchange rates by looking at the subset of trades between only money goods.

(b) Collect Prices Observations. We next calculate prices of all non-money items

in terms of synthetic keys. We do this by looking at the subset of trades

which are have non-money items on one side and some combination of only

money items on the other side (e.g. if an item is usually exchanged for one

key it is given the price of 1 key). This process generates millions of price

observations.

2. Item Price Panel. Temporal aggregation of asynchronous price observations.

Given sufficient price observations, we calculate daily price time series — prices

in terms of synthetic keys — for each item on each day.

3. Alternative Pricing Method, Item Prices via Transaction Regression Loop: We

also consider an alternate pricing method, using regressions to estimate prices

that minimize the disparity in values on both sides of each trade.

130



4. Market Summary Statistics. Throughout this process we also collect item level

statistics about the barter market, such as daily item turnover, number of traders

and number of trades, daily stocks of each item, percent of trades which rely on

the commodity currencies.

5. Macroeconomic Metrics. We calculate inflation via a chain Tornqvist price index

weighting price observations by player item inventories. Items regularly come into

existence throughout the sample, we thus impute unknown or imprecisely know

prices via a hedonic pricing model. While an aggregate metric like GDP does not

make sense in this transactional barter economy, we do calculate nominal market

value of all items in active traders inventories. Using our price index we then

decompose aggregate wealth into real per-capita wealth, population, and price

time series.

A.3.2 Anecdotal Money Items for TF2

Conversations with Valve economists and numerous player forums anecdotally indi-

cate a few items act as commodity currencies in the Steam marketplace. Figure A.4 lists

all anecdotal money items in the TF2 marketplace, along with DefID and additional

information. Figure A.5 shows images of the top six money items and Figure A.6 shows

images of additional items that some in the marketplace consider money.

• Metals: There are three types of metals; scrap, reclaimed and refined metal.

These metals has fixed exchange rates between one another, with 3 scrap metals
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creating one reclaimed metal, and 3 reclaimed metal to one refined metal. A single

scrap metal is created when two weapon-class items are “smelted” down to scrap.

Metal may be combined with other game items to create entirely new items via

a process call “crafting”. There are numerous and continuously evolving crafting

recipes.

• Keys: Keys are purchasable from the game store. A single key has nearly always

cost $2.50 USD or similar prices when denominated into other currencies. A key

is able to open up a crate, revealing a new item and destroying the key and

crate in the process. Crates reveal new items with varying probabilities. Precise

probabilities that specific new items appear are not known by players, but may

be estimated by a examining the distribution of items unlocked by crates. There

is a 1 percent chance of a very rare items being created, many of which are worth

more than $100. Crates appear in user inventories via the item drop system, and

are the most abundant item in the economy.

• Special Event Keys: During certain times of the year like Christmas, Halloween,

or the Summer, special crates with special keys have been released. These special

crates will have items linked to the event, e.g. haunted items for a Halloween

event or festive items around the holidays. Only event keys are able to open

event crates. These special events usually expire after a couple of weeks, after

which the event crates disappear and the event special keys are only able to open

regular crates.
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• Bill’s Hats: Bill’s Hats were items given out to people that pre-purchased a certain

game in November 2009. There is now largely a fixed supply of these items. Bill’s

hats have tended to be worth eight to nine keys, but varied in value over the

sample.

• Earbuds: Earbuds were awarded to players who pre-purchased Team Fortress 2

using Apple’s OS X between June 10, 2010 and June 14, 2010. There is now mostly

a fixed supply of these items. They tend to trade around 25 keys throughout our

sample.

• Other potential money items

– Tour of Duty Ticket: Some market participants suggest the tour of duty

ticket should be considered a money item. It was introduced late into our

sample and has tended to be worth about 0.5-key. Although it did par-

ticipate in a large number of trades (677,551 trades with a turnover of 1.2

million) and tends to trade at a fairly consistent value relative to keys, it is

not treated as money in our analysis.

– High value items: In addition to all the items we treat as money, a number

of other items are are argued by some to serve as money. Max’s Severed

Head worth about 45 keys, and the Hat of Undeniable Wealth and Respect

worth about 200 keys are suggested to serve as media of exchange for high

value goods. However, our analysis will not treat them as such.
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Figure A.4: List of Money Goods

Note: Only items of normal quality are treated as commodity currencies - a discussion of quality follows
shortly. Event keys are only treated as a money item worth one-key starting the date listed in “notes”.
Before this date, event keys are treated as non-money items (event keys typically trade at a premium
during their event period, after which their practical value is that of a standard key).
∗ Items we do not trade as money when calculating prices.

– Dota2 money items: Gameplay and the role of items work slightly differently

in Dota2 compared with TF2. The game itself and trading in its items

became popular over our sample and a number of its items are anecdotally

thought to play a money role in the marketplace. One in particular is the

Dota2 Treasure Key. However this analysis, perhaps mistakenly, ignores

these items when pricing others.
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Figure A.5: Images of Anecdotal Money in TF2
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Figure A.6: Images of Other Possible Money Items in TF2

A.3.3 Categorizing transactions types

For the purpose of discovering prices, we will categorize trades by how money-items

are involved. Different types of trades will offer different types and quality of item-level

value observations.

All trades involve two baskets of items. Depending on the contents of these baskets

(or lack of contents) we classify each trade as one of the following:

• Money for Money (FX): A trade in which one basket of money goods ex-

changes for another basket of money goods. “FX”, as in foreign exchange for

short. Examples of money-for-money trades include transactions with keys on

one side and metals on the other (of which there are over 700,000 such trades

in our sample), or a trade with keys and metal on one side and a Bill’s Hat on
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the other. This subset of trading may offer clear exchange rates between the

various money items. If confident about such inter-money exchange rates, then

given any combination of money items we can value these in terms of keys (or

metals or Earbuds for that matter), allowing for the creation of a “synthetic key”

numeraire.

• Simple Monetary (SM): One non-money good in exchange for a basket of

money goods. On the non-money good side there many be any number of items,

so long as they all share the same DefIDQ.

• Simple Barter (SB): An exchange of one non-money good of one type (the

basket must have only one DefIDQ) in exchange for another non-money good of

one type. If one side of an SB trade involves an item for which we have high

quality prices (i.e. many consistent price observations on the current date) we

may use that item to value the other side of the transaction.

• One-Way (OW): A transaction between one or more items on one side and an

empty basket on the other. Many OW trades likely involve middlemen services,

third party website that allow users to sell their virtual goods for cash. We will

discuss this topic later.

• Everything Else (EE): exchange of one bundle (possibly including money) for

another bundle (one of the bundles possibly trivial).

– Subclasses under EE (everything else) trade class. SM and SB above are
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able to estimate prices of goods. To double check that these generally hold,

we can compare them to the following in the Everything Else group:

– EE SM: All money items on one side, and a bundle of one-type of non-

money item and some money on the other side.

– EE SB: Simple Barter. On one side, one type of non-money, and on the

other side multiple types of non-money items.

– EE E: Everything everything else.

Figure A.7 breaks down trading in each type over time. Note that Money-for-Money

trades are barely visible (the light green at the bottom of the chart) but still comprise

tens of thousands of transactions over the two year sample. One-way trades constitute

about half of all trades.

A.4 Item Pricing and Commodity Currency Exchange Rates

In this section we discuss inter-commodity currency exchange rates, and how these

are used to compute implicit prices for all other virtual goods on the Valve market.

A.4.1 Simple monetary trades and item price observations

Simple monetary transactions will offer the clearest indication of going prices of

items. A SM transaction involves just one type of non-money good on one side of the

trade and money goods on the other side. As an example of how this offers a clear price

signal, consider that we witness trades at which the going rate for one “Gabe’s Hat” is
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Figure A.7: Trades by Type

two keys, we’d obviously compute the price observations of Gabe’s Hat as 2 keys (you

may see “2k” or in future).

Given a simple monetary transaction involving only keys (this type of trade is re-

ferred to as an SM.Keys trade) involving item i at time t, we derive implicit key-valuation

by the following:

Price.Observation.SM.Keysi,t =
Number of Keys

Number of Non-Money Goods

But not all trades have only keys on one side and the item on the other. Items

worth less than a key are often traded for refined metal (e.g. Master’s Yellow Belt).

Items for which going prices are not perfectly divisible by keys also often include metal

along with keys (e.g. Brigade Helm). If we can value other money items - metals, Bill’s
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Hats, and Earbuds - in terms of keys, it is straightforward to find these additional price

observations. But this begs the question: given some basket of money goods (some

metals, keys, Bill’s Hats, and/or Earbuds), how do we value them in terms of keys?

A.4.2 FX trades and building a synthetic key

We first turn to the subset of trading that involves only anecdotal money items,

(money-for-money trades, or FX trades for short). Generating daily intermoney ex-

change rates we can be confident in will allows us to price any money items into another

money item. With clear money-item exchange rates (i.e. consistent daily values of

metal, Earbuds and Bill’s Hats in terms of their going rate for keys), we can then value

mixed combinations of these items in terms of the numeraire keys. Whenever we do

this we will refer to the value of the basket of mixed money items as denominated by

“Synthetic Keys”.

Special event keys – We should note that special event keys (listed in Figure

A.4), enter the world as a special key that can open special crates in addition to normal

crates. Examples of special event crates have been Christmas crates, where items inside

the crate might possess a particularly festive decoration (e.g. Festive Bat). But these

special event crates eventually disappear from player’s inventories at the end of the

special event period (at the date also listed in Figure A.4), usually two weeks after

introduction. During the event time the special keys tend to trade at a premium above

normal keys, and thus are not treated as a “Key” for the purposes of calculating prices of

other items. However, after the event period ends and the special event crates disappear
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Figure A.8: Metals to Keys Exchange Rate

from the game, we treat them as normal keys when we observe one in a transaction.

Though these event keys are sometimes visually different from normal keys (e.g. the

mechanical looking Robo Key), after the special event period is over they are only able

to open regular crates.

Now we shall look at each of these exchange rates.

In Figure A.8 we show the daily median exchange rate between refined metals and

keys, (i.e. the number of refined metals used to purchase a single key). To derive this

plot we convert all metals into refined metals according to their fixed exchange rate.

Bilateral trades between keys and metals are by far the most numerous type of
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trade. At the end of 2012 some days had over 6,000 keys traded for metal. These trades

account for about 3.6 percent of all trades in our record.

For much of the time series the exchange rate between the two was steady at slightly

less than 2.5 refined metals to a key. In the fall of 2012 the value of metal relative to

keys starts a precipitous decline, ending at 5.5 refined metals to a single key by the end

of May 2013.

Also shown with dark gray bands are the evolving interquartile range and in light

bands the interdecile range (i.e. 50 percent of all key-metal trades occur within the dark

gray band, 90 percent within the light gray band). These give a sense of the distribution

of prices around the median. With few exceptions it reveals remarkable consistency as

to the going rate in the market. Now, we can value any basket containing some keys

and some metal in terms of synthetic keys.

Figure A.9 shows the exchange rate between Bill’s Hats and Key-Metal baskets.

The scatter plot, time series and rolling quartiles and deciles reflect all trades between

Bill’s Hats and either keys, metal, or some combination of keys and metal (with metal

converted into synthetic keys at the day’s key-metal exchange rate).

At the start of this market Bill’s Hats typically exchange for just under 5 keys. After

about April 1st 2012, Bill’s Hat trades for between 8 and 9 keys until the end of our

sample.

In comparison to key metal exchange rates we see a noticeably wider dispersion

of exchange rates. However the overall value of Bill’s Hats relative to synthetic keys

remains more consistent.
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 Pricing Method:Volume Weighted Median Price
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Figure A.9: Keys to Bill’s Hat Exchange Rate
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Figure A.10: Keys to Earbud Exchange Rate
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Figure A.10 shows the exchange rate between Earbuds and key-metal baskets.

Again, the scatter plot, time series, and rolling quartiles and deciles reflect all trades

between Earbuds and either keys, metal, or some combination of keys and metal (with

metal converted into synthetic keys at the day’s key-metal exchange rate).

Earbuds have a more dynamic history of price changes in comparison to Bill’s Hat.

Earbuds traded for 10 keys at the start of the sample and end close to 24 keys.

Curiously, there are also are large number of trades between Earbuds and metal that

value Earbuds close to zero (trades between an Earbud and a few small pieces of metal).

Note the decile band just before April 2012, and the scatter points new the bottom of

the vertical axis. This observation does not affect the rolling value of Earbuds, and is

the case with Bill’s Hats too, but to a much lesser extend.

A.4.2.1 Discussion of Sufficient Sample Size to Be Confident in Exchange

Rates

Figure A.11 shows the number of money for money trades. We see that on any given

day there are hundreds of FX trades and after February 2012 there are thousands of such

trades. With the exception of some outliers like the single metal for Earbuds mentioned

above, for a given short period of time the vast majority of exchanges between these

money items occur at or very near the median rate. These exchange rates match closely

with a number of trader price spreadsheet websites that have emerged to support Steam

Trading, querying item exchange rates by sampling and surveys.

We have collected all these intermoney exchanges rates into an interactive plot
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Figure A.11: Number of Money for Money Trades

posted to a University of California Santa Cruz Economics Department website, avail-

able at econ-valve.ucsc.ede/DatApp/fx rates.

A.4.2.2 Synthetic Key Calculation

We now have daily intra-money exchange rates. Given a basket composed of any

combination of metal, keys, Bill’s Hats and Earbuds we can value that basket in terms

of synthetic keys.

Calculating the value of money items in terms of keys (in our price.Observation.SM.Mix

equation above), we take the

Vit =

N∑
i=1

{pit · qit}

Where pit is the price of money-item i at date t, and qit is the volume of that good.
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A.4.3 Item Price Observations

Up to this point we have grouped items up from the AssetID (unique, individual

items) and EconAssetClass (where one item is essentially indistinguishable from another

with the same EAC) up to the DefID AppID Quality level. We then selected a few items

as money items, based on our anecdotal understanding of the economy. Looking at just

inter-commodity-currency exchange rates we find that it is fairly clear that at a given

time there is a well understood exchange rate between these money items. This allows

us to create a synthetic key, that is, we can value any combination of money items in

terms of keys (or in terms of metal or Earbuds for that matter).

We now detail how we use this information to generate item level price observations.

A.4.3.1 Different Types of Price Observations

1. Simple monetary (SM) is calculated as follows:

SM - Simple Monetary 

SM.Keys - Simple 
Monetary with Keys

SM.Mix - Simple 
Monetary with Mix

Basket on Side 1 Basket on Side 2

All Key(s) Non Money Good(s)
of one type

All Money Goods
of any type or mix

Non Money Good(s)
of one type

                                V                                         c

Figure A.12: Simple Monetary Trades

Given a simple monetary transaction, the price observation on that transaction is V

(is the value the money-side of that trade in terms of synthetic keys) over c (the number

147



of non-money goods in this exchange.) Where i is the non-money item being priced and

t is the timestamp of this price observation.

We’ve also differentiated between SM.PureKeys and SM.SynthKeys. A trade that

only involves the non-money item on one side and key(s) on the other are designated

SM.PureKeys. Trades that have a mix of metals, keys, Bill’s Hats and or Earbuds (just

not all keys) are labeled SM.SynthKeys. In practice both types of simple monetary

trades give price observations of the same high quality.

2. A simple barter (SB) trade is an exchange of one non-money good of one type

(the basket must have only one DefID, AppID & Quality combination) in exchange for

another non-money good of one type.

EE.SM - Simple Monetary in EE

All Money Goods
of any type or mix

All Money Goods
of any type or mix

Non Money Good(s)
of one type

        V_2                             c                                                    V_1

                     Side 1                                                              Side 2

Figure A.13: Simple Barter Trades

Given a trade fits this descriptions, the implicit price is equal to the difference

between the all-money side of the trade and the value of the money-items on the other

side of the trade (that is V 1 − V 2), divided by the number of non-money goods (the

term c). Where i is the non-money item being priced and t is the timestamp of this

price observation.
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Figure A.14: Number of Simple Monetary and Simple Barter Trades

A.4.3.2 Price Observation Summary Statistics

Number of Price Observations – Implementing this methodology we find mil-

lions of price observations for thousands of virtual goods. Figure A.14 shows the daily

count of trades by each type. Over the full sample there are 1,158,455 simple monetary

trades involving only keys as money good, there are 7,674,123 simple monetary with

synthetic keys (mix of keys, metal, Bill’s Hats and/or Earbuds), 504,944 simple mone-

tary from everything else trades, and 8,581,937 simple barter trades. In total 18 million

trades, or about 25 percent of all trading, offer a price observation in some form. Simple

monetary trades in some form account for 13 percent of all trading.

Number of Virtual Items – At the DefID AppID Quality level we find 9,511

distinct items, 1,708 are from TF2, 2,156 are DOTA2, 5,639 are listed at Steam game

licenses, and a remaining 8 are catchalls for all items from other games (of which there

is very light trading).
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Variability of SB Prices – Comparing simple barter to the various classes of

simple monetary price observations, we also find SB observations to have much higher

variance. Simple barter trades seem to offer relatively poor price observations. We

can trace this to two reasons. First, since the value of one item is determined by

the day’s value of the item on the other side of the trade, if the valuation we observe

for the second side substantially deviates from the correct value (perhaps because of

thin trading or noise), that will feed into a poor price observation for the main item,

amplifying variability in price observations. Secondly, TF2 traders have suggested that

it is convention among them to charge a premium when a potential counterparty to a

trade wishes a barter trade instead of using one of the established commodity currencies.

For example, if one trader wishes to buy a Bill’s Hat that has a price of eight keys, they

can pay the eight keys, or alternatively pay with another item worth a bit more than

eight keys, which may lead to a simple barter price observation that deviates from a

more accurate sense of the true accepted value of an item.

A.5 Temporal Aggregation of Asynchronous Price Obser-

vations

Our temporal aggregation approach assumes that each item at every moment pos-

sesses an underlying “fundamental market valuation” based on its characteristics and

On a UCSC Economics Department website, we have created an interface to search and explore all
items. On an item’s price page visitors can see all price observations broken down by observation type,
SM, SB, etc. The URL is econ-valve.ucsc.edu/DatApp/.
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relevant market conditions. We then take each individual price observation as a noisy

signal for that item’s contemporary fundamental value. That is, we assume SM price

observations are drawn from their true values, plus some error process.

To estimate the price of a given item on a given day, our temporal aggregation

process starts by collecting all SM price observations from a seven day window centered

on a log-day. Since there are a large number of outliers which, for thinly traded items,

can lead to a large amount of volatility from one period to the next, we then trim

prices beyond the 1st and 9th price deciles. Then prices are estimated using a rolling

average. First weighting for item quantities in each trade, and then a weighting function

is applied based on temporal distance of the price observation from the log-day. More

precisely, we apply a trapezoidal weighting function as illustrated below.

Start of Log-Day

24 Hour 
Interval

Total Time Interval
(starts at 7 days)

Total weight 
sums to one

Time

Window Widening – There are initially three days on either side of the log-day

for which item-price is estimated. Many items have very high volumes with many price

observations over which we can be fairly confident in their estimated prices. For some

items, however, there is relatively low volume such that a week does not give us sufficient
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observations to be confident in estimated prices reflected by fairly high coefficients of

variation.

To account for this issue we define a control system that utilizes the coefficient of

variation: cv = σ
µ , where µ and σ are the mean and standard deviation of our sample.

Our control system sets a cutoff value for coefficient of variation c∗v and we calculate

the coefficient for each item in a given time period citv and if i is true that citv > c∗v, we

increase the window for that item on that day by one day and recalculate. This process

is repeated until the window includes sufficient observations such that citv ≤ c∗v. The

cutoff we use for this process is c∗v = 0.6 a this number appears to consistently select an

appropriate window width.

During this process we also calculate price time series by a number of other tem-

poral aggregation methods, including median with the above weighted and windowing

methodology, median price over the 5 percent of prices nearest the log-day, and oth-

ers. We also apply the above methodology with a trailing weighting, see figure below.

Many of these item-level price time series are visible on the Valve data explorer at

econ-valve.ucsc.edu/DatApp/.

A.5.1 Example of Item Prices

Figures A.15 and ?? show two example items from TF2. In each figure, each colored

dot reflects an individual trade that implied that valuation — y-axis location — at that

date. Different colors indicate which type of trade indicated the valuation (simple

monetary with pure keys, simple barter, etc.). Also included are seven-day moving
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Figure A.15: Example Price History, Old Guadalajara

averages of the temporal aggregation methodology discussed. Additionally included is

a line indicating the median price over the 5 percent of trades nearest the date.

The Old Gaudalajara of Figure A.15 is a hat item (worn on a video game characters

head), and serves no functional value in the game. (In fact, if anything the large hat

calls attention to the wearer, increasing risk of being seen and shot at.) At the start

of the sample the hat is worth a little above half a key. The item maintains a fairly

constant price until October 2012 after which it starts a steady decline.

Figure A.16 shows the item price history for the Strange Scattergun. Although

the item is only a bit more powerful than standard issue weapons, its “Strange” quality

means it tracks player gameplay statistics. It was a relatively rare and popular for much

At the Valve data explorer website (econ-valve.ucsc.edu/DatApp/item?id=247 440 6) you may
change the y-axis price denomination to Refined Metal or Earbuds. When set to Refined Metal, we see
the item maintains a fairly steady price of 1.33 refined metals throughout the entire sample. Making it
worth about one Refined and one Reclaimed Metal.
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Figure A.16: Example Price History, Scattergun Strange

of the sample, starting off at a value of about half a key and increasing to about 2.5

keys. After this, the item was added to a new crate and would appear in uncratings with

probability 20 percent. The Valve data explorer item page for the Strange Scattergun

shows the dramic increase in item stocks starting mid October 2012. This percipitated

a dramic decline in the price of the Strange Scattergun. By the end of the sample it

was value at 0.2 keys.

A.5.2 Additional Pricing Notes

When determining item level prices, some documentation bugs meant that we had

to adjust individual item prices by hand. There are some items that are held by most

players, and appear to have high and-or volatile price histories. It turns out that some

of these items are largely untradable, except for a few that have a bug that permits
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tradability. Perhaps because of the novelty of this tradability bug, the few instances

of these items that are tradable sometimes go for the high or usually erratic values.

However, the items of these types in most players inventories are not in fact tradable and

therefore should be really be valued when determining Wt. Unfortunately, at the DefID,

AppID, quality level we are unable to distinguish between the essentially worthless but

well represented untradable verity from the erratically price tradable versions. If we do

not correct for these biases the value of representative user baskets can appear higher

and more volatile they it is in actuality.

Some examples, the “MONOCULUS!”, values range between 0.04 and 27 keys and

appear in most users’ inventories. The“RIFT Well Spun Hat Claim Cod”, with a

single price observation of 62 keys, and held by many players. The “Horseless Headless

Horsemann’s Head”, valued imprecisely between 6 and 24 keys, is mostly untradable,

and held by a large number players.

A.6 Nominal Aggregate Values

We now turn to characterizing the size and growth rate of the TF2 virtual economy.

Due to the relative lack of production, GDP is not an appropriate measure for this. Our

dataset does contain daily stocks and turnover of each TF2 item, with our price panel

dataset this permits calculation of nominal market capitalization and trading volume.

Regarding DOTA2 and other items, although we observe trading we do not observe

item stocks, and therefore cannot value that portion of the Steam Trading marketplace.
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We instead calculate market capitalization as the total key-value of aggregate item

stocks held by active players, where a player is designated active if they have played

within 90 days. To calculate this, we take the level of existing stocks of each item in

each time period and multiply them by the prevailing price in that time period, then

sum over all items. We will denote this measure of aggregate nominal wealth in period

t as Wt as

Wt =

Nt∑
i=1

{pi,t · Si,t}

Where at time t there are Nt total different goods, pi,t is the price of good i and Si,t

is its outstanding stock.

Figure A.17 shows Wt plotted weekly over the sample.

0

5,000,000

10,000,000

15,000,000

Jan 2012 Jul 2012 Jan 2013 Jul 2013
Date

K
ey

s

Nominal Aggregate Value of Active TF2 Player Inventories

Figure A.17: Nominal Value of Active TF2 Player Inventories, in Keys, Daily

Figure A.18 shows the nominal value of trading in TF2 items over the full sample.
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Note that this value values both sides of trades. That is, if a key is traded for a key,

the nominal value of that trade would be logged at 2.
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Figure A.18: Nominal Value of TF2 Trading, in Keys, Daily

We see a similar pattern in both nominal wealth and nominal value of TF2 trading.

Values start quite low, gradually working up to a peak around Halloween of 2012 and

then leveling off or declining, with a number of spikes around holidays and major events.

For the first few trading the value of trading volume is close to zero. The first day of

trading is valued at about 4000 keys. As we shall see shortly, much of the spikes in

nominal wealth are due to volatility in the number of “active” players in TF2.

A.7 Nominal Aggregate Decomposition

In this section we decompose nominal aggregate wealth in Figure A.17 into three

constituent parts; the population of active TF2 players,the price level, per-capita real
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wealth.

There are a number of approaches to this decomposition. Here, we will separate

nominal wealth from the number of active players on TF2 and our estimate of the price

level, with the remaining residual delivering per-capita real wealth.

A.7.1 Population

Figure A.19 plots the number of active TF2 players, where an active player is defined

as someone who logged into TF2 within the past month. We see a number of spikes

around holidays and sales events seen in figure A.1 plotting the total number of trades

in the Steam Trading economy (which include the trading of other game items and

licenses).
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Figure A.19: TF2 Active Player Population
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A.7.2 Price index

A price index weights prices for a certain class of goods into a normalized average.

We have already discussed how prices have been estimated for this virtual economy. In

terms of weighting these prices there are a number of options. In consumer inflation

indexes like CPI, quantities strive to reflect typical consumption baskets. In contrast,

quantities reflect producer purchases in input producer price indexes, and production

quantities in the Gross Domestic Product deflater. Our quantity index reflects the

bundle of goods held by a “representative player”, i.e. a metric for player wealth.

A.7.2.1 Representative item holdings

These representative player inventories are generated by drawing random samples

of users from the active player population, where an active player is defined as one who

logged into Team Fortress 2 within 30 days of the sample date. We identify the average

quantity of each TF2 item held in the sampled inventories.

qit =
1

N

N∑
j=0

qjit

There are some unique issues with our sampling in this environment due to the

presence of an upper tail of inventory value distributions composed of people with very

large inventory values. These high net worth individuals (HNWIs) are rare enough

that we are unlikely to have a good balance of them represented in each sample, and

large enough outliers to move summary statistics greatly from one sample to the next.
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Increasing our sample size sufficiently beyond 1 percent of the population is also tech-

nically infeasible given the number of active players (typically more than 250,000 each

week) many of whom possess scores of items. Therefore without adjustment the price

index could exhibit big movements from one period to the next due more to sudden

shifts in the quantity index than shifts in price.

Our approach to dealing with these HNWIs is first to tag the top proportion of

wealth-holding individual users as HNWIs, where we define the inventory value cutoff

as a nominal inventory value above 800 keys, or approximately $1600. If an active player

is classified as a HNWI in one of these censuses, their inventories are logged each week

for the entire year and they are excluded from the non-HNWI sample for that year.

These HNWI players account for approximately 0.3 to 0.4 percent of the active player

population.

We then track inventories of all HNWIs each period along with the random 1%

sample of non-HNWIs, and derive average item inventories for each group. The compo-

sition of the basket derived from these 1% samples does not fluctuate greatly from time

period to time period. Finally, the HNWI and non-HNWI representative inventories

are combined weighting item quantities based on each groups’ relative proportion of the

overall active player population at each period.

All inventory data excludes individuals who have marked their “Steam Profile” as

private. Of the approximately 1,500 unique active players classified as HNWIs, 255 have

been excluded this way. A significantly larger number but roughly a similar proportion

of non-HNWIs were similar excluded from our representative item holdings sampling.
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Our methodology thus assumes the omission of these privacy preferring players does

not significantly bias the representativeness of our HNWI and non-HNWI sample.

Once representative baskets are found for each tier, they are average together

weighted by the relative proportion of each group to the overall population. Thus,

qit indicates our metric for the typical holdings of item i at date t among active TF2

players.

A.7.2.2 Non-Priced items

There exist numerous untradable and non-giftable items, many of which appear in

many players’ inventories and many that could be quite valuable if traded. These include

certain items all players possess, contest awards, self-made items (given to the original

creator of an item), and community items, (a special quality of item awarded to players

recognized by the the video game company as having made some special contribution).

We handle such non-priced goods similarly to how most national statistical office handle

non-priced services like family household services, by excluding them from our price

index. Although some measure of the value of these items might evolve through time,

and ideally our price index would capture that, since we have no clear method to measure

their value we must ignore them.

A.7.2.3 Initial price indexes

We first consider two canonical fixed weight price indices. The fixed-weight Laspeyres

price index takes base quantities from the first time period, here the first day of trading,
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August 8, 2011.

PL0,t =

∑N
i=1 pitqi0∑N
i=1 pi0qi0

Where PL0,t is the fixed-weight Laspeyres price index, pit is the price of item i at

time t, and pi0 and qi0 is the price and quantity of item i at the base date.

The Paasche price index sets the current date as quantity base:

PP0,t =

∑N
i=1 pitqit∑N
i=1 pi0qit

Where PP0,t is the fixed-weight Paasche price index, pit is the price of item i at time

t, and pi0 and qi0 is the price and quantity of item i at the base date.

Figure A.20 shows these two price indices over the sample.

A.7.2.4 Dealing with new items, part one

One issue arises with the introduction of new item. Although no item disappeared

from the marketplace during this sample, many new items were introduced. In period

zero, August 8th 2011, we had prices on 628 TF2 items. By the end of the sample we

had prices on 1,606 TF2 items. Since both Laspeyres and Paasche require item prices

in the base period, the indices in figure A.20 are actually only aggregating price changes

of these 628 items. Thus in a real sense, these are subindices of old items.

With identical prices, the difference in trajectories of the higher Laspeyres and lower

Paasche indices is a result of Paasche’s changing quantities. For the Laspeyres Price
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Figure A.20: Laspeyres Paasche Price Indexes

Index these quantities are fixed at the base year’s quantities, the index thus tracks

the general increase in prices up to a peak in mid-October 2012, and a general decline

after. In the Paasche Price Index these quantities - the average holding of items in a

representative active player’s inventory - constantly change. As more and more items

come into existence and as new players start playing the game with fresh, mostly empty

inventories, the average quantities of items that have prices in the first period generally

decreases through the sample.

As a representative example of this phenomena, the Normal/Unique quality Earbuds

item increased in price by 101% over the sample. But the average holding of Earbuds

declined by half, from 0.21 in August 2011 to 0.11 Earbuds by May 2013. While an

item like Normal/Unique Conjurer’s Cowl was worth only 40% of its initial value by
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May 2013, while average holdings of it increased by over 300% over the same period.

One possible explanations for this pattern is that some items are no longer available

for purchase for via uncrating after some initial introduction period, while other items

have continued to be available throughout the sample. Supply constrained items have

tended to hold or increase in value relative to the unconstrained. As more and more new

players have entered the active player pool average holdings of the supply constrained

items have declined shirting weights in the Paasche price index away from the higher

prices goods.

Some evidence of this, regressing item-level percent changes in price from the first

month to the last month over the percent change in average holdings from the first month

to the last. Results are report in table A.3. Though not a causal interpretation, we find

that on average, if quantities did not change from the first to last month, prices reduced

by 15%. Additionally, for each 100% increase in average holdings, prices decreased by

15.9%.

We deal with the steady introduction of new items in two ways, firstly via a chain

index, and additionally by imputing the prices of not yet introduced items by a Hedonic

price model.

A.7.2.5 Chain price index

Simple Laspeyres and Paasche price indices require a fixed basket of items. In these

formulas there is no way to account for price and quantity information for items that

come into existence or disappear after the base period. This usually becomes a bigger
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Dependent variable:

Percent Change in Price

From First to Last Week

Percent Chng. Avg Inventory Holding −0.101∗∗∗

(0.028)

Constant −0.159∗∗∗

(0.032)

Observations 615
R2 0.020
Adjusted R2 0.019
Residual Std. Error 0.794 (df = 613)
F Statistic 12.718∗∗∗ (df = 1; 613)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.3: Relationship between item price changes and average holdings

problem the greater the distance between the base period and time t, this distance

increases the likelihood of new items being introduced into the Valve economy. In

Figure A.20 we saw that Laspeyres and Paasche indices tracked each other closely for

over a month after the base period.

To help address this issue we turn to chain linked price indices. Chain price indices

use price comparisons in adjacent periods to derive an aggregate index. This maximizes

the number of item price comparisons possible.

We first consider the chained Fisher Ideal price index. We first need to calculate

Laspeyres and Paasche price relatives. “Price relative” here refers to aggregate measures

of prices changes between two adjacent periods using only price and quantity data from

those two periods.
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Laspeyres price relative:

PLt,t+1 =

∑N
i=1 pi,t+1qi,t∑N
i=1 pi,tqi,t

Paasche price relative:

PPt,t+1 =

∑N
i=1 pi,t+1qi,t+1∑N
i=1 pi,tqi,t+1

Fisher Ideal price relative:

PFIt,t+1 =
√
PLt,t+1 · PPt,t+1

It should be noted that the Fisher “ideal” is ideal in name only, and perhaps not

more ideal than any reasonable price index formula. The chained Fisher Ideal price

index is then:

Chain PFIT =

T∏
t=0

(
PFIt,t−1

)
With chained Fisher Ideal price index originating at some base period. We use

August 8, 2011, the first period as our base, setting the price index to 100.

As a popular alternative price index, a Törnqvist price relative takes the following

form,

166



PT
t,t−1 =

n∏
i=0

(
pit
pi,t−1

) 1
2

[
pi,t−1qi,t−1∑n

j=0(pj,t−1qj,t−1)
+

pi,tqi,t∑n
j=0(pj,tqj,t)

]

Törnqvist Price Index at time T is,

Chain PT
T =

T∏
t=1

(
PT
t,t−1

)
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Figure A.21: Chain Price Indexes

Figure A.21 showing chain Törnqvist and Fisher Ideal with varying period frequen-

cies, along with Laspeyres and Paasche price indexes.
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A.7.2.6 Chain drift

Note that chain Fisher Ideal daily price index does not intersect with its weekly price

index. Instead, daily chain Fisher Ideal drifts somewhat about weekly chain Fisher Ideal.

This is also true for chain Törnqvist weekly and daily, though to a lesser extent and not

noticeably in this plot. These deviations between weekly and daily versions of the same

index likely indicate chain drift. Chain drift occurs where the measure of long-term

price changes via chaining does not match the measure of long-term price changes using

prices and weights only from the start and end periods. Generally, price index that

does not suffer from drift is desirable, making index levels between two periods directly

comparable.

The more prices and quantities tend to oscillate, the more a chained price index will

suffer from chain drift, and we do not have any reason to suspect Valve economy items

to not oscillate in price and quantity.

One way to avoid chain drift is to stick with weights derived from the first and final

periods, but we have already discussed why the use of a non-chained price index is not

desirable in our situation; it forces us to omit price and weights of a majority of items

in the TF2 economy. Although Chain Fisher Ideal is more susceptible than Törnqvist,

Törnqvist indexes are still subject to chain drift. For example, in Figure A.21 note the

drift in daily and weekly Törnqvist relative to monthly (which in fact is partly the result

of new items introductions).

Going forward we will work with chain daily Törnqvist price index as it appears
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to minimize these issues. However, it should be cautioned that because of chain drift,

same index readings on two different periods may not imply identical prices levels in

those periods.

A.7.2.7 Dealing with new items, part two

In the chained Törnqvist price index, we use price relatives to chain the price index.

Although this maximizes the possible number of item price comparisons to aggregate

into a price index, what if we have quantity or price information in one period but not its

adjacent? This issue is largely avoided in national statistical office official calculations

by first deriving numerous infinitely lived product-category price subindices that are

then combined to the headline aggregate price index. These subindexes are made up of

the prices of many individual goods within the category. Should a new item come into

existence, it is incorporated into the subindex based on its popularity among consumers,

characteristics that differentiate it among similar items, and other factors through a set

methodology. Its price before introduction is often imputed based on some of these

product characteristics (See BLS CPI “Cage, Greenlees, and Jackman 2002” and ILO

et. al. PI Manual Chapter 17, more info below).

Until this point if any price or weight does not exist in a price relative (i.e. an

NA for pi,t, pi,t−1, qi,t, or qi,t−1), we ignore this item when calculating period t’s index.

Since in our economy items have never been completely removed, this issue only occurs

as items come into existence. That is when there is a price and quantity information in

period t, but none in t− 1.
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Since price indexes strive to capture movements in aggregate price behavior, throw-

ing out any prices is potentially problematic, possibly biasing our indices. As items

come into existences it usually takes some time before a new item is available to users

by unlocking a new crate series and when we observe sufficient trading in the secondary

market to infer prices via currently methods. Reviewing the price time series of numer-

ous items, they usually trade for premiums upon release (likely due to their novelty and

relative scarcity), and then quickly decline in value.

Figure A.22 shows the first 50-days of price dynamics for all tradable items intro-

duced after Summer 2011. There are approximately 950 TF2 items introduced in this

interval. The y-axis plots the natural log of Price, since items vary greatly in price,

examining log price shrinks the visual distance between item prices, helping to focus on

general price dynamics.

Firstly, note the large number of items appearing for the first time around Halloween

and Christmas. These corresponds to many of the spikes in trading activity seen in pre-

vious figures. Also note that with few exceptions, price time series exhibit a downward

trajectory after introduction. There are noticeable exceptions in this general trend. For

example high value items tend to maintain their prices better than lower priced items.

Also items introduced in large groups — noticeably around Halloween and the winter

holidays — tend to see sharp declines in price after the first few days of trading. In

fact the average price change from the first day of price observation to the second day,

weighting for turnover, is −5.2% After one week that average goes down to −21.8%,

and −50% after 30 days.
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Figure A.22: New Item Price Dynamics

This observation suggest that dropping price relatives of newly introduced items

may bias downward our aggregate price index, since our indices would then ignore the

initial high price (One example is the Strange Baby Face’s Blaster, Scattergun).

This downward bias in our price index estimate is mitigated by a few factors. Firstly,

the scarcity of new items works in favor of a less biased price index. Since we weight

price changes by the relative value in a representative active player’s inventory - and

since new items are usually quite rare - even if we somehow could incorporate the initial

high prices in our price indices they likely account for a minuscule share of all price

changes and so have a small effect on our price index.

Secondly, suppose a newly introduced item quickly entered numerous players’ inven-
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tories. This item would not be particularly scarce and thus unlikely to be valued at an

initial premium. In fact, we could not find any instance of items that quickly accounted

for a significant share of active player inventories after introduction.

To check whether or not this is a serious issue in our price indexes we closely exam-

ined the individual contributions of items to aggregate price level. In all cases, these new

items account for a relatively tiny share of the value of a representative active player’s

inventory.

Imputing prices of pre-traded items with a Hedonic price model. National

statistical bureaus have a standard methodology for dealing with new and discontinued

items. They impute prices for these items, and map changes from imputed to observed

prices to aggregate price indexes. Using a hedonic price model we regress item charac-

teristics over observed prices and time dummies. For a given time period, this gives an

estimated value of an item given its set of traits.

The Hedonic hypothesis postulates that an item is a bundle of K characteristics.

By this reasoning, the price of an item is the sum of the premiums (or discounts) on the

characteristics for which the item possesses. Of course, exactly how item characteristics

map to prices may be very complex. We, however, impute unobserved prices via the

relatively simple Hedonic price model below.

ln(pit) = α+ δtDt +
K∑
k=1

(βkt · xik) + εit for t = 0, 1, ..., T

For item i in period t, where pit is the price of item i at period t. Dt are time dummies
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(week), xit is a dummy indicating whether or not item i possessed item characteristic

k (note that item characteristics are time invariant), with error epsilon, with expected

value zero.

The coefficient βkt is the parameter of characteristic k at period t, with δt is the

parameter for period t.

In xit, we include item Quality (again, restricted just to TF2 items), player class

equipablility (which class of players are able to play with this type of item), item type

(types include Hat or Misc, Non-Play Item, Primary Weapon, Secondary Weapon,

Spy Sapper, Melee Weapon, EngineerPDA Invisibility Watch EngineerPDA or Spy-

DisguiseKit.)

We also include a single quantity dummy variable, indicating the item is possessed

by more than 3% of users, to capture the effect of an item being widely held (a sense of

scarcity).

Figure A.23 shows four daily price indexes. Two are the familiar daily chain Fisher

Ideal and Törnqvist price indexes. We also show the two variants of the the Hedonic

model above, one with a time interaction with item characteristics and one without.

As expected, the price indexes with Hedonically imputed prices bring the price index

above the earlier chain Törnqvist price index without imputed prices. This provides fur-

ther evidence that ignoring the introduction of items did bias down price level changes.

Interestingly, we also see little difference between the two Hedonic price indexes (one

with time varying characteristics and allowing for time invariant characteristics).

From this point, the discussion in Section 3.6 on the decomposition of aggregate
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Figure A.23: Price Indexes with Hedonically Imputed Prices

nominal wealth into population, per-capita real wealth and the price index as well as

insights from the hedonic pricing model is quite adequate.
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