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Abstract 

 

Reliability-Based Optimization for Maintenance Management  

in Bridge Networks 

 

by 

Xiaofei Hu 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

 

Professor Samer Madanat, Co-Chair 

Professor Carlos Daganzo, Co-Chair  

 

This dissertation addresses the problem of optimizing maintenance, repair and reconstruction 

decisions for bridge networks. Incorporating network topologies into bridge management 

problems is computationally difficult. Because of the interdependencies among networked 

bridges, they have to be analyzed together. Simulation-based numerical optimization techniques 

adopted in past research are limited to networks of moderate sizes.  

      In this dissertation, novel approaches are developed to determine the maintenance policies 

that best balance network performance and agency cost. For two different types of networks, two 

performance metrics are adopted, and the research is divided into two parts accordingly.  

      The first part focuses on moderate-size networks with limited redundancy. The network 

performance is quantified by a graph-theoretic indicator of network connectivity, since 

connectivity is the fundamental service function of a network. The objective is to ensure an 

adequate level of network connectivity at the lowest possible life-cycle maintenance cost. A 

novel two-stage approach is developed, which makes it possible to solve the problem by using 

standard optimization tools (with guaranteed convergence to optimality), as opposed to the 

heuristic algorithms used in related literature.  

      The second part studies large and redundant networks, and the network performance is 

quantified by the total user costs due to potential bridge failures. The objective is to minimize the 

total user costs, specifically, the extra travel distance over a planning horizon and under a budget 

constraint. It is conjectured and then verified that the expected increase in vehicle-miles travelled 

due to failures can be approximated by the sum of expected increases due to individual failures. 

This allows the network-level problem to be decomposed into single-bridge problems and 

tackled efficiently. The computational effort increases linearly with the number of bridges.  
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Chapter 1  

Introduction 

      It is widely acknowledged that the social and economic development of any region relies on 

satisfactory performance of its transportation network. In particular, highway bridges represent 

the most crucial and most vulnerable components of highway networks. Most highway bridges 

are built at the connections to on/off ramps, the intersections of highways, and the crossings over 

rivers or railways. The malfunction of bridges may severely degrade the overall performance of a 

network. In networks with limited redundancy, bridge closures can lead to disconnection of 

nodes. In redundant networks, bridge closures can sever effective links connecting origins and 

destinations. Vehicles need to bypass the unserviceable links, which can increase total travel 

time and distance.  

      Bridges deteriorate progressively over their lifetime due to environmental effects and traffic 

loads. This dissertation‟s scope is bridge failures caused by gradual deterioration. Taking bridge 

decks as an example, the major mechanism of concrete deck failure is spalling, or breaking off in 

fragments, which is caused by the corrosion of the steel rebars and delamination cracking in the 

concrete. Corrosion starts when chlorides reach the level of steel. Rust builds up around the 

rebars; the volume of steel expands. The expansion causes concrete fractures and the cohesion 

between concrete and steel gradually vanishes. The structural resistance of the bridge deck 

decreases, and it may eventually result in the deck‟s failure (i.e., the occurrence of spalling). 

The problem is important because the current conditions of federal bridges are 

unsatisfactory, and maintenance and repairs budgets are limited. According to ASCE (2013), the 

average age of bridges in the U.S. is 42 years old; more than 30% of existing bridges have 

exceeded their 50-year design life. Timely and adequate maintenance activities must be carried 

out to ensure safety and satisfactory service levels. Faced with an $8 billion annual investment 

shortfall for federal bridges, it is necessary to allocate and distribute the limited maintenance 

resources in an optimal manner.  

      The maintenance plans cannot be made arbitrarily, but should be supported by numerical 

analysis. Many studies have dealt with the optimal maintenance planning for individual bridges 

or systems of bridges (Markow et al., 1993; Frangopol et al., 2001; Kong and Frangopol, 2003; 

Robelin and Madanat, 2007; Robelin and Madanat, 2008). Since maintenance policies are 

usually made by agencies responsible for an entire highway network, research has expanded to 

networks with multiple bridges in recent years. Network-level problem formulations usually seek 

maintenance policies that best balance network performance and agency cost. In the literature, 

different criteria are chosen to quantify the network performance. Some studies focus on 

connectivity; i.e., the possibility to reach every node from every other node. Liu and Frangopol 

(2005, 2006) used a graph-theoretic indicator of network reliability or connectivity for networks 

with single O/D (origin/destination) pairs. Bocchni and Frangopol (2013) expanded the work to 

multiple O/D pairs. Other studies have adopted travel time and travel distance related indicators 
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for network performance. Bocchini and Frangopl (2010) introduced an indicator associated with 

the total travel time and total travel distance of the network.  

      The analysis of network-level management increases the computational complexity. The 

bridges in a network are functionally correlated; the impact of a bridge failure on the overall 

network performance depends on whether other bridges have failed. Because of the 

interdependencies among bridges, they have to be analyzed together. When uncertainties are 

involved, most previous research resorts to simulation-based numerical optimization algorithms, 

such as genetic algorithms, which do not guarantee convergence to optimality. As a result, only 

networks of moderate sizes (10-30 bridges) can be tackled. However, most real networks in 

urban areas include hundreds, if not thousands of bridges; for example, there are about 6,000 

bridges in the San Francisco Bay Area.   

      This dissertation aims to develop comprehensive frameworks for bridge management 

problems of realistic sizes, using realistic metrics. It will provide agencies with decision-making 

tools to allocate the limited maintenance resources over the planning horizon as well as over 

networked bridges in a cost-effective manner. Before delving into the research, this chapter 

presents some preliminary ideas. Section 1.1 describes the scope of the research and the 

questions that will be answered in this dissertation. Section 1.2 presents the main contributions of 

this work. Finally, Section 1.3 provides the organization for the rest of this dissertation.  

1.1 Research Questions 

The bridge networks considered in this dissertation consist of bridges and connecting roads. 

Bridges are the only vulnerable components of the network, and they are managed by a single 

agency such as a state department of transportation. The research problem is to determine the 

optimal maintenance policies for bridge networks that best balance the overall network 

performance and the total maintenance cost.  

      To formulate the bridge maintenance management problem mathematically, the first question 

to be answered is how to measure network performance quantitatively. Some networks are of 

moderate size and limited redundancy, such as the example shown in Figure 1.1(a). The closure 

of bridges can sever paths connecting nodes. For this type of networks, it is necessary to ensure 

that there is at least one path for a vehicle to reach its destination, as connectivity is the 

fundamental service function of a transportation network. Therefore, a graph-theoretic indicator 

of network connectivity is chosen to measure the network reliability or connectivity. In large and 

redundant networks, such as the grid network shown in Figure 1.1(b), connectivity is irrelevant 

since there are many alternative paths for vehicles to reach their destinations. In the case of 

bridge closures, network users have to reroute to bypass the unserviceable links, which can result 

in extra travel time and travel distance. Therefore, the network performance is quantified by the 

increase in user costs, specifically, the extra travel distance due to potential bridge failures.  

      Using the performance metrics, the maintenance management problem can be formulated 

mathematically as an optimization problem with two conflicting objectives: maximizing the 

network performance and minimizing the total agency cost. The bridge network is a time variant 

system; the network degrades as the bridges deteriorate. Because the future information of the 

bridge conditions is not available, deterioration models must be developed to predict future 

conditions. Based on the deterioration models, maintenance resources need to be optimally 

allocated over the planning horizon and the networked bridges. Since the bridges are functionally 
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correlated, they have to be analyzed together. The computational complexity becomes 

tremendous in large networks. This so-called “curse of dimensionality” is a frequently 

encountered challenge in network-level management problems. Therefore, to develop efficient 

and accurate solution methods is the most difficult part of the research.   

 

 

 
Figure 1.1 Examples of moderate-size and large-size networks 

      Last but not least, to help agencies make better maintenance decisions for bridge networks, it 

is necessary to translate the scientific analysis and results into practical use. This will also be 

discussed in the dissertation.  

1.2 Dissertation Contributions 

This dissertation produces both scientific and practical benefits.  

      The first contribution of the research is in identifying appropriate network performance 

criteria. Instead of using a uniform criterion, suitable metrics are chosen for different types of 

networks. For moderate size networks with limited redundancy, the network performance is 

quantified by a graph-theoretic indicator of network connectivity. For large and redundant 

networks, the network performance is measured directly by the total user costs associated with 

potential bridge failures.  

      Accordingly, the research is divided into two parts: retaining network connectivity in 

moderate-size networks and minimizing total user costs in large and redundant networks. 

Contributions in each part are as follows. 

 

 

 

  

(a)

(b)
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Retaining network connectivity: 

 

 An approximation of network reliability function for non-decomposable networks of 

moderate sizes.  

 

 A novel two-stage approach to tackle the connectivity problem, which makes it possible 

to solve the problem by using standard optimization tools (with guaranteed convergence 

to optimality), as opposed to the heuristic algorithms used in the literature. 

 

 A framework to study networks with multiple O/D pairs.  

  

Minimizing total user costs: 

 

 Verification that the expected increase in user costs due to bridge failures can be 

approximated by the sum of increases due to individual failures, if a network is 

uncongested.   

 

 An efficient solution method, capable of solving MR&R (Maintenance, Repair and 

Reconstruction) optimization problems for large networks with thousands of deteriorating 

bridges over multiple periods.  

 

1.3 Dissertation Outline 

The remainder of this dissertation is organized as follows.  

      Chapter 2 furnishes the background of this research by reviewing the existing literature on 

bridge management, with emphasis on reliability-based methods and network considerations. 

      Chapter 3 solves for the optimal MR&R policies for retaining network connectivity. The 

objective is to ensure an adequate level of network reliability at the lowest possible life-cycle 

maintenance cost. Instead of considering the evolution of network reliability over the whole 

lifecycle, the optimization is formulated with a constraint on the lower bound of network 

reliability, which reduces the network-level problem to one of optimizing the set of reliability 

levels for individual bridges. To evaluate and illustrate the approach, it is applied in two 

numerical examples, a decomposable network and a non-decomposable network. Finally, the 

framework is extended to networks with multiple O/D pairs. 

      Chapter 4 develops a simple framework to determine optimal maintenance plans for large 

networks with many bridges. The objective is to minimize disruption, specifically, the extra 

travel distance caused by potential bridge failures over a planning horizon and under a budget 

constraint. We show, through exact analysis for networks with a grid structure, and through 

simulations for a real-world network, that the expected increase in vehicle-miles travelled due to 

failures can be approximated by the sum of expected increases due to individual failures. This 

allows the network-level problem to be decomposed into single-bridge problems and tackled 

efficiently. A numerical example is implemented as an illustration.  

      Chapter 5 concludes the dissertation by summarizing the high-level message of this 

dissertation, and outlining directions for future work.  
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      Some of the more technical proofs will be deferred to the Appendices. 

  



6 
 

Chapter 2  

Background 

      Because bridge management belongs to the broader area of infrastructure management, most 

methodologies in infrastructure management can be applied to bridge management as well. 

Section 2.1 briefly reviews different frameworks in infrastructure management, with emphasis 

on bridge management. Section 2.2 reviews past research on bridge management that has used 

reliability-based methods. Section 2.3 discusses recent research in infrastructure management 

that has taken into account the network topology.   

2.1 Infrastructure Management 

Infrastructure management proceeds from the idea that decisions in maintenance, repair and 

reconstruction (MR&R) can be based on an optimal use of resources. The major task of 

infrastructure management is to determine the optimal selection and time scheduling of 

maintenance activities. Since the future information of facilities is not available, deterioration 

models must be developed to predict the future conditions of facilities. Based on the 

deterioration models, different optimization problems are formulated to solve for the optimal 

maintenance plan.  

      The existing research can be roughly categorized into facility-level management and system-

level management. The facility-level infrastructure management problem solves for optimal 

MR&R policies for an individual facility. The most widely used framework is the MDP (Markov 

decision process) (Madanat and Ben-Akiva, 1994), where the deterioration process is modeled as 

Markovian process and dynamic programming is applied to obtain optimal maintenance policies. 

The MDP approach utilizes standard and efficient optimization techniques, and it accounts for 

uncertainty in deterioration. To provide insights into the optimal solution, analytical approaches 

in continuous time and state have been formulated and solved using nonlinear-optimization (Li 

and Madanat, 2002) and calculus of variation (Ouyang and Madanat, 2006). The drawback of 

these analytical approaches is that they are based on deterministic deterioration models.  

      The system-level infrastructure management problem determines the optimal MR&R policies 

for multiple facilities under a total budget constraint. Existing literature on system-level 

optimization can be broadly categorized into top-down approaches and bottom-up approaches. 

Top-down approaches perform optimization at the system level, and actions are recommended 

for fractions of the facility population (Kuhn and Madanat, 2005). In bridge management, the 

Pontis system (Thompson et al. 1998) adopted a top-down approach. It is efficient in handling 

large number of facilities, but it cannot account for the heterogeneity of facilities. The bottom-up 

approach first performs optimization for each facility, and then selects optimal solutions to 

account for the total budget constraint. This approach has been adopted in BRIDGIT (Hawk and 
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Small 1998) and Indiana Bridge Management System (Sinha et al. 1988). Although the bottom-

up approach accounts for the heterogeneity of facilities, it is computationally expensive when the 

number of facilities becomes large.  

      These bridge management systems are based on the MDP, using discrete condition states 

obtained from visual inspections. Such discrete states can only represent the observable 

deterioration of bridge components, but cannot account for the load carrying capacity of the 

structures (or structural reliability). Besides, the transition probabilities are assumed to be time 

invariant, which is unrealistic. These have been revealed as the main limitations of the existing 

bridge management systems (Frangopol and Das, 1999). 

2.2 Reliability-Based Methods 

It is generally recognized that the bridge management should be addressed from a reliability 

viewpoint. The determination of MR&R policies depends on the structural reliability, rather than 

the visual conditions of bridges. Starting in the 1990s, a major research thrust has focused on 

including reliability theory in bridge management.  

      The reliability level of bridge structure is represented by the reliability index β. It is a 

measure of structure safety. By definition, the reliability index is related to the structure‟s failure 

probability in a time interval between inspections by the probit transformation; so that       is 

said probability, where   is the standard normal cumulative distribution function. Based on 

performance limit state analysis, Thoft-Christensen (1998), Frangopol et al. (1997) and Estes 

(1997) have derived whole life profiles for the progression of the bridge component reliability 

index. Figure 1 shows the piecewise linear model that has been frequently used. The parameters 

of the curve are treated as random variables following the prescribed probability distribution. 

      The entire bridge system consists of superstructure (decks, girders) and substructure (pier, 

footing). The performance of the bridge system can be very different from the performance of its 

components. To evaluate the system reliability of an individual bridge, it can be idealized as a 

series-parallel system of its components (Estes and Frangopol, 1999). 

       

Figure 2.1 Deterioration patterns in the absence of maintenance (left), and influence of maintenance and 

rehabilitation actions (right) (Source: Frangopol et al., 2001) 

      Based on the reliability lifetime profiles, efforts have been made to develop optimization 

strategies that best balance bridge reliability and life-cycle cost. Examples include Frangopol et 
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al. (2001) and Kong and Frangopol (2003). Frangopol et al. (2000) studied a system of multiple 

bridges with the objective to minimize maintenance cost while maintaining the reliability of each 

bridge above an acceptable level. However, the limitation of their framework is that they only 

compare predetermined maintenance sequences, which is a static approach using an incomplete 

solution space. An optimal approach would compare maintenance policies dynamically through 

time, resulting in a wider solution space over the planning horizon. 

      To account for the history of deterioration and maintenance activities while including a more 

complete set of solutions, Robelin and Madanat (2007) used MDP with augmented states to 

determine the optimal maintenance actions for an individual bridge. Later, Robelin and Madanat 

(2008) proposed a computationally efficient bottom-up approach which provides optimal policies 

for realistic system sizes while accounting for the heterogeneity among individual facilities. 

2.3 Incorporating Network Topology 

Since maintenance policies are usually made by agencies responsible for the entire network, 

research on bridge management has expanded beyond bridge stock maintenance optimization to 

account for network considerations. Bridges in a network cooperate with one another to provide 

service to the network users. Therefore, the objective of maintenance management at network 

level is to achieve a satisfactory network performance, rather than to focus on the condition of 

individual bridges.  

      Incorporating bridge network topology in maintenance decision-making was first studied in 

the context of seismic risk reduction. Augusti et al. (1994) applied dynamic programming to 

determine the optimal structural upgrading interventions with the objective of maximizing the 

probability of network connection. Later, Augusti and Ciampoli (1998) extended their research 

by considering alternative objectives, including network capacity, out of service time and time 

efficiency of interventions. However, the bridge failures are assumed to be independent in these 

works, which is unrealistic. Recent studies have considered the statistical correlation among 

bridge serviceability under seismic hazards (Song and Ok, 2010; Bonstrom and Corotis, 2013; 

Ghosh et al., 2013). 

      In the context of network degradation due to gradual deterioration, as considered in our 

research, incorporating network topology is a more difficult problem. The bridge network is 

usually regarded as a spatially distributed and time invariant system. The limited financial 

resources need to be optimally allocated over a specified planning horizon, as well as over the 

networked bridges. Because of the interdependencies among the bridges, they have to be 

analyzed together. Computational issues arise frequently and are the main challenge in network-

level management problems. Existing research invariably resort to simulation-based numerical 

optimization techniques, such as genetic algorithms, which automatically produce a Pareto 

frontier for two conflicting objectives, usually the minimization of agency cost and the 

maximization of a network performance index.  

      Different criteria have been adopted to measure the network performance. Some studies 

focus on the connection of the network, i.e., the possibility of reaching every node from every 

other node. For instance, Liu and Frangopol (2006a) used the probability that a specific 

destination can be reached from a fixed origin as the performance criterion. Bocchini and 

Frangopol (2011a) introduced the „Fully Connected Ratio‟, the proportion of samples when all 

nodes are reachable. Some other studies have created performance indicators based on the total 
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travel time and total travel distance. Orcesi and Cremona (2010) built up a bridge network 

maintenance framework for the Pareto optimization of MR&R cost and user cost. Homogeneous 

Markov transition models were used to predict future condition and genetic algorithms were 

applied to obtain the optimal maintenance strategy. Bocchini and Frangopol (2010) introduced 

an indicator computed as a function of total travel time and total travel distance. The trips of the 

network users are distributed based on user equilibrium. A multi-objective genetic algorithm was 

implemented to obtain a Pareto frontier of the total maintenance cost and the performance 

indicator. One critical aspect of the methodology is that the use of Monte Carlo simulation nested 

in genetic algorithms is very time-consuming. The authors have to use lookup table and 

bookkeeping techniques to alleviate the computational burden.  

2.4 Summary 

Based on the literature, it is clear that the existing research on maintenance management for 

bridge networks is limited. Most bridge management problems are performed at component and 

system levels without accounting for the overall network performance.  

      In the research that has incorporated network topology, the criteria for evaluating the network 

performance have not been carefully selected for different networks. Although different 

performance indexes are developed, it is seldom discussed which is most relevant for different 

scenarios. Because bridge failure is very rare, retaining network connectivity is a problem of 

significance only for networks with limited redundancy. For large and redundant networks, it is 

more relevant to consider the increase in costs of network users due to bridge failures. Although 

some researchers have created travel time related indicators, the user costs are not measured by 

themselves.  

      Besides, the methodologies developed for the network-level management problems are 

mostly simulation-based numerical optimization techniques. These methods are computationally 

expansive, and therefore, limited to networks of moderate sizes (10-30 bridges). However, most 

networks in urban areas include hundreds, if not thousands of bridges; for example, there are 

about 6,000 bridges in the San Francisco Bay Area.  

      In order to contribute to the literature, this dissertation develops efficient solution methods 

for the network-level management problems, which are capable of handling large networks with 

many bridges. The maintenance management problems are twofold. For moderate size networks 

with limited redundancy, the objective is to minimize the agency cost while retaining a 

prescribed level of network reliability in terms of connectivity. For large and redundant networks, 

the objective is to minimize the traffic disruption caused by bridge failures under a budget 

constraint.  
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Chapter 3  

Retaining Network Connectivity 

      Retaining network connectivity is important as it ensures that there is at least one path for 

vehicles to reach their destinations. In this chapter, we consider networks of moderate size and 

limited redundancy, which usually are the highway networks in rural areas, where bridge failures 

may lead to disconnection in these networks.  

      This chapter presents a framework to determine the optimal maintenance plan that retains a 

predefined network reliability level using minimum agency costs. Section 3.1 presents the 

definition and assumptions for the problem. Section 3.2 introduces a graph-theoretic indicator to 

quantitatively measure the network connectivity. Based on the connectivity indicator, Section 3.3 

formulates the problem mathematically and proposes a novel two-stage approach to solve it. 

Section 3.4 uses a decomposable network as a numerical example to illustrate and evaluate the 

method. Section 3.5 applies the framework to a non-decomposable network, the highway 

network connecting Denver and Lafayette. Section 3.6 discusses a simple extension of the 

framework to networks with multiple O/D pairs. Finally, Section 3.7 summarizes the findings of 

this chapter.  

3.1 Definitions and Assumptions 

Network.   The highway network considered in this paper consists of bridges and connecting 

roads. It is assumed that the network topology remains constant over the planning horizon, and 

that bridges are the only vulnerable components of the network. Bridges in the network are 

managed by a single agency such as a state department of transportation. 

 

Bridge condition.   Because the deck is the bridge component that deteriorates fastest and 

requires the largest maintenance budget, only deck condition is considered. This condition is 

represented by a deck‟s reliability index β. This index is related to the deck‟s failure probability 

p in a time interval between inspections by the probit transformation; so that         is said 

probability, where   is the standard normal cumulative distribution function.  

 

Independent failure.   Given a set of actions,  ⃑, and a parameter vector   that characterizes the 

bridge itself (such as its design, material type, traffic, and environment), the deck reliability 

index        ⃑  is a stochastic process over time. It is reasonably assumed that this deterioration 

process        ⃑  is independent across bridges, because correlations in performance across 

bridges due to the environment and traffic are captured by the parameter vector  . In other words, 

conditioned on     ⃑ , failures are independent across bridges.  
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Costs.   Agencies incur costs when maintenance actions are performed on bridges. Because the 

maintenance management problem in this chapter seeks the trade-off between network 

connectivity and agency costs, user costs are not considered.  

 

Maintenance and inspection.   Although the deterioration of a bridge deck is a continuous 

process, the maintenance decisions are made at discrete points in time. Since agencies usually 

have yearly budgets, it is reasonable to assume that maintenance decisions are made every year 

for each bridge. The current condition of each bridge is assumed to be known perfectly, meaning 

that inspections are carried out every year and are error free. 

3.2 Connectivity Indicator 

For a network with single O/D pair, network failure is defined as the circumstance when the 

origin is disconnected with the destination. For a network with multiple O/D pairs, the network 

fails whenever any O/D pair is disconnected. The reliability level of a bridge network, in terms 

of connectivity, can be reversely reflected by the probability that the network fails. In the next 

few sections of this chapter, networks with single O/D pairs are considered. Extension to 

networks with multiple O/D pairs is discussed in Section 3.6.   

      Let N denote the number of bridges in the network. As the bridges deteriorate, the network 

degrades and its failure probability increases. Let      denote the network failure probability and 

   denote the failure probability of bridge i. Since bridges fail independently,      can be 

expressed as a function of   ‟s; i.e.,                     The network failure probability 

function   depends on the network topology. 

      A commonly used tool to obtain function   is the structure function. It is a binary function 

indicating the status of the network, with the status indicators for individual bridges as the 

independent variables (Hoyland and Rausand, 1994). The mathematical expression for the 

structure function is: 

                          ( )                {
                          
                            

                                       

where    is status indicator for bridge i, such that 

                                      {
                        
                         

                                                                               

      With these definitions, the network failure probability      is equal to the expected value of 

the structure function. Some networks are simple in structure and can be decomposed. Here, we 

define decomposable networks as those that satisfy the two conditions: 

1) The links can be divided into sets that are either parallel or series.  

2) After replacing each set by a simple link, you can do 1) again until you have only one 

link. 
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      For the decomposable networks, the function   is relatively easy to obtain. Other networks 

are complex and non-decomposable, and a minimal cut method is used to obtain function  . The 

detailed analysis follows. 

Decomposable Networks 

Figure 3.1 shows two elementary kinds of networks; network (a) has bridges in series and 

network (b) has bridges in parallel. Because network (a) fails if and only if any bridge fails, the 

structure function is:  ( )                       . By taking the expectation of the 

structure function, the probability that network (a) fails is:  

                                                         ∏       
 

   
                                                                      

For network (b), the network fails if and only if all the bridges fail. The structure function is 

 ( )         , and the probability that network (b) fails is: 

                                                                    ∏  

 

   

                                                                                  

      The results for other decomposable networks can be obtained similarly. It should be noted 

that the failure probability function for network (b), as shown by Equation (3.4), is 

multiplicatively separable. The failure probability for network (a), shown by Equation (3.3), is 

also multiplicatively separable after removing the constant 1.  

 
Figure 3.1 Networks with bridges in series (a) and that with bridges in parallel (b) 

Non-decomposable Networks 

For non-decomposable network, the structure function can be obtained by the minimal path or 

the minimal cut method (Hoyland and Rausand, 1994). The minimal cut method is applied here 

for convenience. A cut is a set of bridges such that if all the bridges in the cut fail, the network 

……
1 2 n

O D

…
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n
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will fail. A minimal cut is a set of bridges that comprise a cut, but the removal of any one bridge 

from the set causes the resulting set to not be a cut. So the network fails if and only if all bridges 

in the minimal cut fail. 

      Many algorithms have been proposed to enumerate the minimal cut set (Lin et al., 2003; 

Benaddy and Wakrim, 2012). If there are    minimal cut sets            
 in a network, then 

the structure function of the network is 

                              ( )    (  ∏  
    

)(  ∏  
    

) (  ∏   
     

)                                 

      The network failure probability is equal to the expected value of the structure function. 

Because two different minimal cuts may include the same bridge, polynomial expansion must be 

carried out before taking the expectation of  ( ). The result is a long polynomial, as shown in 

Equation (3.6): 

                      ∑(∏  

    

)

 

 ∑ ( ∏   

       

)

   

 ∑ ( ∏   

          

)  

     

                       

 

where the indexes  , , and              .  
      In Equation (3.6), ∏       

 is the probability that cut    is activated; ∏          
 is the 

probability that cuts    and    are activated simultaneously; etc. As the failure probability of a 

bridge is very small, the probability that several cuts are activated simultaneously is the higher 

order term compared to the probability that a single cut is activated. Let      denote the largest 

values in   ‟s. We first compare the probability that    is activated with the probability that two 

cuts (one of them is   ) are activated simultaneously:  

                                    
∑ (∏          

)   

∏       

                                                        

Then, the one-component terms in Equation (3.6) are compared with the two-component terms: 

            ∑ ( ∏   

       

)

   

 ∑(        ∏  

    

)

 

         ∑(∏  

    

)

 

                       

      If          , the probability that two cuts are activated simultaneously is negligibly 

small compared to the probability of single-cut activation. Similarly, the probability that more 
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than two cuts are activated has even smaller order of magnitude and can be neglected.  Therefore, 

the network failure probability can be approximated by:  

                                               ∏  

    

 ∏  

    

   ∏   

     

                                                       

      Each term in the right hand side of the equation represent the probability that the cut is 

activated. Because the failure rates are usually in the scale of     , the approximation is accurate 

for networks having hundreds of min-cuts.  

      It should be noted that two different minimal cuts may contain the same bridge, and thus the 

same    can exist in several terms. Therefore, the network failure probability function   is not 

multiplicatively separable for the non-decomposable network.  

3.3 Formulation and Approach 

Given the planning horizon is T years, the bridge management problem is formulated as the 

determination of the minimum-cost maintenance plan that achieves a certain network reliability 

level, or equivalently, that keeps the network failure probability below a certain threshold,   .      

      The mathematical formulation can be written as:  

                         
     ∑   

 
                                                                                                      

               (                   )                   
                    

where    is the agency maintenance cost for bridge i,         is the network failure probability at 

year t, and       is the failure probability of bridge i at year t.  

      The constraint is equivalent to keeping the maximum value of the network failure probability 

below the threshold; i.e.,               . Instead of considering the evolution of         over 

the planning horizon, an upper bound of network failure probability      
   is used to substitute for 

           in the constraint. This upper bound is chosen to be     
     

       
   , where   

   

is the maximum failure probability of bridge i.  

      Obviously,      
              , and they are equal when all bridges reach their worst 

conditions simultaneously. Therefore, this substitution may tighten the constraint, and it may 

result in a conservative solution, but this substitution is justified for two reasons. First, because 

the piecewise reliability profile adopted in bridge management is theoretical, it is associated with 

high uncertainty, which makes a conservative solution preferable. The second reason comes from 

the observation that bridges are very likely to reach their worst condition at the end of the 

planning horizon when there is no salvage value (Liu and Frangopol, 2005; Robelin and Madanat, 

2007). In that case,     
               , and the two constraints thus become equivalent. 

      After the substitution, the formulation of the network-level problem is transformed to: 
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   ∑   (  

  ) 
                                                

           
    (  

     
       

  )            
                                                       

where   (  
  ) is the minimum agency cost required to maintain the failure probability of bridge 

i below   
  .  

      The optimization problem has been reduced to the determination of the optimal reliability 

levels,   
  ‟s, for individual bridges, which is then tackled using a two-stage approach. In the 

first stage, the function   (  
  ) is solved for each bridge. Based on the results of the first stage, 

the second stage solves for the optimal set of reliability levels for individual bridges. After the 

maintenance policies are determined using the two-stage approach, the conservativeness due to 

the substitution can be evaluated quantitatively by comparing the actual reliability level to the 

prescribed value.  

      The details of each step are described in the following subsections. Subsections 3.3.1 

formulates and solves the facility-level problem using MDP with augmented states. Subsection 

3.3.2 develops algorithms to tackle the network-level optimization.  

3.3.1 Stage 1: Facility-Level Optimization  

For each individual bridge, the facility-level problem is solved for a range of thresholds of 

reliability index. This procedure produces a non-decreasing function   (  
  ) for each bridge i, 

which represents the present value of total MR&R cost that is required to maintain the failure 

probability below   
  , as shown in Figure 3.2.  

      The function   (  
  ) cannot be determined for a continuous interval of    

  , because this 

would require solving the facility-level optimization an infinite number of times. Therefore, the 

function   (  
  ) is defined only for a finite number of thresholds. It has been shown that the 

discrete implementation is a valid approximation to the optimal cost function (Robelin and 

Madanat, 2008). 

 
Figure 3.2 The shape of the function   (  

  ) 
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      The specific facility-level approach is not the focus of this dissertation as long as it yields the 

function    for each bridge. This section describes a dynamic programming method to solve 

facility-level problems. The bridge deterioration is formulated as Markov decision processes 

with augmented states. In traditional Markovian models with bridge component condition as the 

state, the history of the condition is not taken into account, which is seen as a limitation. 

According to Robelin and Madanat (2007), the effects of the history of deterioration and 

maintenance can be captured by a three-dimensional vector          , where β is the 

reliability index,   represents the type of the latest action performed on the bridge, and τ 

represents the time since the latest action. Therefore, the deterioration process can be modeled as 

Markovian, using   as the state. The advantage of this method is that it uses standard 

optimization techniques, while retaining the effects of deterioration and maintenance history as 

part of the model.  

      Although the reliability index β can take any value in a continuous interval, it is discretized 

for computational convenience. For a given threshold   
  , the objective is to minimize the total 

discounted agency cost while keeping network failure probability below   
   , or equivalently, 

the reliability index above   , and           
    .  The Bellman‟s recursion is: 

      

                 
     

{              ∑                      }  

                                                                

                                                                                 
                                   

 X: state space of the Markov Chain; 

 A: set of all possible MR&R actions, include all types of maintenance, repair, and 

reconstruction activities, and do-nothing; 

 T: planning horizon; 

        : cost of action     on bridge deck i. 

     : penalty cost, set to be an arbitrary large value when the reliability index of state x is 

below   , and zero otherwise; 

 α: discount factor. 

      : minimum cost-to-go for the agency to manage a bridge deck currently in state x 

from year t to the end of the planning horizon.  

            : transition probability for bridge deck i from state x to state y in the next year, 

given action     is applied.  

      In the above formulation, a large penalty cost is assigned to the cost-to-go function whenever 

the reliability index falls below the threshold. With this strategy, it is ensured that the reliability 

of the bridge is maintained above the threshold.  

      For each individual bridge, the facility-level problem is solved for a range of thresholds of 

reliability index. This procedure produces a non-decreasing function     
  ,     

   

  (      ) for each bridge i, which represents the present value of total MR&R cost that is 

required to maintain the reliability index above   . Using the one-to-one relationship between 

the reliability index and the deck‟s failure probability, the function    (  
  )  can be easily 

obtained.  
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3.3.2 Stage 2: Network-Level Optimization  

Based on the optimal cost function   (  
  ) obtained in the first stage, the second stage solves for 

the optimal reliability levels,   
  ‟s, for individual bridges. In general, the network-level 

optimization is a nonlinear integer programming problem, because both functions   and    are 

nonlinear and the decision variables,   
  ‟s are defined on a discrete domain.  

      In decomposable networks, the links can be divided into subsystems that are either in parallel 

or series. The failure probability function   for the subsystems is multiplicatively separable, as 

shown in Section 3.2. The optimization problem has the format of a one-dimensional resource 

allocation problem (Bellman and Dreyfus, 1962; Augusti, 1994). It can be easily solved in 

polynomial time using dynamic programming. After solving the problem for each subsystem, the 

subsystem is replaced by a single link. The whole process is repeated until we get the optimal 

cost function for the entire network.  

      For non-decomposable networks, the function   is not multiplicatively separable, which 

makes it more difficult to solve. To tackle this nonlinear integer optimization problem, an 

algorithm is developed to transform it into Binary Integer Linear Programming (BILP).  

      To keep the network failure probability below a certain threshold   , a necessary condition is 

that the activating probability of each cut is smaller than   . It is not a sufficient condition, 

because the network failure probability is the sum of the activating probabilities of all cuts. Here, 

the optimization is first solved under the necessary condition, which provides a lower bound to 

the optimal cost. Then an iterative solution method is introduced to gradually lead the solution 

into the feasible domain where the constraint on overall network failure probability is satisfied.  

      For an arbitrary minimal cut   , it is required that ∏   
  

    
   . This inequality constraint 

is equivalent to a set of binary linear inequality constraints by a change of variables. The optimal 

cost function   (  
  ) is only defined for a finite number of thresholds, which can be denoted as 

          , and the corresponding minimum agency cost for bridge i as              . We use 

binary variables       to substitute for   
  as the decision variables. Let 

                                      
   ∑    

 

   

                                                                                     

where       are binary variables, and ∑    
 
                  N.  

      After substituting Equation (3.13) into ∏   
  

    
,  we can obtain a polynomial of      , 

where each of the coefficients is a product of a subset of {          }. To illustrate, an 

arbitrary term of the polynomial can be denoted as: 

                                         (∏   

|  |

   

,       
      

     |  | |  |
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where |  | represents the number of bridges in the minimal cut   . If the coefficient ∏    

|  |

   
 is 

greater than   , the term (3.14) must set to be zero; i.e.,      
      

              
  . Because 

      are binary variables, this is equivalent to the linear inequality constraint: 

                                         
      

     |  | |  |
 |  |                                                             

      Using the strategy described above, the constraint on each cut activating probability produces 

a set of binary linear inequality constraints. After the variable substitution, the objective function 

is transformed to: 

                                                          
   

∑∑     

 

   

 

   

                                                                       

The optimization problem becomes a standard BILP, which can be tackled by commercial 

solvers such as AMPL and MATLAB.  

      As mentioned earlier, keeping the activating probability of any minimal cut below the 

threshold    is not sufficient to ensure the network failure probability is below   . If the solution 

results in a higher failure probability than   , more intense actions should be applied to maintain 

the network in a better condition than the current level. In other words, the total agency cost 

should be greater than the current value; i.e., 

                                     ∑∑     

 

   

 

   

                                                                                

Therefore, we need to add in constraint (3.17), which requires using an iterative solution method. 

The pseudocode for the network-level optimization is provided in Appendix A.  

      Although most real highway networks cannot be decomposed, they may have subsystems 

that have elements in series or in parallel. To relieve the computational burden, it is always 

beneficial to run the optimization first for these subsystems, and then replace the subsystem with 

a single equivalent element when solving the entire network.  

      The main drawback of BILP is that it is NP complete and no solution in polynomial time has 

been found. The size of the BILP problem is usually determined by the number of decision 

variables and constraints. For our problem, the network size, after substituting the reducible parts, 

is constrained to hundreds of min-cuts. It can be handled by ordinary solvers on a PC. 

3.4 Numerical Example – Decomposable Network 

In this section, a seven-bridge decomposable network is used as a numerical example to illustrate 

and evaluate the proposed approach. The topology of this network is the same as the one 
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connecting San Francisco and Oakland, when only the seven major cross-bay bridges are 

included. The schematic network is shown in Figure 3.3.  

 

 
Figure 3.3 Decomposable network 

      Bridges 1, 2, and 3 are in parallel, and each of them independently provides a path from the 

origin to the destination. Bridge 4 is in series with the subsystem which has Bridges 5, 6, and 7 in 

parallel. The network failure probability can be written as:  

                                                (                  )                                                 

      Using the stochastic lifetime profile of the reliability index developed in Frangopol et al. 

(2001), the transition matrices are obtained by Monte Carlo simulation. The details of the 

simulations process are provided in Robelin and Madanat (2007). To capture the heterogeneity of 

different bridge decks, parameters are adjusted within realistic ranges. The reliability index is 

discretized to take integer values from 1 to 15.  

      Four different actions are considered, do-nothing, maintenance, repair, and reconstruction. 

The unit costs of maintenance activities are adopted from Kong and Frangopol (2003), as shown 

in Table 3.1. 

 

No. MR&R Type Unit Cost ($/m
2
) 

1 Do-nothing 0 

2 Maintenance 200 

3 Repair 300 

4 Replacement 1000 

Table 3.1 Unit costs of MR&R actions 
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      The two-stage approach is implemented. The results and analysis are presented in Subsection 

3.3.1. A parametric study is carried out to analyze the impacts of different factors on resource 

allocation, as presented in Subsection 3.3.2. 

 

3.4.1 Results and Analysis 

Figure 3.4 plots the network reliability levels against the minimum agency costs required to 

achieve these reliability levels. The horizontal axis represents the total discounted agency costs, 

or it can be interpreted as the total budget for the network maintenance. The vertical axis 

represents the network reliability index, which is related to the network failure probability by the 

probit transformation. The curve provides a Pareto frontier of two conflicting objectives, 

minimizing the agency costs and maximizing the network reliability. The non-decreasing trend 

of the curve is intuitive, since adding more money will never worsen the network condition. It 

can also be observed that the curve flattens as the budget increases, indicating a diminishing 

marginal effect of budget on reliability. When the budget is abundant to maintain all bridges in 

good condition, the effect of adding more money is small. 

      The curve shown in Figure 3.4 is not smooth, but has small steps and jumps. The small flat 

segments suggest that the network reliability level remains the same when the budget changes, as 

long as the budget falls in the range of the corresponding flat segment.  

      Since the facility optimal cost function is a step function, it is possible that part of the budget 

allocated on the facility has not been used, if the assigned budget is not equal to the starting point 

of a step. This unused part of budget is the budget residual. There are two causes for the budget 

residual. The first is that the cost of each MR&R action is fixed and indivisible, and thus the total 

discounted MR&R cost can only take a finite number of values, corresponding to different 

combinations of actions. The second cause is a consequence of the discretization of the reliability 

index. There is a minimum amount of budget required to increase the reliability level from a 

given state by one state. If the increment of budget does not reach the minimum amount, the 

reliability level remains unchanged and the increment of budget is unused. 

 
Figure 3.4 Network reliability levels achieved with different agency costs 
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      In practice, the optimal cost value     
    is only determined for a finite number of thresholds 

of reliability index. This is because the reliability index has been discretized to take a finite 

number of values in the Markov decision process. Moreover, to determine     
    in a continuous 

interval requires solving an infinite number of facility-level problems, which is impossible.  

      Therefore, the reliability threshold is discretized and the results for different step size are 

shown in Figure 3.5. It can be observed that the curve becomes smoother as the step size 

decreases. Moreover, the curves with the smaller step sizes are above the curves with the larger 

step sizes, indicating that for the same budget, the model with smaller step size achieves higher 

network reliability. It is also observed that the distance between the step size 1 and step size 2 is 

much smaller than that between step size 2 and step size 4, which reveals a convergence pattern 

as the step size decreases. Since solving a model with smaller step size requires greater 

computational efforts, a suitable step size should be selected such that the results of the model 

satisfy the accuracy requirement, without an excessive increase in computational cost.  

 
Figure 3.5 Optimal results from different step sizes of threshold discretization 

3.4.2 Parametric Study 

In this subsection, we study the impacts of three different factors on resource allocation over the 

network of bridges. These three factors are the bridge location in the network, the deterioration 

rate, and the unit cost of maintenance actions. 

Location in Network 

To isolate the impact of bridge location on the resource allocation, these bridges are set to be 

homogeneous. 

      Figure 3.6 shows the percentage of the agency costs consumed by each bridge in the optimal 

solution. It can be observed that more than 80% of the total budget is allocated to Bridges 1, 2, 3, 

and 4, while less than 20% is allocated to the other three bridges. Because Bridges 5, 6 and 7 

cannot connect the origin to the destination without Bridge 4, their contribution to the network 
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connection is marginal compared to Bridges 1, 2 and 3. As expected, the budget is allocated to 

bridges that are more critical for network connectivity. In other words, the bridges in critical 

positions have priority in receiving maintenance resources.  

 
Figure 3.6 Impact of bridge location on the optimal resource allocation 

Deterioration Rate 

We focus on Bridges 1, 2, and 3 to study the impact of deterioration rate, since these three 

bridges are similar with regard to their positions in the network. Compared to Bridge 1, Bridge 2 

has a relatively slower deterioration, with an expected deterioration rate of 0.075 per year, while 

Bridge 3 has a relatively faster deterioration, with an expected deterioration rate of 0.15 per year. 

Figure 3.7 shows the percentage of agency costs consumed by each bridge. If the budget is tight, 

only Bridge 1 and Bridge 2 are maintained, with no budget allocated to Bridge 3. When the 

budget is abundant, the bridges with higher deterioration rates receive more maintenance funds. 

      The phenomenon observed in Figure 3.7 can be explained as follows. The bridge with faster 

deterioration rate needs more resources to maintain it at the acceptable level. When the budget is 

tight, it is impossible to maintain all three bridges in satisfactory reliability states. Since the 

bridges are in parallel, the budget is preferably allocated to Bridges 1 and 2 in order to ensure the 

reliability of these two paths. When the budget is sufficient to maintain Bridges 1 and 2, 

resources are allocated on Bridge 3 as well to ensure the reliability of the third path. Finally, all 

three bridges receive adequate maintenance when the agency has a sufficient budget, and faster 

deteriorating bridges receive a larger proportion of the budget.  
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Figure 3.7 Impact of deterioration rate on the optimal resource allocation on bridges in parallel 

Unit Costs of MR&R actions 

To analyze the impact of costs of MR&R actions, the unit costs are adjusted, while other factors 

are unchanged. The unit costs of actions for Bridge 1 remain the same, while the unit costs of 

actions for Bridge 2 are reduced by 20% and the unit costs of actions for Bridge 3 are increased 

by 20%.  

      Figure 3.8 shows the percentage of budget allocated to each bridge. When the budget is tight 

(below $ 510200 ), only Bridges 1 and 2 are maintained, with no budget allocated to Bridge 3. 

As the budget increases above $ 510200 , resources start to be allocated to Bridge 3. With an 

ample budget, Bridge 3 receives the largest fraction of the budget. 

      The phenomenon observed in this case can be explained similarly as in the previous section. 

When the budget is limited and only adequate to maintain one or two bridges in the network, 

Bridges 2 and 1 will be selected since the costs of maintenance activities for these two bridges 

are relatively small. This strategy efficiently uses the limited resources to upgrade the network 

reliability. When the total budget becomes large, there are available funds left after Bridges 1 

and 2 receive necessary maintenance. At this point, maintenance is applied to Bridge 3, which 

has the highest cost. 
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Figure 3.8 Impact of MR&R cost on the optimal resource allocation on bridges in parallel 

 

3.5 Numerical Example – Non-Decomposable Network 

In this section, a numerical example illustrates the proposed approach. The network under study 

is a 13-bridge network located in the northwest metropolitan area of Denver, Colorado (Liu and 

Frangopol, 2005). As shown in Figure 3.9(a), the bridge network is non-decomposable, but there 

are two subsystems, Group 1 and Group 2, which have bridges in series. Figure 3.9(b) shows the 

schematic layout of the network. There are four min-cut sets: {1, LE}, {1, HE}, {2, MU}, {HE, 

MU}. 
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Figure 3.9 (a) Bridge network topology and (b) schematic bridge network (Reprinted from Liu and 

Frangopol, 2005) 

      The deterioration rates and initial states of bridges are adapted from Liu and Frangopl (2005). 

The planning horizon is set to be 30 years. The costs and the effect of maintenance activities are 

adopted from Kong and Frangopol (2003).  

      Figure 3.10 shows the results obtained after applying the two-stage approach on this network. 

The line plots the total maintenance cost required to achieve each reliability level (the allowed 

network failure probability), and the columns below the line show the allocation of the total 

budget. As expected, the cost increases for higher reliability level. Because Group 1 and Group 2 

have bridges in series, they are more vulnerable and relatively expensive to maintain. MU is the 

sturdiest bridge, with the lowest deterioration rate. Therefore, when the network reliability level 

is low, most maintenance efforts are applied to LE, HE, and MU to ensure the connectivity of 

this path. When a higher network reliability level is required, maintenance resources are 

allocated to Group 1 to ensure the second path, through Group 1 and MU. 

(a) 

(b) 
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Figure 3.10 Optimal results for different network reliability levels 

       A simulation is carried out to evaluate the conservativeness of the solution. Using the 

optimal maintenance policy for the reliability level of         , 1000 deteriorating profiles of 

the network are generated. The result gives an expected network reliability index of 4.0, with a 

standard deviation of 0.37. The expected reliability is higher than the required reliability by 2.6 

standard deviations, and therefore, the network reliability is kept above the threshold with 99.5% 

certainty. 

3.6 Extension to Networks with Multiple O/D pairs 

The methodology described above can be extended to the reliability of connectivity of a 

multiple-O/D-pair network. The minimal path sets and minimal cut sets in the multiple-O/D-pair 

network can be defined similarly as the single-O/D-pair network. A path for the network is a set 

of bridges, such that if all the bridges in the set have not failed, the network is connected. A 

minimal path is a set of components that comprise a path, but the removal of any one bridge will 

cause disconnection of the network.  

      Figure 3.11 is an example of the multiple-O/D-pair network, where each pair of the five 

nodes is an O/D pair. It can be observed that a minimal path corresponds to a spanning tree in the 

network. After all the minimal paths have been listed, the minimal cuts can be generated by 

subsequently selecting one bridge from any one of the minimal paths without repetition. 

However, because the number of spanning trees grows exponentially with the size of the graph, 

this approach may not be applicable to solve large scale networks.  
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Figure 3.11 Multi-OD network example (Reprinted from Bocchini and Frangopol 2011) 

 

      Using the minimal cut sets, the algorithm developed in Section 3.3 for single-OD-pair 

networks can be used to solve for the optimal set of thresholds. For illustration, this approach is 

applied to the multiple-OD-pair network studied by Bocchini and Frangopol (2011), shown in 

Figure 3.11. There are seven minimal cut sets:                                      
                       . Therefore, the network failure probability can be written as: 

                          
 

   
 
   

 
  

 
   

 
  

 
   

 
  

 
   

 
  

 
   

 
  

 
   

 
  

 
                                       

      Figure 3.12 displays the percentage of maintenance cost allocated to each bridge for different 

reliability levels. The five bridge decks‟ parameters are set to be equal in order to eliminate the 

effect of factors other than bridge location. Bridge 5 receives the largest amount of maintenance 

resources, about 30% ~ 40% of the total maintenance cost. The remaining budget is almost 

equally allocated to the other four bridges. The cause for this phenomenon is the special location 

of Bridge 5 in the network. The failure of Bridge 5 alone would lead to the disconnection of node 

E, while other disconnections require at least two bridges to fail. Thus, Bridge 5 is more 

important to network connectivity than other bridges. 

 

Figure 3.12 Proportion of maintenance cost over the five bridges 
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3.7 Summary 

This chapter addresses the problem of optimizing maintenance decisions for deteriorating 

bridges at the network level. The objective is to ensure an adequate level of network reliability at 

the lowest possible life-cycle cost. A two-step framework has been proposed. The first step is the 

facility-level problem which solves for the optimal cost functions of individual bridges. Using 

the results of the facility-level optimization, the second step reduces the network-level problem 

to searching for the optimal reliability levels of individual bridges that minimize the total 

maintenance cost and retain a predefined network reliability level. 

      For simple networks which can be decomposed into subsystem in series or in parallel, the 

network-level optimization has the form of a one-dimensional resource allocation problem, and 

can be tackled using standard techniques such as dynamic programming. For non-decomposable 

networks, an approximation method is used to obtain an expression for the network reliability 

level directly from the minimal cut sets of the network. Then, an algorithm transforms the 

network-level problem into a BILP.  

      To illustrate and evaluate the methodology, we have applied it on three different network 

topologies: a decomposable network (composed of the 7 cross bay bridges in the San Francisco 

Bay Area), a non-decomposable network (the highway network from Denver to Lafayette), and a 

virtual network with multiple O/D‟s. The computational complexity increases linearly with the 

size of the decomposable network. For non-decomposable networks, the major drawback is that 

BILP is NP complete and no solution in polynomial time has been found. Problems with 

moderate size, as considered in this chapter, can be handled by ordinary solvers on a PC 

(guaranteed to optimality), as opposed to the heuristic algorithms used in related literature.  
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Chapter 4  

Minimizing User Costs 

      Most real networks in urban areas are redundant and include hundreds, if not thousands of 

bridges. For these networks, connectivity is irrelevant as there are always alternative paths for 

vehicles to reach their destination. A more realistic metric is the user costs associated with bridge 

failures, i.e., the increase in travel time and travel distance caused by bridge failures. Using this 

performance metric, this chapter presents a solution method for management problems in large 

networks with many bridges. It is assumed that the network is not congested. Thus, user costs 

can be accurately reflected by the extra vehicle-miles travelled (VMT) caused by the closure of 

bridges.  

      The chapter is organized as follows. Section 4.1 defines the problem and introduces the user 

costs associated with bridge failures. Section 4.2 proposes and verifies a simplification 

conjecture. With this conjecture, Section 4.3 presents a Lagrangian decomposition method for 

the network optimal management. Finally, Section 4.4 summarizes the major findings of this 

chapter.  

4.1 Problem Definition 

As in the previous chapter, only bridge deck condition is considered. The deck reliability index 

       ⃑  is a stochastic process over time. This deterioration process        ⃑  is independent 

across bridges, and correlations in performance across bridges due to the environment and traffic 

are captured by the parameter vector  . 

       The bridges in a network are managed by a single agency such as a state department of 

transportation. The planning horizon is broken into discrete periods of one year, and the 

maintenance decisions are made every year.  

       Although bridge failures will not lead to disconnections of nodes in large and redundant 

networks, they can sever efficient paths connecting origins and destinations, increasing travel 

cost. Under a budget constraint, the objective of maintenance management is to minimize total 

increase in travel costs caused by potential bridge failures.  

      In the absence of congestion, the link user costs and the shortest paths connecting origins and 

destinations are fixed. The link cost for one trip can be reasonably expressed as a linear 

combination of the fixed link distance and link time. The cost of a set of failures can be 

measured by the difference in the travel costs of the users, assuming that they always choose the 

cheapest paths. This can be measured by calculating the difference in the costs before and after 

bridge failures for each O/D pair, multiplying each difference by the O/D flow and adding the 

results for all O/D pairs. This process is necessary because when several bridges fail 

simultaneously, the cost is not necessarily the sum of costs associated with individual failures. 
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Figure 4.1 illustrates the point. The alternative routes in both (a) and (b) represent costly paths. 

For case (a), the cost of a joint failure is much greater than that of a single failure, since vehicles 

have to take the costly alternative route when both bridges fail. On the other hand, for case (b), 

the joint failure cost is the same as the cost of a single failure. However, if the two failing bridges 

are far apart compared to a trip‟s length, then every O/D pair is affected by at most one bridge. 

Obviously, in this case, the added cost for two failures is the sum of the added costs for the 

single failures.  

      It is shown in the next section that if the failure probabilities are sufficiently low, these close 

failures are so unlikely that the added total cost can be accurately approximated by the sum of 

the costs for individual failures.  

 
Figure 4.1 The effect of bridge failures on VMT 

4.2 Conjecture and Verification 

In this section, we show when the increase in cost for an entire network is approximately equal to 

the sum of the increases caused by individual failures. There are two conditions for this to 

happen. The first is that the failure rate of bridges is very low, and thus the circumstance that 

close bridges fail simultaneously is rare. The second condition is that the networks should be 

redundant; there must be alternative routes available for vehicles to reach their destination even 

if one or more links are out of service. These two conditions hold for developed regions, where 

highway facilities are dense and maintained regularly.  

      The conjecture is now verified. Subsection 4.2.1 proves it analytically for a class of 

homogeneous networks, and Subsection 4.2.2 verifies it in a real network. 

 

alternative route

(a)

(b)

1

alternative route

2

1 2
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4.2.1 Analytic proof for homogeneous grid networks 

We choose idealized grids to prove the conjecture because they can represent very different 

scenarios by adjusting just a few parameters and can be modeled analytically. First, the features 

and parameters of the network are described. Then, a formula for the error bounds is presented. It 

is shown that the approximation error is negligibly small. 

Network description and notations 

The region under analysis is a square covered by a grid network with M arterials in each 

direction (north-south and east-west), as shown in Figure 4.2. This grid is overlaid over an 

infinitely dense grid of slower streets, which are used to access the arterials. The length of an 

arterial block is L. Bridges are located at intersections; there are m blocks between two 

neighboring bridges. The bridge failure probability is  , and the failures happen independently. 

All bridges are in the north-south direction. Thus, when a bridge fails, vehicles on the 

corresponding north-south arterial cannot go through the bridge, and afterwards vehicles cannot 

make turning movements at the intersection either, they can travel east-west.  

      It is assumed that trip origins are uniformly distributed, that all trips have a maximum length 

of nL, and that for each origin, destinations are uniformly distributed within the origin‟s 

reachable area. The demand density is q (veh/m
4
), representing the number of vehicles generated 

from a unit area and attracted to a unit area in the reachable area. 

      Vehicles access and egress the network at the arterial intersections closest to their origins and 

destinations. Because trips normally span many blocks (i.e. n is typically large), only vehicle-

miles travelled on the network are considered; the access/egress distances are neglected.  

 

Approximation formula and error bounds 

As shown in Figure 4.2, when a bridge fails, vehicles going from area A to area B (or vice versa) 

need to take neighboring arterials to reach their destinations. These vehicles have to travel to the 

neighboring streets and then travel back, resulting in an additional distance of 2L per vehicle. All 

other O/D pairs remain unaffected. Thus, the increase in VMT due to the failure, denoted  , is 

the product of 2L and the total number of vehicles affected by the failures: 

                                              ∫            
  

 

                                

Thus,  

                                                                                                                                           

      Now, use   to represent the expected increase in VMT of the entire network and    the 

expected increase under the conjecture. Since there are       bridges in the network, we have: 

                                                              (
  

  
)  
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This formula is approximate because it uses (4.1) and (4.2) for failures close to the boundary, 

even though the boundary then reduces the number of affected vehicles. The formula is 

asymptotically exact as     and should be quite accurate for large networks; i.e. when 

     . 

 
Figure 4.2 Illustration of an individual failure 

      The approximation error   is defined as the expected value of the absolute difference 

between the exact increase in vehicle-miles travelled due to simulated failures and the 

approximate increase derived by summing the increases obtained for each failed bridge in 

isolation from the others. To assess the error, Appendix B investigates the interaction effect 

between two close failures, and then derives error bounds for cases involving more failures. 

Finally, these results are synthesized to obtain an overall error bound.  

      It turns out that   is negligibly small. To quantify it, let        be the relative error. 

Appendix A shows that     , where 

                                                                                                                                      

                                               
  

  
  (

  

 
)
 

                                                                              

Since the right sides of these equations tend to 0 as      , this establishes that (4.3) is a very 

good approximation in practical cases, where typically        and        . 

       Equations (4.4) can be explained qualitatively as follows. For a given bridge failure, there 

are        bridges nearby that can interact with it. If       , it is very unlikely that close 

failures occur, and therefore, their interactions are negligible. This should also be true if the 

M

M

L

A

B

a bridge fails

nL

nL
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network and the demand are inhomogeneous. Thus, the conjecture should also hold for real 

networks.  

4.2.2 Verification in real world network 

Although many networks do not have exact grid layouts, they can be obtained by deforming a 

grid. Therefore, equations (4.4) are now re-expressed in terms of variables that can be measured 

for real networks. The accuracy of this approximation is then verified using the highway network 

of the San Francisco Bay Area.  

       To re-express equations (4.4), we need to replace n and m by equivalent parameters that 

would be meaningful for an arbitrary network. Since n and m are proxies for “trip length” and 

“distance between bridges”, let us introduce    as the average trip length, and    as the average 

distance between neighboring bridges. In a grid,         , and       . Thus, (4b) can be 

rewritten in terms of the more generic parameters    and    as: 

                                                              
   

   
   (

   

  
*
 

   
  

 
                                                   

Equation (4.4a) is not included because in most cases     . 

      According to the National Bridge Inventory, there are 6,107 bridges in the Bay Area, 549 of 

which are structurally deficient. Given the total area of the Bay Area,    is estimated to be 1.07 

miles. The original highway network is adopted from the Metropolitan Transportation 

Commission (MTC) travel model, and the traffic demand comes from MTC is demand forecasts 

for year 2010, from 6 a.m. to 10 a.m. on a weekday. Dividing total vehicle-miles travelled by the 

number of trips,    is estimated to be 5.72 miles.  

      Simulations were carried out to evaluate approximation errors in the real network and in an 

equivalent grid. The failure probability of deficient bridges was set to be         , 

corresponding to a low reliability index of 3. Other bridges have a smaller failure rate of 

        , although in reality       . For each of the ten instances generated, the failures 

were recorded, as was the added user cost. The increase in VMT due to a set of failures was then 

compared with the sum of the increases in VMT due to single failures to determine the absolute 

error. These absolute errors were then averaged across the 10 instances to estimate the absolute 

error,   , and the relative error,    .  
      For the equivalent grid network,              . The absolute error,   , and the 

relative error,    , were estimated by averaging 200 instances on a grid with n = 16, m = 2. The 

estimated relative errors from simulation,   
  ̂ and    ̂, and the error bound from formula (4.5), B, 

are shown in Table 4.1. The table shows that the analytic bound also holds for the real networks, 

and more importantly that the results for the real and idealized networks are very close. This 

supports our claim that the approximation can be used with confidence in real networks.  
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Mean Relative Error 
in the Real Network 
   

  ̂     

Mean Relative Error 
in the Equivalent 

Grid     ̂     

Error bound 
      

                              
Table 4.1 Comparison of the mean errors and the error bound 

      Although the example used a distance metric, similar results would have been obtained with 

any reasonable linear combination of link distance, time and toll. After all, these changes could 

be calculated into equivalent distances, which may change the shape of the network; and we have 

seen from the first two columns of Table 4.1 that these changes have insignificant effects on 

accuracy.  

4.3  Network-Level Optimization 

Under the conjecture, the total user cost of the network can be explicitly expressed as the sum of 

user costs induced by individual bridges. The network problem can then be broken down into 

smaller subproblems using Lagrangian decomposition. The subproblems can be tackled with 

dynamic programming. In Subsection 4.3.1, the formulation and methodology are presented. In 

Subsection 4.3.2, the method is applied to a virtual network of 6,000 bridges as an illustration.  

4.3.1 Formulation and Methodology 

Lagrangian decomposition 

The network-level maintenance management problem solves for the optimal maintenance policy 

that minimizes the expected increase in user cost due to possible bridge deck failures, subject to 

a multiyear budget constraint. Many agencies have a yearly budget constraint, but it is reasonable 

to assume that they are allowed to carry over unused funds in a given year to subsequent years. 

There are a range of maintenance actions that can be taken, and maintenance decisions are made 

every year for each bridge deck. The current condition of each deck is assumed to be known 

perfectly, meaning that inspections are carried out every year and are error free. It is also 

assumed that agencies are allowed to carry over unused funds in a given year to subsequent years. 
      There are N bridges in the network, and the planning horizon is T years. The set of decision 

variables is                            , whose elements are the actions applied on the 

bridges in each year. The failure probability of bridge i in year t,    , depends on the initial 

conditions and the history of maintenance actions. Therefore,     is a function of time t, initial 

condition    , and the history of maintenance actions    ⃑⃑⃑⃑⃑⃑                 . Under the 

conjecture, the increase in user cost in the network is approximately equal to the sum of the 

increases in costs due to individual failures. The formulation of the optimization problem is then: 
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    ∑∑                 ⃑⃑⃑⃑⃑⃑  

 

   

 

   

         ∑∑       

 

   

 

   

                

                                                               

A – set of all possible MR&R actions, including maintenance, repair, and reconstruction 

activities, and do-nothing; 

      – increase in user cost due to the failure of bridge deck i in year t; 

        – the maintenance cost of action     on bridge deck i; 

  – total budget. 

The Lagrangian of the constrained optimization is: 

                                 ∑(∑(                  ⃑⃑⃑⃑⃑⃑            )

 

   

+  

 

   

                                  

which is separable, so we can minimize over individual bridge decks separately, given the 

Lagrangian multiplier  . For bridge i, the subproblem can be denoted as  

                                       
   

∑(                  ⃑⃑⃑⃑⃑⃑            )

 

   

                                               

The dual problem to the original optimization is:     ∑      
 
      . The first order 

condition for maximum is ∑ ∑        
 
   

 
     . If we use the bisection method to update  , a 

simple algorithm can be obtained: 

 

initiate      and     ; 

repeat 

                     
    solve the subproblems (possibly in parallel); 

         if ∑ ∑        
 
   

 
     , update       ;     

         if ∑ ∑        
 
   

 
     , update       . 

 

For a given  , a set of subproblems needs to be solved to obtain      . Computing time can be 

shortened by solving subproblems in parallel and updating   with other efficient algorithms for 

quicker convergence of the dual problem.  

      The following section describes a dynamic programming method for the subproblems. The 

framework is as in Section 3.3.1. The main difference is that user costs are now considered as 

part of the objective function. 
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Dynamic programming for subproblem 

The subproblem is: 

                                          
   

  ∑(
 

 
                  ⃑⃑⃑⃑⃑⃑          )

 

   

                                            

The first term in the brackets can be interpreted as the user cost for a given deck condition, and 

then the problem becomes a typical facility-level optimization. There are different approaches 

for solving the maintenance management problem for a single bridge. Here, we solve it as a 

Markov decision process with augmented states (Robelin and Madanat, 2007), as it uses standard 

and efficient optimization techniques and retains the effects of the history of deterioration and 

maintenance as part of the model. The state of a bridge deck is represented by a three-

dimensional vector          , where β is the reliability index, u represents the type of the 

latest action performed on the bridge, and τ represents the time since the latest action. Given the 

state of the bridge deck, the failure probability    is equal to      . The Bellman recursion is: 

                    
     

{
 

 
                     ∑                   

   

}                       

                                                

                                                                                                                                                              

 X: state space of the Markov Chain; 

      : the probability of failure given that the current state is x.  

 )(xVt : minimum cost-to-go for the agency to manage a bridge deck currently in state x 

from year t to the end of the planning horizon.  

            : transition probability from state x to state y in the next year, given action     

is applied.  

4.3.2 Numerical example 

The numerical study is implemented on a network with 6,000 bridges. The planning horizon is 

60 years. To represent heterogeneity in the network, we randomly divide the bridges into 10 

homogeneous groups. The transition probabilities matrices are obtained by Monte Carlo 

simulation, based on the stochastic lifetime profile of the reliability index from Frangopol et al. 

(2001). Details of this Monte Carlo simulation process used are provided in Robelin and 

Madanat (2007). The costs of the maintenance actions are adopted from Kong and Frangopol 

(2003). Our example uses a distance-based metric, and the increase in VMT caused by a bridge 

failure is estimated based on the traffic demand and the transportation network of the San 

Francisco Bay Area. To capture the heterogeneity across different groups, the parameters 

provided in these papers are adjusted within realistic ranges.  
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      The algorithm is implemented to solve the optimization for different budgets. Figure 3 plots 

for different budget levels, the inverse of  , which represents the extra budgetary dollars required 

to save one additional vehicle-mile of user “cost” ($/veh-mile). As expected, as the budget 

increases, the cost of saving an additional vehicle-mile increases, meaning that the better the 

system, the more costly it is to find extra savings.  

 
Figure 4.3 Numerical implementation for 6,000 bridges 

      Figure 4.3 also shows that the budget required to achieve optimality depends on how much 

the highway agency values one vehicle-mile of user cost. In our example, if this monetary value 

is $1, then the budget required for the network‟s lifecycle maintenance is around $20.6 billion.  

      For a prescribed value of user costs, the method can yield the optimal maintenance policies 

for individual bridges. With     set to be $1/veh-mile, Figure 4.4 plots the expected amount of 

budget consumed by the three different maintenance actions at each year during the lifecycle. In 

our example, most of the construction actions are conducted between year 15 to year 40, and 

most of the repairs are conducted in the later period. This type of analysis can help agencies plan 

the maintenance budget over the lifecycle of bridge networks.  
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Figure 4.4 Lifecycle budget allocated on different maintenance actions 

 

      The solution time increases linearly with the size of the network. Assume it takes τ seconds 

to solve one subproblem. This is independent of N. To update  , N subproblems should be solved, 

which takes Nτ seconds, where N is the number of bridges in the network. If the error allowed 

for   is     , the number of iterations needed is                   . Therefore, the solution 

time is                     , which is proportional to N as claimed.  

4.4  Summary 

This chapter shows how to find the optimal maintenance plans for deteriorating bridges in large-

scale networks. The objective is to minimize the expected increase in user costs caused by 

potential bridge failures over a planning horizon, under a budget constraint. The main 

contributions are: 

 

 The overall user cost is measured directly by the increase in travel time and distance, which, 

for large networks, are more relevant than connectivity or other metrics used in past research.  

 It is shown that for uncongested networks our approximation is valid. As a result, the 

network-level optimization problem can be decomposed.  
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 An efficient approach is developed, capable of optimizing the maintenance activities of large 

networks with thousands of deteriorating bridges over multiple periods.  

 

      These contributions pertain to uncongested networks. They apply because bridges separated 

by large distance do not interact. In the real world, there can be congested links, especially in 

urban areas during peak hours. Although congestion can enlarge the critical distance above 

which two bridges do not interact, the enlargement should be small for moderately congested 

networks. (Unless a grid-like network is severely congested everywhere, the elimination of a link 

in this kind of a network does not appreciably change the congestion level of far-away links; see 

Newell (1993) for an analysis.)  Thus, bound (4.4) should still hold in moderately congested 

networks, if one uses the congested link costs of the basic network (without failures) as the basis 

for evaluating the       of the proposed methodology. If congestion is more severe, (4.4) can be 

violated, but it should be remembered that the bound is very tight. Thus, the method proposed in 

this paper should yield reasonable results even under typical congestion levels found in real cities. 

Since, to date, there are no alternative solution methods for large networks, the proposed 

methodology can serve as a benchmark against which improved methods can be compared.  
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Chapter 5  

Conclusions  

      This chapter concludes the dissertation. Section 5.1 summarizes the contributions of this 

research. Section 5.2 points out several possible directions for future work. 

5.1 Contributions 

This dissertation addresses the problem of optimizing maintenance, repair and reconstruction 

decisions for deteriorating bridges in highway networks. The bridge deck condition is measured 

by its reliability index, and its deterioration process is modeled as Markovian process with 

augmented states. A comprehensive framework is developed to help agencies make optimal 

maintenance plans that best balance the overall network performance and the total maintenance 

cost.  

      Instead of using a uniform criterion, suitable metrics are chosen for different types of 

networks. For moderate size networks with limited redundancy, the network performance is 

quantified by a graph-theoretic indicator of network connectivity. For large and redundant 

networks, the network performance is measured directly by the total user costs associated with 

potential bridge. Therefore, the research problems are twofold: retaining network connectivity in 

moderate-size networks and minimizing total user costs in large networks. 

      The first part of the research focuses on moderate-size networks with limited redundancy. 

The problem is formulated as determining the optimal maintenance policies that minimize the 

total agency cost while retaining a prescribed network reliability level. The major contributions 

in this part of research include:   

 

 An approximation of network reliability is obtained for non-decomposable networks of 

moderate sizes that is a function of individual bridge reliabilities.  

 

 A novel two-stage approach is developed to tackle the connectivity problem, which makes it 

possible to solve the problem by using standard optimization tools (with guaranteed 

convergence to optimality), as opposed to the heuristic algorithms used in related literature. 

 

 Different types of network topologies are considered, including decomposable and non-

decomposable networks, single-O/D-pair and multiple-O/D-pair networks. 
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      The second part of the research focuses on large and redundant networks. A simple method is 

developed to solve for the optimal policies that minimize the total user costs of the network 

under a budget constraint. The major contributions in this part of research are listed as follows:  

 

 The overall user cost is measured directly by the increase in travel time and distance, which 

are more relevant for these networks than connectivity or other metrics used in past research.  

 

 It is verified that the expected increase in user costs due to bridge failures can be 

approximated by the sum of increases due to individual failures, if a network is uncongested.   

 

 An efficient solution method is developed, capable of solving MR&R optimization problems 

for large networks with thousands of deteriorating bridges over multiple periods.  

 

      Aside from these contributions in the methodology aspects, this research also produces 

practical benefits. Using the framework presented in this dissertation, analysis can be carried out 

on the resource allocation in the optimal solution, which can help the agencies plan the 

maintenance budget over the lifecycle and over the bridges in the network. 

5.2 Future Work 

The directions for future research include the following: 

 

 For networks with multiple O/D pairs, the connectivity is inversely proportional to the 

network failure probability, i.e., the probability that any O/D pair is disconnected. Using this 

indicator, all the O/D pairs are equivalent in the formulation. However, some O/D pairs may 

have larger social or economic impact than others, and their connection may be more 

important. This consideration should be included in the future research. 

 

 Our assumption that the expected increase in user costs due to bridge failures can be 

approximated by the sum of increases due to individual failures is validated for uncongested 

networks. It holds because bridges separated by large distance do not interact. In the real 

world, there may be congested links, especially in urban areas during peak hours. Congestion 

may enlarge the critical distance above which two bridges do not interact, and the error 

bound may not hold for severely congested networks. Although the method is expected to 

yield reasonable results even under typical congestion levels found in real cities, future 

research should investigate the impact of congestion in more detail and develop improved 

methods. 

 

 The agency costs are computed as the total discounted maintenance cost of the network over 

multiple periods. In the numerical examples, the planning horizons are set to be long. The 

optimization problems produce Pareto frontiers of performance indicators and total agency 

cost. This type of analysis can help agency plan the budget for the lifecycle maintenance of 

networks. In practice, agencies usually have yearly budget constraint. To find the optimal 

policies that fit the yearly budget constraint can be a direction for future research. 
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 The network-level management problem seeks to achieve satisfactory overall network 

performance. The conditions of individual bridges are not considered separately. In practice, 

because bridge collapse can cause great economic loss and threaten the safety of its users, the 

bridge management should constrain the condition of individual bridges. 

 

 Aside from bridge failures, maintenance actions may result in partial or fully closure of 

bridge lanes, and cause delays and detours to the network users. Future research should 

include user costs due to maintenance actions.   
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Appendix A. Pseudocode for the network-level optimization 

1 

2 

3 

Define NetProbability (predefined threshold of network failure probability). 

Define Z [bridgeID, thresholdID] (decision variable). 

Define CutSize (set of cut sizes, initially empty). 

4 Input OptCost [bridgeID, thresholdID] (the optimal cost from facility-level optimization). 

5 Input ThresholdValue [thresholdID] (threshold of probability of failure in facility-level problem). 

6 

 

Objective function: 

sum  Z [bridgeID, thresholdID]* OptCost [bridgeID, thresholdID] over bridgeID and thresholdID 

7 Equality Constraint: 

8 FOR each bridgeID 

9     Sum Z [bridgeID, thresholdID] over thresholdID = 1 

10 END FOR 

11 FOR each minimal cut set 

12     IF the size of minimal cut   CutSize  THEN 

13         Add the size of minimal cut to CutSize. 

14     END IF 

15 END FOR 

16 FOR each cutsize in CutSize 

17 Build up a cutsize-dimensional matrix ActiveProb.cutsize:  

 ActiveProb.cutsize [i1,i2,…,icutsize] = ThresholdValue [i1]* ThresholdValue [i1]*…  

*ThresholdValue[icutsize]. 

18      Index.cutsize = Find (ActiveProb.cutsize > NetProbability)  

    (return the coordinates of the elements in ActiveProb.cutsize with values greater than NetProbability) 

19 END FOR 

20 Inequality constraints 

21 FOR each minimal cut set 

22     currentSize = size of the minimal cut set; 

23     FOR each row of Index.currentSize 

24         Add constraint:  

        sum Z [currentcut[i], Index.currentSize[row,i]] over i (from 1 to currentSize) <= currentSize – 1. 

25     END FOR 

26 END FOR 

27 CALL BILP solver; return solution Z and currentCost. 

28 current network failure probability = function of Z. 

29 WHILE current failure probability > NetProbability 

30 Add constraint: 

sum Z [bridgeID, thresholdID]* OptCost [bridgeID, thresholdID] over bridgeID and thresholdID > = 

currentCost + unit cost. 

31     CALL BILP solver; return solution vector Z and currentCost. 

32 current network failure probability = function of Z. 

33 END WHILE 
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Appendix B. Upper bounds for the approximation errors 

(1) Approximation errors with two close failures 

 

Bridges are labeled by their coordinates in the network; i.e., bridge ij represents the bridge on the 

ith row and jth column. Then, the event of a specific pair of failures can be denoted as            , 

representing the failures of bridges           and no other failures interacting with them. 

Therefore, the probability of the occurrence of event            , denoted as           , should be 

smaller than   , where   is the failure probability of a single bridge.  

      Let            denote the interacting effect of the two failures, and it is equal to the difference 

between the actual increase in VMT when both bridges fail and the sum of the increments due to 

two single failures. Use    to represent the mean absolute error caused by two close failures, 

then    ∑ (                       )           . To obtain an analytical expression of   , we first 

analyze the interacting effect between any two specific failures,           . Interaction exists if and 

only if these two failures are on the same or neighboring columns; otherwise, their impacts on 

VMT are independent.  

 

Case 1: the two failures are on the same column j 

Result 1.                       
    ,            

Proof. Let          , which is the number of blocks between the two failures. As shown in 

Figure A1, the vehicles generated in area A/B with destinations in B/A are only interrupted once, 

when both bridges fail. Thus, the actual increase in VMT should be smaller than the sum 

increments of VMT caused by individual failures. The number of vehicles generated in A/B and 

with destinations in B/A can be calculated as: 

  ∫       
      

 

 
 

 
          

To bypass the unserviceable joints, affected vehicles need to travel to the neighboring corridors 

and then travel back, which results in an additional length of 2L per vehicle. Therefore, we have 

            
 

 
                        . □ 
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Figure B1 – Interaction between failures on the same column 

 

Case 2: the two failures are on two neighboring columns 

Result 2.            {
                                               

                                  
 

Proof. The actual increase VMT is greater than the sum of increments due to individual failures, 

since the crossing vehicles are also impacted. If the two failures are also on the same or the 

neighboring rows, vehicles with OD pairs of A1-B2 and A2-B1 need to reroute to reach their 

destinations, as shown in Figure A2. The number of vehicles generated in A1 with destinations 

in B2 can be calculated as: 

  ∫   (        )    
      

 

 
 

 
          

Each vehicles need to travel 2L more distance. Thus,  

nL

nL

nL

nL

A

B

i1,j fails

i2,j fails

(n-k)L

(n-k)L

kL
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      Note that although the above formula is derived for cases when      , we use the same 

formula for cases when          . There is a small change in the number of affected vehicles 

in the latter case, but it is neglected for simplicity. 

 

 

Figure B2 – Interaction between failures on neighboring columns 

      If there is at least one row between the two failures, the vehicles with OD pair of A2-B1 can 

take the row between the failures, and they do not need to travel additional miles. The number of 

vehicles generated in A1 with destinations in B2 can be calculated as: 

  ∫   (          )    
        

 

 
 

 
            

where          . Thus the excess due to interaction is: 

             
 

 
                            □ 

A2

B2

A1

B1
nL

nL

i1,j1 fails

i2,j2 fails
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Figure B3 – Interaction between failures on neighboring columns 

      If    , indicating that there is a bridge at each intersection, both of the two cases 

described above need to be accounted for. If    , only the interaction in case 1 need to be 

considered, since bridges cannot be on the neighboring corridors. The relative error   
      , 

where   is the expected increase in VMT of the entire network under the conjecture.  

 

Result 3a.   
              

Result 3b.   
       , when     

Proof. Recall that    ∑ (                     )            and              . Therefore, we have 

     (∑                      ). Based on the expressions for the approximation error   provided 

in Result 1 and Result 2, the expression of the sum can be derived with algebra.  

      When    ,                       . Then, the relative error   
       

    
 

 
 

 

  
 

 

      . When    ,     
 

 
(
   

   
 

 
  

  

  )       . The relative error 
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. □ 

 

(2) Approximation error with         close failures 

Let          denote the mean absolute error due to r close failures, and   
 ,   

       ,denote 

the relative error. 

i1 A1 A2

C2

B2

C1

B1

i1,j1 fails

i2,j2 fails

kL
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      Based on the analysis in Appendix A, two failures should be geographically close for them to 

interact mutually; they should be on the same or neighboring columns and within a distance of 

  . In other words, when a bridge    fails, it only interacts with failures within a certain area, 

which is defined as the interacting area of bridge   . Similarly, when r close failures happen, 

there is an interacting area such that the failures outside this area have no interaction with the r 

failures. We use    to denote the number of bridges in the interacting area of r close failures. 

The number of bridges in the interacting area of a single failure can be counted: when m = 1, 

       ; when m = 2,        . For    , the interacting area of the   close failures is 

the union of that of individual failures. The number of bridges in the interacting area is not a 

constant; it depends on the specific combinations of the   close bridges that fail. However, the 

bounds for    can be obtained. First, the interacting area of r failures should be larger than that 

of a single failure, and therefore,      . Besides, because the interacting areas of the 

individual failures must have some overlaps for them to be “close”, an upper bound   
  for    is 

   . 

      Use    to denote a specific combination of   close failures. The set        , is the set of all 

specific combinations of   close failures. The occurrence of    requires that the   specific 

bridges fail and that the bridges in their interacting area are in service. Therefore, the probability 

that    occurs is equal to          . Use       to denote the error encountered given that    

happens. The formula for    is: 

   ∑           

     

        ∑   

     

        

 

Result 4a.   
            , when        . 

Result 4b.   
             , when         . 

Proof.    is the number of all specific combinations of r close failures, and    is the upper bound 

of        . Then, an upper bound for the mean absolute error caused by r close failures is    
   .  

      There are       bridges in the network. We can think it as a selection process to find the 

number of different combinations of r close failures. For the first failure, we arbitrarily choose 

one from the       bridges. The second failure should be within the interacting area of the first 

failure, and there are    options. Similarly, there are    options for the third failure,    options 

for the fourth, etc. Thus, the number of different selections is              
 . Because the 

order of the failures should not be considered in the combination,                  
  

   . Recall that the upper bound of    is    . Then,    
       

   

   
. 

      Next, we analyze the bound of      . When    , an upper bound for the number of 

affected vehicles is                       . To bypass the r failures, vehicles need to 

travel rL miles at most. Therefore,                        . If    , the interaction 

is among failures on the same column. The number of affected vehicles is no greater than 

                     , and           . 
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            Recall that         when    , and          when    . By the formula 

      
   , the approximation error                        , and the relative error 

  
                 , if    . The approximation error            

            . 

The relative error   
             , if    . □ 

 

(3) Total approximation error  

Result 5. An upper bound for the total relative error is: 

  {
                      

                        
  

Proof. The approximation error should be smaller than   
  ∑   

  
   . Based on Result 3a, 3b 

and Result 4a, 4b, when m = 1, the upper bound is: 

   ∑          

 

   

             

 When    , the upper bound is: 

      ∑           

 

   

                   

  



50 
 

Bibliography 
 

 

ASCE, 2013 ReportCard on America‟s Infrastructure, www.infrastructurereportcard.org. 

Augusti, G. et al. (1994), “Optimal Allocation of Resources in reduction of Seismic Risk of 

Highway Networks”, Engineering Structures, 16(7): 485 – 497. 

Bellman, R. E. and Dreyfus, S. E. (1962), Applied Dynamic Programming. Princeton University 

Press, 1st edition.  

Benaddy, M. and Wakrim, M. (2012), “Cutset Enumerating and Network Reliability Computing 

by a new Recursive Algorithm and Inclusion Exclusion Principle”, International Journal of 

Computer Applications, 45(16): 22 – 25. 

Bocchini, P. and Frangopol, D. M. (2011), “A Probabilistic Computational Framework for 

Bridge Network Optimal Maintenance Scheduling”, Reliability Engineering and System Safety, 

96(2): 332 – 349. 

Bocchini, P. and Frangopol, D. M. (2011), “Probabilistic Bridge Network Life-Cycle 

connectivity assessment and optimization”, Applications of Statistics and Probability in Civil 

Engineering (M.H. Faber, J. Köhler, K. Nishijima eds.), digital version 556-561. 

Bocchini, P. and Frangopol, D. M. (2013), “Connectivity-Based Optimal Scheduling for 

Maintenance of Bridge Networks”, Journal of Engineering Mechanics, 139(6): 760 – 769. 

Bonstrom, H. and Corotis, R. (2013), “Regional Hazard Damage Estimation Using System 

Reliability”, Structures Congress 2013, 1800-1811. 

Estes, A. C. (1997), “A System Reliability Approach to the Lifetime Optimization of Inspection 

and Repair of Highway Bridges”, Ph.D. Thesis, Department of Civil, Environmental, and 

Architectural Engineering, University of Colorado, Boulder, Colorado.   

Frangopol, D. M. and Estes A. C. (1997), “Lifetime Bridge Maintenance Strategies based on 

System Reliability”, Structural Engineering International, IABSE, 7 (3): 193 – 198. 

Frangopol, D. M., Kong, J. S. and Gharaibeh, E. S. (2001), “Reliability-Based Life-Cycle 

Management of Highway Bridges”, Journal of Computing in Civil Engineering, ASCE, 15(1): 

27 – 47. 

http://www.infrastructurereportcard.org/


51 
 

Ghosh, J., Rokneddin, K., Padgett, J. E. and Dueñas-Osorio, L. (2013). “Seismic reliability 

assessment of aging highway bridge networks with field instrumentation data and correlated 

failures. I: Methodology.” Earthquake Spectra, accepted for publication 

Hawk, H. and Small, E. P. (1998), “The BRIDGIT Bridge Management System”, Structural 

Engineering International, 8(4): 309 – 314. 

Hoyland, A. and M. Rausand (1994), System Reliability: Models and Statistical Methods. John 

Wiley & Sons, New York. 

Kong, J. S. and Frangopol, D. M. (2003), “Life-Cycle Reliability-Based Maintenance Cost 

Optimization of Deteriorating Structures with Emphasis on Bridges”, Journal of Structural 

Engineering, 129(6): 818 – 828. 

Lin, H., Kuo, S. and Yeh, F. (2003) “Minimal cutset enumeration and network reliability 

evaluation by recursive merge and BDD,” in Proc. IEEE 8
th

 Symposium on Computers and 

Communication, Antalya, vol. 2, 1341 – 1346. 

Liu, M. and Frangopol, D. M. (2005), “Balancing Connectivity of Deteriorating Bridge 

Networks and Long – Term Maintenance Cost through Optimization”, Journal of Bridge 

Engineering, 10(4): 468 – 481.  

Liu, M. and Frangopol, D. M. (2006), “Optimizing Bridge Network Maintenance Management 

under Uncertainty with Conflicting Criteria: Life-Cycle Maintenance, Failure, and User Costs”, 

Journal of Structural Engineering, 132(11): 1835 – 1845. 

Madanat, S. M. and Ben-Akiva, M. (1994), “Optimal Inspection and Repair Policies for 

Infrastructure Facilities”, Transportation Science, 28(1): 55-62. 

Markow, M. J., Madanat, S. M., and Gurenich, D. I. (1993), “Optimal Rehabilitation Times for 

Concrete Bridge Decks”. Transportation Research Record 1392. 

Newell, G. F. (1993), “Flow Around Distortions in A Dense Rectangular Grid Road Network, I. 

Theory, II. Examples”, Proc. 12th Int. Symposium on the Theory of Traffic Flow and 

Transportation, Elsevier, 1993, pp. 1-16, 17-36. 

Orcesi, A. D., and Cremona, C. F. (2010), “A Bridge Network Maintenance Framework for 

Pareto Optimization of Stakeholders/Users Costs”, Reliability Engineering and System Safety, 

95(11): 1230 – 1243. 

Robelin, C. A. and Madanat, S. M. (2007), “History-Dependent Bridge Deck Maintenance and 

Replacement Optimization with Markov Decision Processes”, Journal of Infrastructure Systems, 

13(3): 195 – 201. 



52 
 

Robelin, C. A. and Madanat, S. M. (2008), “Reliability-Based System-Level Optimization of 

Bridge Maintenance and Replacement Decisions”, Transportation Science, 42(4): 508 – 513. 

Sinha, K., Saito, M., Jiang, Y., Murthy, S., Tee, A. B. and Bowman, M. (1988), “The 

Development of Optimal Strategies for Maintenance, Rehabilitation and Replacement of 

Highway Bridges, Final Report Vol. 1: The Elements of Indiana Bridge Management System”, 

Report FHWA/IN/JHRP-88/15, FHWA, U.S. Department of Transportation. 

Song, J. and Ok, S-Y. (2010), “Multi-scale system reliability analysis of lifeline networks under 

earthquake hazards”, Earthquake Engineering & Structural Dynamics, 39(3): 259 – 279. 

Thoft-Christensen, P. (1998), “Assessment of the Reliability Profiles for Concrete Bridges”, 

Engineering Structures, 20(11): 1004 – 1009. 

Thompson, P. D., Small, E. P., Johnson, M. and Marshall, A. R. (1998), “The Pontis Bridge 

Management System”, Structural Engineering International, 8(4): 303 – 308.  




