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ABSTRACT

In markets with increasing returns to scale in investment,

competition will occur over both the amount and the timing of new capital

construction. This paper develops a theory of competition in markets with

indivisible and irreversible investments. The consequences of competition

depend on
firms act
costs for

different

the strategies and information available to the competitors. If
as Nash competitors with binding contracts, revenues will exceed
any number of firms and otherwise identical firms will earn

profits. In the absence of binding contracts, competition over

the timing of investment can completely dissipate profits in a sub-game

perfect equilibrium with two or more firms.
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ABSTRACT

In markets with increasing returns to scale in investment,
competition will occur over both the amount and the timing of new capital
construction. This paper develops a theory of competition in markets with
indivisible and irreversible investments. The consequences of competition
depend on the strategies and information available to the competitors. 1If
firms act as Nash competitors with binding contracts, revenues will exceed
costs for any number of firms and otherwise identical firms will eamn
different profits. In the absence of binding contracts, competition over
the timing of investment can completely dissipate profits in a sub-game

perfect equilibrium with two or more firms.







1. TINTRODUCTION

Scale economies play an important role in the theory of industrial
organization as a determinant of industry structure, conduct and perform-
ance, Joe Bain's pioneering study of the structure of U.S. industry
identified scale economies at the plant level that are substantial in many
industries, but rarely large enough to explain observed measures of firm
concentration.1 Since Bain published his findings, most of the theoret-
ical and empirical literature has concentrated on a static concept of
scale economies and ignored the crucial distinction bhetween econonies of
scale in the short versus long run. This paper is concerned with competi-
tion in an industry in which short run scale economies exist, but in a
long run sense there are constant returns to scale. Invastment in capac~
ity is indivisible or "lumpy”, which implies that over the short run,
defined as a period in which capacity is fixed, average costs fall as
output increases up to a capacity limit; however, the "envelope™ of all
the shért run cost curves is an approximately flat long run average cost
curve. This type of cost structure is relevant for many industries, even
some we might refer to as competitive.

The industry examined in this paper faces a growing demand for a
homogeneous product. At any moment of time the next increment to industry
capacity should be provided efficiently by only one firm, yet many firms
are competing for the next investment. This leads to what Richardson
(1960) has termed the "nomination problem”--how do firms resolve who is to
carry out the investment? Another aspect of the investment process is

that new capacity is long lived and firm specific.2 The irreversibility
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of capital implies that-the market Is not “"contestable” as defined by
Baumol (1982) because there is no freedom of exit. Also, preemptive
investment may be a credible threat, and this can have important conse—
quenceg for the nature of competition. -
No discussion of industrial evolution can be independent of

behavioral assumptions that determine the nature of firm interactions,
This paper considers two different equilibrium concepts. Both are Nash,
but differ in the type of strategies used by firms. The first is an

oligopoly where each firm chooses a sequence of investment dates, taking

the sequence of competitors' investments as given and independent of its
actions. An Implicit assumption is that firms write binding contracts for
the construction of new capacity. This equilibrium concept appears
frequently in discussions of "dynamic¢” games where each agent’takes the
time paths of other agents' actions as given, and it is implicit in
"open—loop” control-theoretic models of competition. Since agents do not
choose actions that depend on the actual history of the game, this
equilibrium concept is edquivalent to a one-shot Cournot game with the
actions defined over functions of time.

A characteristic of the Cournot—-Nash game is that identical firms
typically earn different profits, While the Cournot-Nash equilibrium
concept is appropriate in games where agents can precommit to actions that
do not change over time, the absence of rent egualization suggests diffi-
culty with maintaining such an outcome. The second equilibrium concept
deals directly with the rent equalization problem. In this game, agents
form strategies that depend on the history of the game and provide for

investment whenever a new plant can earn positive profits. Any firm can
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invest and upset the plans of any other firm, a tactic which avoids
unequal profits by otherwise identical firms., We refer to this game as a
preemptive equilibrium. Preemption in this paper refers to the use of
anticipatory investment strategies by competing firms, Rivals are aware
of opportunities for profitable investments and know that these oppor-
tunities can be lost to others. This leads to aggressive competition in
new plant construction.3

The two equilibrium concepts illustrate the importance of behavior
in industry dynamics. In the Cournot—-Nash oligopoly, firms' profits are
always positive given any number of competitors. Profits among firms
differ, with higher profits going to the firms that invest earlier. The
pattern of industry investment is unique and displays the characteristic
that small firms grow faster. The welfare implications of the Cournot-
Nash equilibria are unambiguous and lie between monopoly and a surplus-
maximizing investment program.

The preemption equilibria are characterized by zero profits earned
on every new investment. This outcome, which resembles Bertrand competi-
tion, can occur with only two firms. Formally, the equilibria are Perfect
Nash equilibria in suitably defined history-contingent strategies. The
welfare characteristics of these equilibria are ambiguous. It is possi-
ble, for example, that investment may occur too soon or too late relative
to surplus-maximizing investment sequences. The divergent outcomes of the
two models underscore the importance of a behavioral and dynamic theory of

R s . . 4
industrial organization.




2. COMPETITION IN INVESTMENT PLANS

The basic model used throughout the paper is a stylized represen-
tation of an industry facing growing demand with indivisibilities in
installing new capacity. The technological side of the model is similar
to that developed by Manne et al (1967) in the planning literature.

Time is treated as continuous and indexed with t; t=0 will
denote the initial date. The (inverse) demand curve facing the industry
is P(0,t), a continuously differentiable function with O denoting total

output. Assume

(A.1) 93%%5-)- >0, 91’—;%-’—51 < 0, and P(0,t) >0 for all (0,t).

Any firm in the industry has access to the same technology which
consists simply of a fixed cost C, (with the dimension of a stock), for

installing one "plant”. A plant is infinitely durable, is operated with
no variable costs, and has a capacity of one unit of'output.5 While these
assumptions are extreme, they define a basic model that is simple, vyet
rich enough to treat most of the problems that interest us.

The dynamic nature of investment competition allows firms to
signal threats and make commitments that influence the behavior of their
competitors. These actions permit a range of equilibrium outcomes. None-
theless, a logical beginning for the study of investment competition is
the dynamic analogy to Cournot competition, in which each firm takes the
investment plans as well as the outputs of competitors as given,

The game assumed in this section is defined as follows. There are

a finite number of firms, j=l,...,J. At date t = 0, each firm
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announces a sequence gl = <ti>, which specifies the dates at which

firm j will build its plants. The profit functions are defined in the
usual way given the J-tuple of strategies (sl,...,sJ) and the outputs
of all other firms. Each firm chooses an investment strategy and outputs
that are profit-maximizing taking as given the investments and outputs of
all competitors. The competition as defined, although it includes time in
the strategy choices, is actually a single play Cournot-Nash (C-N) game.
At the initial date, firms announce their investment and output sequences
and a C-N equilibrium exists if each sequence is profit-maximizing given
the sequences determined by competitors. After firms announce their
investments and outputs, there are no opportunities to revise their plans
as time unfolds,

This formulation is restrictive in that firms' decisions do not
depend on the history of the industry. History-dependent strategies are
introduced in the next section. The game described in this section would
be an accurate degeription of competition if law or technology requires
that firms make binding contracts for investment and production plans.
Many "dynamic” models in the literature are in fact one-shot Cournot—Nash
games. These include control—theoretic models where agents determine the
time paths of their actions at a single date, with no opportunity for
revision (the “open—loop” assumption in control theory).

Consider first a duopoly where the firms have perfect foresight

and full knowledge of their opponents' pay-offs and assume

(A.2) 5% [0P(0,t)] > 0O for all (qQ,t) .




This assumption of everywhere positive marginal revenue excludes excess
capacity from being optimal given Cournot behavior, Then firm 1's best
response to s2 is given by the solution to

-1t -rt

® ot
(1) max Hl(sl,sz) = 3 ftn+1nP(n+m(1),1)e dtr ~ Ce

s1 =0 o

Ti

where m(t) is the capacity of firm 2, equal to its output by the no-
excess capacity assumption, (A.2). Here t  is the date at which firm I
builds its nth plant. Although the summation in (1) extends to infinity,
no firm is forced to build an arbitrarily large number of plants. The
last plant built is the largest n for which t is finite.
If firm 1 does not invest at the same date as firm 2 and if t
2

is finite, a necessary condition for firm 1's best response to s is

that, for firm 1's nth plant,

nP(n+m,tn) - (n—l)P(n—1+m,tn) = rC.

Lemma 1: Except for the initial date t =0, firm i's best
response to the investment sequence <tm> of firm j # i will never
involve a sequence <tn>, where tn = tm for any (n,m).

The marginal revenue éarned by firm i would increase discontin-
uously by advancing the comstruction date hefore any date at which firm j
invests., Thus for t > 0, along an equilibrium path tn = tm could not he
optimal. Firms may invest simultaneously at the initial date if the

initial industry capacity is more than one plant short of the equilibrium

level,




The same argument implies that firms will never build more than
one plant at a time, with the possible exception of the initial date. Tf
an equilibrium exists in the C-N game, firms necessarily will “space”
their investments, -

Define the incremental revenue flow to a firm from plant n when

industry capacity immediately before the investment is n+ m -1 as

AN(n,k,t) = nP(k,t) - (n-1)P(k~-1,t)

where k = n + m. The subseript N represents Nash behavior. A neces-
sary condition for a C-N equilibrium is that at the investment dates <tn>

with t_ > 0,
n
(2) AN(n,k,tn) = 1rC.

Incremental revenue is the revenue flow with the new plant less
the revenue lost on all plants built previously as a result of the lower
price. Since revenue earned on the new plant is the same for all firms

and the revenue loss on old plants increases with the size of the firm,

incremental revenue is larger for smaller firms.

Market forces in a C-N oligopoly tend to push the industry toward
equal market shares as smaller firms invest to catch up with larger
firms. In a symmetric equilibrium, firm sizes along an equilibrium
expansion path differ by no more than one unit, the minimum indivisible
unit of iavestment. While asymmetric equilibria may exist in the C-N
game, we limit attention in what follows to symmetriec equilibria in pure

(non-gtochastic) strategies. One more assumption is needed.



(A.3) AN(n,k,t) is a strictly increasing function of t and a strietly

decreasing function of both n and k.

Assumption (A.3) implies that each firm's revenue is globally
concave in its own output (capacity), taking the outputs of others as
fixed. The assumption that incremental revenue increases with time
implies that it never pays to delay investment after the date when incre-
mental revenue equals the interest cost on a new plant (the cost of

advancing construction).

Proposition 1: Let n(t) and m{t) be the capacities of firms 1

and 2. Given assumptions A.l1-A.3, there exists a C-N equilibrium with

In(t) - m(t)] <1 (a symmetric C-N equilibrium).

Proof: Let <tk> be the sequence of industry investments with

k=n+ m Suppose firm 1 buildg the industry's xth plant at &, and fix

k

the dates of all other plants. Let this be firm 1's nth plant. Given

A.1-A.3, firm 1's objective function is concave in tk over the interval

(tkrl’tk+1)' Thus, firm ! attains a unique maximum if it invests in this

interval and the profit-maximizing date is determined by

AN(n’k’tk) =rC for t e ( Y.

k € Bt

We need only show that firm | will not choose to invest at any date after

tk+1 or before tk—l

Since firms' capacities at any date differ by no more than one

(Lemma 1 rules out investing at tj for i # k).

unit, at tk+1 either firm 2 or firm 1 builds either its nfP or




(n+1)St pilant. In a C-N equilibrium, one of the following necessary

conditions must hold at tk+1 {recall that both firms have the same

incremental revenue functions):

(3a) AN(n,k+1,t ) = rC

k+l

or

{(3b) AN(n+1,k+l,tk+l) = rC,

Suppose the first condition (3a) holds, which corresponds to firm

2 building its nth plant at ¢t Now suppose firm 1 postponed its

k¥Fl°

th

n Y. Firm 1's incremental revenue is

plant until some ¢t ¢ (tk+1’tk+2

AN(n,k+1,t). Since incremental revenue increases with time and

AN(n,k+1,t } = rC, it follows that AN(n,k+1,t) >rC for te (t

k+1 ERLWEE

Thus firm ! increaseg the profit from the nth plant by investing

closer to tk+1’ but the profit function is discontinuous at t

K+l (S?e

Figure 1, which shows firm 1's profit as a function of the timing of
investment in the nfh plant, holding fixed the investment dates for
all other plants. The investment date for the nth plant is tn and

nl(tn) is firm 1's profit with all other investments fixed.)
Figure 1 here

By investing before there is one less unit of industry capacity and

]

firm 1's incremental revenue increases abruptly to AN(n,k,t). Profit

from the nth plant is higher when firm ! invests before and

Ere1?

for t e (tk—l’tk+l) profit is a maximum at Epe




The second condition (3b) corresponds to either firm 1 or firm 2

building its (n+l)St oplant at ¢t In either case, if firm 1 delays

k+1°

. th .
investment of the k% plant until ¢t ¢ (tk+1’tk+2)’ then

Aw(n+1,k+l,t) > rC and it pays to move the investment back to the
original interval (tk-l’tk+l)'

Similar arguments apply if firm 1 chooses to advance the invest-

ment date for the nath plant to some +t ¢ (tkrz’tkrl)’ and if firm 1
changes the investment date for the nth plant to any t > tk+2 or
£ < Lo Hence t, is a global maximum for the nt® investment by

firm 1. The results are summarized in Figure 1. By symmetry, the same
arguments apply to all other investment dates by either firm. Thus the

sequence <tk> defined by
AN(n,k,tk) = rC

with |n(t) - m(t)| < 1 is a C-N equilibrium,

The time path of investment in a (symmetric) C-N equilibrium
is as follows. Suppose j=l,...,J firms begin with initial capacities
(nl,...,nj), ordered so that ni_i nj for 1 < j. To avoid a jump to
the equilibrium path at the initisal date, assume that no firm has an

incentive to invest until some t > 0, If firm 1 is strictly smaller than

any other firm, it has the largest ineremental revenue and will build first

when

AN(n1+1,k,t) = rG,

where k 1is industry capacity after the firm invests.
Firm 1 will continue to build (at discrete intervals) until it

catches up in size to firm 2. Either firm 1 or firm 2 will build the next
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plant, but not both. {(If firms 1 and 2 were the same initial size, the
identity of the firm that build the first plant would not be determinate.)
Firms 1 and 2 will take turns building until they catch up in size to firm
3. Then firms 1, 2, and 3 will take turns in an investment round robin
until they catch up in size to firm 4, and so forth.

Define an investment "round” as a sequence in which all firms
augment their capacity by one unit. The ordering of firms in an equilib-

rium sequence is arbitrary. What is determinate is the date at which each

plant is built and that at the end of each investment round firms must be

of equal size. There are multiple C-N equilibria corresponding to the

ordering of firms in each investment round. Indeed if it always pays to
build another plant at some date, there is a countable infinity of (-N

equilibria.

Proposition 2: The C-N sequence of industry investment dates,

<t§>, is uniquely determined in the following manner:

For k<7, tz is the solution to
N
(4a) Ay(l,k,t,) = xC.

For k = nJ+m, 0 { m { J, where n denotes the largest number of

times that all firms have invested, ti is the solution to
N
(4b) AN(n+1,k,t ) = rC,

The proof follows directly from the above discussion.
Will a C-N oligopoly build plants sooner or later than a
monopolist? Let sM = <t2> be the monopoly investment sequence, which

solves
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v " +1 at3 T
(5 max I(s) = § f i r(n,t)e Tdr - ce  °

n=0 ¢t
n

where R{n,t) = nP(n,t).

Define the monopoly incremental revenue from the kth plant,
AM(k,t) = kP(k,t) - (k-1)P(k-1,t). Given the assumed behavior of demand,
a necessary and sufficient condition for optimality of the monopoly
investment sequence is AM(k,t ) =1rC for k=1,2,.0. .
e <t
largest number of plants built in the C-N oligopoly.

Proposition 3: ¢t for all ke K, where K is the

A monopolist's expansion path lies below that of a C-N oligopoly,
in that at any date a monopolist's capacity is no more, and may be less,
than total capacity in a C-N oligopoly. The proof follows directly from
the observation that incremental revenue for a C-N firm, AN(n,k,t)
exceeds the monopoly incremental revenue, AM(k,t) for all =n,k, and t.

Let <t§> be the sequence of surplus-maximizing investment
dates. The sequence g% = <t§> solves (5) with revenues R(n,t)

replaced by total surplus

2
S(n,t) = [ P(x,t)dx.
0

Define the incremental surplus contributed by the kth plant,
Aw(k,tk) = S(k,t, ) - S(k—l,tk).

A necessary and sufficient condition for the surplus-maximizing investment

sequence is Aw(k’tk) = rC. It is straightforward to show that the

-12-




incremental surplus from a kth plant exceeds the incremental revenue
from a kth plant in a C-N oligopoly {(and a fortiori exceeds the

monopoly revenue). Hence

Proposition 4: tE > ti for all ke X. A C-N oligopoly

builds plants uniformly later than the surplus-maximizing dates.

Price in a C-N equilibrium exceeds the flow average cost rC at
every date, and therefore all firms make strictly positive profits. This

follows from the investment coundition for the kth plant,

N
ﬂN(n, k’tk) = rC

which implies

(6) P(k,ti) - + (n~1)[P(k-1,t§) - P(k,tz)]-

The right-hand side of equation (6) equals rC only if the firm is build-
ing its first plant so that n =1, and it exceeds rC if n > 1. Since
price increases with time for a given capacity, the market price will
exceed rC with the exception of those dates at which firms build their
first plants. Thus, even as the number of firms gets arbitrarily large,
the price will strictly exceed flow average cost except at investment
dates for a firm's first plant and all firms will earn strictly positive
profits.

Adding more firms in a C-N equilibrium simply stretches the period
of time during which firms build their first plants. Increasing the
number of firms from J to J + 1 has no effect on the dates at which the

first J firms make their initial capacity investments. TFor any finite

-13-




date T, if J is suffieiently large, no firm will build more rhan one
plant in the interval (0,T). During the interval (0,T), the industry
consists of a succession of new entrants, each of which builds one plant.
A C-N model where the number of firms is arbitrarily large has, in
the limit, the characteristic of free entry into the industry. Every
industry investment is a firm's premiere plant, and the investment date

for the industry's kth plant is determined by
AN(I,k,tk) = P(k,tk) = rC.

Price equals flow average cost when a plant is built, and exceeds flow
average cost at every other date (given the assumption that demand grows
with time). Thus profits are positive for any number of competitors.
Also, the C-N equilibrium does not converge to an efficient allocation as
the number of competitors increases. This accérds with Proposition 4,
which states that the C-N and surplus-maximizing investment dates always
diverge. It 1is easily demonstrated by noting that the revenue flow from a
firm's premiere plant, P(k,tk), falls short of the incremental surplus
from that plant.

Precise bounds can be placed on the extent of suboptimal capac-
ity. The next proposition shows that the C-N capacity with arbitrarily

many firms is always within one plant of the surplus-maximizing capacity.6

Proposition 5: Let k(t) denote the C-N capacity at date ¢t,

and k*(t) the surplus-maximizing capacity. Then in the limit as J + =

k*(t) - 1 < k() < k*(t).

-14-




Proof: If J is sufficiently large, no firm will build more than
one plant and the C-N investment rule is P(k,t ) = rC, whilé the optimal
investment rule is A.(k,t¥) = rC. Let k(t) and k*(t) denote the
£~N and the optimal capacity levels at date t. From Proposition 4, we
know that k(t) < k*(t),

Consider the interval [ti’t§+l)’ beginning with the xth
plant along the optimal path and ending just before the (k+1)St plant,

At tf,

L 7 * % * =
P(k l,tk) > Aw(k ,tk) xC.
Suppose k(t) { k* ~ 2, Then
P(k(E)+1,t%) > P(k*~1,t%) > rC.

Thus k(t) { k* - 2 cannot hold at tﬁ along a C-N equilibrium path.
(1t would pay for someone to build another plant.) But k*(t) is
constant for ¢t ¢ [ti,t§+1) while k(t) is nondecreasing, and the

argument holds for any k¥*. Thus

k*(t) - 1 £ k(t) < k*(t)

Merger activity has predictable consequences in the Cournot-Nash
model of industry competition. A merger changes the number of active
firms in the industry and the digtribution of firm capacities. Prices
depend only on total industry capacity because by assumption all capacity

is fully utilized. Thus, the impact of any merger is on the timing of

capacity investment undertaken by the industry. Note that since smaller
firms invest before larger firms in a C-N equilibrium (when all firms have
access to the same technology), a merger of small firms has a greater
negative impact on capital formation in the short run than does a merger

involving relatively large firms.7

" =15~




Consider as an example three firms, j=1,2,3, with initial
capacities (1,2,3). Firm 1 would build first, followed by either firm 2
or by another investment by firm 1. Suppose firms 2 and 3 merge, so that
initial capacities are (1,5). The merger would have no effect in the
short run. Investment incentives (incremental revenues) depend only on a
firm's own capacity and on total industry capacity. Hence, firm 1 would
have the same incentive to build a second (or a third) plant, although
subsequent investments would be delayed.

Now suppose firms 1 and 2 merge, so that the new initial market
structure is (3,3). The merger eliminates firm 1, which would have had
ihe greatest incentive to invest. The smallest initial capacity is now 3
rather than 1, and the incremental revenue is correspondingly reduced.
Hence, investment is delayed and price is higher relative to the price and
investment paths for the original industry structure,

The merger iﬁvolving the two smaller firms is more detrimental to
economic performance than the merger involving the two larger firms.

Price is higher and investment is slowed. The negative impact from the
merger of firms 1 and 2 is more substantial not because it creates a
larger firm, but because it eliminates a swaller firm that had a greater
incentive to expand.

Although profits are positive in a C-N equilibrium with any number
of firms, the profits earned by any particular firm depend on its position
in the equilibrium sequence of investments. There is an infinity of C-N
equilibria, each with the same industry investment dates, but a different
order of investments by firms. Since total investment and hence prices

are identical in each of the equilibria, a firm earns a higher profit if

-16-




it occupies an earlier position in any investment round. This suggests a
conceptual difficulty with the behavioral assumptions underlying the C-N
oligopoly. 8Since each firm prefers the equilibrium in which it invests
first, we can expect that firms will compete for the opportunity to build
the first plant. Yet this competition to be first is inconsistent with
the assumptions of a Cournot-Nash game with pure strategies, where each
firm takes the actions of others as fixed. The next section considers an
oligopoly where firms make investment decisions based on the history of

the industry, and each new investment can be made by any'firm.s

3. PREEMPTIVE COMPETITION

A failure of the Cournot—Nash equilibrium is its inability to
capture the element of "animal spirits”™ that leads firms to compete for
the right to make each new investment, 1In the C-N model, each firm
assumes it cannot upset the investment plans of competitors. Every
investment earns profits in a C-N equilibrium, yet firms do not compete
for these profits, even when some firms must wait thelr turn and settle
for profits that are strictly lower than the profits of firms that invest
at earlier dates. This section.considers a market where firms actively
compete for each new investment, The model is dynamic and employs firm
étrategies that depend on the history of the industry.

In a continuous time model a difficulty arises in distinguishing

history from current actions and in dealing with the possibility of

-17-




simultaneous moves., The problem is compounded because decision variables
of the firms induce "jumsz in the state variables making the stock-flow
distinction difficult. With simultaneous moves, competitors could make
decisions they would regret after they learn the actions of their rivals.
The possibility of such outcomes depends on the information structure of
the game and on the ability to reverse undesired moves.,

The. competitive situation described in this section assumes an
information and decision structure where redundant investment can be
avoided. Agents are subject to decision lags between observations and
actions. An action if planned, but not undertaken, can be cancelled.
Moreover for one reason or another different firms are subject to differ-
ent decision lags. These reasons can be systematic, reflecting organiza—
tion, or stochastic. 1In the duopoly model, the firm with the shorter
decision lag will, upon receipt of the same information, be able to act
before the firm with the longer decision lag., Let I(t) denoté the
common information on the state of the game at time *+. Firm i with
decision lag hi can take an action at time t, ai(t), depending only
upon the history prior to ¢t - hi; we summarize this history as
I(t—hi). Suppose fir@s 1 and 2 have decision lags hl and h2 with
h1 < h2. Firm 1 has the advantage at ény t of being able to act upon
more recent information. At t = 0 both firms make an observation on the
state and firm 1 takes an action after a time interval of hl' Firm 2
observes Firm 1's actions and takes an action after a further h2 - hl

units of time pass. Firm ! cannot act in the interval immediately after

its action.

-18-




We now let the decision lags approach arbitrarily close to zero,
but maintain h2 > hl' The delay between information and action becoﬁes
negligible but firm ! retains the advantage of being able to act sooner.
In this limiting situation at time t both firms observe I(t), but
al(t) is realized instantaneously before a2(t). Firm 2'g limiting
information set at t is 1I(t), augmented by whatever action firm 1
initiates. Hence, in the limiting continuous time formulation, the firms
have different information sets, which induce a natural momentary first
mover ad@antage on firm 1. In order to incoporate this assumption into
our analysis we denote by x+(t) the total industry capacity after firm 1
has moved, but before firm 2 has moved. Let x (t) denote total industry
capacity before firm 1 has moved. By "move"” we mean that sufficient time
has elapsed for the firm to be able to take an action, but it need not
choose to invest. The terms x (t) and x+(t) are the state variables
which represent the information sets of firm ! and firm 2 at time t.

We will show that the first-mover advantage implied by the deci-
sion lags is trivial in that hoth firms will earn zero profits on new
investments in a preemption equilibrium. The importance of the decision
lag structure is to rule out instances of simultaneous capacity expan—
sion. Firm 2, with the longer lag, would not invest immediately after
firm 1 invests. Firm 2 acts to "police" the actions of firm 1 by offering
a credible investment threat if firm 1 chooses not to invest. As both h

1

and h2 approach zero, this policing function becomes increasingly effec-—
tive and forces firm 1 to invest and earn only normal profits. WNote that

the assignment of the decision lags to the firms is arbitrary, but in the
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absence of differential lags we could not rule out the possibility of
simultaneocus and redundant investment activitye9

In the development of the preemptive equilibrium, we assume as in
the Cournot—-Nash case that firms play Cournot conditional on installed
capacity and that all capacity is fully utilized (marginal revenue is
'positive), The crucial difference is in the timing of capacity expansion,
A preemption equilibrium will be described for a duopoly, although the
arguments extend to a J-firm oligopoly with appropriate expansion of the
strategy‘spaces. Let the two firms be denoted by ! and 2, and let k=nim
represent total industry capacity at date <.

A particular sequence of dates plays a central role in the pre-
emptive equilibrium. Let (k,t) summarize the state of the industry and

define a threat sequence s(k,t) = <t.> associated with the state

J j=k+1

{(k,7) by the following infinite set of equations:

® t.
(7) TS Megi, e ™ ae - ceTTH = 0, 5 = K, Kb2,...,e

1ty

>

> T,

with tk+1-

A solution to this set of equations can be shown to exist, given a
mild growth condition on P(j,t). In general the solution is not unique;
- t will
1t T

be convenient (although arbitrary) to use a particular threat sequence

there is a continuum of solutions indexed by the value of t

conditioned on the state (k,t). First, note that if the sequence

<tj> is “separated”, with tj > tj-l’

equivalent to the set of equations

for all 3, then (7) is
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E.+1 -r(t-t.)
(8) [ 37 e, 0)-xCle Tae =0, 3= wH,k42,...,0
E,
j

A separated sequence can exist only if P(k+1,% Yy < rC. If k#l is

k+1

too small at date <t so that the price exceeds rC, equation (8) will

-~

not be satisfied for any S 2 T+ Define N(k,f) as the smallest

integer > k+l such that P(N(k,t),7) < rC. The threat sequence s(k,t)

will be defined as the sequence <Ei> satisfying (8), with j = N(k,t),

-~

N(k,z)+1 ,N(k,t)+2,0u., and t = v, The threat capacity at date t

N(k,T)

associated with the threat sequence s{k,r) is defined as N(t) =
m?x{j:Ejs t}. Note that of the continuum of possible threat sequences
défined by equation (7), s(k,r) is the threat sequence which bhegins at
the earliest date.

All threat sequences, and the sequence s(k,t) in particular,
have the property that all plants built in the sequence earn exactly zero
profits. Note that if WN{k,t) > k+1, so that more than one plant must be
built at date T for (8) to hold, all plants built at t (as well as
those built at Ei > ) will just break even, given that the threat
sequence s{k,t) of investment dates is realized. .The task ahead is to
show that the threat sequence s(k,j) represents a perfect (as defined by
Selten (1975)) Nash equilibrium in the investment competition.

The demonstration of an equilibrium bhegins with the definition of
strategy functions. A strategy function value of 1 will indicate tﬁe Firm
in question invests; a value of 0 indicates the firm does not invest. In
general, if a strategy function takes on a positive integer value, n, that

means the firm in question will build n plants.
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Consider the following strategies ¢I and ¢2, given the states

(x ,t) and (x+,t), with x and x+127k and t > 7.

1 - N(t) - x  if x < N(t)
(9a) o (x ,t)

]

0 if x> W(t)

- N(E) - = if  x < N(t)
(9b) " (x ,t) =

0 £ x> M),

Strategy (9a) says that firm ! will invest at the beginning of
period t 1if the industry capacity level is bhelow the threat level at date
t. In this case firm ! will build all the capacity necessary to bring
industry capacity up to the appropriate threat level for that date.
Strategy (9b) says that, after having observed the action of firm 1 (as
represented by the state x+), firm 2 will invest whatever is necessary
in order to bring industry capacity up to the appropriate threat level.

We will now establish that ¢1 and ¢2 are equilibrium

strategies and, indeed, are perfect equilibrium strategies.

Proposition 6: The market outcome starting from state (k,T)

given the strategy pair (¢1,¢2) is that firm 1 builds all plants

J= ktl,k+2,..., at threat dates <Ei> = s(k,t).

Proof: Folloﬁs trivially from the definitions in (%a) and (9b).
The outcome where firm 1 builds all of the new plants follows from the
assumption that firm 1 has the shorter decision lag. Firm 2 does not
invest, but is “"waiting in the wings" to invest if firm 1 chooses not to

act. For the limiting case as the lags approach zero, the presence of
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firm-z is sufficient to assure that firm 1 earns zero profits on all new
plants. The assignment of decision lags determines industry structure in
the preemption game, but profits earned on new plants are zero for any
assignment of arbitrarily short lags.

The demonstration of the Nash and Perfect Nash properties of the
strategy pair ¢1 and ¢2 makes use of the value to each firm of
investing before or after the threat dates <Ej>. A useful construction
is that of an "entry value function" for the jth plant, which gives the'

value of a plant built between Ej and t given that all future

-1 i+l?
plants are built at the threat dates t for k2> j+ 1. Let 3_3

represent the threat sequence s{k,t) with Ej deleted, The entry
value function for plant j built at date t 1s (discounted to the

investment date, t)

A

t

t.
3 j*L @ i+l
voe,s Ty = T S E e g T [ & b0, 00au - G
1 t =3+1 &,

It is easy to show that Vj(t,s-J) is positive in the interval

(t.,

3 tj+1)’ negative in (Ej—l’Ej) and continuous over (Ei—l’E ).

j+1

This is illustrated in Figure 2. Thus if any firm builds before E?, it

would lose money on the jth plant, and if the firm builds after Ei’

but before ¢t it would profit on the jth plant,

i+l

Figure 2 here
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" Proposition 7: (¢1,¢2) is a Nash equilibrium strategy pair from

state (k,t).

Proof: TFirst we prove ¢1 is a best response to ¢2. Our point
of reference in this proposition is only the initial state (k,t). Given
¢2, if firm 1 does not invest at any date along the threat sequence
<Ej>, when capacity is below the threat level, then firm 2 will invest.
Investing at the threat dates earns zero profits on new plants and
positive profits on existing capacity. If firm 1 invests in the jth
industry plant hefore the threat date Ej’ this lowers the price received
on all existing plants and, given the properties of the entry value
function Vj’ yields a negative value for the new plant. If firmm 1}
attempts to invest in plant j after %j’ firm 2 will invest first. This
proves that ¢1 is a best response to ¢2 given the initial state (k,7).

Now consider firm 2. Given ¢1 and the initial state (%k,t), firm
2's only option 1s to invest at dates before or after Ejg By exactly
the same argument as was used in firm 1's case, this is not preferred to

¢2. Hence ¢2 is a best response to ¢1° 0.E.D.

Note that since both firms have identical costs, the identities of
firm 1 and firm 2 are irrelevant, Either firm could do the investing.

Perfectness of the strategy pair requires that ¢1 and ¢2 be
Nash equilibrium strategy pairs for any possible disequilibrium and
equilibrium histories leading up to a feésible state (x+,t) or (x ,t},
for x and x+ 2k and t > t. Essentially this involves checking

whether the contingent part of each strategy is a best response given that

the contingency occurs.




Proposition 8: (¢1,¢2) is a Perfect Nash equilibrium strategy

pair.

Proof: There are a number of cases to consider.

(i) Consider any subsequent state (x,t) and (x+,t) along the
equilibrium outcome described in Proposition 4. The argument of
Proposition 5 remains valid and ¢1 and ¢2 are equilibrium strategies
<t<t

for that state. If x = N(t), but then by

EN(e)

definition the state (x ,t) is in the equilibrium sequence, independent

N{t)+1?

of how it was reached, and the argument in (i) holds. If x = N(t)-1,
and £ = %N(t)’ then this also is an equilibrium state in which firm 1
will immediately invest and the subsequent outcome will be the equilibrium
sequence.

(ii) Suppose the actual capacity levels, xf and xr, are greater
than the threat level, N(t). Given (¢1,¢2) neither firm will invest, |
and given the properties of the entry value function it is clearly optimal
for both not to do so, as this would yield negative profits on the new
plant and reduce revenues onrthe old plant.

(iii) The important case to consider is a disequilibrium state
with x+ or x < N(t). The easiest case to consider is a state which is
one short of the appropriate threat level, So either (a) x+ = N(t)-1 and

[ %N(t)’ or (b) x = N(t)-1, and t > t

Ne) In case (a) firm 1
should have invested at t but did not. Given ¢I, if firm 2 does not
invest, then firm I will invest the next instant and at all subsequent

dates given by s{k,t), vyielding non-negative profits on the next invest—

ment. If firm 2 invests at %N(t)’ this is a best response which also
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yields non-negative profits. In (b) with x ='N(t)—1 the argument is
similar to (a), although in this case firm 1 makes positive profits on the
new plant when future investments are made at the threat dates. When

t > EN and x = N{t)~1, then firm 1, given ¢2, can preempt firm 2

and earn positive profits, Tf firm 1 fails to invest at t, then given

¢2, firm 2 will invest at t, causing firm 1 to forego a profitable oppor-

tunity on a new plant, and giving rise to the same losses on old plants.
(iv) If current industry capacity falls more than one plant short

of the appropriate threat level, then given ¢1, firm I will build all of

the necessary capacity. The argument here is an obvious extension of the

argument in part (iii). O0.E.D.

The implication of Proposition § is that the threats implicit in
the strategy pair (¢1,¢2) are credible. TFor example, firm 2 always
threatens to invest if firm 1 does not at the appropriate dates. It tutns
out that if firm 1 does not invest, then given the future course of the
game and firm 1's strategy, it ig in firm 2's best interest to invest.

The preemptive equilibrium captures what seems to be the essence
of competition in an intertemporzl model with lumpy additions to capacity:
the use of anticipatory investment to preempt rivals and capture
profitable opportunties. The equilibria corresponding to the strategy
pair (¢l,¢2) have the property that the new plants built by either firm
earn zero profits. Any profits arise as a consequence of sunk costs on
existing capital. Appendizx A shows that profits discounted to date =+ for

a firm with initial capacity n , when both firms follow strategies

(¢1,¢2) for t > 1 are
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-r(

_r(t-T)dt + ne

. t t, ., -1)
(10) !l = g J’tk-i.lP(k,t)e kil "

where k is the total industry capacity at date t. Since the new plants
break even, all profits appear as revenues earned on existing capacity.

The threat strategy s(k,r) which forms the basis of the
preemption strategy was determined by choosing the earliest investment
sequence that yields zero profits en all new plants. For this'case,

Ek+l = ¢ and the present-value profit for firm 1 is simply nC. In
general it is possible to find perfect Nash preemptive equilibria based omn
threat strategies that begin at a later date, with %k+l > 1. All new
plants would continue to earn zero profits, but the market price for

< t< Ek+1 would be higher than the price under the strategy s(k,t).
Thus revenues earned on existing capacity would be higher, as indicated by
equation (10).

The infinite time horizon of the gaﬁe permits a multiplicity of
preemption equilibria. There is no "last date” which serves to fix the
timing of investments that earn zero profits. Note that while all the
preemption.equilibria earn zero profits on newly constructed plants, the
infinite time horizon suggests the possibility of supergame strategies
that earn positive profits on new plants.

The ordering of.investment by the two firms using the strategy
pair (¢1,¢2) is determined by the decision lags. Profits depend only on
sunk capacity and not on the identity of the firm that adds new plants.

Both firms have equal incentives to invest at the threat dates, and the

incentives are independent of existing capacity. The rule is invest

-27-




whenever a new plant can earn profits, and this rule is independent of the
firm's own existing capacity. Just as the Cournot-Nash oligopoly in
Section 2 is the dynamic analog of static Cournot competition, the
preemption equilibrium parallels the outcome of a static Bertrand game.

Comparing the preemption and Cournot—-Nash equilibrias, the
preemption game results in a more rapid accumulation of industry capital
(recall that profits are strictly positive in a C-N equilibrium).
Relative to the surplus-maximizing investment dates, the preemption
investment dates may be earlier or later. Appendix B shows that at the
surplus-maximizing investment dates, profits earned on new plants may be
positive or negative; hence an unambiguous comparison with the preemptioﬁ
dates is not possible.

Given the symmetry of the preemption game, extending the duopoly
strategies (¢1,¢2) to an oligopoly and allowing for the possibility of
wergers would have no effect on the timing of industry investment, short
of merger for monopoly. The strategies call for investment whenever a new
plant can break even at prices corresgponding to the complete utilization
of existing capacity. As long as there exists a viable competitor in the
industry, the timing of new investment is determined by the hreakeven
rule. Merger activity in the preemption ecuilibrium, short of monopoly,
would not affect the timing of new investment or total industry profits

when all capacity is fully utilized.
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4, CONCLUDING REMARKS

The Cournot-Nash game represents a basic element of interfirm
rivalry and appears frequently as an equilibrium conecept in dynamic
games, Yet the results of Section 2 suggest that, at least with

increasing returns to scale in new investment, the C~N model yields

predictions that are often at odds with intuition. For example,
increasing the number of competitors need not lead to an erosion of
profits. Firms space their investments over time. Price is at least as
large as flow marginal cost at every investment date, and with investment
nonconvexities, the average price always exceeds average cost.

The peculiar results of the C-N competition stem from the absence

of Incentives for preemptive investment behavior. In a C-N game, each

competitor expects rivals to maintain their investment sequences fixed
over time. This conjecture is implicit in the “one-shot™ game where each
rival specifies an investment sequence at the start of the game and has no
opportunity for change. The essence of preemptive behavior is the
anticipation that rivals will adjust their actions conditional on the
actual evolution of the industry. Thus a competitor may profitably invest
just before a rival'’s planned Investment, because the competitor
anticipates that the rival will respond by delaying its plans. The C-N
behavioral assumption presumes rivals will not change their plans, and
hence leaves no room for preemptive competition.

The model of preemptive competition in Section 3 includes a large

dose of "animal spirits,” in that firms stand ready to invest whenever a
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new plant can earn positive profits. Firms invest in the preemption
equilibrium even though the incremental revenue from the new plant may be
negative. The new plant just breaks even, but the investment lowers
revenues from existing plants.

Investment with zero profits on new plants is an equilibrium
because either actual or potential competitors exercise a credible threat
to invest whenever a firm delays a construction program with the purpose
of raising prices and profits. Although there is a continuum of
preemption equilibria, they all have the property of zero profits on new
plants, even with only two firms. Free entry is not necessary to
dissipate profits. The preemption equilibria are “"perfect™: the assumed
strategies yield best responses not just along an equilibrium path, but
also along any disequilibrium path leading to a feasible state.

Since there is no terminal time to restrict the possible credible
equilibria in this game, it is not surprising that the preemption
equilibria are not unique, and indeed c¢redible equilibria with properties
very different from those described in Section 3 could emerge.

Perfect Nash equilibria may well exist that do not exhibit the property of
rent digsipation that characterizes the preemption game. Nonetheless, the
preemption equilibrium strategies described in this section demonstrate
the properties of dynamic perfect equilibria that allow for neither
explicit or implicit collusion, and serve as a contrast to the more

familiar Cournot-Nash formulation.
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FOOTNOTES

See Bain {1954, 1956).

Eaton and Lipsey (1981) lucidly discuss the importance of capital
specificity as a determinant of industry structure.

Preemption in this paper refers to anticipatory investment. A large
literature deals with preemption for entry deterrence. Some of the
references include Dixit (1980), Eaton and Lipsey (1979), Gilbert and
Harris (1981a,b), Gilbert and Newbery (1982), Gilbert (1984), Rarris
and Lewis (1982), and Spence (1977).

Baumol, Panzar and Willig (1982, Ch. 14) come to similar conclusions
from a quite different perspective.

The extension to comstant marginal costs (the same for all firms) is
straightforward and left to the reader.

Note that the Cournot—Nash equilibrium is trivially cost efficient in
the sense that the present value cost of delivering a given cutput
stream is minimized. This follows from the assumptions that all firms
have identical costs and capacity is fully utilized.

The hypothetical merger is exogenous in that stockholders' or managers'
incentives to effect or block the merger are ignored (see Salant et al. (1983)).

The problem of unequal profits appears in a number of dynamic wmodels
which use the "open-loop" equilibrium concept of differential games
{e.g. Reinganum (198la,b)), but it can alse occur with subgame perfect
preemptive strategies (see Fudenberg and Tirole (1983)).

What is crucial here is the assumed ordering in the delays asscciated
with a commitment to build a plant. This ordering allows the firm that
commits last to cancel rather than invest at the same time as its
opponent. Hence "mistakes" where firms invest simultanecusly (to their
mutual disadvantage} are avoided. An example of an open-loop game
where firms make simultaneous decisions is in Pitchik (1982). Examples
of closed-loop games with simultaneous moves are in Fudenberg, et al.
(1983) and Fudenberg and Tirole (1983).
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APPENDIX A

Calculation of profits earned using the preemption equilibrium
, 1 2
strategy pair (4 ,b ).
Given the initial state (k,t) with initial firm capacities =n
and m , if firm 1 invests at each threat date <%j> for j = ktl,eca,
all new plants just break even and any profits appear only on existing

firm capacity. The profit for firm ! is discounted to date < is

~

t %,
(A1) mh = o [ R0 T  ae + ] [ (g, T (0 g
j=k+1 tj

Also, from the definition of the threat strategy (equation (7)),

@ t. -r{t=t) ~r(t, . -t)
(A2) 513G, 0e dt = ce 17,
J=k+1 t,
]
Thus,
t -r{t-1) -r(t, . -1)
(A3) =g [ITk+IP(k,t)e dt + Ce k¥l 1,

which is eqﬁation (10) in Sectiom 3.

Since firm 1 earns zero profits on every new plant j = k+l,... ,
if firm 2 had invested at dates Ej’ firm 1's profits also would be
given by equation (Al). Firm 1's profits are the same whether or not it
invests provided firm 2 uses the strategy ¢2. It is still optimal for
firm 1 to invest at the threat dates because it earns positive profits
that are strictly higher than the profits it would earn by investing at
any other date. The equality of profits earned by investing at the threat
dates versus not investing at all when firm 2 uses ¢2 merely shows that

the strategies ¢1 and ¢2 are symmetric.




APPENDIX B

Proof that the value of a plant built in the surplus-maximizing
investment sequence may be positive or negative, {See also Starrett
(1978) for an alternative approach.)

Define P*(t) = P(Q*(t),t), where 0*(t) is the maximizing
output at t. The value of a plant built at t, and discounted to ¢t is

k k

w  —r(t-t, )
e P*(g)dt - C

(B1) rie)

"r(T—tk)

-] £,
=7 I, [P*(%) - rCldr

i=k r,
] J
At the surplus-maximizing investment dates, Aw(j,tj) = rC for

J= kyk+tl,.evs and for t e (tj’tj+1)

lim P*(t) < A _(j,t) < lim P#*(t)
+ W

>t _+t,
t i L 541

The sign of F(tk) therefore depends on the time path of P*(t).
However, the investment dates depend only on P*(ti) for j = k,k+i,...

and not on the time path of P*{t) for ¢t e (ti’t Y. Thus there exist

i+l
time paths of prices P(Q,t) with the property that the surplus-maximizing
investment sequence is the same for all time paths of prices, but

P(tk) > 0 for some paths and T(tkj < 0 for others,









