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Robust Cournot-Bertrand Equilibria on Power Networks

Jonathan Mather', Eric Munsing?

Abstract— We present a convex model describing risk-averse
strategies for electricity producers in congested electricity net-
works. Extending prior work on Cournot-Bertrand equilibria
in Poolco-style spot markets with locational marginal pricing,
we propose a formulation which integrates uncertainty through
robust convex optimization. We find that producers uniformly
benefit from robust strategies under small uncertainty intervals,
and explore the impacts of congestion and network effects on
strategic behavior. We demonstrate our results on a simple
example and explore the impacts of robust strategies on social
welfare, finding that these risk-averse strategies reduce welfare
by restricting output and increasing prices. By formulating the
equilibrium conditions as a convex optimization problem, we
are able to scale our results to large networks and accommodate
many sources of uncertainty.

I. INTRODUCTION

Electricity is unique among commodities, having highly
inelastic demand, very limited storage, network flows de-
termined by Kirchoff’s laws, and transmission constraints
which can isolate consumers from low-cost suppliers. The
deregulation of electricity generation in many regions has left
the operation of the power grid in the hands of Independent
System Operators (ISOs), who are tasked with collecting bids
for supply and demand, clearing the market in such a way as
to meet transmission and security constraints, and mitigating
the use of market power.

However, the characteristics which make electricity unique
also make energy markets prone to manipulation, and em-
pirical studies have shown that these markets often operate
as oligopolies in which participants affect outcomes by
adjusting their bid curves to maximize profits [1],[2]. By
modeling strategic equilibria in energy markets, researchers
hope to measure social welfare impacts, design regulatory
or technical changes which can promote more competitive
markets, or identify noncompetitive behavior by comparing
models with ex-post market outcomes.

A key decision for producers in energy markets is how
to respond to uncertainty in supply, demand, and the actions
of other producers. Risk-averse producers may hedge their
production through long-term contracts, or submit their gen-
eration capacity as “must-take” (accepting any price). There
have been a number of studies examining the impact of

J. Mather is supported in part by the Lloyd S. Burr Memorial Endowment
Fund. E. Munsing is supported in part by the National Science Foundation
Graduate Research Fellowship under Grant No. 1106400. This research is
partially supported by the National Science Foundation under Award NSF-
CPS proposal 1646612.

IMechanical Engineering, University of California at
jonathan.mather@berkeley.edu

2Energy Controls and  Applications Laboratory, ~Civil and
Environmental Engineering, University of California at Berkeley
e.munsing@berkeley.edu

Berkeley

uncertainty on strategic equilibria in energy spot markets,
particularly in two-settlement markets, for example [3], [4],
[5]. However, these approaches can be intractable due to
the computational burden required to model uncertainty on
a large network using stochastic models [6], [7].

This work advances prior literature by showing how robust
optimization can be used to integrate uncertainty into a
convex model of strategic equilibrium in a single-settlement
Poolco electricity market with network constraints, allowing
us to scale our results to large networks while representing
the most common form of spot market operation. The results
will be of interest to system operators, regulators, and
generators in the electricity market, as well as to economists
and control theorists studying market design.

A. Relevant Literature

A number of game theoretic models of strategic competi-
tion have been used to model oligopoly behavior in electricity
networks, and are reviewed in [6], [8], [9], [7]. We highlight
three game theoretic models used to identify strategic equi-
libria in electricity markets: Cournot competition assumes
that producers adjust their output to maximize profits [10],
[11], [12], Bertrand competition assumes producers adjust
prices [6], and Stackelberg leader-follower games assume
that some firms may have greater decision-making power and
serve as market leaders [13], [14]. Of these, Cournot models
have gained particular attention for modeling electricity mar-
kets due to their mathematical and computational simplicity,
as well as their ability to forecast market outcomes [15],
[12], [8].

However, since electricity markets are coupled with com-
plex engineered systems these game-theoretic models are not
a panacea. Unlike most commodities, electricity markets are
built on a transmission network with thousands of nodes [10],
have temporal output constraints on generation equipment
[16], and are typically structured as a series of sequential
markets [17]. To address these issues, a parallel body of liter-
ature has sprung up in which engineering models are used to
reflect the technical decisions faced by individual producers
[18]. These models are often nonlinear, nonconvex, and
computationally intractable for modeling the decisions of
more than a single producer with a small fleet of generators.

Both game-theoretic and engineering models are chal-
lenged by the uncertainty inherent in electricity provisioning:
demand is dependent on weather, generation plants may have
unplanned outages, and increased penetration of renewable
energy sources makes supply uncertain. A variety of tech-
niques from stochastic optimization have been used to model
the generators’ decision process under these uncertainties



[19], [20]: historical energy prices can be used to construct
Monte Carlo simulations [21], [22] or to fit parametric
probability distribution models to sources of uncertainty [23].
These stochastic approaches can optimize expected profits,
but struggle to deal with modeling uncertainty in the hun-
dreds or thousands of nodes which characterize electricity
grids. Robust optimization theory [24] and robust game
theory [25] provide an alternative approach to integrating
uncertainty, by seeking a solution which still performs well
under a ‘worst case’ scenario. While this approach is antici-
pated to reduce the expected profits for the operators relative
to their non-robust actions [26], it can be attractive for risk-
averse players as it guarantees profits against uncertainty.
These models are also mathematically appealing as they
do not require any distributional assumptions on random
variables and can preserve the convexity of the optimization
problem, allowing the application of efficient solvers which
can scale up to handle uncertainty across thousands of nodes.
Robust optimization has previously been applied to game
theoretic problems, allowing the modeling of uncertainty in
payoff matrices or competitors’ strategies [27], [28]. How-
ever, robust optimization has only been applied to specific
sub-problems in electricity market operation, e.g. the unit
commitment problem of the system operator [29], [30], [31],
[32], nonstrategic bidding as a price-taker [22], strategic
equilibrium in a Stackelberg leader-follower game [33], and
strategic equilibrium without congestion costs [34].

B. Novel contributions

We propose a convex formulation, computing the robust
strategic equilibrium in an electricity network with conges-
tion and demand uncertainty, and demonstrate it using a
sample network.

The following contributions are unique to this work:

e Convex formulation of robust Cournot-Bertrand equi-
librium in a single-settlement nodal Poolco electricity
market

o Demonstration of the impact of congestion on robust
strategic equilibria

o Demonstration of the impact of robust strategies on
social welfare outcomes in electricity markets.

To our knowledge this is the first attempt to characterize
robust Cournot-Bertrand equilibria in electricity markets on
transmission networks, extending the work of [35], [36], [37]
to incorporate uncertainty and risk-averse producers.

C. Outline

In Section I we present the ISO and producer problems
as Cournot-Bertrand competition on electricity networks. We
formulate the resulting equilibrium as a monotone linear
complementarity problem (LCP), which can be solved as a
convex QP. We apply the results of [38], [39] to develop
a robust LCP and formulate the robust counterpart of the
corresponding convex QP. In Section III we present results
for a simple example problem. The impact on producer
profits, consumer surplus, and net social benefit is discussed,
and we conclude in Section IV.

II. PROBLEM FORMULATION

This formulation builds on the work of [35] and [37],
obtaining the equilibrium as the solution of a linear com-
plementarity problem, for which a convex robust counterpart
is developed. Background on modeling energy markets with
complementarity problems is provided in [6] and background
on robust optimization theory can be found in [24].

A. Network Modeling

The power network is modeled by a connected undirected
graph G(NV,E), where N := {1,...,n} is the set of n
nodes, and & = {(,j) : i,7 € N} is the set of m
edges (transmission lines), and (4, j) € £ means that there
is a line connecting buses ¢ and j. Throughout this paper
we will assume the standard linear DC power flow model,
where lines are lossless, and power flows on the network are
governed by a shift-factor (PTDF) matrix H € R2™*" which
linearly maps the vector of nodal net injections r € R” to
the vector of bidirectional line flows. We denote T' € Rf_m
as the vector of line capacities. Given that nodal injections
must sum to zero across the network, we can write the set
of feasible power injections as the polytope R C R™.

R:={reR"|Hr<T,1"r =0} (1)

We assume there are |F| firms, owning generation units at
nodes i € Ny C N, f € F. Each firm f makes production
quantity decisions for its generators ({g; }sca;,;), Where 0 <
¢; < gq,. For simplicity, we assume that there is at most
one generation unit per node.! Generation costs C/(g;) are
assumed to be convex and quadratic.

At each node, we assume a (steeply) decreasing affine
inverse demand function P(z;), where z; is the quantity
demanded at node ¢. This is a common assumption for
relatively inelastic electricity markets [1], and can represent a
linearization of a more complicated inverse demand function.
It is worth noting that in general z; is endogenous, and is
calculated as x; = r; + q;.

B. The ISO Problem

The ISO controls the import (export) r; > 0 (r; < 0)
at each node i € N and sets the corresponding locational
marginal prices (LMPs). These quantities must satisfy the
network feasibility constraints, determined by the set R. The
ISO’s objective is to maximize social welfare, taken as the
aggregated area under the nodal inverse demand functions
P;(+), less the sum of all generation costs C;(-). Mathemat-
ically, the ISO solves the following problem, parametric on
the firms’ production decisions ({g;}icnr):

ri+qi
maxir_nize Z ( / Py(ri)dr; —

ieN N0
subject to 0 = 177« y
0<T—Hr,: p

Ci(Qi))
2)

I'This can be achieved in practice by introducing dummy nodes into the
network.



As in [37], we have excluded the nonnegativity constraints
r; +¢q; >0, i € N, by implicitly assuming an interior solu-
tion with respect to these constraints. The KKT conditions
are as follows

0="P(q+ri)—v—hi, ieN

0=y Ay 3)

0=1"r

0<pulT—-Hr>0
The first KKT condition implies that

gGi+ri={F) (v+i), ieN (4)
And consequently,

> ai=Y (P) My + i) (5)

ieEN ieN

This equation represents the aggregate demand function
in the network relating the total consumption quantity to
the reference node price v and the nodal price premiums
{4 }ienr, which determine the relative value of LMPs. We
denote the LMP vector A as

A=~1+ (6)

To prevent arbitrage between nodes ¢ and j, the correspond-
ing congestion charge must be 1); — ;.

C. The Firm’s Problem

We assume that generation firms do not anticipate the
impact of their production on the congestion prices set by the
ISO. We model this ‘bounded rationality’ as a game where
the ISO and generation firms move simultaneously. Similar to
[37] we use a mixed Cournot-Bertrand model, where the ISO
behaves a la Bertrand, setting locational price differences,
while the generation firms are Cournot players with respect
to each other (i.e. set quantities), but treat the ISO as a price
setter. The reasons for choosing the ISO as a Bertrand player
are well discussed in [37].

Each firm chooses its production quantities to maximize
profits with respect to the residual demand defined implicitly
by (5). In this formulation, the reference bus price v is
determined implicitly by the aggregate production decisions
of all the generation firms, just as in a regular Cournot
game. However, these production decisions and the implied
reference node price also depend on the nodal premiums
{1} set by the ISO. The resulting problem solved by each
firm f € Fis

maximize
qi iENF,Y

Z (’H‘%) q; (Qz)

iGNf

subject to 0 <¢q; <7, : v, v}, i€N, )

> ai=Y () v+t By

iEN iEN

The KKT conditions are as follows

0C;(qi _ )
v+ — (Q)-f—v» +—ﬁf, ZENf
9q;
; +

O—ZQz+BfZ 1, 7 7/’2)

1€ENy ieEN (8)
OZZ(PZ) ’7+wz ZQZ

1EN 1EN
0<v; L¢g>0, icN;
0<v 1q—q¢>0, i€N;

We only consider a single market (e.g. spot market) and
do not consider optimization across different energy markets
(e.g. forward markets or ancillary services), however we will
show that it is possible to represent uncertainty with respect
to the outcomes of different energy markets.

These assumptions are consistent with other literature
[35], [17] and with the approaches used by most ISOs
for scheduling hour-ahead and real-time markets, where the
computational benefits of the (convex) lossless DC power
flow model are important.

D. Equilibrium Conditions of the Deterministic Game

Aggregating the KKT conditions for the firms’ and the
ISO’s programs yields the equilibrium conditions, which in
general form a mixed nonlinear complementarity problem.
It becomes a mixed LCP when both the nodal demand
functions and the marginal cost functions are linear, as is
assumed henceforth.

Let the inverse demand functions and the cost functions
be, respectively

Pl($l) = a; — bil‘i, ieEN 9)
1
Ci(qi) = digi + 581‘%27 ieN (10)

where a;,b;,d;,s; > 0. We denote a = vec(a;), B =
diag(b;), d = vec(d;), S = diag(s;).

We denote L € RWIXIFI a5 the firm-node assignment
matrix, where L;; = 1 if node i is owned by firm j, and
L;; = 0 otherwise. We also denote 3 € RIZ!, where 3
is the dual variable associated with firm i. Also denoting

DN b% = 1"B7'1 = ¢, the equilibrium conditions are

then
0=91+H p—d—Sq+v- —vt =L (1)
0=L"qg—fec (12)

1'¢ 1"B7'H'p 17B7!
0=v+—2— S (13)
c c c

0<v-1g>0 (14)
0<vt1g—q>0 (15)
0=1"r (16)
0=a—B(g+7r)—y1—H'p (17)
0<ulT—-—Hr>0 (18)

Here, (11)-(15) are the aggregated KKT conditions for
the firms’ problems, and (16)-(18) are the aggregated KKT



conditions for the ISO’s problem. Under the assumption of
linear demand functions and quadratic convex cost functions,
the firms’ and the ISO’s programs are strictly concave-
maximization problems, so (11)-(18) are also sufficient. Note
that (13) can be excluded from the preceding market equilib-
rium conditions because it is implied by (16) and (17). This
set of equations constitutes a mixed linear complementarity
program (mLCP).

We wish to turn these set of conditions into a compact
LCP. This derivation closely follows that in [37]. We first
write out equations (16) and (17) as follows

a B B 1| |r HT 0
e e e | A kN
Rearranging and solving for + and r yields
r=Qa—QBg—QH p (20)
1'p~t 17 1TB™!
v = a——q- H' e2))
c c
where, denoting E = 11T
B7'EB!
=B"' - 22
@ 17B-11 22)
We note that
B7'E EB!
QB=1- , BQ=1- (23)
c

We now consider equations (11) and (12). We have that
B=L14 andthat LLT =Y, where Y;; = 1 if cither i = j,
or if i # j but node ¢ and j are owned by the same firm,
Y;; = 0 otherwise. Using substitution we rewrite equation

(11) as

1"~ 1T 1TB7!
0=1( a——q-— H'w)+H p
c c c
e
—d—Sq+v- —vt - Tq

Collecting terms, using (23), and solving for v~ we get
Y E
v = (BQ—I)a+d+(S+?—&—;)q—BQHT/H-u* (25)

We denote N = (S+ ¥ + E), where N € S, is positive
semi-definite, and has the following properties

2
-+ Sq, if 1 = ja
c
2 if ¢ # j, and the units at nodes ¢ and j
Ny =2 e
¢ belong to the same firm,
1
—, otherwise
c
We can now write out the following LCP
[ -4 v
w = v , z=1|4q |,
|1 — Hr Nz
[ q [0 —I 0
t=|(BQ—-DNa+d|, M=|I N —~BQHT
T - HQa 0 HQB HQHT

where w = t+ Mz, w >0, z > 0, w' z = 0. We notice
that M 1is positive semidefinite but not symmetric. Since it
is square we can write M as the sum of a symmetric matrix
P and a skew symmetric matrix K, such that M = P+ K

0 0 0 0 -I 0
M=|0 N 0 +1|I 0 —BQHT| @27
0 0 HQHT 0 HQB 0

Due to the fact that 2" Mz = 2T (M + M ")z = 2" Pz,
we can solve the LCP by solving the following convex QP
minimize h(z) =z Pz 4tz
220 (28)

subjectto Mz -+t >0

with any solution z* solving the LCP(M,t), iff h(z) = 0
[6].

E. Formulating a Robust Counterpart

We wish to identify strategies for the producers that are
robust to uncertainty, an increasingly prevalent feature of
modern power systems. Three potential sources of uncer-
tainty for a generator are: the parameters of the inverse
demand function, the quantity of zero marginal cost renew-
able generation in the network, and the volume of forward
contracts signed by other generation firms. All of these
sources can be represented as aggregate uncertainty in the
residual demand curve faced by a producers, however we
will see that this formulation can additionally capture more
general sources of uncertainty.

We seek a robust equilibrium where producers maximize
their profits, robust to demand uncertainty, while assuming
that other producers are adopting strategies robust to demand
uncertainty. A robust optimization problem takes the form

(29)

m
which determines the best possible action z* under a worst
case realization of uncertainty v € U. As seen in (28),
the equilibrium solution of the deterministic problem is an
LCP which can be formulated as a convex QP. We obtain a
robust equilibrium solution by considering a robust LCP, and
formulating the robust counterpart to the equivalent convex
QP.

A nominal LCP(M, t) has the form

0<zlMz+t>0 (30)

The function h(z) = 2T (M z+t) is known as the residual of
LCP(M,t), with h(z) = 0 iff z solves LCP(M, t). Applying
the results of [38] we define an uncertain LCP(u) as

0<zl M(u)z+tu)>0 (31)

where M (u),t(u) are parametric on the realization of a
random variable u € U. A robust solution to the LCP seeks
to find a feasible solution z* which minimizes the residual
function h(z;u) under a worst case uncertainty realization
u*. This takes the form



min max  z' (M(u)z + t(u))

z>0 ueld

32
subject to mi2141 M(u);z + ti(u) >0, Vi 2
ue

In [39], the authors show that this problem is tractable for
affine uncertainty sets of the form

L
t(u) =to+ Y wt
=1

K (33)
M(u) = Mo+ Y upMy, My =0, My =0, Vk

k=1
uweld CREFK

where L and K are general scalars defining the affine
uncertainty set, and ¢/ can take any of the following forms?

L[lz{u:
Uso ={u :

fully <1}, Up = {u :
ulloo <1}

e <15

While the formulation is general, for exposition we restrict
our attention to uncertainty in ¢(u), such that M (u) = M,
Vu € U. If U = U, then (32) takes the form

L
ZT(MZ + o) + Z ||ZTtl||1
; =1 (35)

subject to - Mz +to — Y _ [[(t2)ill1 > 0, Vi
=1

min
220

As stated previously we consider uncertainty in the resid-
val demand function, which we treat as interval uncertainty
in the intercept of the inverse demand functions at each node.
We consider functions of the form

Pi(z4;¢) = ai(G) — bixy, i € N
a;i(Gi) = ao + Gaq, ||Gilloo <1

Where a;; > 0 is a common belief among producers
regarding the bounds of the uncertainty interval at node <.
We implicitly assume that all firms have the same belief
regarding the uncertainty in the inverse demand function at
each node. This assumption is required for the robust LCP
model we have used here. Incorporating different beliefs
regarding uncertainty to capture the presence of firms with
different risk preferences should be possible, although will
require a much closer treatment of the individual robust
optimization that each firm faces.

Since a only appears in ¢ in the deterministic LCP, it is
straightforward to translate uncertainty in @ to uncertainty
in t, with the resulting robust LCP having the form of
(35). This is a convex optimization problem, and thus a
robust equilibrium solution exists but may not be unique. The
problem can be solved using standard convex optimization
solvers.

(36)

2For the case when U = Us, the Mo, My are restricted to be symmetric
matrices.

Fig. 1.

3 Node Network

III. EXAMPLE AND RESULTS

We demonstrate our model on an example network, and
compare outcomes with conventional (non-robust) Nash-
Cournot equilibrium. Networks with up to 300 buses were
simulated and were all found to demonstrate qualitatively
similar behavior, thus for expositional clarity the simple 3-
node network shown in Fig. 1 is used here, similar to the
network modeled in [40].

A. Example Network

The three buses ¢ = 1,2,3 have customers with inverse
demand functions P;(x;) = 40 — 0.08¢;, i = 1,2, and
Ps(x3) = 35 — 0.05¢3 $/MWh (node 3 has greater demand
elasticity). Each pair of buses is connected by a single
transmission line, and all three lines have equal impedance.
The market has two firms f = 1,2 each with a single
generator in its fleet; Firm 1’s generator is sited at ¢ = 1,
while Firm 2’s generator is at ¢ = 2. Both generators have a
maximum capacity of ¢; = 1000MW. Each generator has a
constant marginal cost: d; = $15/MWh for firm 1, and ds =
$20/MWh for firm 2. We simulate a congested scenario by
imposing a 20MW constraint on the line between nodes 1
and 2, and a 35MW constraint on the line between nodes 1
and 3.

In the examples that follow, we assume that a;; = a;, Vi.
That is the uncertainty at each node is independent but lies
in the same interval. The uncertainty a; is swept over a range
of $0-15/MWh.

For comparison, the non-robust quantity decisions (i.e.
classic Nash-Cournot equilibrium) are also modeled. For
each scenario, the non-robust quantity is intercepted with
the realized demand curve to produce the price at each node.
This simulates the scenario where uncertainty is present, but
firms behave as if there is no uncertainty. The system is
modeled within Matlab using CVX and the Gurobi solver.

B. Results and Discussion

The profits for the two generation firms are shown in Fig.
2 for the case when the transmission lines are unconstrained
and there is no congestion in the network. We plot the
results for the range of potential uncertainty realizations as
a shaded region. These shaded regions are bounded by the
profits achieved at the maximum and minimum limits of the
uncertainty interval, plotted as thick lines. The results for
the nominal value of the uncertainty are plotted as a third
solid line through each shaded region. By construction, the
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Fig. 2. Profits of both generation firms under a range of uncertainty
intervals. Both robust and non-robust strategies are shown, and the three
lines indicate high, expected, and low realizations of demand. The robust
equilibrium increases prices for low uncertainty intervals, and limits expo-
sure to downside risk.

uncertainty interval spans all potential realizations of demand
and thus all possible market outcomes.

Compared with classic Nash-Cournot equilibrium, we see
that the primary goal of the robust optimization is met: the
robust strategy always results in higher profits for the worst
case realization of demand. For small ranges of uncertainty,
we see that the firms actually make greater profits at the
robust equilibrium than at the non-robust equilibrium, re-
gardless of the level of demand. This can be explained by
observing that each firm restricts its output in order to protect
itself from low prices, contracting the net supply curve and
driving up prices.

Eventually the reduction in demand due to the higher
prices offsets the initial gain in profits, and we see that the
Nash-Cournot equilibrium results in higher profits in nominal
and high demand scenarios. At low demand the robust
scenario still guarantees that the generators will not incur a
loss, whereas a Nash-Cournot equilibrium can actually result
in a net loss for generators as realized prices fall below the
marginal cost of generation.

It is important to emphasize that these results assume that
all firms follow the same robust optimization behavior, i.e.
that they have the same belief about uncertainty and the

Generator Profits with
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Fig. 3. Profits of each generating firm when congestion is present on the
network. Note that the shape of the curves changes over distinct domains,
dictated by the congestion on the network: in domain a line 1-3 is congested;
in domain b lines 1-3 and 1-2 are congested, and in domain ¢ only line 1-2
is congested.

same sensitivity to risk. However, for a less risk-sensitive
firm, there is an incentive to increase production in order
to increase expected profits. The final equilibrium would
be dependent on the firms’ risk acceptance, with greater
risk aversion driving firms towards the robust optimization,
and lower risk sensitivity driving them towards Cournot
optimization. This is explored in greater detail in [25].

C. Network Effects

As firms restrict their production in response to uncer-
tainty, network flows change and can shift the congestion
patterns on the network. We can divide the uncertainty range
into distinct domains with unique congestion patterns, high-
lighted in Figure 3. Within each domain the residual demand
curves for each generator stay constant, and equilibrium
follows the principles outlined above for the uncongested
case. However as uncertainty increases and the congestion
pattern changes, there is a discontinuous shift in the residual
demand curve each firm faces, seen as a change of curvature
in Figure 3.

In our example, comparing Figures 2 and 3 shows that
congestion reduces the profits of Firm 1, but also makes
a robust strategy more attractive for low and moderate
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12000
Uncongested Competitive Equilibrium =
= = Congested Competitive Equilibrium
10000 —— Uncongested Nash-Cournot Equilibrium | |
Uncongested Robust Equilibrium
& — = Congested Nash-Cournot Equilibrium
\%/ 8000 = = Congested Robust Equilibrium b
=
=]
2 6000 - 1
o}
E
2
5 40003 SN - -m-m-m-mmmmmememmmm e mmm—— - 1
&} =S
2000 - T = i
0 Il Il
0 5 10 15
Uncertainty in demand intercept box ($/MWh)
Fig. 4. Consumer surplus under a number of equilibrium models:

perfect competition, Nash-Cournot equilibrium, and Nash-Cournot robust
equilibrium. When producers restrict production to be robust to uncertainty,
consumers are clearly impacted. Congestion further reduces consumer
surplus by introducing congestion charges.

uncertainty. Firm 2 benefits from congestion rents, but sees
profits more threatened by uncertainty in domain a. As
uncertainty increases and the line between nodes 1 and 2
becomes congested in domain b, Firm 2 sees greater benefit
from uncertainty and the profits of Firm 1 are eroded. This
effect is repeated more dramatically as uncertainty increases
into domain c. These effects are dependent on the exact
network structure, and were found to be particularly complex
for larger networks.

D. Welfare Effects

The impact of the robust strategy on consumers is less
nuanced. The consumer surplus is calculated as the area
above the market clearing price and below the demand curve,
representing the surplus value which consumers would have
been willing to pay for electricity [41]:

CS = l(a -\ 'z
2

The total consumer surplus for the market is shown in
Figure 4 for competitive, Nash-Cournot, and robust equilib-
ria. As we assume that producers offer a fixed quantity of
power into the market, the consumer surplus is invariant to
the realized inverse demand function for a given uncertainty
interval. When firms restrict their output to be robust to low
realizations of demand, prices rise above competitive levels,
demand decreases, and consumer surplus drops below the
Cournot oligopoly level.

The total efficiency of the market can be measured by its
net social benefit: the sum of consumer surplus, producer
profits, and merchandising surplus® [41]. Building on (37),
this can be written as

(37)

3This is the rent collected by the system operator in the presence of
congestion, and can be shown to be equal to ;' 7.
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Fig. 5. Net Social Benefit (sum of consumer surplus, producer profits, and
merchandising surplus) under both robust and non-robust equilibrium.

NSB=CS+ (A q—C(q)+u'T (38)

Since robust behavior restricts supply below Nash-Cournot
equilibrium levels, the net social benefit decreases monoton-
ically [41] as shown in Figure 5.

IV. CONCLUSION

Electricity markets are particularly susceptible to non-
competitive behavior, making it important to understand
strategic equilibria in order to inform better market design
and policies. The complicated structure of electricity net-
works, and the many sources of uncertainty in supply and
demand, also make it important to have scalable tools for
studying the impact of uncertainty on energy markets.

We extend a model of strategic equilibria in electricity
networks to include robustness to uncertain demand, re-
flecting the behavior of risk-averse generation firms. The
robust optimization model remains convex, allowing it to be
scaled to large power networks. The model is not intended
to describe the optimal bidding strategies or bid curves of
individual producers, however it provides an efficient way of
simulating the impact of uncertainty on market outcomes.

Whereas robust optimization in competitive markets may
reduce profits for producers, we see that robustness with
small uncertainty intervals uniformly increases profits for the
generating firms relative to Nash-Cournot equilibrium. The
impact of the robust equilibrium on consumers is uniformly
negative, as firms restrict their output leading to an increase
in prices, similar to that which would be seen under collusive
behavior. Thus the “’price of robustness” is seen in a reduction
of the net social benefit of the market.

Congestion affects different firms unevenly, as it simulta-
neously creates congestion rents and increases market power
for some generators. We show that uncertainty can affect
congestion patterns in robust equilibrium, with the exact



relationship between generator profits and congestion being
dependent on network topology.

These results can be applied to reflect uncertainty in sup-
ply due to intermittent renewable electricity generation, by
modeling the uncertainty in net load (demand less must-take
renewables). The results can also represent uncertainty in the
forward contracts signed by other firms, which will contract
the residual supply curve in the spot market. By incorporating
robustness into the strategic equilibrium, we offer additional
insight that producers, utilities, and regulators can use to
understand outcomes in real markets.
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