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On the propagation of a coupled saturation and pressure front

D. W. Vasco1
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[1] Using an asymptotic technique, valid for a medium with smoothly varying
heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation
and pressure front. The asymptotic approach produces an explicit expression for the
slowness, the inverse of the velocity, of a propagating two-phase front. Because of the
nonlinearity of the governing equations, the velocity of the propagating front depends upon
the magnitude of the saturation and pressure changes across the front in addition to the
properties of the medium. Thus, the expression must be evaluated in conjunction with
numerical reservoir simulation. The slowness is governed by the background saturation
distribution, the saturation-dependent component of the fluid mobility, the porosity, the
permeability, the capillary pressure function, the medium compressibility, and the ratio of
the slopes of the relative permeability curves. Numerical simulation of water injection into a
porous layer saturated with a nonaqueous phase liquid indicates that two modes of
propagation are important. The fastest mode of propagation is a disturbance that is
dominated by the change in fluid pressure. This is followed, much later, by a coupled mode
associated with a much larger saturation change. These two modes are also observed in a
numerical simulation using a heterogeneous porous layer. A comparison between the
propagation times estimated from the results of the numerical simulation and predictions
from the asymptotic expression indicates overall agreement.

Citation: Vasco, D. W. (2011), On the propagation of a coupled saturation and pressure front, Water Resour. Res., 47, W03526,
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1. Introduction
[2] In a wide range of activities, including environmental

remediation, the geological sequestration of carbon diox-
ide, and geothermal energy development, it is important to
correctly model the flow of fluids within the subsurface. To
this end, one must adequately characterize the flow proper-
ties at depth. This is typically accomplished through the so-
lution of an inverse problem in which observations are used
to constrain medium parameters, such as the formation per-
meability [Sun, 1994]. The practice of inverse modeling
has advanced in recent years through improved field meth-
ods and the development of flexible modeling techniques.
For example, there are networks of multilevel samplers and
cross-well configurations of transducers capable of generat-
ing a dense array of observations [Hsieh et al., 1985; Butler
et al., 1999; Karasaki et al., 2000; Yeh and Liu, 2000; Ves-
selinov et al., 2001; Datta-Gupta et al., 2002]. In addition,
geophysical measurements have been used to augment
hydrological data in order to characterize flow properties in
the subsurface [Paillet, 1993; Schmidt and Bürgmann,
2003; Vasco et al., 2004; Vasco, 2004b; Kowalsky et al.,
2004, 2005; Bell et al., 2008; Vasco et al., 2010; Rucci
et al., 2010].

[3] Given the wide variety of hydrologic and geophysi-
cal data, it is important to have access to flexible and effi-

cient approaches for modeling and inversion. Purely
numerical methods provide the most comprehensive solu-
tions to multiphase flow problems. However, numerical
approaches tend to be computationally intensive and pro-
vide less insight because such solutions do not produce
explicit expressions in terms of the model parameters. Ana-
lytic solutions can be efficient and do produce explicit
expressions in terms of the parameters of a medium but are
usually limited to fairly simple situations, such as linear-
ized perturbations on a homogeneous background model.
There are semianalytic techniques for modeling and inversion
that display some of the efficiency and insight of analytic
methods while extending to the more complicated situations
that can be treated by numerical techniques. One class
of semianalytic methods, the trajectory-based approaches
described by Cohen and Lewis [1967], Shen [1983], Vasco
and Datta-Gupta [1999], Vasco et al. [1999], and Vasco
et al. [2000], has the additional flexibility of partitioning the
inverse problem into a travel time–matching problem [Vasco
and Datta-Gupta, 1999; Vasco et al., 2000; Brauchler et al.,
2003] and an amplitude-matching problem [Vasco, 2008a].
As noted by Cheng et al. [2005], the travel time problem is
quasi-linear and thus converges more readily than the highly
nonlinear amplitude matching problem. Furthermore, invert-
ing travel times is much more efficient than is amplitude
inversion, and such inverse problems form the basis of medi-
cal imaging [Arridge, 1999] and geophysical tomography
[Iyer and Hirahara, 1993].

[4] While asymptotic, trajectory-based solutions have
been used to treat a number of inverse problems in hydrol-
ogy [Vasco, 2008b], there are some limitations in current
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derivations. Specifically, while asymptotic techniques are
applicable to nonlinear processes [Whitham, 1974; Anile et
al., 1993] and have been applied to two-phase flow [Vasco
et al., 1999; Vasco, 2004a], the applications have been lim-
ited in some respects. For example, capillary effects were
neglected by Vasco et al. [1999]. Typically, when capillary
effects are included, the background fields, such as the ini-
tial saturation and the capillary pressure, are assumed to be
uniform [Anile et al., 1993; Vasco, 2004a]. Furthermore,
when the governing equation is written in terms of a dis-
tinct saturation equation, as in the work of Vasco [2004a],
the resulting equation for the velocity of the saturation front
is a complicated expression that contains an implicit de-
pendence on the solution of the pressure equation.

[5] In this paper I present a new derivation of a trajec-
tory-based solution for two-phase flow in the presence of
capillary forces. The derivation is based upon a general
approach that is applicable to any set of coupled nonlinear
partial differential equations. The resulting expression for
the phase velocity depends explicitly upon the saturation
and pressure amplitude changes in a rather simple fashion.
Because of the presence of the saturation and pressure
terms, the phase velocity must be calculated in conjunction
with the results from a numerical simulator. However, the
expression provides insight into the way in which satura-
tion and pressure changes control the propagation of a
coupled two-phase front.

2. Methodology
[6] In this section I present the governing equations for

two-phase flow and outline an asymptotic analysis based
upon the method of multiple scales. The details of that
analysis are given in full in Appendix A.

2.1. Equations Governing Two-Phase Flow
[7] To begin, I consider the set of simultaneous partial

differential equations describing the flow of a wetting
phase and a nonwetting phase [Bear, 1972; Peaceman,
1977; de Marsily, 1986]:

r � �wkkrw

�w
r Pw � �wgzð Þ

� �
¼ @ð�w�SwÞ

@t
;

r � �nkkrn

�n
r Pn � �ngzð Þ

� �
¼ @ð�n�SnÞ

@t
;

: ð1Þ

where Sw and Sn denote the saturation of the wetting and
nonwetting phases, respectively. The relative permeabil-
ities of the wetting and nonwetting phases, which are func-
tions of the saturations, are represented by krw and krn,
while the absolute permeability is given by k(x). The re-
spective densities are �w and �n, the gravitational constant
is g, and the porosity is ’ðx; tÞ. The pressure associated
with the wetting phase is Pw(x, t) while the nonwetting
phase pressure is Pn(x, t) ; the fluid viscosities are �w and
�n. The two equations are coupled because the two fluids
are assumed to fill the available pore space, and thus, their
saturations sum to unity:

Sw þ Sn ¼ 1: ð2Þ

[8] I also assume that the phases are incompressible so
that their densities are constant. I define the saturation-

dependent component of the fluid mobility [Peaceman,
1977, p. 18] by the ratios

�w ¼
krw

�w
ð3Þ

�n ¼
krn

�n
: ð4Þ

[9] I shall assume that the relative permeability proper-
ties are constant for a given formation. Thus, within a given
heterogeneous layer I shall assume that the relative perme-
abilities are only functions of the fluid saturations. Because
the saturations sum to unity, I can write the governing
equations (1) in terms of one of the saturations, say

S ¼ Sw ¼ 1� Sn ; ð5Þ

and hence, the system of equations reduces to two equa-
tions in three unknowns (S, Pw, and Pn).

[10] To reduce the system (1) to two equations in two
unknowns, I invoke the assumption that the fluid pressure
difference, the capillary pressure Pc, in the pores is a func-
tion of the fluid saturation [Bear, 1972]; thus,

PcðSÞ ¼ Pn � Pw: ð6Þ

[11] As was done for the relative permeabilities, I shall
assume that the capillary pressure function only varies
across a layer boundary and does not depend explicitly
upon the spatial location within a particular formation.
Rather, in a given formation, the capillary pressure function
is only a function of the pressure in one fluid phase and the
saturation distribution within the layer. Denoting the fluid
pressure in the wetting phase by P,

P ¼ Pw ; ð7Þ

and writing the fluid pressure for the nonwetting phase as

Pn ¼ Pþ Pc ; ð8Þ

[12] I can reduce the system of equations (1) to two
equations in two unknowns. First, because of equation (8),
I write the gradient of the fluid pressure of the nonwetting
phase in terms of the gradients of the pressure and satura-
tion of the wetting phase:

rPn ¼ rPþ @Pc

@S
rS : ð9Þ

[13] As done by de Marsily [1986], I assume linear elas-
tic behavior for the porous matrix to arrive at a relationship
between a change in fluid pressure and a change in matrix
porosity. The exact relationship is

@’

@t
¼ �T

@Pw

@t
; ð10Þ

where �T is a proportionality coefficient that depends upon
the compressibilities of the fluids and the solid and on the
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porosity. Making the various substitutions described above,
the original system of equations (1) reduces to two equa-
tions in two unknowns:

r � k�w rP� �wZð Þ½ � ¼ �T S
@P
@t
þ ’@S

@t
ð11Þ

r � k�n rPþ �crS � �nZð Þ½ � ¼ �T 1� Sð Þ @P
@t
� ’@S

@t
; ð12Þ

where Z ¼ grz is a vector in the direction of the gravita-
tional attraction and

�c ¼
@Pc

@S
: ð13Þ

[14] Carrying out the differentiations associated with the
outer divergence operator, I can write equations (11) and
(12) as the pair of equations

r� � rPþ 	wrS � rPþr � rP� �wr� � Z� �w	wrS � Z

¼ �T

k�w
S
@P
@t
þ �

k�w

@S
@t

ð14Þ

r� � rPþ 	nrS � rPþr � rP� �nr� � Z� �n	nrS � Z
þ�cr� � rS þ�rS � rS þ �cr � rS

¼ �T

k�n
1� Sð Þ @P

@t
� �

k�n

@S
@t
;

ð15Þ

where

� ¼ � ln k ; ð16Þ

	w ¼ �
@�w

@S
; ð17Þ

	n ¼ �
@�n

@S
; ð18Þ

� ¼ �c	n þ
@�c

@S
: ð19Þ

[15] Equations (14) and (15) are the governing equations
and serve as the starting point for my application of the
method of multiple scales, an asymptotic technique
described in section 2.2.

2.2. An Asymptotic Analysis of the Governing
Equations

[16] The governing equations (14) and (15) are rather
complicated as they are nonlinear, of mixed character, and
coupled partial differential equations with spatially varying
coefficients. Without some manner of simplification an
analytic solution is certainly not possible. Because one goal
of this work is to develop techniques to solve inverse prob-
lems, for example, using the saturation front arrival time to
infer the flow properties of the medium, retaining the heter-
ogeneity is essential. However, because of the limited reso-

lution of most inverse methods, in which a finite number of
data are used to estimate a field of properties, one typically
seeks models with smoothly varying heterogeneity. Thus, I
am most interested in two-phase flow in a model with
smoothly varying properties. I should note that sharp boun-
daries, in the form of layering, are allowed as explicit
boundary conditions.

[17] I can build the assumption of smoothly varying het-
erogeneity into the modeling through a technique known as
the method of multiple scales [Anile et al., 1993, p. 49].
This approach is suited to the construction of asymptotic
solutions for a porous medium with heterogeneous, yet
smoothly varying, flow properties. The measure of smooth-
ness is with respect to the scale length of the two-phase
front. In order to define this formally, I first denote the scale
length of the two-phase front, the distance over which the
saturation changes from the background value to the value
behind the front, by l. In addition, let L denote the scale
length of the heterogeneity within the medium. The
smoothness of the medium is stipulated by the requirement
that L� l. An asymptotic solution can be formulated in
terms of the ratio of scale lengths " ¼ l=L. To this end, I
will define the slow spatial coordinates

X ¼ "x ; ð20Þ

the scale over which many of the quantities of interest,
such as the travel time, will vary. Similarly, I can define a
slow time:

T ¼ "t : ð21Þ

[18] An asymptotic solution is a power series representa-
tion of the dependent variables, that is, the saturation and
pressure. The power series is in terms of the scale variable
". For example, the saturation is represented as

SðX; T ; 
sÞ ¼ SbðX; TÞ þ
Z T

0
e
sðX; uÞ

X1
i¼0

"iSiðX; uÞdu; ð22Þ

where Sb is the background saturation that may be a func-
tion of space and time, 
sðX; TÞ is a phase function that is
related to the propagation time of the saturation front, and
Si(X, T) is the ith contribution to the saturation amplitude.
The integral appears in the representation because I will be
considering a step function source, rather than a pulse-like
source. The saturation contains both an explicit and an
implicit dependence upon the spatial and temporal coordi-
nates. The implicit dependence is through the phase func-
tion 
sðX; TÞ. The representation (22) is in the form of a
traveling front, a propagating change in the saturation with
respect to the background saturation.

[19] The increase in pressure across the two-phase front
has a similar representation:

PðX; T ; 
pÞ ¼ PbðX; TÞ þ
Z T

0
e
pðX; uÞ

X1
i¼0

"iPiðX; uÞdu: ð23Þ

[20] Note that the phase function for the pressure can dif-
fer from the saturation phase, meaning that the saturation
and pressure can move with different speeds. This allows
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the jump in pressure to propagate much faster than the satu-
ration change, for example. In section 2.3 I will examine
the situation in which 
s ¼ 
p.

[21] The governing equations (14) and (15) can be
rewritten in terms of the slow coordinates. In order to do
this I first express the partial derivatives in terms of Xi, T,
and 
. In doing so I make use of the relationships (20) and
(21) between the fast and slow coordinates and the explicit
and implicit dependence upon the independent variables.
Thus, I can write the partial derivative with respect to time as

@S
@t
¼ " @S

@T
þ @
s

@t
@S
@
s

ð24Þ

because, from the definition of T in equation (21),
@T=@t ¼ ". Similarly, I can express the derivative with
respect to xi as

@S
@xi
¼ " @S

@Xi
þ @
s

@xi

@S
@
s

; ð25Þ

and thus, the gradient in terms of the X coordinates is given by

rX S ¼ "rxS þr
s
@S
@
s

; ð26Þ

where the subscripts X and x indicate that the derivatives
are with respect to the X and x coordinates, respectively.

[22] Given these expressions for the differential opera-
tors, I can rewrite the governing equations in terms of the
slow variables X and T. Each term will contain a factor that
is the scale parameter " raised to some power. Because I
am assuming that the saturation and pressure fronts vary
over a scale length that is much less than that of the hetero-
geneity, " is assumed to be much smaller than unity. There-
fore, terms of low order in " will dominate in the governing
equations. In Appendix A, I write the governing equations
in terms of the slow variables and retain terms of lowest
order in ". In order to derive an expression for the travel
time of the capillary front, I only consider terms of order
"0. To order "0 the governing equations take the form (see
Appendix A for a complete treatment)

	ws � p�S�Pþ p2 �P� �w	ws � Z�S ¼ �T

k�w
S�P

@
p

@t
þ ’

k�w

�S
@
s

@t
ð27Þ

	ns � p�S�Pþ p2 �Pþ �n	ns � Z�S þ�s2�S2 þ �cs2�S

¼ �T

k�n
1� Sð Þ �P

@
p

@t
� �

k�n

�S
@
s

@t
;

ð28Þ

where I have defined the gradient vectors of the phase func-
tions 
p and 
s,

p ¼ r
p ð29Þ

s ¼ r
s ; ð30Þ

with magnitudes s ¼ jsj ¼
ffiffiffiffiffiffiffiffi
s � s
p

and p ¼ jpj ¼ ffiffiffiffiffiffiffiffiffi
p � pp

,
respectively. The variables p and s are known as the slow-
ness of the propagating two-phase front because they can

be shown to be equal to the inverse of the front velocity
[Kravtsov and Orlov, 1990]. The quantities �S and �P,
defined by

�S ¼ S0 � Sb ð31Þ

�P ¼ P0 � Pb ; ð32Þ

signify the change in saturation and pressure from the back-
ground values to new values because of the passage of the
two-phase front.

2.3. Expression Governing the Evolution of the Two-
Phase Front

[23] The two equations (27) and (28) provide relation-
ships between the gradients of the phase functions, s and p,
and the amplitudes of the saturation and pressure changes,
�S and �P, across the front. In this section I use equations
(27) and (28) to derive explicit expressions for the magni-
tude of the slowness vectors s and/or p in terms of the me-
dium and fluid properties and the amplitude changes �S and
�P. The quantity s is the front slowness, the inverse of the
front velocity, an important quantity for calculating the
travel time of the two-phase front.

[24] However, before delving into a detailed derivation, I
need to discuss an important issue regarding the nature of
the propagating front. As noted, it is assumed that the lead-
ing edge of the front is defined by a rapid change in satura-
tion and pressure. Ahead of the front, the saturation and
pressure are at their background values; behind the front
the saturation and/or pressure assume new values, different
from the background values. The concept of a propagating
front has proven extremely useful in a wide variety of
fields, such as electromagnetics [Kline and Kay, 1965;
Luneburg, 1966], and is central to treatments of nonlinear
wave propagation [Whitham, 1974; Maslov and Omel’ya-
nov, 2001]. Many of the coefficients, for example, 	w, �c,
and �, in equations (27) and (28) are functions of the satu-
ration and pressure. Thus, one may ask, What values of sat-
uration and pressure should be used in determining the
coefficients? Because I am interested in the arrival time of
the leading edge of the front, which evolves according to
the saturation and pressure encountered before the jump to
new values, I will use the background conditions to com-
pute the coefficients in (27) and (28). Following Anile et al.
[1993], a more formal mathematical approach may be
taken, on the basis of an expansion of the coefficients in
powers of ". The expansion follows from the representation
of the pressure as an asymptotic series in " (see equation
(23)). Consider, for example, 	wðPÞ, which may be
expanded as

	wðPÞ ¼ 	wðPb þ �P0Þ þ "
@	w

@P
ðPb þ �P0Þ þ Oð"2Þ ; ð33Þ

where

�P0ðX; TÞ ¼
Z T

0
e
ðX; �ÞP0ðX; �Þd� ð34Þ

in the case of a step function source. To order " one finds
that 	wðPÞ ¼ 	wðPb þ �P0Þ. The moment at which the
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coupled front arrives at an observation point X, which I
denote by Tarrival, the quantity �P0ðx; TarrivalÞ is zero, and
hence, 	wðPÞ ¼ 	wðPbÞ.

[25] Fixing the coefficients in equations (27) and (28) to
their background values, the next task involves estimating
the slowness of the propagating front. If the governing equa-
tions were linear differential equations, then the zeroth-order
terms would form a linear system, and one could use the
condition that the linear system has a nontrivial solution to
find the admissible slowness values [Kline and Kay, 1965;
Kravtsov and Orlov, 1990]. Equations (27) and (28) are not
linear in �S and �P ; rather, they comprise two quadratic equa-
tions. A formal approach, similar to that used for linear sys-
tems of equations [Noble and Daniel, 1977], may be based
on techniques from algebraic geometry [Cox et al., 1998].
The condition under which the two polynomial equations
(27) and (28) have common zeros is the vanishing of the re-
sultant [Cox et al., 1998; Sturmfels, 2002]. The resultant is a
polynomial equation in s, p with coefficients that depend
upon either �S or �P and the properties of the medium.

[26] Here I take a direct approach, first solving equation
(27) for the product term,

s � p�S�P ¼ 1
	w

�T

k�w
Sb �Pþ ’

k�w

�S � p2 �P� �w	ws � Z�S

� �
; ð35Þ

where I have used the background value Sb for the satura-
tion. Substituting this expression for s � p�S�P into equation
(28) and grouping terms according to their degrees in s and
p gives

��S þ �cð Þ �Ss2 þ 1� 	n

	w

� �
�Pp2 þ 	ns � Z �n � �wð Þ �Ss

� �T

k
1� Sb

�n
� 	n

	w

Sb

�w

� �
�P
@
p

@t
þ �

k
	n

	w

1
�w
þ 1
�n

� �
�S
@
s

@t

¼ 0;

ð36Þ

an equation for the slownesses.
[27] In the most general situation, in which no assump-

tions are made regarding s and p, there are more unknowns
than equations. However, I am primarily interested in the
propagation of a two-phase front in which the change in
saturation and the change in pressure are coupled. That is,
the jumps in saturation and pressure occur simultaneously
as the front passes. Thus, 
s and 
p, the phase terms associ-
ated with the saturation and pressure changes, are equal to

s ¼ 
p ¼ 
, r
s ¼ s ¼ p ¼ r
p, and s ¼ p. In that case,
equation (36) reduces to a single quadratic equation in p :

1� 	n

	w

� �
�Pþ ��S þ �cð Þ �S

� �
p2 þ 	np � Z �n � �wð Þ �Sp

� �T

k
1� Sb

�n
� 	n

	w

Sb

�w

� �
�Pþ �

k
	n

	w

1
�w
þ 1
�n

� �
�S

� �
@


@t

¼ 0:

ð37Þ

[28] Defining the ratio

	 ¼ 	n

	w
ð38Þ

and the coefficients

� ¼ 	n �n � �wð Þ �S
1� 	ð Þ �Pþ ��S þ �cð Þ �S ð39Þ

� ¼
�T 1� Sbð Þ ��1

n � 	Sb�
�1
w

� �
�P� ’ 	��1

w þ ��1
n

� �
�S

k 1� 	ð Þ �Pþ ��S þ �cð Þ �S½ � ; ð40Þ

[29] I can write equation (37) as

p2 þ �g cosð�Þp� �
@


@t
¼ 0 ; ð41Þ

where I have used the fact that p � Z ¼ g cos �. The quantity
� signifies the angle between the slowness vector p and the
direction of the gravitational attraction Z. As shown in sec-
tion 2.4, this expression can be used in conjunction with a
numerical reservoir simulator to compute the slowness and,
hence, the velocity of the propagating two-phase front. In
particular, one can use a numerical simulator to calculate
the saturation and pressure changes over the region of inter-
est because of the passage of the two-phase front. Thus,
one obtains estimates of �S and �P which may be substituted
into the expressions (39) and (40). Equation (41) for the
slowness is fairly general, allowing for capillary effects as
well as gravitational forces.

2.4. Computation of the Phase Function
[30] Recalling the definition of the phase gradient vector

p, given by (29), one observes that equation (41) is a differ-
ential equation for the phase function 
ðX; tÞ :

r
 � r
þ �r
 � Z� �
@


@t
¼ 0: ð42Þ

[31] Equation (42) is an example of a class of equations
that are of fundamental importance in many areas of
physics [Lanczos, 1986]. Such equations have a well-devel-
oped mathematical foundation [Courant and Hilbert, 1962;
Sneddon, 2006, p. 81] that underlies ray methods in electro-
magnetic [Kline and Kay, 1965; Luneburg, 1966] and elas-
tic [Karal and Keller, 1959; Kravtsov and Orlov, 1990]
wave propagation.
2.4.1. Direct Numerical Integration

[32] The most direct method for solving equation (42) is a
numerical approach, based upon finite differences. Such
methods, which have grown in popularity since their incep-
tion [Crandall and Lions, 1983; Crandall et al., 1984;
Vidale, 1988; Sethian, 1990; van Trier and Symes, 1991],
are now well developed [Sethian, 1999]. Techniques, such as
the fast marching method and level set methods [Sethian,
1999] are general and applicable to equations such as (42).
The gravitational term results in preferential movement in the
direction of Z. However, this does not present a fundamental
difficulty because there are a number of implementations of
finite difference–based algorithms for propagation in an ani-
sotropic medium [Sethian and Strain, 1992; Lecomte, 1993;
Eaton, 1993; Qian and Symes, 2001; Soukina et al., 2003].
2.4.2. Method of Characteristics

[33] The classical alternative to a finite difference
approach is to solve equation (42) using the method of
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characteristics [Courant and Hilbert, 1962, p. 63]. As
shown here, such an approach leads to a trajectory-based
solution and an alternative numerical technique. I first write
equation (42) in the form

@


@t
� Hðx; t; p; 
Þ ¼ 0 ; ð43Þ

where Hðx; t; p; 
Þ is the Hamiltonian function, given by

Hðx; t; p; 
Þ ¼ ��1p � pþ�p � Z ð44Þ

�ðx; t; 
Þ ¼ ��1ðx; t; 
Þ�ðx; t; 
Þ: ð45Þ

[34] The characteristic equations corresponding to the
scalar partial differential equation (43) are a set of ordinary
differential equations

dxi

dt
¼ @H
@pi

ð46Þ

dpi

dt
¼ � @H

@xi
� @H
@


pi ð47Þ

that follow from geometrical arguments [Courant and Hil-
bert, 1962, p. 106]. The system of ordinary equations may
be solved numerically, using techniques for two-point
boundary value problems [Press et al., 1992, p. 745].
Note that the two sets of equations (46) and (47) display
preferential flow in the Z direction because of gravita-
tional forces. This preferential flow introduces an anisot-
ropy and modifies the trajectories. The situation is similar to
that of wave propagation in an anisotropic medium and has
been treated in studies of wave propagation in an aniso-
tropic Earth [Cerveny, 1972; Chapman and Pratt, 1992].

[35] Note that if gravity is not important, for example, if
the densities are close in value or if the flow is restricted to a
narrow horizontal layer, equations (46) and (47) still apply;
however, � will vanish. Therefore, the flow will be con-
trolled by �, and there will be no preferential flow in the Z
direction. In that case it is possible, under certain circum-
stances, to write the phase function in a separable form, such
as 
ðx; tÞ ¼ 
ðtÞ�2ðxÞ. In Appendix B I derive an explicit
expression for 
ðx; tÞ for the case in which the phase is a
separable function. In Appendix B, it is shown that


ðtÞ ¼ � 1
4t

ð48Þ

�ðxÞ ¼
Z

x

ffiffiffiffi
�
p

ds ; ð49Þ

resulting in


 xðsÞ; t½ � ¼ � 1
4t

Z
xðsÞ

ffiffiffiffi
�
p

ds

 !2

; ð50Þ

which is similar to the phase function for the linear diffu-
sion equation [Vasco et al., 2000].

2.5. Zeroth-Order Solution for the Saturation and
Pressure Changes

[36] Armed with expressions for the trajectory of the
propagating front and the phase function 
ðx; tÞ, one can
construct a low-order representation of the saturation and
pressure fields using the series solutions (22) and (23).
Because I am interested in solutions for a model with
smoothly varying flow properties, " is assumed to be small,
and thus, the first few terms of the series dominate. Here I
consider a zeroth-order solution, taking only the first term
of each series. The expression for the saturation change
with respect to the background value Sb(X, T) is

�SðX; T ; 
sÞ ¼
Z T

0
e
sðX; uÞS0ðX; uÞdu ; ð51Þ

and similarly for the pressure change, it is

�PðX; T ; 
pÞ ¼
Z T

0
e
pðX; uÞP0ðX; uÞdu : ð52Þ

[37] Note that these solutions are incomplete because
they depend upon the amplitudes S0 and P0, which are not
provided. In fact, the defining equation for the phase, equa-
tion (42), contains coefficients � and � that depend upon
the amplitude changes �S and �P. Thus, expression (51) and
(52) must be evaluated in conjunction with estimates of the
amplitude changes S0 and P0. For example, in section 3 I
will use the numerical simulator TOUGH2 [Pruess et al.,
1999] to calculate the amplitude changes.

[38] One can gain some physical insight into the mean-
ing of the phase terms 
s and 
p following a line of reason-
ing first suggested by Virieux et al. [1994]. I discuss this
approach in some detail in Appendix C. Note that each of
the semianalytic expressions (51) and (52) contain temporal
integrals of an exponential of the phase function multiplied
by an amplitude function. The exponential of the phase
function is always a positive number, and the amplitude
function is typically of one sign for a passing front. For
example, the amplitude function S0 will either describe a
decrease or an increase in the saturation of the aqueous
phase, depending on the nature of the passing coupled
front. Thus, the integrals are typically piecewise monotonic
if the coupled multiphase front is a result of the injection of
a particular fluid component.

[39] As noted by Vasco et al. [2000] and Vasco and Fin-
sterle [2004], for a step function source, the transient,
wave-like nature of a solution to the diffusion equation is
emphasized by taking the derivative of the head or pressure
with respect to time. Thus, I shall be interested in the time
derivatives of the saturation and pressure changes, which
are of the form

@�SðX; T ; 
sÞ
@t

¼ e
sðX;TÞS0ðX; TÞ ð53Þ

@�PðX; T ; 
pÞ
@t

¼ e
pðX; TÞP0ðX; TÞ: ð54Þ

[40] For a separable phase function, as given by equation
(50), the saturation and pressure resemble the product of a

W03526 VASCO: PROPAGATION OF A COUPLED TWO-PHASE FRONT W03526

6 of 21



Gaussian function and the time-varying amplitude function.
In Appendix C I derive a relationship between the phase
function 
 and the arrival time of the pressure and satura-
tion fronts Tpeak for a separable phase function with a
power law time dependence:

ffiffiffiffiffiffiffiffiffiffi
Tpeak

p
¼ 1

2
ffiffiffiffiffi
�s
p

Z
xðsÞ

ffiffiffiffi
�
p

ds ; ð55Þ

where � is given by expression (40).

3. Applications
[41] In this section I illustrate how one can use the

expression for the slowness, equation (41), to calculate the
travel time of a coupled pressure and saturation disturb-
ance. For simplicity, I shall neglect gravitational effects, so
that equation (41) reduces to

p2 � �
@


@t
¼ 0 : ð56Þ

[42] In the examples that follow I shall consider the
injection of water into a layer containing a nonaqueous
phase liquid (NAPL). For the first two illustrations the layer
is homogeneous, the permeability is 2 � 10�13 m/s, and the
porosity is 0.10. For simplicity, there are no capillary
effects in these examples. In the last illustration the layer is
heterogeneous.

[43] The numerical simulator TOUGH2 [Pruess et al.,
1999] is used to model the flow of the two phases in
response to the injection. The relative permeability func-
tions krw(S) and krn(S) are plotted in Figure 1. The relative
permeability of the nonaqueous phase liquid is given by the
default formulation of TOUGH2 [Pruess et al., 1999,
p. 50] for oil,

krnðSÞ ¼
1� S � Snr

1� Snr
; ð57Þ

where Snr is the residual saturation of the NAPL. The rela-
tive permeability function described by Corey [1954] is
used to model the water,

krwðSÞ ¼ Ŝ4 ; ð58Þ

where

Ŝ ¼ S � Swr

1� Swr � Sgr
ð59Þ

and Swr ¼ 0.2, Snr ¼ 0.01, and Sgr ¼ 0.1. Other relative per-
meability functions [Fatt and Klikoff, 1959; Brooks and
Corey, 1966; Mualem, 1976; van Genuchten, 1980] are
certainly possible, and their substitution would involve no
extra work.

[44] A central well, indicated by a star in Figure 2,
injects water at a rate of 4.0 kg/s. The injection starts at
time zero and continues at a constant rate. Thus, the source
behaves as a step function in time. Two observation points,
located to the north of the injector, are denoted by the open

and filled circles in Figure 2. Because of the injection, satu-
ration and pressure changes propagate from the injection
well into the porous layer. The water saturation and pres-
sure distributions, after 100 days of injection, are shown in
Figure 2.

[45] The saturation changes and the pressure calculated
at the first observation point, denoted by the filled circle in
Figure 2, are shown in Figure 3. Note that saturation and
pressure changes occur soon after the start of injection.
Initially, there is a small decrease in water saturation at
the observation point. However, a large, rapid saturation
increase occurs around 250 days after the start of injection.
In contrast, the pressure builds up gradually and monotoni-
cally over time. Careful examination of the pressure varia-
tion in Figure 3 indicates a change in the rate of pressure
buildup at around 250 days. As noted here and in previous
publications [Vasco et al., 2000; Vasco and Finsterle,
2004; Vasco, 2008a], the propagation of transient pressure
changes is clearer if one considers the time derivative of
the pressure history. To this end, I plot the time derivative
of both the saturation and pressure changes in Figure 4.
Note that the time derivative of the pressure displays two
peaks, the first at an early time (less than 100 days) and the
second around 300 days. The derivative of the saturation
change, shown in Figure 4a, displays similar characteris-
tics, in this case a trough at an early time and a peak at
around 300 days. In section 3.1 I shall examine the early
changes, which I refer to as the first arrival, in more detail.
Because the change in saturation associated with the early
disturbance is quite small, less than 5%, the flow in this
case is dominated by the larger change in pressure.

3.1. Flow Dominated by a Change in Pressure
[46] The changes at early times are associated with the

transient pressure disturbance propagating in the nonaqueous

Figure 1. Relative permeability curves for the nonaqu-
eous phase liquid (NAPL) and for water as a function of
the water saturation. The nonaqueous phase liquid function
is the default for oil in the reservoir simulator TOUGH2
[Pruess et al., 1999].
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phase liquid, well ahead of the injected water front. That is,
the saturation and pressure changes are dominated by pres-
sure propagation through the background saturation distribu-
tion. There is also a small saturation change driven by the
pressure changes, inducing relative flow of the two phases.
In this section I shall consider these changes and interpret
them in terms of the expressions for the travel time and
phase velocity.

[47] The early peak in the pressure derivative in Figure 4
is shown in greater detail in Figure 5. In Figure 5 I have
also plotted the early decrease in saturation seen in Figure

4a. Both of these curves have been normalized to unit am-
plitude and converted so that they are both positive. Note
how closely the pressure change follows the saturation
change in time (Figure 5), with a peak value at around 50
days. One can also consider snapshots of the normalized
saturation and pressure derivatives in the layer. Specifically,
I plot the normalized saturation and pressure derivatives in
each grid block at particular times in Figures 6 and 7. These
snapshots convey the transient propagation of the saturation
and pressure changes. That is, the peak of the saturation
and pressure derivatives propagates outward from the

Figure 2. (a) The distribution of water saturation in the porous layer after 100 days of water injection.
The two observation points are denoted by the filled and open circles. (b) The pressure field after 100
days of injection.

Figure 3. (a) Time-varying saturation change at the first observation point (indicated by the filled
circle in Figure 2). (b) Time-varying pressure at the first observation point.
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injection well over time. Furthermore, the changes in satu-
ration and pressure are coupled and move with the same ve-
locity. That is to be expected because the saturation
changes are induced by the propagating pressure changes.
Noting the time at which the normalized derivative of the
saturation and pressure in each grid block attains a maxi-
mum value, I can compute the arrival time of the disturban-
ces at each point in the layer (Figure 8). The arrival times
are very similar for the early-time saturation and pressure
changes.

[48] Using the expressions for �, equation (40), and the
travel times (equation (55)), one can estimate the arrival
times for the saturation and pressure changes. When there

is only a small saturation change associated with the propa-
gating front, I can approximate the coefficient � by

� ¼
�T 1� Sbð Þ ��1

n � 	Sb�
�1
w

� �
k 1� 	ð Þ ; ð60Þ

where �T is the proportionality coefficient in equation (10),
a function of the compressibilities of the poroelastic sys-
tem. Note that (60) only depends upon the properties of the
medium. As noted by Vasco and Finsterle [2004], one can
use the arrival time field estimated from the output of the
numerical simulator to compute the trajectories x(t) defined
by equations (46) and (47). In Figure 8 I have plotted the
trajectory from the second observation point, denoted by
the open circle, to the injection well, denoted by the star.
Because the layer is homogeneous the trajectory is a
straight line. Using expressions (55) and (60), I can esti-
mate the travel time, assuming that the pressure disturb-
ance travels in the same manner as a solution to the
diffusion equation:

ffiffiffiffiffi
Tp

p
¼ 1

6

Z
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T 1� Sbð Þ ��1

n � 	Sb��1
w

� �
k 1� 	ð Þ

s
ds : ð61Þ

[49] In Figure 9 I compare travel times estimated using
equation (61) to estimates extracted from the output of the
TOUGH2 numerical simulation. The values are computed
for the points along the trajectory shown in Figure 8. In
general, there is good agreement between the semianalytic
estimates based upon equation (61) and the estimates from
the numerical simulator.

3.2. Fully Coupled Saturation and Pressure Changes
[50] Now consider the second arrival in Figure 4, associ-

ated with the propagating saturation front. One can no lon-
ger assume that the saturation change is small. Neither can
one assume that the pressure change is negligible because

Figure 4. (a) Time derivative of the saturation change. (b) Time derivative of the pressure variation at
the first observation point.

Figure 5. Normalized time derivatives of the saturation
and pressure variations for the first 150 days from the start
of water injection. The derivatives are normalized such that
the peak values are 1.

W03526 VASCO: PROPAGATION OF A COUPLED TWO-PHASE FRONT W03526

9 of 21



of its large magnitude. To some degree I can isolate the
pressure change by calculating the pressure field in the layer
because of the injection of fluid of the same composition.
Thus, I can estimate the component of the pressure change
due to the fluid mass change with no corresponding satura-
tion change. In Figure 10 I compare the derivative of this
differential pressure, normalized such that the peak of the
time derivative is unity, to the normalized time derivative of
the saturation change. The removal of the pressure change
because of the fluid mass change is imperfect; however, in
general, there is good agreement between saturation and
pressure. As for the earlier phase, I can examine snapshots
of the saturation and pressure time derivatives as they vary
over the simulation grid (Figures 11 and 12). Again, the
propagation of the disturbance is apparent in the snapshots,
as is the agreement between the saturation and pressure
changes. Note that the propagation away from the injection
point is not entirely symmetric, indicating some anisotropy,
likely because of numerical grid effects. This effect could
possibly be minimized by taking a finer simulation grid. In
order to minimize the grid effects I consider observation
points along the north-south axis of the grid, denoted by the
filled and open circles in Figures 11, 12, and 13.

[51] As was done for the first arrival, one can postprocess
the results of the numerical simulation in order to estimate
travel times for the propagating disturbances. The simplest
approach, and the one taken here, is to take the time at
which the time derivative attains a maximum value as the
arrival time of the disturbance. In Figures 13a and 13b I
have plotted the travel times associated with the saturation
and pressure disturbances, respectively. There is excellent
agreement between the two distributions of travel times
within the layer. Note that the anisotropy, possible because
of numerical grid effects, is reflected in the asymmetry of
the travel time contours. The trajectories, computed by
marching down gradient of the travel time functions, are
also shown in Figure 13. The trajectories denote the path
traveled by the saturation and pressure disturbances from
the injection well to the outer observation point, denoted by
the open circle.

[52] Using the expression for �, given by equation (40),
one can calculate the travel time from the medium parame-
ters and the changes in saturation and pressure because of
the passage of the two-phase front. The model for water
and NAPL in TOUGH2 assumes no capillary effects so
that the functions �c and � vanish and � takes the form

� ¼
�T 1� Sbð Þ ��1

n � 	Sb�
�1
w

� �
k 1� 	ð Þ þ

’ 	��1
w þ ��1

n

� �
�S

k 1� 	ð Þ �P
: ð62Þ

[53] From (62) and the relationship between � and Tpeak,
as given in equation (55), it is clear that the second term is
responsible for the additional time taken to travel from the
injection well to the observation point. The amplitude
changes �S and �P were estimated from the numerical simu-
lator output. Specifically, I compute the difference between

Figure 6. Snapshots of the normalized time derivative of
the saturation variation for three different times. The time
derivative of the saturation variation in each grid block is
formed and normalized such that its peak value is 1.
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the field values associated with the arrival time of the front
(the time at which the time derivative is a maximum) and
the field values before the arrival of the front. Note that the
saturation changes because of the passage of the two-phase
front are primarily controlled by the background saturation
and the relative permeability characteristics of the reser-
voir, for example, by the irreducible water saturation. In
Figure 14 I compare the travel time estimates based upon
(62) with the times obtained by postprocessing the
TOUGH2 numerical simulator saturation and pressure his-
tories. In general, there is good agreement between the sat-
uration and pressure arrival times computed from the
TOUGH2 simulation and the asymptotic estimates.

3.3. Flow in a Heterogeneous Medium
[54] As noted, one motivation for developing semiana-

lytic solutions is the solution of the inverse problem. That
is, one would like to use the explicit expressions to develop
efficient and flexible methods for characterization. For this
reason, I have allowed for heterogeneity of arbitrary magni-
tude in the formulation. In this subsection I consider a het-
erogeneous medium, described by a variation in absolute
permeability k(x) ; all other parameters are kept at the val-
ues used in the homogeneous case. The smoothly varying
model contains generally higher permeability to the west
and lower permeability to the east (Figure 15). The lowest
permeability is found in the northeast corner of the model.
The saturation and pressure variations, in response to water
injection in the central well, are influenced by the heteroge-
neity. This is clear in Figure 16, which displays the satura-
tion and pressure variations in the layer after 525 days of
injection. The fields reflect the heterogeneity, with rapid
migration of the two-phase front in the higher-permeability
region west of the injection well.

[55] The saturation and pressure histories are calculated
at an observation point to the north of the injector, indi-
cated by the filled circle in Figure 16. In Figure 17 the time
derivatives of the saturation and pressure variations are
plotted as a function of time from the start of injection. The
overall character of the curves, the two peaks in the pres-
sure derivative and the early decrease in saturation fol-
lowed by a large and rapid increase, are similar to those
found in the homogeneous case (Figure 4). As in the homo-
geneous case, I can compute the travel times associated
with the two sets of extrema in the saturation and pressure
variations. For example, the first arrival time is associated
with the first peak in the pressure derivative, as seen in Fig-
ure 17b, and the early trough in the saturation variation
(Figure 17a). The distributions of travel times for the satu-
ration and pressure variations are shown in Figures 18a and
18b, respectively. The distributions of travel times are very
similar, as are the trajectories computed by marching down
the gradient of the travel time field from an observation
point to the injection point (Figure 18). Using equation
(61), now with a spatially varying absolute permeability
k(x), I can calculate the travel time for the heterogeneous
medium. In Figure 19 I compare the estimated travel times
to values obtained from the numerical simulation. The
travel times are computed for points along the trajectory
shown in Figure 18. The asymptotic estimates are in gen-
eral agreement with travel times obtained from the
TOUGH2 simulator output. In general, the front moves

Figure 7. Snapshots of the normalized time derivatives
of the pressure variation for three different times. The time
derivative of the pressure variation in each grid block is
formed and normalized such that its peak value is 1.
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faster at near and intermediate distances and then slows
considerably at farther offsets. This behavior makes physi-
cal sense because as seen in Figure 15, the trajectory
encounters lower permeability material as it traverses the
northeast quadrant of the simulation grid near the end of
the path.

[56] Now I consider the later arrival, exemplified by the
second peak in the saturation and pressure derivatives in
Figure 17. As noted, this disturbance is due to the propagat-
ing saturation front, and the travel time is related to the
variable �, given by (62). In this case, the absolute perme-
ability k(x) is a spatially varying quantity. I should point

Figure 8. Contour plots of the phase function computed from the saturation and pressure variations in
each block of the simulation grid. The two observation points are signified by the filled and unfilled
circles. Trajectories, extending from the second observation point to the injection well, are denoted by
the solid lines.

Figure 9. Travel times associated with various points
along the trajectories shown in Figure 8, which extend
from the second observation point to the injection well.
The travel times for the saturation and pressure phase func-
tions are associated with the time at which the derivative
attains its maximum value. The travel times calculated
using the asymptotic expression (see equation (61)) are
also plotted for points along the trajectory.

Figure 10. Time derivatives of the saturation and pres-
sure variations at the first observation point (denoted by a
filled circle in Figure 1). The derivatives have been normal-
ized such that the peak values are 1. The values are associ-
ated with the second set of peaks, between 200 and 400 s,
in Figure 4. A background pressure variation, calculated
for oil injection in an oil-saturated layer, has been removed
from the pressure curve.
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Figure 11. Snapshots of the normalized time derivatives
of the saturation variation in each grid block.

Figure 12
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out that the permeability appears both explicitly in (62) as
well as implicitly, as the permeability also determines the
saturation and pressure amplitude changes, �S and �P, respec-
tively. Thus, the travel time distribution and the trajectories
for this disturbance can differ from those of the first arrival.
In fact, the travel time contours and the trajectory for the
second arrival (Figure 20) do differ from those of the first
arrival (Figure 18). Some of the differences may also be
because of grid orientation effects, noted in Figures 11, 12,
and 13. In both cases the trajectories curve toward the
higher-permeability region, away from areas of lower per-
meability. Using (62), I calculate the expected travel time
to points along the trajectory, as shown in Figure 21. As in
the homogeneous case, the travel time is much greater for
the second arrival because of the presence of the second
term in equation (62). Also, as for the first arrival, the dis-
turbance travels faster to near and intermediate points of
the trajectory and takes much longer to reach the more dis-
tant points.

4. Conclusions
[57] Under the assumption of smoothly varying hetero-

geneity, it is possible to derive an explicit equation for the
phase velocity of a coupled change in saturation and fluid
pressure. The expression displays the dependence of the
front velocity upon the parameters of the medium and the
saturation and pressure changes that occur as the front

Figure 12. Snapshots of the normalized time derivatives of the pressure variation in each grid block. A background pressure
variation, calculated for oil injection in an oil saturated layer, has been removed from the pressure curve in each grid block.

Figure 13. Contour plots of the phase function computed from the saturation and pressure variations in
each block of the simulation grid. The phase functions correspond to the second set of peaks in Figure 4,
the second arrival. The two observation points are signified by the filled and unfilled circles. Trajectories,
extending from the second observation point to the injection well, are denoted by the solid lines.

Figure 14. Travel time to points at various distances
along the trajectories plotted in Figure 13. The saturation
and pressure estimates were obtained by postprocessing the
output of the numerical simulator TOUGH2 [Pruess et al.,
1999]. The asymptotic estimates, based upon the expression
(62), are denoted by the crosses.
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passes. Because of the presence of the saturation and pres-
sure amplitude changes, the expression for the front veloc-
ity is evaluated in conjunction with a numerical simulation.

[58] The presence of the saturation and pressure ampli-
tudes means that at least two modes of propagation are pos-

sible, depending on the relative magnitude of the saturation
and pressure changes. That is, the coupled front can propa-
gate with a different velocity depending on the size of the
saturation change relative to the change in pressure as the
front passes. Numerical simulation using TOUGH2 [Pruess
et al., 1999] indicates that two modes of propagation are
important : the propagation of a pressure-dominated change
and the propagation of a coupled front in which the satura-
tion change is also large. These conclusions hold for a het-
erogeneous medium, though the geometry is controlled by
the spatial variation of properties. The factors influencing
the propagation velocity of the two-phase front are the
background saturation, the saturation-dependent compo-
nents of the fluid mobilities, the medium compressibility,
the permeability, the porosity, and the ratio of the slopes of
the relative permeability curves at the background
saturation.

[59] Note that while it is indeed possible to observe the
two coupled arrivals in the results of the numerical simula-
tion, as in Figure 4, the asymptotic analysis provides a
quantitative interpretation in terms of the medium parame-
ters and the pressure and saturation changes (see equation
(40) and the reduced forms (60) and (62)). Furthermore,
while the arrivals are clear in the pressure and saturation
derivatives plotted in Figure 4, their expression in the
actual pressure and saturation variations (Figure 3) are
rather subtle. It might be difficult to detect the saturation
and pressure variations induced by the two propagating dis-
turbances without the guidance provided by the asymptotic
analysis.

[60] The asymptotic methodology results in solutions
that are defined along trajectories, similar to ray methods in
high-frequency electromagnetic [Kline and Kay, 1965] and
elastic wave propagation [Karal and Keller, 1959].

Figure 15. Permeability model used in the heterogeneous
test case. Darker colors denote higher permeability. Two
observation points are indicated by the filled and unfilled
circles. The injection well is denoted by the star, and the
trajectory is a curve connecting the outermost observation
point with the injection well.

Figure 16. (a) Distribution of water saturation in the heterogeneous porous layer after 525 days of
water injection. The two observation points are denoted by the filled and open circles. (b) The pressure
field after 525 days of injection.
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Streamline simulation is another technique for modeling
multiphase flow that leads to solutions defined along trajec-
tories [Datta-Gupta and King, 1995]. There are differences
between the approach taken here and streamline simulation.
Streamline approaches usually account for gravity using an
additional step, such as operator splitting. In this paper
gravity is incorporated directly. Streamline methods do not
account for capillary effects when computing the trajecto-

ries. In the approach taken in this paper, capillary effects
are contained in the function � through the variables � and
�c and influence the phase function and, hence, the
trajectories.

[61] The techniques described here are general and may
be applied to any system of nonlinear partial differential
equations. Thus, one may consider coupled processes
involving deformation and thermal effects [Vasco, 2010].

Figure 17. (a) Time derivative of the saturation change. (b) Time derivative of the pressure variation
at the first observation point.

Figure 18. Contour plots of the phase function computed from the (a) saturation and (b) pressure varia-
tions in each block of the simulation grid. The two observation points are signified by the filled and
unfilled circles. Trajectories, extending from the second observation point to the injection well, are
denoted by the solid lines.
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However, as additional variables and equations are added,
the resulting expressions for the phase velocity become
increasingly complicated. The increased complexity is no
different from that seen in linear systems, such as in

coupled deformation in a poroelastic medium saturated
with two fluid phases [Tuncay and Corapcioglu, 1996].

Appendix A: Method of Multiple Scales

A1. First of the Governing Equations
[62] Consider the first of the governing equations (14)

and its representation in terms of the slow coordinates X
and T. Substituting for the differential operators in this
equation gives the expression
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[63] Expanding the product terms and retaining terms of
order "0 � 1 gives

Figure 19. Travel times associated with various points
along the trajectories shown in Figure 18, which extend
from the second observation point to the injection well.
The travel times for the saturation and pressure phase func-
tions are associated with the time at which the derivative
attains its maximum value. The travel times calculated
using the asymptotic expression (see equation (61)) are
also plotted for points along the trajectory.

Figure 20. Contour plots of the phase function computed
from the saturation variations in each block of the simula-
tion grid. The phase function corresponds to the second
peak in Figure 17, the second arrival. The two observation
points are signified by the filled and unfilled circles. A tra-
jectory, extending from the second observation point to the
injection well, is denoted by the solid line.

Figure 21. Travel times associated with various points
along the trajectory shown in Figure 20, which extends
from the second observation point to the injection well.
The travel times for the saturation phase function are asso-
ciated with the time at which the derivative attains its maxi-
mum value. The travel times calculated using the
asymptotic slowness expression (see equation (62)) are also
plotted for points along the trajectory.
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[64] In what follows I shall need to define the gradient
vectors

p ¼ r
p ðA3Þ

s ¼ r
s: ðA4Þ

[65] From the particular form of the saturation and pres-
sure, given by expansions (22) and (23), I note that to order
"0,

@S
@
s
¼ S0 � Sb ¼ �S ðA5Þ

@P
@
p
¼ P0 � Pb ¼ �P: ðA6Þ

[66] The quantities �S and �P signify the change in satura-
tion and pressure from the background value to the value
after the passage of the two-phase front. Incorporating all
of these considerations into expression (A2) produces the
more compact expression

	ws � p�S�Pþ p2 �P� �w	ws � Z�S ¼ �T

k�w
S�P

@
p

@t
þ ’

k�w

�S
@
s

@t
;

ðA7Þ

where p and s are the magnitudes of the pressure and satu-
ration phase gradient vectors, respectively.

A2. Second of the Governing Equations
[67] Now consider the second of the governing equations

(15), expressing the differential operators in terms of the
slow variables,
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[68] To zeroth order in " I obtain the following form for
the second governing equation:
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[69] Making the substitutions discussed above (equations
(A3) through (A6)), equation (A10) takes the form

	ns � p�S�Pþ p2 �P� �n	ns � Z�S þ�s2�S2 þ �cs2�S

¼ �T

k�n
1� Sð Þ �P

@
p

@t
� �

k�n

�S
@
s

@t
: ðA10Þ

[70] Equations (A7) and (A10) form the starting point for
the analysis in the main portion of this paper.

Appendix B: Computation of the Phase for a
Separable Function

[71] In this appendix I derive an explicit expression for
the phase function 
ðx; tÞ. In doing so I shall assume a sep-
arable form for the phase function


ðx; tÞ ¼ 
ðtÞ�2ðxÞ ðB1Þ

and use the separation of variables to solve equation (42).
Unfortunately, the gravitational term in equation (42) pre-
vents one from separating the spatial and temporal varia-
bles. Therefore, I shall have to neglect gravitational effects,
assuming that either the density contrast between the fluid
phases is small or that the flow is dominantly horizontal,
perpendicular to the gravitational field. In that case, equa-
tion (42) reduces to

r
 � r
� �
@


@t
¼ 0: ðB2Þ

[72] Equation (B2), without gravity, is of sufficient inter-
est and covers a number of important situations that it is
worthy of consideration. Furthermore, I treat such problems
in section 3, where I compare the asymptotic estimates of
propagation time with estimates from a numerical simula-
tor. Substituting the separable form (B1) into equation (B2)
and noting that

r
 ¼ 2
�r� ðB3Þ

@


@t
¼ �2 d


dt
; ðB4Þ
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where I have used the total derivative for 
ðtÞ because it
only depends upon the single variable t, results in the
expressions

4
2�2r� � r�� ��2 d

dt
¼ 0 ðB5aÞ

or

r� � r�
�

� 1
4
2

d

dt
¼ 0: ðB5bÞ

[73] Equations (B5a) and (B5b) are separable if � is ei-
ther separable or only depends upon x. The time depend-
ence of � enters through the amplitude changes �P and �S,
which multiply each factor. The amplitude changes may
not be functions of time. For example, the change in satura-
tion because of the passage of the front is primarily deter-
mined by the preexisting saturation and by the properties of
the relative permeability curves describing the material.
Thus, the saturation change �S is essentially a function of
position and does not change significantly as a function of
time. That is, the saturation change will be the same, no
matter when the two-phase front passes through a particular
region. Alternatively, during the initiation of injection, a
transient pressure change can propagate away from the
injection well, accompanied by a very small change in satu-
ration. Thus, the saturation change that occurs because of
the passage of the front �S is negligible, and only the terms
associated with �P are significant. Then the terms �P will fac-
tor out of �, and the time-dependent terms will cancel.

[74] For situations in which � only depends upon x, equa-
tions (B5a) and (B5b), written as

r� � r�
�

¼ 1
4
2

d

dt
; ðB6Þ

expresses the equality of the left-hand side, which only
depends upon spatial coordinates x, and the right-hand
side, which only depends upon time t. This means that the
terms on either side must equal a constant value, which I
denote by C. Thus, for the right-hand side of equation (B6),

1
4
2

d

dt
¼ C ðB7Þ

or


 ¼ � 1
4Ct

: ðB8Þ

[75] Similarly, the left-hand side of equation (B6) pro-
duces the partial differential equation

r� � r� ¼ C� ðB9Þ

known as the eikonal equation [Kravtsov and Orlov, 1990].
A solution of the eikonal equation follows from an applica-
tion of the method of characteristics [Courant and Hilbert,
1962, p. 97]. The characteristic equations associated with

equation (B9) follow if I define the Hamiltonian function
F(x, p) as

Fðx; pÞ ¼ p � p� C� ; ðB10Þ

with equation (B9) given by F(x, p) ¼ 0. As noted by Cou-
rant and Hilbert [1962, p. 97], the characteristic equations
are a pair of ordinary differential equations:

dxi

ds
¼ @F
@pi

ðB11Þ

dpi

ds
¼ � @F

@xi
ðB12Þ

or, making use of the Hamiltonian function in equation
(B10),

dx
ds
¼ 2p ðB13Þ

dp
ds
¼ Cr�: ðB14Þ

[76] Equation (B13) defines a trajectory x(s) over which a
solution is constructed. The variable s is the distance along
the trajectory. Using the trajectory to define a coordinate
system, I can rewrite the eikonal equation (B9), noting that
p is tangent to the trajectory x(s) :

d�
ds
¼

ffiffiffiffiffiffiffi
C�
p

: ðB15Þ

[77] Integrating along the trajectory, I arrive at an expres-
sion for �ðxÞ :

�½xðsÞ� ¼
ffiffiffiffi
C
p Z

xðsÞ

ffiffiffiffi
�
p

ds: ðB16Þ

[78] Combining the functions (B8) for 
ðtÞ and (B16) for
�ðxÞ produces an expression for the phase 
ðx; tÞ (see
equation (B1)),


½xðsÞ; t� ¼ � 1
4t

Z
xðsÞ

ffiffiffiffi
�
p

ds

 !2

: ðB17Þ

Appendix C: An Interpretation of the Phase
Function

[79] If the amplitude functions S0(X, T) and P0(X, T) vary
monotonically as functions of time, then the derivatives (53)
and (54) should display single peaks, associated with the
peak of each Gaussian function. I can derive equations for the
peaks by differentiating (53) and (54) and setting the result to
zero. For example, differentiating (53) with respect to time,

@2�S
@t2 ¼ e
s S0

@
s

@t
þ @S0

@t

� �
: ðC1Þ

[80] The exponential term in (C1) is nonzero as long as
one stays away from the origin. Thus, factoring out the
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exponential term, the condition for the peak of the time de-
rivative of �S is

S0
@
s

@t
þ @S0

@t
¼ 0: ðC2Þ

[81] In order to derive a specific expression relating the
phase to the peak of the time derivative of the saturation, I
shall need to introduce additional assumptions. Here I con-
sider one possible form for the amplitude function S0(X, t),
a power law time dependence. Other amplitude functions,
such as a form based upon Hermite polynomials, are possi-
ble. Motivated by the solution to the linear diffusion equa-
tion [Vasco et al., 2000], I consider the specific form

S0ðX; tÞ ¼ t��s SxðXÞ ; ðC3Þ

where �s is constant and Sx(X) is a function of X. Thus, for
an amplitude function of the form (C3), equation (C2)
becomes

t��s
@
s

@t
� �st

��s�1 ¼ 0: ðC4Þ

[82] Third, I assume that the phase function 
sðX; tÞ can
be written in the separable form, 
ðx; tÞ ¼ 
ðtÞ�2ðxÞ, as
derived in Appendix B. With these three assumptions,
equation (C4) reduces to

�2

4
� �st ¼ 0: ðC5Þ

[83] I can relate the phase component �ðXÞ to the time at
which the time derivative of the saturation is a maximum
or minimum. I denote the time at which the derivative is a
peak as Tpeak. The specific relationship is

� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sTpeak

p
; ðC6Þ

or, solving for Tpeak and using the definition of � given by
(B16),

ffiffiffiffiffiffiffiffiffiffi
Tpeak

p
¼ 1

2
ffiffiffiffiffi
�s
p

Z
xðsÞ

ffiffiffiffi
�
p

ds: ðC7Þ

[84] Thus, under the stated assumptions, the time derivative
of the saturation is a maximum at the time Tpeak, and this
time is determined by the medium parameters, as contained
in � (see equation (40)). A similar analysis can be applied to
the pressure variation, under the corresponding assumption
that the pressure amplitude has the separable form

P0ðX; tÞ ¼ t��p PxðXÞ ; ðC8Þ

where Px(X) is the spatial component of the pressure ampli-
tude function. The resulting peak time for the pressure time
derivative is

ffiffiffiffiffiffiffiffiffiffi
Tpeak

p
¼ 1

2
ffiffiffiffiffi
�p
p

Z
xðsÞ

ffiffiffiffi
�
p

ds ; ðC9Þ

which is similar to the expression for the linear diffusion
equation [Vasco et al., 2000].
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