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Abstract

Motor-neuron specific microRNA-218 (miR-218) has recently received attention because of its 

roles in mouse development. However, miR-218 relevance to human motor neuron disease was not 

yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human 

motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons miR-218 is 

downregulated and its mRNA targets are reciprocally upregulated (de-repressed). We further 

identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal 

activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the 
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human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the 

importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms 

involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 

activity in motor neurons may be susceptible to failure in human ALS suggesting that miR-218 

may be a potential therapeutic target in motor neuron disease.

One Sentence Summary:

Genetics, pathology and molecular studies demonstrate that miR-218 is modulated and might play 

a role in amyotrophic lateral sclerosis.

Introduction

microRNA-218 (miR-218) is an endogenous small RNA that is enriched in motor neurons. 

Its relevance to motor neuron diseases was recently suggested by showing that miR-218 is 

essential for perinatal neuromuscular survival (1, 2), it is decreased in human amyotrophic 

lateral sclerosis (ALS) post-mortem spinal cord (3, 4), that cell-free miR-218 can serve as 

marker for motor neuron loss in a rodent model of ALS (4) and as a neuron-to-astrocyte 

signal (5). However, miR-218 was not yet studied in human motor neurons and relevance to 

human ALS is still missing.

ALS is a fatal disease of the human motor neuron system, characterized by the selective 

degeneration of cortical and ventral spinal motor neurons.

More than two dozen different genes have been associated with ALS in families or via 

genome-wide association studies. Mutations in these genes explain only a small fraction of 

the cases (6-9). Thus, ALS genetic variants in SOD1, NEK1, TARDBP or FUS are observed 

in <1-3% of cases and the fraction of disease explained by the hexanucleotide repeat at the 

first exon of C9orf72 is <10% (6, 10). ALS-associated genes are ubiquitously expressed and 

therefore provide limited insight as to why ALS shows motor neuron-selective vulnerability 

(8, 11).

Differential susceptibilities could be explained by the dysregulated activity of cell-type 

specific genes, including miRNAs. Indeed, we and others have shown that miRNA 

dysregulation is involved in ALS (3, 12-18).

In this study, we demonstrate (i) that miR-218 is specifically enriched in human spinal motor 

neurons and is downregulated in ALS, (ii) that miR-218 orchestrates neuronal activity in a 

new pathway upstream of Kv10.1 (Kcnh1) voltage-gated potassium channel and (iii) that 

rare genetic miR-218 variants, identified in patients with ALS, are detrimental to its 

biogenesis and function, providing a connection from human genetics to motor neuron-

specific functions.

Results

miR-218 is highly and specifically expressed in mature human and murine motor neurons 

We sought to evaluate the relevance of miR-218 to human motor neuron and its relevance to 
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ALS. First, miRNA in situ hybridization in human tissues depicted motor neuron specific 

expression pattern of miR-218 in ventral motor neurons throughout the human spinal cord 

(Fig. 1A). In parallel, we differentiated human inducible pluripotent stem cells (iPSCs) into 

motor neurons, following a protocol developed by Kiskinis et al. (19). Accordingly, several 

mRNA markers of motor neuron differentiation were upregulated, namely, Isl1, Hb9 and 

ChAT. miR-218 expression was upregulated >2000 fold from undifferentiated pluripotent 

state to human motor neurons (Fig. 1B). We then assessed miR-218 expression in laser 

capture microdissection motor neurons from lumbar spinal cords of samples where 

neurological disease was not reported, by revisiting data that was generated in our previous 

work (3). miR-218 is specifically enriched in control motor neurons relative to surrounding 

non motor neuron tissue at the ventral horn of the human lumbar spinal cord or relative to 

proprioceptive neurons at Clarke’s column. Furthermore, assessing miR-218 expression in 

laser capture microdissection-enriched surviving lumbar motor neurons of patients with ALS 

that suffered from bulbar onset disease, revealed ~2 fold repression relative to control 

lumbar motor neurons (Fig. 1C and Datafile S1). We further tested another independent set 

of postmortem tissues with an orthogonal nanoString nCounter miRNA profiler. This RNA 

study revealed that miR-218 was the most downregulated miRNA in lumbar ventral horns of 

sporadic ALS (sALS) nervous systems, relative to non-neurodegeneration controls (Fig. 1D 

and Datafile S2). Reduced miR-218 in ALS may be explained by loss of motor neurons 

and / or by molecular downregulation in motor neurons that are still present in the ventral 

horn. Accordingly, we have performed miR-218 in situ hybridization that revealed reduced 

numbers of miR-218+ cells in ALS patient tissue relative to non-neurodegeneration controls 

(Fig. 1E and Datafile S1) and a reduction in the densitometric miR-218 in situ hybridization 

signal in ALS motor neurons (Fig. 1F). Finally, we demonstrated that there is a global 

upregulation (de-repression) of miR-218-5p targets in human ALS spinal motor neurons by 

comparing the expression of top 100 predicted miR-218-5p mRNA targets (TargetScan 

(20)), in laser capture microdissection-enriched surviving motor neurons from lumbar spinal 

cords of patients with sALS relative to all expressed mRNAs and to the expression in non-

neurodegeneration controls (Fig. 1G (21)). Taken together, our results show that miR-218 is 

a highly sensitive marker of human spinal motor neurons, whose expression rises high in 

developing human motor neuron and is maintained in the adult. miR-218 expression is 

reduced in motor neuron disease because of both molecular downregulation and of motor 

neuron loss and the mRNA targets of miR-218 are reciprocally upregulated. Therefore, 

miR-218 might serve as marker of motor neuron mass in the human ventral horn in ALS.

miR-218 regulates motor neuron network activity

To study miR-218 function, we moved to rodent models, whereby miR-218 is specifically 

expressed in mouse motor neurons, without any preference to motor neuron subtypes (Fig. 

S1 and (1, 2)). We first performed ontology analysis (22) of predicted miR-218 targets (20). 

This study identified enrichment in biological processes related to potassium ion 

transmembrane transport (Fig. 2A). Therefore, we tested the hypothesis that miR-218 

regulates primary motor neuron gene expression and activity. Dissociated embryonic mouse 

spinal cords, were enriched for motor neurons via optiprep gradient sedimentation (23) and 

transduced with lentiviruses encoding miR-218 overexpression (OE) or miR-218 

knockdown (KD). Next generation sequencing (NGS) of RNA revealed that predicted 
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miR-218 targets (TargetScan (20)), were significantly down-regulated following OE of 

miR-218 (Fig. 2B, p<0.0001). Accordingly, enrichment for two miR-218-5p seed-matches 

was depicted among mRNAs that were down / up regulated following miR-218 OE / KD, 

respectively (Sylamer study (24), Fig. 2C,D). No signatures were identified for the target set 

of any other miRNA. Therefore, the vectors used were specifically affecting miR-218 

expression or silencing functions. Expression data are available at gene expression Omnibus 

(GSE136409).

We then monitored intracellular calcium transients in primary rat motor neurons that 

overexpressed (~8-fold), or knocked-down (~50%) miR-218. Calcium dynamics were 

monitored on days 12-13 in vitro, using the Ca2+-sensitive dye, Fluo2 HighAff AM, setting 

the spike threshold for activity as delta F / F > 2 over baseline (Fig. 2E,F). miR-218 OE 

increased the frequency of spontaneous calcium bursts by ~70%, compared to cells that were 

transduced with control viruses, whereas miR-218 KD attenuated neuronal Ca2+ transient 

by ~80%, relative to control (Fig. 2G,H). Changes in miR-218 expression did not alter motor 

neuron viability or morphology (Fig. S2). Therefore, miR-218 regulates neuronal activity.

miR-218 regulates neuronal intrinsic excitability

To test if miR-218 is involved in the regulation of active or passive conductance in neurons, 

we further employed patch-clamp. However, since primary motor neurons displayed an 

elevated resting membrane potential of >−50mV in our hands, consistent with a previous 

study (25), we were forced to use primary rat hippocampal neurons as alternative, a well-

established cell type for patch clamp studies, which expresses miR-218, though less than 

spinal motor neurons (26-28). Current clamp electrophysiological experiments were 

performed with CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, AMPA/Kainate blocker) and 

APV (2-amino-5-phosphonopentanoate, NMDA receptor blocker), on culture days 15-21. In 

response to current injection (300 pA, 500ms) neuronal firing frequency was ~twofold 

higher with miR-218 OE, relative to miR-218 KD (17.9 Hz ± 1.3 vs. 9.4 ± 1.9 Hz, p<0.01, 

Fig. S3A,B) and rheobase, the current input required to generate an action potential (500ms 

−100 to +500 pA steps in 20 pA increments), was ~35% lower in miR-218 OE, relative 

miE-218 KD (157 ± 12 pA vs. 242 ± 19 pA, p<0.001, Fig. S3C,D). Mean voltage threshold 

for triggering the first spike was unchanged between the different conditions (Fig. S3E) and 

resting membrane potential (RMP) correlated in a bidirectional manner with miR-218 

expression (miR-218 OE −58.8± 0.7 mV, n=65; control, −60.9±0.7 mV, n=44; miR-218 KD 

−63.7 ± 0.7 mV, n=30, p-value<0.001, Fig. S3F). Taken together, network and intrinsic 

activity studies support the hypothesis that miR-218 regulates neuronal excitability, at least 

in rat hippocampal neurons.

Kv10.1 functions downstream of miR-218 in motor neurons

To gain molecular insight into the mechanisms by which miR-218 regulates network 

activity, we next focused on a selected set of relevant targets in the context of neuronal 

activity. This group includes the potassium channels Kv4.2 (Kcnd2) and Kv10.1 (Kcnh1), 

GABA receptor subunits Gabrb2 and Gabrg1, GABA transporter GAT1 (Slc6a1) and the 

calcium channel beta subunit Cacnb4. The changes in the expression of the above six targets, 
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in response to miR-218 overexpression, were validated in an independent set of experiments 

using qPCR on RNA extracted from rat primary motor neurons (Fig. 3A).

Because miR-218 enhances neuronal activity, we hypothesized that relevant mRNA targets 

potentially encode for proteins acting downstream of miR-218 in inhibiting neuronal 

activity. Thus, their KD should increase bursting, reminiscent of miR-218 OE, and 

concomitant KD of both miR-218 and its target may rescue neuronal activity.

We therefore analyzed the frequency of spontaneous calcium transients in primary motor 

neurons following candidate target KD, with siRNA nanoparticles that exhibited 20%-80% 

target mRNA KD (Fig. S4). Non-targeting siRNAs were used as control. Knockdown of 

either Kv10.1 (Kcnh1) or Kv4.2 (Kcnd2) enhanced the frequency of spontaneous calcium 

transients and was sufficient to rescue neuronal excitation upon miR-218 inhibition (Fig. 3B-

D). In addition, we tested the calcium channel Cacnb4 and GABA pathway components 

Gabrb2, Gabrg1 and GAT1, which did not obey the requirements to be considered as 

epistatic downstream effectors of miR-218 in the motor neuron system, under our 

experimental conditions (Fig. 3E-H).

To substantiate the evidence for the relevance of voltage-gated potassium channels, we 

performed a series of additional studies that collectively increased our confidence in the 

relevance of Kv10.1 and were not sufficiently supportive of Kv4.2 in this context.

We demonstrated that both Kv10.1 (Kcnh1) or Kv4.2 (Kcnd2) mRNAs can be directly 

targeted by miR-218, by measuring the luminescence of a Renilla reporter, harboring the 3′ 
untranslated region (3′UTR) of either Kv10.1 (Kcnh1) or Kv4.2 (Kcnd2). miR-218 

silencing was abrogated by mutated miRNA recognition sequences (Fig. 3I and Fig. S5A). 

We also mined miRNA-mRNA chimera data from AGO2 cross linking and 

immunoprecipitation study in the mouse cortex (29). This study revealed miR-218 binding 

to the 3’UTR of Kv10.1, in vivo in the unmanipulated cortex (Fig. 3J). We next transduced 

primary rat motor neurons with viral vectors that either overexpress or knockdown miR-218 

(Fig. 3K). miR-218 expression reciprocally correlated with Kv10.1 protein under miR-218 

KD (Fig. 3L, Fig. S6 and Datafile S3), as could be expected from a genuine target. miR-218 

OE did not affect Kv10.1 expression, which might be because of the high basal miR-218 

expression in motor neurons. Finally, to test if Kv10.1 is upregulated in ALS, along with 

miR-218 downregulation, we mined human NGS data, which revealed higher Kv10.1 

mRNA expression in ALS, in both induced human motor neurons of patients with ALS ((30) 

Fig. 3M) and in laser capture microdissection-enriched surviving motor neurons from 

lumbar spinal cords of patients with sporadic ALS (sALS) with rostral onset and caudal 

progression ((21) Fig. 3N). A parallel analysis of Kv4.2 expression and regulation was not 

equally supportive and it is therefore less likely to be regulated by miR-218 in motor 

neurons and in ALS (Fig. S5B-F and Datafile S4). Therefore, Kv10.1 appear as a relevant 

miR-218 target in vitro and in vivo and might be relevant also in human ALS.

Rare miR-218 genetic variants are detected in human patients with ALS

To examine the relevance of miR-218 to human disease we screened for rare genetic 

variations (minor allele frequency <0.01) in the human miR-218-1 (Chr. 4) and miR-218-2 
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(Chr. 5) genes in ALS and controls cohorts of Project MinE ALS sequencing consortium 

data (31). We observed 6 unique rare variants in the precursor miR-218-2 (pre-miR-218-2) 

gene and a single variant (rs371622197) in pre-miR-218-1 (Fig. 4A and table S1) in multi-

national cohorts, which were matched geographically and for ancestry (see methods). None 

of these variants were harbored within the ~22 nucleotides of mature miR-218-5p [miRBase 

v20 (32)]. Region-based rare variant association testing by the Optimized Sequence Kernel 

Association Test (SKAT-O) (33) was non-significant (adjusted p value >0.05). However, 

odds ratio (OR) was 1.93 with 95% confident interval (CI): 0.42-8.96 (Fig. 4B). We then 

performed an independent replication study on additional cohorts of Genomic Translation 

for ALS Care (GTAC), the ALS Sequencing Consortium and the New York Genome Center 

(NYGC) ALS Consortium for rare miR-218-2 variant association.

Rare miR-218-2 variants were enriched in cases (p = 0.048 by SKAT-O; OR=3.06, 95% CI: 

0.86 - 10.84). Meta-analysis of both discovery and replication cohorts p value was 0.067 by 

SKAT-O, (34) and a joint analysis p value was 0.0195 (Chi squared with Yate’s correction; 

OR=2.87, 95% CI: 1.11-7.40; Fig. 4B). Therefore, the burden of variants showed nominal 

association to the trait (p < 0.05), although it did not reach genome-wide significance (p = 

5.0 × 10−8) with ALS in our study. Finally, we assessed an independent large cohort of 

62,784 non-ALS genomes from NHLBI's Trans-Omics for Precision Medicine (TOPMed). 

This validation effort yielded a joint p value of 0.0002 by Chi-Square test with Yate’s 

correction with OR=3.02 (95% CI: 1.65 - 5.52), which confirmed the robustness of the 

findings (Fig. 4B). This modest excess of rare pre-miR-218-2 variants in ALS did not 

survive genome wide statistical correction. Taken together, individuals harboring miR-218-2 

sequence variants have a risk that is almost three time as high to suffer from ALS, relative to 

the general population.

Rare miR-218 genetic variants disrupt its ability to regulate neuronal excitability

miRNA genes exhibit high evolutionary conservation and sequence mutations may be 

detrimental to their function. We sought to test the impact of mutated miR-218 on neuronal 

activity by intracellular calcium transient recording. The variants were aggregated in two 

main domains, namely in the loop region, that is supposed to bind DGCR8 (35) and in the 

miRNA 3' terminal, which is cleaved by Drosha (35, 36) and then becomes an important 

element of recognition by Dicer (37, 38). To test these variants functionally, we created 

vectors that represent loop and 3' terminal variants. Then, we transduced primary rat motor 

neurons with the following miR-218-2 vectors: (i) Control vector, (ii) wild-type human 

miR-218-2 (WT); (iii) the predominant pre-miRNA loop variant (Chr5:168,195,207, V2); 

(iv) the most abundant patient variant at the miRNA 3' terminal (Chr5:168,195,174, V5); (V) 

a miR-218-2 version, harboring a collection of variants, superimposed from cases (Vall); or 

(vi) a miR-218-2 sequence that we designed to be resistant to Drosha activity, which yields 

no mature miR-218 (Vdead). Wild-type miR-218 increased spontaneous calcium burst 

frequency as expected, whereas miR-218 with variant sequences failed to upregulate 

neuronal Ca2+ transient frequency (Fig. 4C,D).
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Rare miR-218 genetic variants inhibit its biogenesis

We tested the hypothesis that miR-218 variants impair neuronal bursting, through inhibition 

of biogenesis or creation of abnormal forms of the mature miRNA. We used HEPG2 cells, 

which do not express the endogenous miR-218 gene, to over express wild-type or mutated 

forms of primary miR-218 (pri-miR-218). In addition, we co-transfected miR-214-3p 

mimics, which served as spike-in control for downstream normalization.

We performed small RNA NGS, on RNA extracted from transfected HEPG2 cells (Fig. 5A). 

miRNAs were the dominant RNAs in the libraries (56%, Fig. 5B), at approximately a 

million miRNA reads / library and complexity of ~160 different miRNA species (Fig. 5C). 

The expression of mature miR-218 following transfection was comparable with the most 

abundant endogenous miRNAs in HepG2 cells (Fig. 5D). miR-218-5p dominated the 

expression profile, whereas sequences aligned to the loop or to miR-218-3p were less 

prevalent, as expected (Fig. 5E). Furthermore, the isomiR-218 profile was comparable 

across different variants (Fig. 5F). The expression of mature miR-218, derived from mutated 

forms of pri-miR-218, was lower compared to the wild-type form (Fig. 5G). We validated 

the drop in mature miR-218 expression, when harboring variants, with quantitative real time 

PCR (Fig. 5H). We also detected the accumulation of pre-miR-218 forms, following 

transfection with a vector harboring the most abundant variant (V5; Fig. 5I), a hallmark of 

failed biogenesis. The inhibition score (3), describing the ratio of DICER substrate (pre-

miR-218) to product (mature miR-218), was increased by 3.4 fold for the predominant pre-

miRNA loop variant (V2) and by 3.1 fold for the most abundant variant (V5), relative to 

wild-type miR-218, demonstrating inhibition of miR-218 biogenesis (Fig. 5J). Taken 

together, mutated miR-218 exhibits impaired biogenesis, providing a conceivable 

mechanism for insufficient regulation of neuronal activity.

Discussion

miR-218 was recently put in the spotlight for its roles in motor neuron development (1, 2). 

The link between perinatal death of mice deficient of miR-218 and a potential deleterious 

effect in adult humans requires further investigations. In the current work, we demonstrated 

miR-218 relevance to human motor neurons in a systematic effort that explains how 

miR-218 contributes to a previously unappreciated facet of motor neuron specificity and 

disease susceptibility. ALS neuropathology establishes miR-218 as marker of human motor 

neuron mass and well-being that is downregulated in ALS. Accordingly, mRNA targets of 

miR-218 are upregulated / de-repressed.

We identified rare sequence variants in the miR-218-2 gene that impair miR-218 biogenesis 

and its ability to regulate motor neuron activity. These sequence variants are relevant for the 

understanding of motor neuron health and disease. We suggest that miR-218-2 variants are 

sub-optimal for a Dicer-dependent step of biogenesis, thus reducing mature miR-218 

expression and contributing to selective motor neuron vulnerability. Subtle miR-218 

downregulation in humans, plausibly contributes to failed homeostasis in adults, potentially 

because of broad upregulation (de-repression) of dozens of miR-218 targets in human motor 

neurons. Furthermore, because miR-218 expression is downregulated in motor neurons of 

sporadic and familial patients with ALS, individuals harboring miR-218 variants suffer two 
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sequential hits to miR-218 expression and function. Therefore, miR-218 is a relevant 

candidate for genetic screening in additional ALS genetics cohort.

A previously unrecognized pathway downstream of miR-218 controls neuronal activity by 

regulating the voltage-gated potassium channel, Kv10.1. Altered motor neuron excitability 

and ion channel dysfunction have been reported in patients, rodent and ALS iPSC models 

(39-51) and drugs such as ezogabine (retigabine) (52), or riluzole, which control potassium 

and sodium channels, respectively, elute to the relevance of therapeutically altering neuronal 

activity in ALS.

Additionally, increased expression of voltage-gated potassium channel subtypes have been 

reported in iPSC-derived ALS motor neurons with FUS and SOD1 mutations and targeting 

potassium currents with 4-Aminopyridine, a potassium channel blocker, recovered neuronal 

activity patterns in culture (53). These observations resonate with miR-218 activity upstream 

of voltage gated potassium channel and suggest that aberrant neuronal activity is an 

important contributing factor at the ALS milieu.

Our study does not rule out that additional targets may play parallel roles in controlling 

neuron activity downstream of miR-218. miR-218 is a member of an expanding class of 

miRNAs that regulate neuronal activity in flies (54, 55) and mammals (56-59), including 

miR-128 (57), miR-101 (28) and miR-324-5p (60). The emerging regulation of neuronal 

activity by miRNAs depends on their capacity to fine-tune the expression of dosage-sensitive 

proteins locally, at dendrites, axons and synapses.

miR-218 regulates a myriad of targets designated Target218 (1). Our work, along with 

reported specific targets in astrocytes and neuronal progenitors (2, 5), contribute to 

deconvoluting the Target218 network. Interestingly, Amin et al. recently showed by a patch 

clamp study in lumbar spinal slices that miR-218 contributes to inhibiting neuronal activity 

(1). Reconciling this observation with ours requires new conditional miR-218 alleles that 

will allow uncoupling miR-218 roles in interneuron differentiation (2) and plausibly in 

establishing interneuron-motor neuron circuitry, from miR-218 roles in adult motor neurons. 

Furthermore, developmental loss of miR-218 causes motor neuron death, further 

complicating the comparison to the moderate KD in the post-mitotic motor neurons.

In summary, motor-neuron enriched miR-218 might serve as a marker of motor neuron mass 

in the human ventral horn in ALS and miR-218 functions uncovers previously unappreciated 

facets of motor neuron specificity that may be particularly susceptible to failure in human 

patients with ALS. Currently, it is not clear if the global miR-218 downregulation in human 

neuropathology is a consequence of Dicer inhibition (3) and how such a downregulation 

might impact non-cell autonomous effects of miR-218 (5). Mouse modelling can be 

beneficial for exploring miR-218 allele genetic interactions with other ALS-associated 

mutations and the functional implications of the discovered variants in the miR-218-2 gene 

sequence. Therefore, the study contributes to an emerging view of ALS as a disease with a 

prominent RNA component and suggests that miR-218 is a potential therapeutic target for 

motor neuron disease (graphically summarized in Fig. S7).
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Materials and Methods

Study design

The overall objective of our study was to investigate the relevance of motor-neuron specific 

miR-218 to human motor neuron specificity and disease (summary in Fig. S7), by 

employing molecular, neurogenetics and neuropathology approaches. First, we performed 

four orthogonal miRNA quantification studies in human motor neurons: (1) chromogenic 

miR-218 in situ hybridization in human spinal cord, (2) nanoString nCounter, (3) miR-218 

qPCR, and (4) analysis of mRNA expression of miR-218 targets from laser capture 

microdissection-enriched surviving motor neurons from lumbar spinal cords of patients with 

sALS. These experiments established miR-218 as marker of human motor neuron mass and 

well-being. To test whether miR-218 regulates motor neuron activity we transduced primary 

motor neuron with lentiviruses encoding miR-218 OE or KD and monitored intracellular 

calcium transients and intrinsic activity by patch-clamp electrophysiological experiments. A 

series of bioinformatics and experimental steps collectively directed us to conclude that 

Kv10.1 is a direct target of miR-218 in this system. Using statistical genetics and burden 

studies of rare variants, we identified miR-218 genetic variants in large ALS cohorts. The 

variants were shown to inhibit biogenesis and to impair miR-218 function. Experimentalists 

were blinded while analyzing data. Outliers were excluded if deviated ±2 SDs away from 

mean. The number of samples that were taken for case-control cohort in neuropathology 

(Human motor neuron systems: 20 ALS cases, 14 non-neurodegeneration controls) and 

neurogenetics (Human genomes: 7,738 ALS, 71,656 controls). These numbers reflect the 

maximal availability at the time of the study.

Statistical analysis

Statistics performed with Prism Origin (GraphPad Software Inc.). Shapiro-Wilk test was 

used to assess normality of the data. Pair-wise comparisons passing normality test were 

analyzed with Student’s t-test whereas the Mann-Whitney test was used for pairwise 

comparison of nonparametric data. Multiple group comparisons passing normality test were 

analyzed using ANOVA with post hoc tests, whereas nonparametric multiple group 

comparisons were analyzed using the Kruskal-Wallis test with Dunn’s post hoc testing, 

when ANOVA assumptions were not met. Statistical P values <0.05 were considered 

significant. Data presented as specified in the figure legends. Data are shown as means ± 

SEM or SD or graphed using boxplots, as noted in the text. Individual subject level data are 

reported in Datafile S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. miR-218 is expressed in the human spinal motor neurons and is downregulated in human 
ALS.
(A-F) Three orthogonal miRNA quantification studies in human motor neurons from 20 

ALS cases and 14 non-neurodegeneration controls: (A) miR-218 chromogenic in situ 

hybridization depicting broad expression along the cervical, thoracic and lumbar regions of 

the adult human spinal cord. (B) qPCR analysis of miR-218, Hb9, Isl1 and ChAT in human 

iPSCs and differentiated motor neurons. miR-218 normalized to U6 expression. mRNAs 

normalized to average of HPRT and β–actin expression, presented on a log scale; n=3 

independent wells per time point. (C) miR-218 expression in laser-capture micro-dissected 

human lumbar motor neurons. miR-218 expression in non-neurodegeneration motor neurons 

(n=7 human spinal cords), relative to surrounding non-motor neuron anterior horn tissue 

(n=10), to Clarke’s column proprioceptive neurons (n=4), or to ALS motor neurons (n=9 

sporadic and 2 familial nervous systems carrying the SOD1 A4V mutation). TaqMan qPCR 

analysis of miR-218 normalized to the average of RNU48/SNORD48, RNU44/SNORD44 

and U6 in the same sample, and to the average miR-218 expression in the anterior horn. 

One-way ANOVA followed by Newman-Keuls multiple comparison test performed on log-

transformed data, Means ± SD. (D) Volcano plot of relative miRNA expression in ALS 

lumbar ventral horns (n=5), versus non-neurodegeneration controls (n=2; x-axis log2 scale), 

screened by nanoString nCounter platform. y-axis depicts the differential expression p-
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values (−log10 scale). Black dots indicate P < 0.05; light gray dots are non-significant. 

miR-218 is the most downregulated miRNA in ALS nervous systems. Data normalized to 

the average of five control mRNAs (ACTB, B2M, GAPDH, RPL19, RPLP0). (E) Reduced 

miR-218+ cell numbers in sALS patient anterior horns (n=4), relative to non-

neurodegeneration controls (n=5) and representative miRNA in situ hybridization 

micrographs. Two way ANOVA followed by Bonferroni’s multiple comparison test, Means 

± SEM, and (F) chromogenic miR-218 in situ hybridization signal densitometry in motor 

neurons at different spinal cord levels (non-neurodegeneration control/ALS cases: Cervical 

n=151/85 cells; Thoracic n=54/75; Lumbar 189/92). One-tailed Mann-Whitney test, Means 

± SEM. (G) Cumulative distribution function (CDF) plot of top 100 predicted miR-218-5p 

targets (TargetScan (20)), or all expressed mRNAs, in laser capture microdissection-enriched 

surviving motor neurons from lumbar spinal cords of patients with sALS with rostral onset 

and caudal progression (n=13) relative to non-neurodegeneration controls (n=6; (21)) and 

Box-Plot (inset) depicting median, upper and lower quartiles and extreme points. P-value 

calculated using Kolmogorov–Smirnov test comparing miR-218-5p targets subset 

distribution to all genes. * P<0.05; *** P<0.001; **** P<0.0001.
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Fig. 2. miR-218 controls motor neuron network activity.
(A) Seven most enriched gene ontology terms (22) of predicted miR-218 targets (20). p-

value of term enrichment (−log10, dashed orange line indicates P = 0.05). (B) CDF plot of 

miR-218 predicted targets, relative to all expressed mRNAs, following OE of miR-218 and 

box-plot (insets), depicting median, upper and lower quartiles and extreme points. P-value 

calculated using Kolmogorov–Smirnov test comparing miR-218-5p subset distribution to all 

genes. **** P<0.0001. Binding site enrichment of all known miRNAs, in ~10,000 expressed 

mRNAs, was tested after (C) miR-218 OE, or (D) miR-218 KD, relative to control virus. 

Significant enrichment for two miR-218-5p seed-matches (blue, red) and lack of enrichment 

for any other miRNA (gray) via a Sylamer study (24). (E) Diagram of calcium transient 

imaging in embryonic rat spinal motor neurons, transduced with lentiviruses encoding 

control vector, miR-218 OE or a miR-218 KD. Neuron time lapse micrographs (F), 

representative traces (G) and (H) quantification of spontaneous calcium spike frequencies 

(ΔF/F >0.5) from Fluo2 HighAff AM study after 12 days in vitro. Recorded from 58 / 76 / 

41 control / OE /KD cells, respectively. Box-Plot depicting the median, upper and lower 
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quartiles and extreme points. Kruskal-Wallis test followed by Dunn’s multiple comparison 

test, *** P<0.001. This experiment was repeated 3 independent times with similar results.
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Fig. 3. The potassium channel Kv10.1 acts downstream of miR-218.
(A) qPCR measuring the expression of mRNAs targets, following miR-218 OE (n=15). Data 

normalized to control virus (n=12) and to average expression of HPRT and β–actin, two 

technical duplicates, two-sided student’s t-test, Means ± SEM. (B) Representative traces of 

individual motor neurons and (C-H) quantification of spontaneous calcium spike 

frequencies (ΔF/F >0.5) of embryonic rat spinal motor neurons, transduced with lentiviruses 

encoding a control vector or miR-218 KD and further transfected with siRNA for specific 

target KD or a non-targeting siRNA control (minus sign). ≥55 cells recorded per each 

experimental condition; N≥2 independent experimental repeats with similar results. Kruskal-

Wallis test followed by Dunn’s multiple comparison test. (I) Relative Renilla luminescence 

upstream of a wild-type Kv10.1 3′UTR or a mutated 3′UTR that is insensitive to miR-218, 

normalized to co-expressed firefly luciferase and to a negative control miRNA vector. n=3 

independent wells per experimental condition. One-way ANOVA followed by Bonferronie’s 
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multiple comparison test. Means ± SEM. (J) miR-218:Kv10.1 3’UTR chimera from an 

AGO2 CLEAR-CLIP experiment in mouse cortex (29). (K) miR-218 expression (qPCR 

n=3, normalized to U6) and (L) Kv10.1 protein expression (Western blot n =5), upon 

miR-218 lentiviral KD or OE, in primary rat motor neurons and a representative blot 

detected with anti Kv10.1 and anti Tubulin Beta-III (TUBB3) antibodies. Box-Plots depict 

median, upper / lower quartiles & extreme points, one-way ANOVA followed by Newman-

Keuls multiple comparison test. (M) Kv10.1 mRNA expression, as log2 normalized counts, 

from NGS study of induced ALS motor neurons (n=4 different donors in duplicates) or non-

neurodegeneration controls (n=3 different donors in duplicates; (30)). Box-Plots depict 

median, upper / lower quartiles & extreme points, DESeq analysis. (N) Kv10.1 mRNA 

expression, as Reads Per Kilobase Million (RPKM) from NGS study of laser capture 

microdissection-enriched surviving motor neurons from lumbar spinal cords of patients with 

sALS with rostral onset and caudal progression (n=12) and non-neurodegeneration controls 

(n=8; (21), GSE76220). Box-Plots depict median, upper / lower quartiles & extreme points, 

two-sided student’s t-test. * P<0.05; ** P<0.01; *** P<0.001; ns – non-significant.
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Fig. 4. Rare genetic miR-218 variants disrupt its ability to regulate neuronal activity.
(A) Diagrams of miR-218-2 pri-miRNA (upper) and the pre-miRNA hairpin (lower), with 

demarcation of DROSHA, DGCR8 and DICER binding and arrows, revealing variant 

nucleotides (V1-V6). Guide RNA in red. (B) Table and forest plot depicting odds ratio (OR) 

estimates with 95% confidence intervals (CI), across study cohorts and p-values, calculated 

with SKAT-O or Chi-squared test with Yate’s correction. Vertical dotted line denotes OR=3. 

(C) Representative motor neuron traces and (D) quantification of spontaneous calcium spike 

frequencies (ΔF/F >0.5) in embryonic rat spinal motor neurons, transduced with lentiviruses 

encoding WT or mutated human miR-218-2. Number of cells recorded in a single 

experiment: Control, n=131; WT miR-218-2, n=114; single variant V2, n=137; single variant 

V5, n=119; multiple variant Vall, n=118; Unprocessable miR-218-2 Vdead, n=111. N=4 

independent times with similar results. Kruskal-Wallis test followed by Dunn’s multiple 

comparison test. *** P<0.001; ns – non-significant.
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Fig. 5. Rare genetic variants in miR-218 inhibit biogenesis.
(A) Diagram of experimental design. HEPG2 cells transfected with WT miR-218-2 or 

miR-218-2 genetic variants and processing of RNA for NGS and qPCR studies. (B) Pie chart 

of relative representation of different RNA families in NGS data (percentage of reads 

aligned to miRNA- 56%; tRNA −20%; rRNA – 13%; other RNA types – 11%). (C) The 

number of expressed miRNAs was comparable across samples. Means ± SEM. (D) MA plot 

of miRNA expression in HEPG2 cells transfected with wild-type miR-218-2, relative to 

control vector. Abundance (x-axis; presented on a log scale) against ratio of miRNA in cells 

overexpressing WT miR-218 vs a control vector (log 2 fold change). (E) Histogram of 

number of reads-per-base for WT miR-218-2 sequences, aligned over the genomic sequence. 

(F) Bar graph of miR-218-2-5p isotypes (isomiR-218-2-5p, sequence denoted) in HEPG2 

transfected with WT miR-218-2, or V2 / V5 variants. Relative expression of mature 

miR-218-2 from (G) NGS or (H) TaqMan qPCR studies, normalized to miR-214-3p spike-in 

mimics. (I) Pre-miR-218-2 expression from NGS. (J) The ratio of pre-miR-218-2 (substrate) 

to mature miR-218 (product), defined as “inhibition score”. Inhibition score approximates a 

value of 1 in the WT condition, whereas a value > 1, reflects reduced DICER activity. 

Control, n=3; WT miR-218-2, n=5; single variant V2, n=4; single variant V5, n=4; multiple 

variant Vall, n=5; Unprocessable miR-218-2; Vdead, n=3. Box-Plots depict median, upper / 

lower quartiles & extreme points, One-way ANOVA followed by Bonferroni’s multiple 
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comparison test performed on data (I) or log-transformed data (G, H, J), * P<0.05; ** 

P<0.01; *** P<0.001; ns – non-significant.
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