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Abstract of the Dissertation

Sparse Causal Network Estimation with

Experimental Intervention

by

Fei Fu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2012

Professor Qing Zhou, Chair

Causal Bayesian networks are graphically represented by directed acyclic graphs

(DAGs). Learning causal Bayesian networks from data is a challenging problem

due to the size of the space of DAGs, the acyclic constraint placed on the graphi-

cal structures and the presence of equivalence classes. Most existing methods for

learning Bayesian networks are either constraint-based or score-based. In this dis-

sertation, we develop new techniques for learning sparse causal Bayesian networks

via regularization.

In the first part of the dissertation, we develop an L1-penalized likelihood ap-

proach with the adaptive lasso penalty to estimate the structure of causal Gaus-

sian networks. An efficient blockwise coordinate descent algorithm, which takes

advantage of the acyclic constraint, is proposed for seeking a local maximizer of

the penalized likelihood. We establish that model selection consistency for causal

network structures can be achieved with the adaptive lasso penalty and sufficient

experimental interventions. Simulations are used to demonstrate the effective-

ness of our method. In particular, our method shows satisfactory performance for

DAGs with 200 nodes which have about 20,000 free parameters.

In the second part, we perform a principled generalization of the methodol-
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ogy developed for Gaussian variables to discrete data types by replacing the linear

model with the multi-logit model. The adaptive group lasso penalty is utilized that

encourages sparsity pattern at the factor level. Another blockwise coordinate de-

scent algorithm is proposed to solve the corresponding optimization problem and

asymptotic theory parallel to the one developed for Gaussian Bayesian networks

is established.

Finally, we illustrate a real-world application of our penalized likelihood frame-

work using a flow cytometry data set generated from a signaling network in human

immune system cells.
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CHAPTER 1

Introduction

1.1 Bayesian Networks

Conditional independence structures among random variables are often visual-

ized as graphical models, where the nodes represent the variables and the edges

encode the relationships among them. Depending on whether the edges are direc-

tional or not, graphical models can be classified as either directed or undirected.

Bayesian networks are a special type of graphical models, whose structures are

represented by directed acyclic graphs (DAGs). They have become popular prob-

abilistic models in many research areas, including computational biology, medical

sciences, image processing, speech recognition, et cetera.

In a Bayesian network, the joint probability distribution P of a set of random

variables X1, . . . , Xp can be factorized as

P (X1, . . . , Xp) =

p∏
i=1

P (Xi|ΠGi ), (1.1)

where ΠGi ⊆ {X1, . . . , Xp} \ {Xi} is called the set of parents of Xi. If Xi does not

have any parents, then ΠGi = ∅. We can construct a DAG G = (V,E) to represent

the structure of a Bayesian network. Here, V = {1, . . . , p} denotes the set of nodes

in the graph, where the ith node in V corresponds to Xi. For simplicity, we use

Xi and i interchangeably to represent the ith node and the ith variable. The set of

edges E = {(i, j) : Xi ∈ ΠGj } ⊆ V × V and an edge (i, j) ∈ E is written as i→ j.
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The structure of G must be acyclic so that (1.1) is a well-defined joint distribution.

By convention, if a probability distribution P satisfies (1.1) with respect to a DAG

G, P is said to factorize according to G. In a DAG G, descendants of a node Xi

is the set of nodes to which there is a directed path originating from Xi. Most of

the time in this dissertation, G = (V,E) is used to refer to a Bayesian network

(i.e., a DAG). However, we occasionally use G for an arbitrary graph, which may

contain undirected edges. An edge (i, j) ∈ E is called undirected (or bidirected)

if (j, i) ∈ E as well and is written as i− j.

If a node i in a graph G is connected to a node j by either a directed or

undirected edge, i is said to be adjacent to j (or is a neighbor of j) and the

variable Xi is said to be adjacent to the variable Xj (or is a neighbor of Xj). The

adjacency set of the variable Xi consists of all variables adjacent to Xi in G and

is denoted by A (G, Xi).

A mathematically convenient representation of the structure of a graph G =

(V,E) is the adjacency matrix, which is a p× p matrix A = (aij)p×p such that

aij =

 1, if (i, j) ∈ E,

0, otherwise.

The skeleton of a graph G is the undirected graph obtained from removing the

directions of all directed edges in G, which is represented by a symmetric adjacency

matrix.

Due to its directed acyclic nature, every Bayesian network G has at least one

linear ordering @ of all its nodes, known as a topological sort of G, such that i ≺ j

in @ if i ∈ ΠGj . Efficient algorithm exists to topologically sort a DAG (Cormen

et al. 2009).
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1.2 Conditional Independence and d-Separation

If G is a Bayesian network, it is easy to see from (1.1) that the joint probability

distribution P and the DAG G satisfy the Markov condition: each variable Xi is

conditionally independent of all its non-descendants with respect to P given its

parent set ΠGi (Pearl 1988; Spirtes et al. 1993). This can be used as an equivalent

definition for Bayesian networks.

Given a Bayesian network G, the Markov condition directly encodes some in-

dependence relations of the probability distribution P , which in turn may entail

others in the sense that every probability distribution satisfying the Markov con-

dition also has these further independencies (Spirtes et al. 1993). A graphical test

for these independence relations is d-separation (Pearl 1988).

Definition 1.1. In a DAG G, two sets of nodes A and B are said to be d-separated

by a set of nodes Z, denoted by DG(A,B|Z), if all paths between each node in

A and B are blocked by Z. A path is blocked by Z if and only if there are nodes

x, y, z on it such that:

1. they form a chain x→ z → y and z ∈ Z,

2. they form a fork x← z → y and z ∈ Z,

3. they form a collider x→ z ← y and neither z nor its descendants are in Z.

The set of nodes that d-separates A and B is denoted by S (A,B).

Verma and Pearl (1988) showed that d-separation implies conditional indepen-

dence as stated in the following theorem.

Theorem 1.1. If two sets of nodes A and B are d-separated by Z in a Bayesian

network G, A and B are conditionally independent in P given Z, which is denoted

by IP (A,B|Z).
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However, the converse of Theorem 1.1 is not always true. In general, a proba-

bility distribution P on a Bayesian network G may contain other conditional inde-

pendence relations beyond those identifiable by the d-separation criterion. Hence,

the following definition of faithfulness was proposed (Spirtes et al. 1993). This

faithfulness assumption is needed for the PC algorithm outlined in Algorithm 1.1,

which we will introduce in Section 1.4.

Definition 1.2. A distribution P and a DAG G are said to be faithful to each

other if all and only the conditional independence relations true in P are entailed

by the Markov condition applied to G.

It follows immediately from Definition 1.2 that if the joint probability distri-

bution P is faithful to the Bayesian network G,

DG(A,B|Z)⇔ IP (A,B|Z).

At first, the faithfulness assumption might seem to be quite restrictive. How-

ever, Meek (1995b) provided some arguments for the justification of the faithful-

ness assumption. He proved that the following claim holds for the multivariate

normal family of distributions as well as the multinomial family of distributions:

the set of distributions that are not faithful to a DAG G has Lebesgue measure

zero in the space of distributions associated with G.

1.3 Observational Equivalence

Theorem 1.1 in the last section states that the structure G of a Bayesian network

itself represents a set of independence relations that must be satisfied by any

distribution P that factorizes according to G. These independence relations are

encoded by the set of d-separation statements that hold in G. Two DAGs G and

G ′ are called independence equivalent if they represent identical independence as-
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sertions (Chickering 2002). On the other hand, G and G ′ are called distributionally

equivalent if every distribution representable by G via (1.1) can be represented by

G ′ as well, and vice versa (Chickering 2002). For the multivariate normal family of

distributions and the multinomial family of distributions usually assumed in the

literature, independence equivalence and distributional equivalence coincide. We

therefore do not distinguish these two notions of equivalence in this dissertation.

Verma and Pearl (1990) provided a graphical characterization of equivalent

DAGs. Before we state the theorem, the concept of v-structure needs to be defined.

A v-structure in a DAG G is an ordered triple of nodes 〈i, j, k〉 such that i→ j ← k

and i, k are not adjacent in G. The following theorem was proved by Verma and

Pearl (1990).

Theorem 1.2. Two DAGs G and G ′ are equivalent if and only if they have the

same skeletons and the same v-structures.

We use G ∼ G ′ to denote that two DAGs G and G ′ are equivalent. The

relation ∼ defines a set of equivalence classes in the space of DAGs on the same

set of nodes. It follows from the definition of equivalence that equivalent DAGs

cannot be distinguished even with an infinite amount of observational data, a

phenomenon known as ‘observational equivalence’. It is one of the reasons why

estimating Bayesian networks from data is challenging.

1.4 Structure Learning of Bayesian Networks

The primary contribution of this dissertation is the development of new techniques

for estimating Bayesian networks from data. In statistics, learning the structure

of a Bayesian network from data is an important and difficult problem. The

challenges are three folds. First, the number of DAGs grows super-exponentially

in the number of nodes (Robinson 1973). The exact number of DAGs can be
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calculated using the following recursive equation (Robinson 1973):


ap =

p∑
i=1

(−1)i−1

(
p

i

)
2i(p−i)ap−i,

a0 = 1.

Second, as mentioned in the last section, it may not be possible to identify the

structure G of the true Bayesian network from observational data generated by G,

regardless of the sample size. Restricting ourselves only to the space of equivalence

classes may not be promising either as the results of Gillispie and Perlman (2001)

suggest that the number of equivalence classes also grows super-exponentially in

the number of nodes. Third, the acyclic nature of DAGs may increase computa-

tional burdens depending on the specific method chosen for estimating Bayesian

networks. Despite these difficulties, substantial amount of research has been de-

voted to the structure learning problem of Bayesian networks and many methods

have been proposed. These methods can be roughly classified into two primary

approaches.

The constraint-based approach relies on a set of conditional independence

tests. We have shown in Section 1.2 the equivalence of d-separation and con-

ditional independencies using the faithfulness assumption. Then, it is not difficult

to show the following theorem in Spirtes et al. (1993), which is exploited by many

constraint-based algorithms.

Theorem 1.3. If a distribution P is faithful to a DAG G, there is an edge between

node i and j if and only if Xi and Xj are conditionally dependent in P given every

Z ⊆ V \{Xi, Xj}.

A well-known example in this category is the PC algorithm proposed by Spirtes

et al. (1993). It works by first estimating the skeleton of a DAG using a set of

conditional independence tests, then identifying v-structures in the skeleton and

finally trying to orient the remaining edges such that no new conditional indepen-

6



dencies and no cycles are introduced. A complete outline of the PC algorithm is

given in Algorithm 1.1 (Spirtes et al. 1993; Meek 1995a; Pearl 2000; Kalisch and

Bühlmann 2007). Recently, Kalisch and Bühlmann (2007) considered the problem

of estimating Bayesian networks with the PC algorithm and proposed an efficient

implementation suitable for estimating sparse high-dimensional DAGs. They also

proved the asymptotic consistency of the PC algorithm in that setting. We chose

to use the PC algorithm to benchmark our algorithms developed in this disserta-

tion due to its capability to handle both continuous and discrete data types, the

availability of an efficient implementation of the PC algorithm and its asymptotic

properties.

The second approach to learning Bayesian networks is score-based, which at-

tempts to find a DAG that maximizes some scoring function through a certain

search strategy (Cooper and Herskovits 1992; Lam and Bacchus 1994; Heckerman

et al. 1995) or sample DAGs from a Bayesian posterior distribution (Madigan

and York 1995; Friedman and Koller 2003; Ellis and Wong 2008). It was shown

by Chickering (1996) and Chickering et al. (2004) under certain conditions that

searching a high-scoring Bayesian network is NP -hard. The scoring functions

that have been employed include several Bayesian Dirichlet metrics (Buntine 1991;

Cooper and Herskovits 1992; Heckerman et al. 1995), Bayesian Information Crite-

rion (Chickering and Heckerman 1997), Minimum Description Length (Bouckaert

1993; Suzuki 1993; Bouckaert 1994; Lam and Bacchus 1994), entropy (Herskovits

and Cooper 1990), et cetera. The optimization procedures usually rely on heuris-

tic search strategies while sampling is often done with Markov chain Monte Carlo.

Many algorithms in this category work well for graphs that do not have a large

number of nodes. However, due to the size of the space of DAGs, they become

computationally impractical for large networks.
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1.5 Causal Bayesian Networks and Interventions

Compared to undirected graphs, Bayesian networks have an attractive property:

they can be used to represent causal relationships among random variables. As

mentioned in Section 1.3, we cannot distinguish equivalent DAGs from observa-

tional data. However, equivalent DAGs do not have the same causal interpreta-

tions. Although some authors discussed the possibility of causal inference from

observational data (Spirtes et al. 1993; Pearl 2000), most researchers agree that

causal relations can only be reliably inferred using experimental data. Experi-

mental interventions reveal causality among a set of variables by breaking down

various connections in the underlying causal network. In this dissertation, we

only consider using DAGs for causal inference, following Pearl’s formulation of

causal Bayesian networks (Pearl 2000). In this setting, experimental interven-

tions can help us distinguish equivalent DAGs. For instance, consider the causal

interpretations of two equivalent DAGs G1: X1 → X2 and G2: X1 ← X2. Suppose

that X2 is fixed experimentally at x2 (the fixed value itself might be drawn from

some distribution independent of the DAG). If G1 is the true causal model, fixing

X2 eliminates any dependency of X2 on X1, in effect removing the directed edge

from X1 to X2. Thus data generated in this manner follow the joint distribution

P (X1, X2) = P (X1|∅)P (X2|∅), where P (X1|∅) is the marginal distribution of X1

and P (X2|∅) is the distribution from which experimental data on X2 are drawn.

On the other hand, if the true causal model is G2, interventions on X2 leave the

dependency between X1 and X2 intact. Hence, experimental data can be used to

infer causal relationships among random variables. As this example demonstrates,

if Xi (i ∈M) are under intervention, then the joint distribution in (1.1) becomes

P (X1, . . . , Xp) =
∏
i/∈M

P (Xi|ΠGi )
∏
i∈M

P (Xi|∅), (1.2)
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where P (Xi|∅) denotes the distribution of Xi under intervention. In other words,

we can view experimental data from G as generated from the DAG G ′ obtained

by removing all directed edges pointing to the nodes under intervention in G.

When we make causal inference using the likelihood function (1.2), the term∏
i∈M P (Xi|∅) can be ignored, since they depend only on external parameters

that are not relevant to the estimation of DAGs.

1.6 Outline of the Dissertation

In this dissertation, we present new methods for learning the structure of sparse

causal Bayesian networks via regularization. The remaining part of the disser-

tation is organized as follows. In Chapter 2 we propose a penalized likelihood

framework to learn causal Gaussian Bayesian networks with the adaptive lasso

penalty. A coordinate descent algorithm is developed to solve the correspond-

ing optimization problem. Chapter 3 extends the work in Chapter 2 to causal

discrete Bayesian networks using the adaptive group lasso penalized likelihood

based on the multi-logit model. A flow cytometry data set is used in Chapter 4

to demonstrate the usage of our methods in a typical real-world application. The

dissertation is concluded with a summary in Chapter 5.
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Algorithm 1.1 PC algorithm

1: Start with the complete undirected graph G on the set of nodes V
2: ` = 0
3: repeat
4: repeat
5: Select an ordered pair of variables 〈Xi, Xj〉 that are adjacent in G such

that |A (G, Xi) \{Xj}| ≥ `
6: repeat
7: choose U ⊆ A (G, Xi) \{Xj} with |U | = `
8: if Xi and Xj are conditionally independent given U then
9: Delete edge i− j in G
10: Record U in S (Xi, Xj) and S (Xj, Xi)
11: end if
12: until edge i − j is deleted or all U ⊆ A (G, Xi) \{Xj} with |U | = `

have been chosen
13: until all ordered pairs of adjacent variables Xi and Xj such that

|A (G, Xi) \{Xj}| ≥ ` and U ⊆ A (G, Xi) \{Xj} with |U | = ` have
been tested for conditional independence

14: ` = `+ 1
15: until for each ordered pair of variables 〈Xi, Xj〉 that are adjacent in G:

|A (G, Xi) \{Xj}| < `
16: for all pairs of nonadjacent nodes Xi and Xj with common neighbor Xk do
17: if Xk /∈ S (Xi, Xj) then
18: Orient i− k − j as i→ k ← j
19: end if
20: end for
21: repeat
22: if k → i− j and j, k are nonadjacent then
23: Orient i− j as i→ j
24: end if
25: if i− j and there is a directed path from i to j then
26: Orient i− j as i→ j
27: end if
28: if i − j and there are two chains i − k → j and i − ` → j such that k, `

are nonadjacent then
29: Orient i− j as i→ j
30: end if
31: if i− j and there is a chain i− k → `→ j such that k, j are nonadjacent

then
32: Orient i− j as i→ j
33: end if
34: until no more edges can be oriented

10



CHAPTER 2

Learning Sparse Causal Gaussian Networks from

Experimental Data

2.1 Introduction

In recent years, a number of researchers proposed to estimate the structures of

graphical models through L1-regularized likelihood approaches (lasso-type penal-

ties). The L1 penalty becomes popular because of the parsimonious solution it

leads to as well as its computational tractability. Much of the research has focused

on estimating undirected graphs with the L1 penalty. Yuan and Lin (2007) pro-

posed to maximize an L1-penalized log-likelihood based on the “max-det” problem

considered by Vandenberghe et al. (1998), while Banerjee et al. (2008) employed a

blockwise coordinate descent algorithm to solve the optimization problem. Fried-

man et al. (2008) built on the method of Banerjee et al. (2008) a remarkably

efficient algorithm called the graphical lasso. Another computationally attractive

method was developed by Meinshausen and Bühlmann (2006), where an undi-

rected graph is constructed by fitting a lasso regression on each node separately.

As for undirected graphs, sparsity in the structure of a causal Bayesian network

is desired, which often gives more interpretable results. A natural generalization

is to use the L1 penalty in structure learning of causal Bayesian networks with

experimental data. However, there are a number of difficulties for this seemingly

natural generalization. First, existing theories on L1-regularized estimation and

penalized likelihood may not be directly applicable to structure learning of DAGs
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with interventional data. Different interventions effectively change the structure

of a DAG as shown in Section 1.5. Second, it is expected that the computation

for estimating the structures of DAGs is much more challenging than that for

undirected graphs because of the acyclic constraint. Indeed, recent work of Shojaie

and Michailidis (2010) assumed a known ordering of the variables to simplify the

computation for the structure learning problem of DAGs, which eliminates the

need for estimating the directions of causality among random variables.

In this chapter, we develop an L1-penalized likelihood approach to learn the

structures of causal Gaussian Bayesian networks using experimental data. We

consider this problem in the general setting where the ordering of the variables is

unknown. To the best of our knowledge, this is the first method that estimates the

structures of DAGs based on L1-penalized likelihood without assuming a known

ordering. In Section 2.2 we formulate the problem of learning causal Gaussian

DAGs with experimental data. We develop a coordinate descent algorithm in

Section 2.3 to search a locally optimal solution to this optimization problem and

establish in Section 2.4 theoretical properties of the corresponding estimator. In

Section 2.5 we present results of a simulation study. This chapter is concluded

with discussion in Section 2.6. All mathematical proofs and certain supplementary

materials are given in Section 2.7.

2.2 Problem Formulation

In a causal Gaussian Bayesian network G, causal relationships among random

variables are modeled as

Xj =
∑
i∈ΠGj

βijXi + εj, j = 1, . . . , p, (2.1)
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where βij is the coefficient representing the influence of Xi on Xj, and εj’s are in-

dependent Gaussian noises with mean 0 and variance σ2
j . We assume, throughout

this chapter, that all Xj have mean 0. Then the joint distribution of (X1, . . . , Xp)

defined by (2.1) is Np(0,Σ), where the covariance matrix Σ depends on βij

(i, j = 1, . . . , p, and i 6= j) and σ2
j (j = 1, . . . , p). The set of equations in (2.1) can

be regarded as the mechanism for generating these random variables.

Consider an n×p data matrix X generated from G. The data matrix X consists

of p blocks with the jth block Xj having size nj × p, where n =
∑p

j=1 nj. Each

row within Xj is generated by imposing an intervention on the node Xj, while the

values for all other nodes Xk (k 6= j) are observational. The experimental data

on Xj generated by intervention are assumed to follow N (0, σ̃2
j ) for j = 1, . . . , p.

Let B = (βij)p×p be the coefficient matrix, where βij = 0 if i /∈ ΠGj . Let

σ2 = (σ2
j )1×p and σ̃2 = (σ̃2

j )1×p be vectors of variances. Apparently, we can

learn the structure of G by estimating the coefficient matrix B. In the rest of the

chapter, we will call G the graph induced by B.

Now let Ij denote the collection of indices of samples in Xj and Oj =

{1, . . . , n} \Ij denote the collection of indices of samples in which Xj is not fixed

experimentally, j = 1, . . . , p. According to the factorization (1.2), the joint density

of the data matrix X can be written as

f(X) ∝
p∏

k=1

∏
h∈Ik

∏
j 6=k

f(xhj|πhj) =

p∏
j=1

∏
h∈Oj

f(xhj|πhj), (2.2)

where xhj is the value of Xj in the hth sample (the (h, j)th element of the data

matrix X), πhj are the values of the parents of Xj in the hth sample, and f(xhj|πhj)

is the conditional density of xhj given πhj. Note that, as mentioned in Section 1.5,

the likelihood term f(xhj|∅) is ignored if the value xhj is fixed experimentally. Let

n−j = |Oj| = n − nj. Then using the relationship in (2.1), we can easily derive
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that the negative log-likelihood of B and σ2 is

p∑
j=1

[
n−j log(σ2

j )

2
+
‖X[Oj ,j] −X[Oj ,−j]B[−j,j]‖2

2σ2
j

]
, (2.3)

where M[Ir,Ic] denotes the submatrix of M with rows in Ir and columns in Ic.

For many real-world applications, it is often the case that the underlying net-

work structure is sparse. It is therefore important to find a sparse structure for

the coefficient matrix B. We propose here a penalized likelihood approach with

the adaptive lasso penalty to learn the structure of B. Specifically, given a weight

matrix W = (wij)p×p, we seek the minimizer (B̂, σ̂2) of

p∑
j=1

[
n−j log(σ2

j )

2
+
‖X[Oj ,j] −X[Oj ,−j]B[−j,j]‖2

2σ2
j

+ λ
∑
i 6=j

wij|βij|

]
,

subject to GB is acyclic,

(2.4)

where GB denotes the graph induced by B, and λ > 0 is the penalty parameter.

Remark 2.1. Due to the acyclic constraint, one cannot transform (2.4) into an

equivalent penalized least squares problem. Hence, σ2
j cannot be ignored in our

formulation, which makes the minimization problem considerably harder than a

penalized least squares problem.

The adaptive lasso was proposed by Zou (2006) as an alternative to the lasso

technique (Tibshirani 1996) for regression problems. The adaptive lasso enjoys the

oracle properties considered by Fan and Li (2001). In particular, it is consistent

for variable selection. In our setting, the weights are defined as wij = |β̂(†)
ij |−γ

for some γ > 0, where β̂
(†)
ij is a consistent estimate of βij. Zou (2006) suggests

using the ordinary least squares (OLS) estimates to define the weights in the

regression setting. However, because of the existence of equivalent DAGs, the

OLS estimates may not be consistent in our case. To obtain the initial consistent

estimates β̂
(†)
ij ’s, we let w̃ij = min(|β̂(OLS)

ij |−γ,Mγ), where M is a large positive
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constant (e.g. M = 104) and β̂
(OLS)
ij ’s are OLS estimates obtained by regressing

Xj on other nodes using samples h ∈ Oj. As will be shown in Section 2.4, there

exists a
√
n-consistent local minimizer B̂ of (2.4) with weights w̃ij, which can be

used as β̂
(†)
ij ’s. Then consistent estimate of the graph structure can be obtained

with weights wij = |β̂(†)
ij |−γ.

After minimizing with respect to σ2, problem (2.4) becomes

min
B

V (B; W) =

p∑
j=1

[
n−j
2

log
(
‖X[Oj ,j] −X[Oj ,−j]B[−j,j]‖2

)
+ λ

∑
i 6=j

wij|βij|

]
,

subject to GB is acyclic,

(2.5)

which is the problem we aim to solve.

2.3 Coordinate Descent Algorithm

Both the objective function V in (2.5) and the constraint set are nonconvex.

Searching for the global optimal solution of (2.5) may be impractical. More-

over, the theoretical results in Section 2.4 only establish consistency of a local

minimizer (see Theorem 2.3 and 2.4). Therefore, we develop in this section a

coordinate descent (CD) algorithm in order to find a local minimum to the con-

strained optimization problem (2.5). A local minimizer B̂ is defined as follows:

(i) any local change in the structure of GB̂, i.e., addition, removal or reversal of a

single edge, increases the value of V ; (ii) given the structure of GB̂, B̂ is a local

minimizer of V . Coordinate descent methods have been successfully used to solve

lasso-type problems (Fu 1998; Friedman et al. 2007; Wu and Lange 2008). They

are attractive since minimizing the objective function in one coordinate at a time

is computationally simple and gradient-free. As a result, these methods are easy

to implement and are usually scalable.
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2.3.1 Single-parameter update

Before detailing the coordinate descent algorithm, let us first consider minimizing

V in (2.5) w.r.t. a single parameter βkj (k 6= j) without the acyclic constraint. In

particular, we seek the minimizer β̂kj of

Vj =
n−j
2

log
(
‖X[Oj ,j] −X[Oj ,−j]B[−j,j]‖2

)
+ λ

∑
i 6=j

wij|βij|

=
n−j
2

log

∑
h∈Oj

(
xhj −

∑
i 6=j,k

xhiβij − xhkβkj
)2


+λ

∑
i 6=j,k

wij|βij|+ λwkj|βkj|, (2.6)

assuming all βij’s (i 6= j, k) are fixed. We can transform the weighted lasso penalty

in (2.6) into an ordinary lasso penalty:

min
β̃kj

Ṽj =
n−j
2

log

∑
h∈Oj

(
xhj −

∑
i 6=j,k

x̃hiβ̃ij − x̃hkβ̃kj
)2


+λ

∑
i 6=j,k

|β̃ij|+ λ|β̃kj|, (2.7)

by letting β̃ij = wijβij and x̃hi = xhi/wij for i 6= j. We further define y
(k)
hj = xhj −∑

i 6=j,k x̃hiβ̃ij, ξkj =
∑

h∈Oj x̃hky
(k)
hj /

∑
h∈Oj x̃

2
hk, ckj =

∑
h∈Oj

(
y

(k)
hj

)2
/
∑

h∈Oj x̃
2
hk

and γ = λ/n−j. Note that according to Cauchy-Schwarz inequality, ckj − ξ2
kj ≥ 0.

Then equivalently, (2.7) can be simplified to the problem

min
β̃kj

g(β̃kj) =
1

2
log
[(
β̃kj − ξkj

)2
+
(
ckj − ξ2

kj

)]
+ γ|β̃kj|. (2.8)

The form of g is reminiscent of the lasso problem with a single predictor. However,

minimizing g with respect to β̃kj is not as easy as the corresponding lasso problem,

since g is not a convex function. The function g might have two local minima for

some values of ξkj, ckj and γ. It is therefore necessary to compare the values of the
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two local minima under certain conditions. We summarize the solution to (2.8)

in the following proposition and provide its proof in Section 2.7.1.

Proposition 2.1. Let ∆ = 1 − 4(ckj − ξ2
kj)γ

2 and β∗1 =

sgn(ξkj)

(
|ξkj| −

1−
√

∆

2γ

)
. Then the solution to the optimization problem

(2.8) is given by

arg min
β̃kj

g =



β∗1 , if 0 < γ < |ξkj|/ckj,

β∗1 , if |ξkj|/ckj ≤ γ <
(

2
√
ckj − ξ2

kj

)−1

, γ > (2|ξkj|)−1

and g(β∗1) < g(0),

0, otherwise.

Remark 2.2. The form of β∗1 suggests that arg minβ̃kj g is similar to a soft

thresholded version (Donoho and Johnstone 1995) of ξkj in nature. One dif-

ference, however, is that arg minβ̃kj g can be zero even when |ξkj| − (1 −
√

∆)(2γ)−1 > 0 (see proof of Proposition 2.1 in Section 2.7.1). Note that if

4(ckj − ξ2
kj)γ

2 = o(1), by Taylor expansion
√

∆ ≈ 1 − 2(ckj − ξ2
kj)γ

2. Then

β∗1 ≈ sgn(ξkj)
(
|ξkj| − (ckj − ξ2

kj)γ
)

= sgn(ξkj) (|ξkj| − ckj(1− ζ2)γ), where ζ is

the correlation coefficient between x̃hk and y
(k)
hj for h ∈ Oj.

Remark 2.3. In Proposition 2.1, we could find a more explicit condition on γ

to determine when g(β∗1) < g(0), but the condition does not have an analytical

solution. Thus, it seems more effective to compare g(β∗1) and g(0) directly.

2.3.2 Description of the CD algorithm

The difficulty in minimizing V in (2.5) is due to the constraint that the graphical

representation of Bayesian networks is acyclic. One immediate consequence of the

constraint is that a pair of coefficients βij and βji cannot both be nonzero. We

thus take advantage of this implication when designing the CD algorithm. Instead

of minimizing V over a single parameter βij at each step, we perform minimization
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over βij and βji simultaneously. Hence, our method can be naturally described

as a blockwise coordinate descent method. For a p-node problem, the p(p − 1)

coefficients are partitioned into p(p − 1)/2 blocks. Each block consists of a pair

of coefficients βij and βji. The algorithm starts with an initial estimate of the

coefficient matrix B (for instance, the zero matrix) and assumes a predefined order

to cycle through the p(p−1)/2 blocks. At each step, V is minimized over a certain

block of βij and βji while all other blocks are held constant. Given the current

estimates of other blocks, βij (or βji) is constrained to zero if a nonzero value

introduces cycles in the resulting graph. In this case, V is only minimized over

βji (or βij). Otherwise, the algorithm compares minβij ,βji=0 V with minβij=0,βji V

in order to update βij and βji. We repeat cycling through the p(p − 1)/2 blocks

until some stopping criterion is satisfied.

The major steps in the CD algorithm are summarized as follows, where we use

β̃ij ⇐ 0 to mean that β̃ij must be set to zero due to the acyclic constraint. In the

following, different X[Oj ,·]’s are treated as different entities so that operations on

X[Oj ,·] will not affect X[Ok,·] for k 6= j.

Algorithm 2.1

CD algorithm for estimating Gaussian Bayesian networks

1. Center and standardize the columns of X[Oj ,·] (j = 1, . . . , p) to have mean

zero and unit L2 norm. Transform the weighted lasso problem (2.5) to an

ordinary lasso problem by defining X̃[Oj ,i] = X[Oj ,i]/wij, i 6= j, for j =

1, . . . , p. Choose B0 such that GB0 is acyclic.

2. Cycle through the p(p − 1)/2 blocks of coefficients. Specifically, do one of

the following for the pair of coefficients β̃ij and β̃ji (i 6= j), given the current

estimates of other coefficients.

(a) If β̃ji ⇐ 0, minimize Ṽj in (2.7) w.r.t. β̃ij according to Proposition 2.1

and find β̃∗ij = arg minβ̃ij Ṽj. Then set (β̃ij, β̃ji) = (β̃∗ij, 0).
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(b) If β̃ij ⇐ 0, minimize Ṽi w.r.t. β̃ji according to Proposition 2.1 and find

β̃∗ji = arg minβ̃ji Ṽi. Then set (β̃ij, β̃ji) = (0, β̃∗ji).

(c) If 2a and 2b do not apply, then compare the following two sums: S1 =

Ṽi|β̃ji=0 + Ṽj|β̃ij=β̃∗ij and S2 = Ṽi|β̃ji=β̃∗ji + Ṽj|β̃ij=0. Set (β̃ij, β̃ji) = (β̃∗ij, 0)

if S1 ≤ S2. Otherwise, set (β̃ij, β̃ji) = (0, β̃∗ji).

3. Repeat step 2 until the maximum absolute difference among all coefficients

between successive cycles is below some threshold or until the maximum

number of iterations is reached.

4. Output the estimates β̂ij = β̃ij/wij for i, j = 1, . . . , p and i 6= j.

To ensure the acyclic constraint by checking whether β̃ij ⇐ 0, we employ a

breadth-first search algorithm based on Algorithm 4 in Ellis (2006). A detailed

description of this algorithm is given in Section 2.7.2.

2.3.3 Practical considerations

Since it is difficult in practice to predetermine the optimal value of λ, we compute

solutions using a decreasing sequence of values for λ, following the practice of

Friedman et al. (2010). The solution for the current λ is used as the initial

estimate for the next value of λ in the sequence. Since large values of λ force

many βij to be zero and make the optimization much easier, the solution for

large λ is likely to agree well with some sub-graph of the true model. Therefore,

employing warm starts may boost the performance of the CD algorithm. Indeed,

our experience suggests that results obtained using a sequence of λ’s are better

than those computed using individual λ.

To speed up the CD algorithm, we utilize an active set method that is better

suited for warm starts, as was done by Friedman et al. (2010). The algorithm

first performs a complete cycling through all p(p − 1)/2 blocks of coefficients to
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identify the active set—the set of nonzero coefficients. We then only iterate over

the active set until the maximum coefficient difference falls below the threshold

or the maximum number of iterations has been reached. The algorithm stops if

another full cycle of all the blocks does not change the active set; otherwise the

above process is repeated.

It should be noted that convergence of coordinate descent methods often re-

quires the objective function to be strictly convex differentiable. For nondifferen-

tiable functions, coordinate descent may get stuck at non-optimal points, although

Tseng (2001) considered generalizations to nondifferentiable functions with cer-

tain separability and regularity properties. Because of the nonconvex nature of

the objective function V in (2.5) and the constraint set, convergence of the CD

algorithm deserves a rigorous investigation, which is beyond the scope of this

study. We conjecture that the CD algorithm converges under certain conditions.

In practice, we have never encountered any examples so far where the algorithm

does not converge.

2.3.4 Choice of the tuning parameter

The graphical model learned by the CD algorithm depends on the choice of the

penalty λ. Model selection is usually based on an estimate of prediction error, and

commonly used model selection methods include Bayesian information criterion

(BIC) and cross-validation among others. However, rather than selecting a model

with a small prediction error, our goal is to estimate a graphical structure from

data that is as close as possible to the true model. The model with the smallest

prediction error on a test data of finite size is not necessarily the model that is

the closest to the true network structure. According to our experience, models

selected based on prediction errors are often too complex compared to the true

models when the true models are sparse. Figure 2.1A plots the 5-fold cross-

validation error for a sequence of graphs learned given a decreasing sequence of λ
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from a simulated data set with p = 100, n = 500 and βij = 1.0. The CV error is

minimized at the 67th λ. The corresponding graph Ĝ67 (obtained using λ67 as the

tuning parameter on the whole data set) has a total of 993 predicted edges with

an 82.6% false discovery rate, while the true graph only has 200 directed edges.

Similar results are obtained if we use BIC or other scoring metrics such as the

Bayesian score of a graph.
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Figure 2.1: Plots of (A) CV error, (B) difference ratio (“histogram-like” verti-
cal lines) and log-likelihood (solid line) for graphs estimated using a decreasing
sequence of λ.

In this chapter, we employ an empirical model selection criterion that works

well in practice. Note that as we decrease λ and thus increase model complexity,

the log-likelihood of the estimated graph will increase. Denote by B̂λi a solution

to (2.5) with the ith penalty parameter λi. For the estimated graph Ĝλi induced by

B̂λi , we estimate the unpenalized coefficient matrix, denoted by B̃i, by regressing

Xk on Π
Ĝλi
k , k = 1, . . . , p. Given two estimated graphs Ĝλi and Ĝλj (λi > λj),

let ∆Lij = L(B̃j) − L(B̃i) and ∆eij = eλj − eλi , where L(B̃) = −V (B̃; 0) de-

notes the log-likelihood function and e denotes the total number of edges in an

estimated graph. We then define the difference ratio of two estimated graphs as

dr(ij) = ∆Lij/∆eij. We reason that, an increase in model complexity, which is

represented by an increase in the total number of predicted edges, is desirable only

21



if there is a substantial increase in the log-likelihood. Therefore, we compute suc-

cessively the difference ratios between two adjacent graphs in the solution path,{
dr(12), . . . , dr(i,i+1), . . . , dr(m−1,m)

}
, where m is the number of λ in the sequence.

The graph with the following index is selected:

K = sup
{
k : dr(k−1,k) ≥ α×max(dr(12), . . . , dr(m−1,m)), k = 2, . . . ,m

}
, (2.9)

where α is a thresholding parameter. Essentially, this is the graph from which

further increase in model complexity will not lead to substantial increase in the

likelihood. We find that α ∈ [0.05, 0.1] works well in our simulation. Figure 2.1B

plots the difference ratio as well as the log-likelihood for different graphs learned

from the same data. The graph selected according to (2.9) with α = 0.05 is Ĝ36,

which has 168 edges with a 77% true positive rate and an 8.3% false discovery

rate, much less than 82.6%.

2.4 Asymptotic Properties

In this section, we develop asymptotic theories on the penalized likelihood es-

timator of DAGs. To simplify notations, we write B in a vector format as

φ = (φj)1×d =
(
(B[−1,1])

T , . . . , (B[−p,p])
T
)
, where d = p(p − 1) is the length

of φ. Similarly, we write the weight matrix W in a vector format as T =

(τj)1×d. We say φ is acyclic if the graph Gφ induced by φ (or the corre-

sponding B) is acyclic. Let θ = (φ,σ2, σ̃2) be the vector of parameters and

Ω = {θ : φ is acyclic,σ2 > 0, σ̃2 > 0} be the parameter space. Recall that

σ2 = (σ2
j )1×p and σ̃2 = (σ̃2

j )1×p are vectors of variances defined in Section 2.2.

Denote the true parameter value by θ∗ = (φ∗, (σ2)∗, (σ̃2)∗) ∈ Ω. Let Gφ∗ denote

the DAG induced by φ∗, i.e., the true DAG.

Let θk = (φk,σ
2
[−k], σ̃

2
k), where φk is obtained from φ by replacing B[−k,k] with

0, i.e., by suppressing all edges pointing to the kth node from its parents. Here ν[I]
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denotes the subvector of a vector ν with indices in I. As mentioned in Section 1.5,

Xk, the kth block of the data matrix, can be regarded as i.i.d. observations from a

distribution factorized according to the DAG Gφk , and we denote the correspond-

ing density by f(x|θk), where x = (x1, . . . , xp). For Gaussian random variables,

f is the density function of Np(0,Σ(θk)). Here we emphasize the dependence of

the variance-covariance matrix Σ on θk. Recall that Ik denotes the collection of

indices of samples in Xk. Then we define the penalized log-likelihood with the

adaptive lasso penalty as

R(θ) = L(θ)− λn
d∑
j=1

τj|φj| =
p∑

k=1

Lk(θk)− λn
d∑
j=1

τj|φj|, (2.10)

where Lk(θk) =
∑

h∈Ik log f(X[h,·]|θk). Our goal is to seek a maximizer of R(θ)

in the parameter space Ω to obtain an estimator θ̂. Note that the log-likelihood

function L(θ) is different from the one in (2.4) and (2.5), since here we also include

in L(θ) terms depending on σ̃2. It is easily seen that these two formulations of

the likelihood function are equivalent for the purpose of estimating the coefficients

and the structure of Bayesian networks.

Even with interventional data the coefficient matrix of a DAG may not be

identifiable because of interventional Markov equivalence among DAGs (Hauser

and Bühlmann 2011). We introduce below the notion of natural parameters to

establish identifiability of DAGs for the case where each variable has interventional

data. Suppose that Xi is an ancestor of Xj in a DAG G, that is, there exists at

least one path from Xi to Xj (see Lauritzen 1996, chapter 2 for terminology used

in graphical models). Let

Γ(i, j) = {(i0, . . . , im) : ik → ik+1 for 0 ≤ k ≤ m− 1, i0 = i, im = j,m ≥ 1}

(2.11)

be the set of paths from Xi to Xj. Define the coefficient of influence of Xi on Xj

23



by βi→j =
∑

Γ(i,j)

∏m−1
k=0 βikik+1

, that is, the sum of products of coefficients along

each path from Xi to Xj. Denote the set of ancestors of Xj by an(Xj).

Definition 2.1 (Natural parameters). We say that θ is natural if the correspond-

ing coefficient matrix B satisfies

βi→j 6= 0 for all Xi ∈ an(Xj), 1 ≤ j ≤ p. (2.12)

Note that if the underlying DAG is a polytree, the corresponding parameter is

always natural. For more general DAGs, natural parameters imply that the causal

effects along multiple paths connecting the same pair of nodes do not cancel, which

is a reasonable assumption for many real-world problems. If the true parameter

is natural, then with sufficient experimental data, the parameter θ is identifiable

as indicated by the following theorem. The proof of Theorem 2.2 is given in

Section 2.7.1.

Theorem 2.2. Suppose that samples in Xk are i.i.d. with probability density

f(x|θ∗k) of the normal distribution Np(0,Σ(θ∗k)) for k = 1, . . . , p. Assume that

the true parameter θ∗ is natural. Then

f(x|θk) = f(x|θ∗k) a.e. for all k = 1, . . . , p =⇒ θ = θ∗. (2.13)

If we further assume that nk/n→ αk > 0 as n→∞, then

Pθ∗(L(θ∗) > L(θ))→ 1 (2.14)

for any θ 6= θ∗.

Now we state the following theorems to establish the asymptotic properties

of θ̂. We follow arguments similar to those given by Fan et al. (2009) to prove

Theorem 2.3 and Theorem 2.4. However, one cannot directly apply Fan et al.’s

results here, because the parameters must satisfy the acyclic constraint, the data

we have are not i.i.d. observations due to interventions, and the identifiability of

a DAG is not always guaranteed.
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Let φ̂
(OLS)
k (1 ≤ k ≤ d) be the estimate of φk when the corresponding βij

(i 6= j) is estimated by β̂
(OLS)
ij . Let A = {j : φ∗j = 0} and φA = (φj)j∈A. It is

assumed that θ∗ is natural in the following two theorems. We relegate the proofs

of Theorem 2.3 and Theorem 2.4 to Section 2.7.1.

Theorem 2.3. Assume the adaptive lasso penalty with weights τj =

min(|φ̂(OLS)
j |−γ,Mγ) for all j, where γ,M > 0. As n → ∞, if λn/

√
n → 0

and nk/n → αk > 0 for k = 1, . . . , p, then there exists a local maximizer θ̂ of

R(θ) such that ‖θ̂ − θ∗‖ = Op(n
−1/2).

Theorem 2.4. Assume the adaptive lasso penalty with weights τj = |φ̃j|−γ for

some γ > 0 and all j, where φ̃j is
√
n-consistent for φ∗j . As n→∞, if λn/

√
n→

0, λnn
(γ−1)/2 → ∞ and nk/n → αk > 0 for k = 1, . . . , p, then there exists

a local maximizer θ̂ of R(θ) such that ‖θ̂ − θ∗‖ = Op(n
−1/2). Furthermore,

with probability tending to one, the
√
n-consistent local maximizer θ̂ must satisfy:

φ̂A = 0.

Remark 2.4. To achieve consistency in model selection with the adaptive lasso

penalty, we need some consistent estimate of the vector φ to construct the weights.

Theorem 2.3 suggests that we first use τj = min(|φ̂(OLS)
j |−γ,Mγ) as weights to

obtain an initial consistent estimate φ̃. Then with weights constructed from φ̃,

Theorem 2.4 guarantees that model selection consistency can be achieved.

2.5 Simulation Study

2.5.1 Small sample sizes

To test the performance of the CD algorithm, we conducted a simulation study.

We randomly generated graphs with p nodes (p = 20, 50, 100, 200) and 2p edges.

To further control the sparsity of the graphs, we set the maximum number of

parents for any given node to be 4. For each value of p, we simulated 10 different
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random graphs, and for each graph, three data sets were generated according to

equation (2.1) with βij = 0.2, 0.5 and 1.0, respectively. The variance σ2
j of the

Gaussian noise εj (j = 1, . . . , p) was set to 1 in all our simulations. Each data

set has n = 5p samples. As described in Section 2.2, these samples are divided

into p blocks such that the sample size of each block is nj = 5, j = 1, . . . , p. The

jth block Xj contains experimental data on the node Xj, which were drawn from

the standard normal distribution N (0, 1). For each data set, we applied the CD

algorithm to compute the solution path using a geometric sequence of λ’s, starting

from the largest value λmax for which B̂λmax = 0 and decreasing to the smallest

value λmin. The sequence typically contained 50 or 100 different values of λ’s with

the ratio λmin/λmax set to some small value such as 0.001. Graphical models were

then selected from the solution paths according to (2.9) with α = 0.1. We used

γ = 0.15 for all data sets, except for the two cases with p ≥ 100 and βij = 1.0,

where γ was set to 0.5.

Table 2.1 summarizes the average performance of the CD algorithm over 10

data sets for each combination of p and βij. For instance, when p = 100 and

βij = 0.5, the estimated graphical model on average contains 220.9 directed edges,

of which 156.5 edges are present in the true graph, 28.3 edges have directions

reversed, and the rest 36.1 edges are not included in the true graph. On average,

there are also 15.2 true edges missing in the estimated model. Results in Table 2.1

suggest that our method can estimate the structures of DAGs with reasonable

accuracy even when the sample sizes are limited. All TPRs (defined in Table 2.1)

are above 0.70 except for βij = 0.2, cases where signal-to-noise ratios are too

small. Though for small networks (small p and thus small sample sizes) or small

βij values (small signal-to-noise ratios) FDRs are relatively high, they become

much lower for larger networks and higher values of βij. Note that, when p = 200,

the number of parameters to be estimated is around 20,000, which is much larger

than the sample size n = 5p = 1000. Even in this high-dimensional setting our

26



Table 2.1: The average number of predicted (P), expected (E), reversed (R),
missed (M) and false positive (FP) edges and the average true positive rates
(TPRs1) and false discovery rates (FDRs2) for DAGs learned by the CD algorithm
(sample size n=5p)

p βij
CD algorithm KO method

P E R M FP TPR FDR TPR FDR

20

0.2 59.6 17.3 10.9 11.8 31.4 0.433 (0.069) 0.694 (0.080) 0.375 0.213

0.5 48.6 29.2 6.1 4.7 13.3 0.730 (0.152) 0.399 (0.083) 0.908 0.086

1.0 65.5 34.0 2.8 3.2 28.7 0.850 (0.092) 0.429 (0.138) 0.723 0.065

50

0.2 158.9 54.0 32.8 13.2 72.1 0.540 (0.048) 0.652 (0.061) 0.732 0.128

0.5 114.9 74.5 17.4 8.1 23.0 0.745 (0.100) 0.351 (0.085) 0.992 0.045

1.0 132.7 70.5 5.0 24.5 57.2 0.705 (0.113) 0.453 (0.090) 0.763 0.050

100

0.2 246.0 137.9 53.2 8.9 54.9 0.690 (0.027) 0.431 (0.075) 0.952 0.088

0.5 220.9 156.5 28.3 15.2 36.1 0.783 (0.058) 0.290 (0.071) 0.993 0.032

1.0 167.8 149.1 11.4 39.5 7.3 0.746 (0.087) 0.109 (0.074) 0.508 0.011

200

0.2 421.2 325.3 72.2 2.5 23.7 0.813 (0.054) 0.226 (0.061) 1.000 0.051

0.5 430.2 341.8 41.9 16.3 46.5 0.855 (0.053) 0.203 (0.071) 1.000 0.016

1.0 328.1 298.5 18.3 83.2 11.3 0.746 (0.100) 0.090 (0.049) 0.549 0.004

Note:
1. 1 TPR = E/T, where T = 2p is the total number of true edges. 2 FDR =
(R + FP)/P.
2. The numbers in parentheses are the standard deviations across 10 data sets.
As a comparison, the last two columns list the average TPRs and FDRs for DAGs
estimated by the approach of Shojaie and Michailidis (2010) assuming the ordering
of the variables is known.

CD algorithm was still able to estimate DAGs quite accurately.

Since the CD algorithm computes a set of solutions along the solution path

of problem (2.5), another way to evaluate the performance is to investigate the

relationship between TPR and false positive rate [FPR = (R+FP)/(p(p−1)−T)]

as the penalty parameter λ varies, which is known as the receiver operating char-

acteristic (ROC) analysis. However, since the sequence of λ’s we used was data-

dependent, we examined the TPR-FPR relationships as the number of predicted

edges increases. Figure 2.2 presents the results of ROC analysis. Again, these
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ROC curves suggest satisfactory performance of the CD algorithm except when

signal-to-noise ratios are small (βij = 0.2). In particular, we note that for large

networks (p = 100, 200), as we increase the number of predicted edges and the

complexity of estimated graphs by adjusting the penalty λ, we will increase TPR

without affecting FPR much until TPR reaches a plateau, a level at which the

estimated DAGs are structurally similar to the true DAGs.
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Figure 2.2: ROC curves for βij = 0.2 (solid lines), βij = 0.5 (dotdashed lines) and
βij = 1.0 (long dashed lines), sample size n=5p.

To get a sense of the amount of information that interventional data can

provide to resolve directionality of DAGs, we also applied the CD algorithm to

simulated observational data with the same sample sizes as their interventional

counterparts. The results are summarized in Table 2.7 in Section 2.7.3. We

found that interventional data helped to increase TPRs and simultaneously reduce
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FDRs, and the boost in TPRs ranges from 2% up to about 50%.

To benchmark the performance of the CD algorithm, we compared our method

to a PC algorithm based approach. The PC algorithm is a classical constraint-

based method that can estimate DAGs with hundreds of nodes. We did not

compare with Monte Carlo approaches, as even the most recent developments,

such as the order-graph sampler (Ellis and Wong 2008), have not shown convincing

performance on graphs with more than 50 nodes.

The PC algorithm is designed to estimate from observational data a completed

partially directed acyclic graph (CPDAG), which contains both directed and undi-

rected edges. We therefore took a two-step approach to produce results favorable

for the PC algorithm. We first used the PC algorithm to estimate CPDAGs from

data. Then one may try to estimate the direction of an undirected edge using in-

terventions and produce a DAG. In this comparison, however, we simply counted

an undirected edge between two nodes in a CPDAG as an expected edge, pro-

vided that there is a corresponding directed edge between the two nodes in the true

DAG. Thus, the reported result is the best (or an upper bound) one can obtain

by a two-step PC algorithm based method (PC-based method). The performance

of this PC-based method applied to our simulated data sets is shown in Table 2.2.

Unlike graphs selected by criterion (2.9), graphs learned by the PC-based method

generally have fewer edges than the true models. So to make fair comparisons,

we selected graphs constructed by the CD algorithm to match the total number

of edges of graphs learned by the PC-based method. The corresponding results

are also presented in Table 2.2. It can be easily seen that the CD algorithm out-

performs the PC-based method in all cases of our simulations. Graphs estimated

using our method have both higher TPRs and lower FDRs. This result shows

the advantage of using experimental data in an integrated penalized likelihood

method. In addition, we compared the performance of the CD algorithm and the

PC-based method on observational data (see Table 2.8 in Section 2.7.3). We found

29



that our method still outperforms the PC-based method except for βij = 1.0 or

p = 20.

Table 2.2: The average performance of the two-step PC-based method and the
average performance of the CD algorithm when models are selected to match the
number of edges of those learned by the PC-based method (sample size n=5p)

p βij
PC-based method CD algorithm

P TPR FDR P TPR FDR

20

0.2 7.6 0.103 (0.042) 0.443 (0.262) 8.3 0.115 (0.044) 0.442 (0.184)

0.5 18.4 0.313 (0.049) 0.311 (0.134) 19.8 0.383 (0.095) 0.227 (0.148)

1.0 15.7 0.290 (0.061) 0.254 (0.172) 15.7 0.318 (0.103) 0.183 (0.088)

50

0.2 53.3 0.221 (0.037) 0.585 (0.071) 52.8 0.299 (0.032) 0.430 (0.072)

0.5 70.3 0.409 (0.081) 0.422 (0.082) 72.5 0.557 (0.117) 0.233 (0.109)

1.0 54.7 0.313 (0.042) 0.427 (0.054) 50.5 0.355 (0.094) 0.296 (0.080)

100

0.2 173.8 0.399 (0.050) 0.542 (0.051) 173.5 0.610 (0.034) 0.297 (0.026)

0.5 153.1 0.456 (0.053) 0.405 (0.048) 154.6 0.596 (0.077) 0.231 (0.066)

1.0 107.8 0.328 (0.069) 0.396 (0.096) 107.2 0.513 (0.042) 0.041 (0.051)

200

0.2 429.1 0.506 (0.030) 0.528 (0.028) 431.8 0.815 (0.053) 0.245 (0.051)

0.5 351.4 0.493 (0.075) 0.438 (0.085) 357.4 0.734 (0.093) 0.181 (0.068)

1.0 235.3 0.335 (0.056) 0.433 (0.069) 234.8 0.561 (0.059) 0.043 (0.046)

Note: The numbers in parentheses are the standard deviations across 10 data sets.

We also compared the running time for both methods. Table 2.3 summarizes

the CPU time for one run of each algorithm averaged over 10 data sets. Each

run of the CD algorithm uses a sequence of 50 λ’s with λmin/λmax = 0.001. The

CD algorithm is implemented in R with the majority of its core computation

executed in C. The PC algorithm we used was implemented by Kalisch et al.

(2012) in the R package pcalg. The running time for the PC algorithm depends on

the argument u2pd, which we assume to be rand (see online manuals for further

details). According to Table 2.3, the average CPU time for the PC algorithm

is faster than the CD algorithm. However, considering that the CD algorithm

estimates 50 (or more generally a sequence of) graphical models in each run, it is
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on average at least as fast as the PC algorithm for estimating a single graph.

Table 2.3: Comparison of average CPU time (in seconds) between the CD algo-
rithm and the PC algorithm (sample size n=5p)

βij
CD algorithm PC algorithm

p = 20 p = 50 p = 100 p = 200 p = 20 p = 50 p = 100 p = 200

0.2 0.09 1.32 17.54 255.09 0.04 0.28 4.18 28.74

0.5 0.15 4.54 112.69 1938.23 0.09 1.23 9.67 76.94

1.0 0.32 10.05 193.17 4595.95 0.09 0.97 5.10 33.73

mean 0.19 5.30 107.80 2263.09 0.07 0.83 6.32 46.47

Recently, Shojaie and Michailidis (2010) developed an approach to estimate

directed acyclic graphs assuming a known ordering of the variables, which we will

refer to as the KO method. Knowing the ordering greatly simplifies the structure

learning problem. Following their formulation, we can simply estimate the coef-

ficient matrix B (and thus the structure of directed graphs) by regressing each

variable on all preceding variables in a given ordering. Hence, the problem of

estimating directed graphs becomes p − 1 separate lasso problems, which can be

solved efficiently using either the LARS algorithm (Efron et al. 2004) or the path-

wise coordinate descent algorithm (Friedman et al. 2007). To obtain an estimate

of a directed graph, Shojaie and Michailidis (2010) proposed to use

λi(α) = 2ñ−1/2Z∗α/[2p(i−1)] (2.15)

as the penalty for the ith individual lasso problem, where ñ is the sample size, Z∗q

is the (1− q)th quantile of the standard normal distribution, and α is a parameter

controlling the probability of falsely joining two ancestral sets in a graph (see

Shojaie and Michailidis 2010). We applied their method to our simulated data

sets. Since the criterion (2.15) led to over-sparse solutions when applied to our

data sets with a limited sample size (n = 5p), we thus scaled down the tuning
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parameters λi(α) in (2.15) proportionately and the results are summarized in

Table 2.1 (KO method). The α level was chosen to be 0.1 as suggested by Shojaie

and Michailidis (2010). As anticipated, most of the results obtained by assuming a

known ordering are clearly better than the results of the CD algorithm. However,

almost all TPRs from the CD algorithm are above 75% of those from the KO

method. Furthermore, the CD algorithm seemed to outperform the KO method

when p = 200 and βij = 1.0.

2.5.2 Large sample sizes

We also carried out a simulation study using a large sample size n = 6000. The

setup for this study is the same as the one used for sample size n = 5p.

Table 2.4 summarizes the average performance of the CD algorithm over 10

data sets using 6000 samples. A comparison between Table 2.1 and Table 2.4

reveals that the accuracy of estimation can be greatly improved if large sample

size is available. Given sufficient amount of data, the percentage of true positive

edges that we can detect is close to or well above 90% for most cases. On the other

hand, all FDRs in Table 2.4 are less than 20%. Cases where the signal-to-noise

ratios are small (βij = 0.2) can be estimated much more accurately compared to

Table 2.1. The only scenario where TPR falls below 80% is when p = 100 and

βij = 1.0. However, even in this case, we were able to increase TPR to 0.86, at

the expense of 4% increase in FDR, by reducing the thresholding parameter α of

model selection. If we ignore the directionality, almost all the edges in the true

graphs are included in our estimated models. The last two columns of Table 2.4

report the average TPRs and FDRs for DAGs estimated by the KO method of

Shojaie and Michailidis (2010). Their model selection criterion (2.15) works very

well with large sample sizes. Surprisingly, there are cases where the estimation

accuracy of the CD algorithm is better than that of the KO method, such as

p = 20 and βij = 1.0. One consequence of knowing the ordering is that no
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Table 2.4: The average number of predicted (P), expected (E), reversed (R),
missed (M) and false positive (FP) edges and the average TPRs and FDRs for
DAGs learned by the CD algorithm (sample size n=6000)

p βij
CD algorithm KO method

P E R M FP TPR FDR TPR FDR

20

0.2 40.0 38.5 1.4 0.1 0.1 0.963 (0.036) 0.038 (0.032) 1.000 0.000

0.5 39.8 36.8 2.0 1.2 1.0 0.920 (0.101) 0.075 (0.083) 1.000 0.007

1.0 39.9 38.8 0.8 0.4 0.3 0.970 (0.037) 0.027 (0.031) 0.883 0.023

50

0.2 100.7 89.5 10.5 0.0 0.7 0.895 (0.036) 0.111 (0.037) 1.000 0.000

0.5 102.2 84.7 10.7 4.6 6.8 0.847 (0.062) 0.167 (0.085) 0.999 0.008

1.0 101.3 89.3 5.7 5.0 6.3 0.893 (0.028) 0.115 (0.062) 0.795 0.026

100

0.2 200.3 178.5 20.8 0.7 1.0 0.892 (0.033) 0.109 (0.034) 0.989 0.000

0.5 214.1 170.8 21.5 7.7 21.8 0.854 (0.064) 0.199 (0.085) 0.982 0.008

1.0 170.7 157.0 8.6 34.4 5.1 0.785 (0.108) 0.078 (0.048) 0.459 0.022

200

0.2 399.5 375.3 23.9 0.8 0.3 0.938 (0.020) 0.061 (0.018) 0.995 0.000

0.5 419.9 358.3 31.9 9.8 29.7 0.896 (0.041) 0.145 (0.063) 0.992 0.003

1.0 349.4 320.5 16.8 62.7 12.1 0.801 (0.078) 0.081 (0.053) 0.464 0.021

Note:
The numbers in parentheses are the standard deviations across 10 data sets. As a
comparison, the last two columns report the average TPRs and FDRs for DAGs
estimated by the approach of Shojaie and Michailidis (2010) assuming the ordering
of the variables is known.

reversed edges will be predicted by the KO method. However, if we ignore the

directions of predicted edges, the coordinate descent results are close to or even

better than the results of the KO method, which in some sense can be regarded

as the best possible results we might expect.

Figure 2.3 presents the results of ROC analysis for the CD algorithm. Accord-

ing to the ROC curves, we are confident that graphs learned by the CD algorithm

using large sample sizes do not have many false positives as long as they are not

too complex compared to the true graphs.

Results of the comparison between the PC-based method and the CD algo-

rithm are reported in Table 2.5. With 6000 samples, the CD algorithm out-
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Figure 2.3: ROC curves for βij = 0.2 (solid lines), βij = 0.5 (dotdashed lines)
and βij = 1.0 (long dashed lines), sample size n=6000. The TPRs stabilize for
FPRs > 0.02.
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Table 2.5: The average performance of the two-step PC-based method and the
average performance of the CD algorithm when models are selected to match the
number of edges of those learned by the PC-based method (sample size n=6000)

p βij
PC-based method CD algorithm

P TPR FDR P TPR FDR

20

0.2 40.2 0.555 (0.110) 0.447 (0.111) 40.3 0.963 (0.032) 0.045 (0.026)

0.5 34.5 0.537 (0.072) 0.374 (0.092) 35.1 0.823 (0.117) 0.064 (0.071)

1.0 31.2 0.490 (0.097) 0.373 (0.106) 31.9 0.795 (0.090) 0.003 (0.010)

50

0.2 101.7 0.527 (0.045) 0.482 (0.046) 101.7 0.895 (0.035) 0.120 (0.042)

0.5 90.5 0.567 (0.095) 0.374 (0.094) 90.4 0.787 (0.098) 0.132 (0.053)

1.0 75.8 0.447 (0.061) 0.409 (0.077) 73.4 0.698 (0.068) 0.047 (0.059)

100

0.2 207.5 0.520 (0.059) 0.499 (0.053) 207.6 0.892 (0.033) 0.140 (0.034)

0.5 176.8 0.479 (0.077) 0.460 (0.065) 178.8 0.737 (0.113) 0.178 (0.091)

1.0 135.2 0.376 (0.060) 0.447 (0.057) 133.6 0.644 (0.066) 0.033 (0.044)

200

0.2 436.9 0.551 (0.040) 0.495 (0.035) 435.6 0.938 (0.020) 0.138 (0.030)

0.5 371.0 0.474 (0.028) 0.489 (0.035) 372.9 0.809 (0.080) 0.133 (0.060)

1.0 275.7 0.340 (0.037) 0.504 (0.064) 274.1 0.662 (0.051) 0.032 (0.046)

Note:
The numbers in parentheses are the standard deviations across 10 data sets.

performs the PC-based method by a large margin. Almost all TPRs of graphs

estimated by the CD algorithm are 25% above those of graphs estimated by the

PC-based method and their FDRs are much lower. Table 2.6 summarizes the

running time comparison for one run of each algorithm using 6000 samples. Each

run of the CD algorithm uses a sequence of 50 λ’s with λmin/λmax = 0.001. In-

terestingly, for large networks (p = 100, 200), the CD algorithm runs faster on

average compared to the running time using small sample size (see Table 2.3),

which may imply faster convergence. These results illustrate the efficiency of our

CD algorithm: Using 6000 samples, it can estimate 50 DAGs for p = 100 in about

a minute, with a high accuracy (Table 2.4).
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Table 2.6: Comparison of average CPU time (in seconds) between the CD algo-
rithm and the PC algorithm (sample size n=6000)

βij
CD algorithm PC algorithm

p = 20 p = 50 p = 100 p = 200 p = 20 p = 50 p = 100 p = 200

0.2 1.12 6.27 35.56 303.49 1.25 10.31 45.64 104.29

0.5 1.17 7.33 66.37 1017.54 1.28 13.68 77.19 555.58

1.0 1.26 7.93 86.52 1728.39 1.01 8.70 41.31 188.44

mean 1.18 7.18 62.82 1016.47 1.18 10.90 54.71 282.77

2.6 Conclusions

We have developed a method to estimate the structure of causal Gaussian networks

using a penalized likelihood approach with the adaptive lasso penalty. Without

knowing the ordering of the variables, we rely on experimental data to retrieve

information about the directionality of the edges in a graph. The acyclic constraint

on the structure of Bayesian networks presents a challenge to the maximization of

the penalized log-likelihood function. A blockwise coordinate descent algorithm

has been developed for this optimization problem. The algorithm runs reasonably

fast and can be applied to large networks. Simulations have been conducted to

demonstrate the performance of our method for various sizes of Bayesian networks.

We have also established asymptotic properties for the penalized likelihood

estimator of the coefficient matrix of Gaussian Bayesian networks, assuming that

the number of variables p is fixed. Asymptotic theory for the estimator if p

is allowed to grow as a function of the sample size remains to be established

in the future. This type of asymptotic problems has been studied in various

settings of undirected graph and precision matrix estimation (e.g., Meinshausen

and Bühlmann 2006; Lam and Fan 2009), where p(n) = O(nc) for some c > 0 or

is of an even higher order. Following our current setup, however, we may need
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to restrict our attention to the case where 0 < c < 1 so that every variable will

have sufficient interventional samples in the data matrix X as n → ∞. The

satisfactory results in our simulation for p ≥ 100 and n = 5p seem to suggest

that our CD algorithm is effective even for p >
√
n. It will also be interesting to

study the theoretical properties of this penalized likelihood approach when not all

variables have experimental data, for which the concept of interventional Markov

equivalence (Hauser and Bühlmann 2011) will be relevant.

Throughout this chapter, variables are assumed to be Gaussian. In the next

chapter, we extend our penalized likelihood approach to discrete data types.

Though the principal idea remains the same, a different algorithm needs to be

developed to handle modeling details specific to discrete variables.

2.7 Appendix

2.7.1 Proofs

2.7.1.1 Proof of Proposition 2.1

We want to minimize g = 1
2

log
[(
β̃kj − ξkj

)2
+
(
ckj − ξ2

kj

)]
+γ|β̃kj| over β̃kj. After

differentiating g with respect to β̃kj and setting the derivative to zero, we obtain

for β̃kj > 0,

γβ̃2
kj − (2γξkj − 1)β̃kj + (ckjγ − ξkj) = 0, (2.16)

and for β̃kj < 0,

γβ̃2
kj − (2γξkj + 1)β̃kj + (ckjγ + ξkj) = 0. (2.17)

Apparently, both (2.16) and (2.17) have the same discriminant ∆ = 1 − 4(ckj −

ξ2
kj)γ

2. The only possible minimizers of g are 0, positive real roots of (2.16) or

negative real roots of (2.17).
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In the rest of the proof, we will only show that Proposition 2.1 holds when

ξkj ≥ 0. The proof for ξkj < 0 is analogous. First, consider ξkj = 0. It is easily

seen that g is minimized at β̃kj = 0, which is included in the third case of the

proposition.

Now consider the case when ξkj > 0. In this case, let β∗1 =

(
2γξkj−1

)
+
√

∆

2γ
and

β∗2 =

(
2γξkj−1

)
−
√

∆

2γ
be the two possible real roots of (2.16). If (2.16) has two real

roots, β∗2 is a local maximum. Also note that if ξkj > 0, (2.17) can only have

positive real roots. Thus, g can only be minimized at 0 or β∗1 if it is real. Now we

only need to find out when 0 or β∗1 minimizes g. There are four cases:
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Figure 2.4: Examples illustrating different scenarios for minimizing g over β̃kj
when ξkj > 0.

Case 1. ∆ > 0 and β∗1 > 0 > β∗2 : This is equivalent to 0 < γ < ξkj/ckj. In this
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case, we have g(β∗1) < g(0) (see Figure 2.4A).

Case 2. ∆ > 0 and β∗1 > β∗2 ≥ 0: This is equivalent to ξkj/ckj ≤ γ <(
2
√
ckj − ξ2

kj

)−1

and γ > (2ξkj)
−1. In this case, β∗1 is a local minimum and β∗2 is

a local maximum (see Figure 2.4B). Thus, we need to compare g(β∗1) with g(0) to

determine arg minβ̃kj g.

Case 3. ∆ > 0 and 0 ≥ β∗1 > β∗2 : This is equivalent to ξkj/ckj ≤ γ <(
2
√
ckj − ξ2

kj

)−1

and γ ≤ (2ξkj)
−1. In this case, neither β∗1 nor β∗2 is positive. So

arg minβ̃kj g = 0 (see Figure 2.4C).

Case 4. ∆ ≤ 0: This is equivalent to γ ≥
(

2
√
ckj − ξ2

kj

)−1

. If ∆ < 0, clearly

arg minβ̃kj g = 0. If ∆ = 0, β∗1 = β∗2 is an inflection point if they are positive (see

Figure 2.4D). So it is also true that arg minβ̃kj g = 0.

Therefore, we have shown that Proposition 2.1 holds.

2.7.1.2 Proof of Theorem 2.2

We prove the first claim (2.13) by contradiction. Suppose θ 6= θ∗ and f(x|θk) =

f(x|θ∗k) a.e. for k = 1, . . . , p. Let S(G) denote the set of topological sorts of a

DAG G. Recall that we denote by Gφ and Gφ∗ the DAGs induced by φ and φ∗,

respectively. There are two cases for Gφ and Gφ∗ if θ is different from θ∗:

Case 1 : S(Gφ)∩S(Gφ∗) 6= ∅. Let @ ∈ S(Gφ)∩S(Gφ∗), i.e., an ordering compat-

ible with both Gφ and Gφ∗ . Assume without loss of generality that in this ordering

i ≺ j if i < j. Apparently, @ is also compatible with Gφk and Gφ∗k for k = 1, . . . , p.

Then we can write f(x|θk) =
∏p

i=1 f(xi|x1, . . . , xi−1,θk) =
∏p

i=1 f(xi|Π
Gφk
i ,θk)

and f(x|θ∗k) =
∏p

i=1 f(xi|x1, . . . , xi−1,θ
∗
k) =

∏p
i=1 f(xi|Π

Gφ∗
k

i ,θ∗k). Since f(x|θk) =

f(x|θ∗k), it follows that Π
Gφk
i = Π

Gφ∗
k

i for all i and thus Gφk = Gφ∗k for all k. How-

ever, since θ 6= θ∗, there exists some k such that θk 6= θ∗k. Therefore, there exists

a k such that, the common multivariate normal density f(x|θk) = f(x|θ∗k), fac-

torized according to a common structure Gφk = Gφ∗k , can be parameterized by two
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different parameters θk and θ∗k. This is apparently impossible.

Case 2 : S(Gφ)∩S(Gφ∗) = ∅, that is, none of the orderings of Gφ∗ is compatible

with Gφ. In this case, there must exist a pair of indices (i, j) such that in Gφ∗

Xi ∈ an(Xj), but in Gφ Xj is a non-descendant of Xi. Then Xj is independent of

Xi in f(x|θi), since in Gφi Xi has no parents and Xj is a non-descendant of Xi.

So Cov(Xi, Xj) = 0 in f(x|θi). However, in Gφ∗i we still have Xi ∈ an(Xj). It is

easy to show that Cov(Xi, Xj) = β∗i→j Var(Xi) 6= 0 in f(x|θ∗i ) since θ∗ is natural.

Therefore, there exists 1 ≤ i ≤ p such that f(x|θi) 6= f(x|θ∗i ), which contradicts

our assumption.

So in both case 1 and case 2 we have a contradiction. Thus, the first claim

holds.

For the second claim (2.14), first note that by the law of large numbers,

1

n
(L(θ)− L(θ∗)) =

p∑
k=1

nk
n

1

nk

∑
h∈Ik

log
f(X[h,·]|θk)
f(X[h,·]|θ∗k)

−→p

p∑
k=1

αkEθ∗k

[
log

f(Y|θk)
f(Y|θ∗k)

]
,

(2.18)

where Y is a random vector with probability density f(x|θ∗k). Then the desired

result follows immediately using Jensen’s inequality and (2.13).

2.7.1.3 Proof of Theorem 2.3

Define an = 1/
√
n and B = {j : φ∗j 6= 0}. Let

I(θk) = Eθk

{[
∂

∂θk
log f(x|θk)

] [
∂

∂θk
log f(x|θk)

]T}

be the Fisher information matrix.

Consider θ = (φ,σ2, σ̃2) ∈ nb(θ∗), where nb(θ∗) is an arbitrarily small neigh-

borhood of θ∗. The components of φmust satisfy φiφ
∗
i > 0 if φ∗i 6= 0 (i = 1, . . . , d),

since otherwise ‖θ − θ∗‖ ≥ minj:φ∗j 6=0|φ∗j |. In particular, this implies that if
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θ ∈ nb(θ∗), i→ j in Gφ for all i→ j in Gφ∗ and thus Gφ and Gφ∗ have compatible

orderings. If we restrict to the lower dimensional space Ωk = {θk : θ ∈ Ω}, the

same arguments apply to an arbitrarily small neighborhood of θ∗k in this space,

that is, Gφk and Gφ∗k have compatible orderings. Then it follows from the argu-

ments used in Case 1 in the proof of Theorem 2.2 that f(x|θk) 6= f(x|θ∗k) for

θk ∈ nb(θ∗k)\ {θ∗k}. Since f is a Gaussian density, it follows that I(θ∗k) is positive

definite for all k.

Let u ∈ {u : θ∗ + anu ∈ Ω} and denote its components by uj. Let uk be the

vector defined in the same way as θk, k = 1, . . . , p. Note that
∑p

k=1‖uk‖2 ≥ ‖u‖2.

Let δkmin > 0 be the minimal eigenvalue of I(θ∗k) and ρ = mink(αkδ
k
min/2). Then

p∑
k=1

αk
2

uTk I(θ∗k)uk ≥
p∑

k=1

αk
2
δkmin‖uk‖2 ≥ ρ

p∑
k=1

‖uk‖2 ≥ ρ‖u‖2. (2.19)

Now we study the behavior of R(θ) in a small neighborhood of the true value

41



θ∗ by expanding L(θ) around θ∗. We have, as n→∞,

R(θ∗ + anu)−R(θ∗)

≤ L(θ∗ + anu)− L(θ∗)− λn
∑
j∈B

τj(|φ∗j + anuj| − |φ∗j |)

=

p∑
k=1

[Lk(θ
∗
k + anuk)− Lk(θ∗k)]− λnan

∑
j∈B

τjujsgn(φ∗j)

=

p∑
k=1

[
anL

′
k(θ
∗
k)
Tuk −

1

2
nka

2
nu

T
k I(θ∗k)uk {1 + op(1)}

]
− λnan

∑
j∈B

τjujsgn(φ∗j)

=

p∑
k=1

[
√
αk
L′k(θ

∗
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(θ∗k)uk {1 + op(1)}
]

− λn√
n

∑
j∈B

τjujsgn(φ∗j)

≤
p∑

k=1

[
√
αk
L′k(θ

∗
k)
T

√
nk

uk {1 + op(1)}
]
− ρ‖u‖2 {1 + op(1)}

− λn√
n

∑
j∈B

τjujsgn(φ∗j). (2.20)

The last inequality is due to (2.19). From the central limit theorem, n
−1/2
k L′k(θ

∗
k) =

Op(1) for all k. By assumption, τj = Op(1) for j = 1, . . . , d and λn/
√
n = op(1).

Therefore, for a sufficiently large C, the second order term in the last line of (2.20)

dominates the first and third terms uniformly in {u : ‖u‖ = C,θ∗ + anu ∈ Ω}.

Hence, for any given ε > 0, there exists a sufficiently large C such that

P

(
sup
‖u‖=C

R(θ∗ + anu) < R(θ∗)

)
≥ 1− ε, (2.21)

which implies that with probability at least 1−ε, there exists a local maximizer θ̂ of

R(θ) in the ball {θ∗ + anu ∈ Ω : ‖u‖ ≤ C}. Thus, there exists a local maximizer

θ̂ of R(θ) such that ‖θ̂ − θ∗‖ = Op(n
−1/2).
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2.7.1.4 Proof of Theorem 2.4

We omit the proof of the first part of Theorem 2.4, since it is similar to that of

Theorem 2.3. To prove the second part, let B = {j : φ∗j 6= 0}. For notational ease,

let us first, by permuting the indices, rewrite the parameter θ as θ = (θa,θb) =

(φA,φB,σ
2, σ̃2), where θa = φA and θb = (φB,σ

2, σ̃2). Let r = |A| be the

number of zero elements of φ∗.

Now we only need to show that with probability tending to 1, for any θb

satisfying ‖θb − θ∗b‖ = Op(n
−1/2) and any constant C > 0,

(0,θb) = arg max
‖θa‖≤C/

√
n

R
(
(θa,θb)

)
. (2.22)

To establish (2.22), we again study the behavior of R(θ) around the point (0,θb)

by expanding L(θ) around (0,θb). Let an = 1/
√
n, θo = (0,θb) , and θ =

θo + anu ∈ Ω, where u = (ua,ub), ‖u‖ ≤ C and ub = 0. Then we have the

following result similar to that in Theorem 2.3:

R(θo + anu)−R(θo)

=

p∑
k=1

[
√
αk
L′k(θ

o
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(θok)uk {1 + op(1)}
]

− λn√
n

r∑
j=1

τj|uj|

=

p∑
k=1

[
√
αk
L′k(θ

o
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(θok)uk {1 + op(1)}
]

− λn√
n
nγ/2

r∑
j=1

|
√
nφ̃j|−γ|uj|. (2.23)

Note that both the first and second terms in the last line of (2.23) are on

the order of Op(1) for any fixed constant C. Since φ̃j is
√
n-consistent, we have

|
√
nφ̃j| = Op(1), for j = 1, . . . , r. Then the third term in the last line of (2.23)
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is on the order of λnn
(γ−1)/2 → ∞. Therefore, (2.22) holds, and the proof is

complete.

2.7.2 Supplementary algorithm

The following algorithm is used in the second step of the CD algorithm to impose

the acyclic constraint. The time complexity is O(V + E).

Algorithm 2.2 Check whether a DAG G remains acyclic if an edge i → j is
added.

function Cycle(G, i, j)
for v ∈ V \{i} do

Cv ← 0
end for
Ci ← 1
Q← ∅
ENQUEUE(Q, i)
while Q 6= ∅ do

u← DEQUEUE(Q)
for v ∈ ΠGu do

if v = j then
return true

else
if Cv = 0 then

Cv ← 1
ENQUEUE(Q, v)

end if
end if

end for
end while
return false

end function

2.7.3 Supplementary tables

The following two tables summarize the results of the CD algorithm on observa-

tional data as well as a comparison with the PC-based method on observational

data.
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Table 2.7: The average number of predicted (P), expected (E), reversed (R),
missed (M) and false positive (FP) edges and the average TPRs and FDRs for
DAGs learned by applying the CD algorithm to observational data (sample size
n=5p)

p βij
CD algorithm

P E R M FP TPR FDR

20

0.2 59.5 15.0 14.4 10.6 30.1 0.375 (0.068) 0.742 (0.056)

0.5 37.8 16.9 11.6 11.5 9.3 0.423 (0.106) 0.556 (0.066)

1.0 99.4 24.1 9.2 6.7 66.1 0.603 (0.130) 0.727 (0.091)

50

0.2 140.0 51.2 36.9 11.9 51.9 0.512 (0.064) 0.626 (0.075)

0.5 103.9 62.7 23.8 13.5 17.4 0.627 (0.141) 0.397 (0.115)

1.0 155.4 55.6 19.3 25.1 80.5 0.556 (0.089) 0.624 (0.091)

100

0.2 257.4 124.0 67.8 8.2 65.6 0.620 (0.059) 0.513 (0.054)

0.5 223.2 143.8 35.9 20.3 43.5 0.719 (0.071) 0.349 (0.097)

1.0 123.9 55.6 43.4 101.0 24.9 0.278 (0.096) 0.547 (0.091)

200

0.2 422.0 303.8 93.8 2.4 24.4 0.760 (0.029) 0.279 (0.047)

0.5 435.7 334.1 46.5 19.4 55.1 0.835 (0.053) 0.231 (0.059)

1.0 271.9 135.1 78.0 186.9 58.8 0.338 (0.080) 0.496 (0.095)

Note: The numbers in parentheses are the standard deviations across 10 data sets.
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Table 2.8: Comparison of the average performance of the two-step PC-based
method and that of the CD algorithm on observational data when models are
selected to match the number of edges of those learned by the PC-based method
(sample size n=5p)

p βij
PC-based method CD algorithm

P TPR FDR P TPR FDR

20

0.2 8.9 0.130 (0.037) 0.403 (0.187) 8.8 0.118 (0.029) 0.456 (0.137)

0.5 18.0 0.315 (0.057) 0.295 (0.126) 18.6 0.213 (0.060) 0.542 (0.099)

1.0 16.4 0.255 (0.033) 0.367 (0.118) 16.2 0.228 (0.081) 0.429 (0.169)

50

0.2 54.3 0.238 (0.057) 0.561 (0.108) 55.4 0.308 (0.062) 0.447 (0.075)

0.5 70.9 0.411 (0.082) 0.424 (0.077) 73.6 0.495 (0.143) 0.330 (0.144)

1.0 52.0 0.303 (0.058) 0.421 (0.079) 47.3 0.255 (0.073) 0.462 (0.084)

100

0.2 174.4 0.403 (0.050) 0.538 (0.056) 175.4 0.557 (0.051) 0.365 (0.048)

0.5 153.6 0.443 (0.071) 0.424 (0.079) 153.0 0.530 (0.099) 0.311 (0.090)

1.0 104.1 0.273 (0.047) 0.477 (0.068) 104.8 0.245 (0.049) 0.531 (0.094)

200

0.2 430.9 0.506 (0.031) 0.530 (0.030) 433.3 0.761 (0.029) 0.298 (0.028)

0.5 348.6 0.462 (0.046) 0.468 (0.066) 350.8 0.707 (0.083) 0.196 (0.053)

1.0 234.5 0.305 (0.059) 0.482 (0.066) 237.1 0.301 (0.064) 0.493 (0.086)

Note: The numbers in parentheses are the standard deviations across 10 data sets.
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CHAPTER 3

Learning Sparse Causal Discrete Networks from

Experimental Data

In this chapter, we focus on estimating causal discrete Bayesian networks from

experimental data. We present a principled generalization of the penalized like-

lihood methodology developed for Gaussian Bayesian networks to discrete data

types. This chapter is organized as follows. Section 3.1 gives a brief introduction

to the multinomial model commonly employed for modeling discrete Bayesian

networks. We introduce in Section 3.2 the multi-logit model based on which we

formulate the problem of estimating discrete Bayesian networks with the adap-

tive group lasso penalty. A blockwise coordinate descent algorithm is proposed

in Section 3.3 and we solve each coordinate descent step by applying a quadratic

approximation iteratively. Asymptotic theory parallel to the one developed for

Gaussian Bayesian networks is established in Section 3.4. We report in Section 3.5

results of numerical evaluation of the discrete CD algorithm on three types of net-

works. The chapter is concluded with Section 3.6. Several technical proofs are

relegated to Section 3.7.

3.1 Introduction to Discrete Bayesian Networks

In a discrete Bayesian network G, the variable Xi is a factor with ri levels denoted

by 1, . . . , ri, i = 1, . . . , p. The set of parents of Xi, denoted by ΠGi , has a total

of qi =
∏

Xj∈ΠGi
rj possible joint states. The conditional distribution P (Xi|ΠGi ) in
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(1.1) is given by

P
(
Xi |ΠGi = πk

)
=

ri∏
j=1

Θ
I(Xi=j)
ijk , (3.1)

where πk is the kth joint state of Xi’s parents, Θijk denotes the probability for

Xi = j given ΠGi = πk, and I(Xi = j) is the indicator variable. A discrete

Bayesian network G is therefore parameterized by Θ = {Θijk ≥ 0 :
∑

j Θijk = 1}.

It is not difficult to show that given an n× p data set X with i.i.d. observations,

the likelihood of Θ is a product multinomial

P (X |Θ,G) =

p∏
i=1

qi∏
k=1

ri∏
j=1

Θ
Nijk
ijk , (3.2)

where Nijk is the number of observations in which Xi is found at level j when its

parents are found in the kth joint state. Given the structure of G, the num-

ber of parameters in the multinomial model (3.2) equals |Θ| =
∑p

i=1 riqi =∑p
i=1 ri

∏
Xj∈ΠGi

rj. If we assume that every variable has the same number of

levels, i.e., ri = r for all i, then

|Θ| = r

p∑
i=1

r|Π
G
i |, (3.3)

which grows exponentially as the size of the parent set |ΠGi | increases. In the next

section, we present the multi-logit model for discrete Bayesian networks for which

development of a penalized likelihood framework is much more straightforward.

Furthermore, given the structure of G, the number of parameters can be much

smaller. Hence, we regard the multi-logit model as an approximation to the full

multinomial model (3.2).
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3.2 The Multi-logit Model and the Adaptive Group Lasso

Regularized Log-likelihood

For a discrete random variable Xi, let di be the degrees of freedom of Xi, i =

1, . . . , p. In this chapter, we only consider the main effect of Xi and therefore

di = ri− 1. Denote by xh,i ∈ Rdi the group of encoded variables corresponding to

the ith factor Xi in the hth sample and write xh = (1,xTh,1, . . . ,x
T
h,p)

T ∈ Rd, where

d = 1 +
∑p

i=1 di.

In a causal discrete Bayesian network G, we model the conditional distribution

Xj|ΠGj (j = 1, . . . , p) using the multi-logit model

pj`(xh) = P (Xj = `|xh)

=
exp(βj`0 +

∑p
i=1 xTh,iβj`i)∑rj

m=1 exp(βjm0 +
∑p

i=1 xTh,iβjmi)

=
exp(xThβj`·)∑rj

m=1 exp(xThβjm·)
, ` = 1, . . . , rj, (3.4)

where βj`0 is the intercept, βj`i ∈ Rdi is the coefficient vector corresponding to

Xi for predicting the `th level of Xj, and βj`· = (βj`0,β
T
j`1, . . . ,β

T
j`p)

T ∈ Rd. Note

that in the multi-logit model (3.4) above, we set βj`i = 0 for all ` if i /∈ ΠGj . We

choose to use a symmetric form of the multi-logit model here, as was done in Zhu

and Hastie (2004) and Friedman et al. (2010). Since this model is unidentifiable

without constraints, we impose the following constraint on the intercepts

βj10 = 0, ∀j. (3.5)

The unidentifiability of other parameters can be resolved via regularization as

demonstrated by Friedman et al. (2010). The particular form of regularization we
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use in this chapter leads to the constraints

rj∑
`=1

βj`i = 0, ∀i, j. (3.6)

For j = 1, . . . , p, we further define βj·i = (βTj1i, . . . ,β
T
jrji

)T ∈ Rdirj (i = 1, . . . , p)

to be the vector of coefficients representing the influence of Xi on Xj and βj·0 =

(βj10, . . . , βjrj0)T ∈ Rrj to be the vector of intercepts for predicting Xj. Let

β = (βT1·0,β
T
1·1, . . . ,β

T
1·p, . . . . . . ,β

T
p·0,β

T
p·1, . . . ,β

T
p·p)

T ∈ Rν be the vector of

parameters, where ν = d ×
∑p

i=1 ri. Given the structure of G, the number of

nonzero elements of β is given by
∑p

j=1 rj(1 +
∑

i∈ΠGj
di)−p. If we further assume

that ri = r for all i,

|{β ∈ β : β 6= 0}| = r

p∑
i=1

(
r|ΠGi | − |ΠGi |+ 1

)
− p, (3.7)

which only grows linearly as the size of the parent set |ΠGi | increases. Given the

structure of G, this rate of growth is much slower compared to the multinomial

model.

In this chapter, the data set we consider is an n×p data matrix X consisting of

p blocks of data. The dimension of the jth block X j is nj×p, where n =
∑p

j=1 nj.

For each row of X j, Xj is experimentally fixed to level ` ∈ {1, . . . , rj}. Let Ij be

the collection of indices of samples in X j and Oj = {1, . . . , n} \Ij be the collection

of indices of samples in which Xj is only observed. Denote by n−j = |Oj| = n−nj

the number of samples in Oj. Let Xji be the jth design matrix corresponding to

Xi, which is of dimension n−j×di and whose rows are composed of xTh,i for h ∈ Oj.

We assume in this chapter that Xji satisfies XT
jiXji = Idi for i, j = 1, . . . , p, which

can be achieved by performing Gram-Schmidt orthonormalization if matrices Xji

are of full column rank. If we adopt the multi-logit model (3.4), it can be shown

using the factorization (1.2) that the log-likelihood function `(β) can be written
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as

`(β) ∝
p∑

k=1

∑
h∈Ik

∑
j 6=k

log
(
P (Xhj|xh,i, i ∈ ΠGj )

)
∝

p∑
j=1

∑
h∈Oj

log
(
P (Xhj|xh,i, i ∈ ΠGj )

)
∝

p∑
j=1

∑
h∈Oj

[
rj∑
`=1

yhj`x
T
hβj`· − log

(
rj∑
`=1

exp(xThβj`·)

)]
, (3.8)

where Xhj is the level of Xj in the hth sample, and yhj` = I(Xhj = `) are indicator

variables.

Estimating the structure of a discrete Bayesian network G from data is equiv-

alent to estimating the sparsity pattern of the parameter β using the following

equivalence

βj·i = 0 ⇐⇒ i /∈ ΠGj . (3.9)

In order to learn a sparse DAG from data, we propose to use a penalized likeli-

hood approach to estimate β. It can be seen from (3.9) that, for discrete Bayesian

networks, the set of parents of Xj is determined by the magnitude of βj·i. The

regular lasso penalty on β is inappropriate for this purpose since it penalizes each

component of β separately. We instead wish to penalize βj·i as a whole to obtain

a sparse DAG. Bakin (1999) and Yuan and Lin (2006) proposed the group lasso

penalty to select grouped variables (factors) in linear regression. Subsequently,

Kim et al. (2006) extended the group lasso to general loss functions and Meier

et al. (2008) presented an alternative algorithm for group lasso penalized logistic

regression. However, similar to the regular lasso penalty, the group lasso penalty

suffers certain drawbacks such as inconsistent variable selection. Hence, the adap-

tive group lasso penalty was developed to overcome the limitation of the group

lasso (Wang and Leng 2008; Bach 2008; Wei and Huang 2010). Here, we propose

the following adaptive group lasso estimator for learning the structures of discrete
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Bayesian networks:

β̂λ = arg min
β:Gβ is acyclic

Rλ(β)

= arg min
β:Gβ is acyclic

[
−`(β) + λ

p∑
j=1

p∑
i=1

wji‖βj·i‖2

]
, (3.10)

where W = (wij)p×p is a given weight matrix used for the adaptive group lasso

and Gβ denotes the graph induced by β.

3.3 Coordinate Descent Algorithm

Parameter estimation for discrete Bayesian networks is computationally much

more demanding than for Gaussian networks because of the nonlinear nature

of the multi-logit model (3.4) used in Section 3.2. However, the idea of using

coordinate descent type of algorithms to solve (2.5) can be readily generalized to

solve (3.10). In this section, we develop a blockwise coordinate descent algorithm

to estimate DAGs from discrete data.

3.3.1 One coordinate descent step

We first consider solving (3.10) with respect to βj·i given the current estimates of

all the other parameters. We define

Rλ,j(βj··) = −`j(βj··) + λ

p∑
i=1

wji‖βj·i‖2

= −
∑
h∈Oj

[
rj∑
`=1

yhj`x
T
hβj`· − log

(
rj∑
`=1

exp(xThβj`·)

)]

+λ

p∑
i=1

wji‖βj·i‖2, (3.11)
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where βj·· = (βTj·0,β
T
j·1, . . . ,β

T
j·p)

T . For simpler notations, we suppress the de-

pendence of Rλ,j on βj·k for k 6= i when considering the problem of minβj·i Rλ,j(·),

and thus write it as Rλ,j(βj·i).

To minimize Rλ,j(·) with respect to βj·i, we follow the approach of Tseng and

Yun (2009) and Meier et al. (2008). We form a partial quadratic approximation

to `j(·) using a second-order Taylor expansion at β
(t)
j·· , allowing only βj·i to vary.

The quadratic approximation is defined as

Q
(t)
λ,j(βj·i) = −{`j(β(t)

j·i ) + (βj·i − β(t)
j·i )

T∇`j(β(t)
j·i )

+
1

2
(βj·i − β(t)

j·i )
TH

(t)
ji (βj·i − β(t)

j·i )}+ λwji‖βj·i‖2. (3.12)

The gradient of the log-likelihood function `j(·) is

∇`j(β(t)
j·i ) =

∑
h∈Oj


(
yhj1 − p(t)

j1 (xh)
)

xh,i
...(

yhjrj − p
(t)
jrj

(xh)
)

xh,i

 , (3.13)

where p
(t)
j` (xh) (1 ≤ ` ≤ rj) are evaluated at the current parameter estimates. In

equation (3.12), H
(t)
ji is some matrix approximating the Hessian H`j(β

(t)
j·i ) of the

log-likelihood function `j(·)

H`j(β
(t)
j·i ) = −

∑
h∈Oj


w

(t)
j11(xh)xh,ix

T
h,i · · · · · · w

(t)
j1rj

(xh)xh,ix
T
h,i

...
...

...
...

...
...

...
...

w
(t)
jrj1

(xh)xh,ix
T
h,i · · · · · · w

(t)
jrjrj

(xh)xh,ix
T
h,i

 , (3.14)

where

w
(t)
jmn(xh) =

 p
(t)
jm(xh)(1− p(t)

jn(xh)) if 1 ≤ m = n ≤ rj

−p(t)
jm(xh)p

(t)
jn(xh) if 1 ≤ m 6= n ≤ rj

. (3.15)
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In the current implementation, we assume that H
(t)
ji = h

(t)
ji Idirj for some scalar

h
(t)
ji ∈ R−, where Idirj is the identity matrix of size dirj.

It is not difficult to show the following proposition.

Proposition 3.1. Let d
(t)
ji = ∇`j(β(t)

j·i )−h
(t)
ji β

(t)
j·i . If ‖d(t)

ji ‖2 ≤ λwji, the minimizer

of Q
(t)
λ,j(βj·i) is

β
(t+1)
j·i = 0. (3.16)

Otherwise,

β
(t+1)
j·i = − 1

h
(t)
ji

[
d

(t)
ji − λwji

d
(t)
ji

‖d(t)
ji ‖2

]
. (3.17)

Remark 3.1. It follows from Proposition 3.1 that for the unpenalized intercepts,

the solution to minβj·0 Q
(t)
λ,j(·) is

β
(t+1)
j·0 = − 1

h
(t)
j0

d
(t)
j0 . (3.18)

Remark 3.2. To achieve sufficient descent, a line search should be performed if

β
(t+1)
j·i 6= β

(t)
j·i . See Tseng and Yun (2009) and Meier et al. (2008) for details.

Remark 3.3. Some of the parameters are always constrained to zero, e.g., βj·j

and βj10 for all j. They should not be updated.

Therefore, in order to minimize Rλ,j(·) with respect to βj·i, we apply the

quadratic approximation iteratively until some stopping criterion is met.

3.3.2 Blockwise coordinate descent

We outline below the complete blockwise coordinate descent algorithm (CD al-

gorithm) for discrete Bayesian networks. The algorithm works in the same spirit

as its counterpart for Gaussian Bayesian networks. In the following algorithm,

βj·i ⇐ 0 is used to imply that given current estimates of other parameters, βj·i

must be set to zero due to the acyclic constraint. Minimization of Rλ,j(·) with
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respect to βj·i is done with the method presented in Section 3.3.1.

Algorithm 3.1 CD algorithm for estimating discrete Bayesian networks

1: Choose β as the initial vector of parameters such that Gβ is acyclic
2: for i = 1, . . . , p− 1 do
3: for j = i+ 1, . . . , p do
4: if βj·i ⇐ 0 then
5: βi·j ← arg minβi·j Rλ,i(·), βj·i ← 0
6: else if βi·j ⇐ 0 then
7: βi·j ← 0, βj·i ← arg minβj·i Rλ,j(·)
8: else
9: S1 ← minβi·j Rλ,i(·) +Rλ,j(·)|βj·i=0

10: S2 ← Rλ,i(·)|βi·j=0 + minβj·i Rλ,j(·)
11: if S1 ≤ S2 then
12: βi·j ← arg minβi·j Rλ,i(·), βj·i ← 0
13: else
14: βi·j ← 0, βj·i ← arg minβj·i Rλ,j(·)
15: end if
16: end if
17: end for
18: end for
19: Update all the intercepts: βj·0 ← arg minβj·0 Rλ,j(·), ∀j
20: Repeat step 2 to 19 until some stopping criterion is met

We use Algorithm 3.1 to compute the solutions β̂λ of (3.10) over a grid of J

penalty values λ1 > . . . > λJ ≥ 0, where at λ1 every parameter other than the

intercepts is penalized to zero. It follows from (3.10) that

λ1 ≥
1

wji
‖∇`j(βj·i)|βj·i=0,1≤i≤p‖2

=
1

wji

∥∥∥∥∥∥∥∥∥


XT
ji(yj1 − ȳj1)

...

XT
ji(yjrj − ȳjrj)


∥∥∥∥∥∥∥∥∥

2

(3.19)

for all 1 ≤ i, j ≤ p, where yj` = (yhj`)h∈Oj and ȳj` = ȳj`1n−j , ` = 1, . . . , rj. Here,

ȳj` is the mean of yj` and 1n−j is a vector of ones of length n−j. The solution β̂λt

is used as a warm start for calculating β̂λt+1 , t = 1, . . . , J − 1.

Similar to the Gaussian case, we do not cycle through all blocks of parameters

55



in each coordinate descent cycle. Instead, we only iterate over the current active

set until the stopping criterion is reached. The algorithm stops if another full

coordinate descent cycle does not alter the active set. Otherwise, the process is

repeated.

3.3.3 Tuning parameter selection

As we reasoned in Section 2.3.4, traditional model selection criteria such as cross-

validation and BIC do not work well for the purpose of estimating DAGs from

data. In order to select a suitable penalty parameter λt, we use the same idea of

empirical model selection outlined in Section 2.3.4 to do parameter tuning. Let

Ĝλt be the DAG induced by β̂λt and eλt be the number of directed edges in Ĝλt .

We calculate the unpenalized vector of parameters β̃λt by estimating a multi-logit

model for predicting Xj with Π
Ĝλt
j using samples h ∈ Oj, j = 1, . . . , p. This is

done using the R package mlogit (Croissant 2011). We use β̃λt to compute the

log-likelihood `(β̃λt). The difference ratio of two estimated DAGs Ĝλt and Ĝλt+1

is defined to be dr(t,t+1) = ∆`(t,t+1)/∆e(t,t+1), where ∆`(t,t+1) = `(β̃λt+1) − `(β̃λt)

and ∆e(t,t+1) = eλt+1 − eλt . The selected penalty parameter is indexed by

T = sup
{
t : dr(t−1,t) ≥ α×max(dr(1,2), . . . , dr(J−1,J)), t = 2, . . . , J

}
. (3.20)

The typical value of the thresholding parameter α that we used is 0.1.

3.4 Asymptotic Properties

In this section, we establish the asymptotic theory for the adaptive group

lasso penalized likelihood estimator of discrete Bayesian networks. Our ex-

position is parallel to the one in Section 2.4. By rearranging and relabel-

ing individual components, we rewrite β as φ = (φT(1),φ
T
(2))

T , where φ(1) =
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(βT1·1, . . . ,βT1·p, . . . . . . ,βTp·1, . . . ,βTp·p)
T is the parameter vector of interest

and φ(2) = (βT1·0, . . . . . . ,β
T
p·0)T denotes the vector of intercepts. In this sec-

tion, the jth component of φ is used to denote the jth block of parameters,

e.g. φ1 = β1·1 and so on. Similarly, we rewrite the weight matrix W in a

vector format as T = (τj)p2×1 = (w11, . . . , w1p, . . . . . . , wp1, . . . , wpp)
T . We say

φ is acyclic if the graph Gφ induced by φ (or the corresponding β) is acyclic.

Let Ω = {φ : φ is acyclic and φ satisfies (3.5) and (3.6)} be the parameter space

and φ∗ ∈ Ω be the true parameter. Denote the sparsity pattern of φ∗ by

A = {j : φ∗j = 0, 1 ≤ j ≤ p2} and B = {j : φ∗j 6= 0, 1 ≤ j ≤ p2}. Let Gφ∗

be the true DAG.

Let φk (k = 1, . . . , p) be the parameter obtained from φ by setting βk·i = 0

for 1 ≤ i ≤ p. Therefore, the difference between Gφk and Gφ is that all edges

pointing to the kth node in Gφ are deleted in Gφk . As demonstrated in Section 1.5,

we can model interventional data in the kth block of the data matrix X k as i.i.d.

observations from a distribution factorized according to Gφk . For discrete Bayesian

networks, we denote the corresponding probability mass function by P (x|φk),

where x = (x1, . . . , xp) and xj ∈ {1, . . . , rj} for j = 1, . . . , p. Then the penalized

log-likelihood function with the adaptive group lasso penalty is defined as

R(φ) = L(φ)− λn
p2∑
j=1

τj‖φj‖2 =

p∑
k=1

Lk(φk)− λn
p2∑
j=1

τj‖φj‖2, (3.21)

where Lk(φk) =
∑

h∈Ik log(P (Xh·|φk)) and Xh· = (Xhj)1≤j≤p. A penalized likeli-

hood estimator φ̂ is obtained by maximizing R(φ) in the parameter space Ω.

Remark 3.4. The probability mass function P (x|φk) = Πp
j=1P (xj|Π

Gφk
j ) for k =

1, . . . , p. The conditional distribution P (xj|Π
Gφk
j ) is modeled by some parametric

function where parameter φj (j = 1, . . . , p2) represents the influence of one variable

on the other in this parametric function. In this section, we assume the multi-logit

model (3.4) with constraints (3.5) and (3.6) as the functional form of P (xj|Π
Gφk
j ).
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However, the theory developed in this section can be applied to other models.

Though interventional data help to distinguish equivalent DAGs, the following

notion of natural parameters is used to completely establish identifiability of DAGs

for the case where each variable has interventional data. Suppose that Xi is an

ancestor of Xj in a DAG G, that is, there exists at least one path from Xi to Xj.

Denote the set of ancestors of Xj by an(Xj).

Definition 3.1 (Natural parameters). We say that φ is natural if for 1 ≤ i, j ≤ p

Xi ∈ an(Xj) in Gφ =⇒ Xj is dependent of Xi in P (x|φi). (3.22)

We state the following theorems to establish some properties of our penalized

likelihood estimator. These theorems are analogous to the ones in Section 2.4 and

their proofs are relegated to Section 3.7.

Theorem 3.2. Suppose that samples in X k are i.i.d. with probability mass func-

tion P (x|φ∗k) for k = 1, . . . , p. Assume that the true parameter φ∗ is natural.

Then

P (x|φk) = P (x|φ∗k) a.e. for all k = 1, . . . , p =⇒ φ = φ∗. (3.23)

If we further assume that nk/n→ αk > 0 as n→∞, then

Pφ∗(L(φ∗) > L(φ))→ 1 (3.24)

for any φ 6= φ∗.

Let φ̂
(m)
k (1 ≤ k ≤ p2) be the estimate of φk when the corresponding βj·i is

estimated by solving the unpenalized multi-logit model, that is, by maximizing

`j(βj··) in (3.11). Define φA = (φj)j∈A. It is further assumed in the following two

theorems that φ∗ is natural.

Theorem 3.3. Assume the adaptive group lasso penalty with weights τj =

min(‖φ̂(m)
j ‖

−γ
2 ,Mγ) for all j, where γ,M > 0. As n → ∞, if λn/

√
n → 0 and
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nk/n → αk > 0 for k = 1, . . . , p, then there exists a local maximizer φ̂ of R(φ)

such that ‖φ̂− φ∗‖2 = Op(n
−1/2).

Theorem 3.4. Assume the adaptive group lasso penalty with weights τj = ‖φ̃j‖−γ2

for some γ > 0 and all j, where φ̃j is
√
n-consistent for φ∗j . As n → ∞, if

λn/
√
n → 0, λnn

(γ−1)/2 → ∞ and nk/n → αk > 0 for k = 1, . . . , p, then there

exists a local maximizer φ̂ of R(φ) such that ‖φ̂−φ∗‖2 = Op(n
−1/2). Furthermore,

with probability tending to one, the
√
n-consistent local maximizer φ̂ must satisfy:

φ̂A = 0.

3.5 Simulation Study

We evaluated the CD algorithm on simulated data sets. Three types of networks

were simulated: a Markov chain, a scale-free network and a small-world network

(Figure 3.1). All three networks have p = 50 nodes. Given the network structure,

10 data sets were simulated. Each data set contains n = 500 samples and consists

of p blocks of data X j, j = 1, . . . , p. The jth block of data X j (1 ≤ j ≤ p) has

nj = 10 samples in which only values of Xj were experimentally manipulated,

that is, Xj was randomly fixed to one of its levels regardless of the values of Xj’s

parents. All other variables were generated according to the multi-logit model

(3.4). The variables were assumed to be binary with levels in {0, 1}. If Πj = ∅, the

value ofXj was sampled from {0, 1} with equal probability. Otherwise, parameters

were chosen such that

pj0(xh) =
exp(2

∑
i∈Πj

I(Xhi = 0))

exp(2
∑

i∈Πj
I(Xhi = 0)) + exp(2

∑
i∈Πj

I(Xhi = 1))
,

pj1(xh) =
exp(2

∑
i∈Πj

I(Xhi = 1))

exp(2
∑

i∈Πj
I(Xhi = 0)) + exp(2

∑
i∈Πj

I(Xhi = 1))
.

The scale-free network as well as the small-world network (Figure 3.1B and
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Figure 3.1: Three simulated DAGs: (A) Markov chain, (B) Scale-free network,
(C) Small-world network.

Figure 3.1C) was generated using the R package igraph (Csárdi and Nepusz 2006).

A scale-free network is a network whose degree distribution follows a power law.

Many complex networks have been reported to have scale-free topology, such as

the Internet (Barabási and Albert 1999; Faloutsos et al. 1999), metabolic networks

(Jeong et al. 2000, 2001), semantic networks (Steyvers and Tenenbaum 2005), et

cetera. The skeleton of the scale-free network in Figure 3.1B was generated using

the Barabási-Albert model (Barabási and Albert 1999). This network has 49

directed edges.

A small-world network is one in which the average path length between two

randomly chosen nodes is small relative to the size of the network (Watts and

Strogatz 1998). This length grows proportionately to the logarithm of the number

of nodes in the network. Another feature of small-world networks is that they have

a high clustering coefficient. Scale-free networks are also small-world networks.

The small-world network in Figure 3.1C was generated using the Watts-Strogatz

model (Watts and Strogatz 1998). The graph initially generated by the Watts-

Strogatz model was undirected. In order to convert it to a DAG, edge directions

were chosen to be consistent with a randomly generated topological sort. This

small-world network has 100 directed edges.

We used the CD algorithm (Algorithm 3.1) to estimate DAGs from each data
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set over a grid of penalty parameters, starting from λ1 defined in (3.19). Model se-

lection was done using criterion (3.20) with α = 0.1. Our current implementation

of Algorithm 3.1 leads to long running time if the adaptive group lasso weights are

set according to Theorem 3.4. Hence, results in this section were obtained with

weights set to 1. The accuracy of DAG estimation is measured by true positive

rate (TPR) and false discovery rate (FDR), defined as

TPR = E/T,

FDR = (R + FP)/P,

where P, E, R, FP denote respectively the total number of predicted edges, the

number of expected edges, the number of reversed edges and the number of false

positive edges (excluding the reversed ones) in a DAG estimate, and T denotes

the total number of true edges in the simulated network. Results reported in this

section are the average over 10 data sets for each of the three simulated networks.

Table 3.1 summarizes the performance of our CD algorithm on the three sim-

ulated networks. It is apparent that both the Markov chain and the scale-free

network can be estimated very accurately from data. Though estimation of the

denser small-world network did not turn out to be good in terms of TPR, we

found that our estimated small-world network has very few false positive edges,

which implies that estimation of the skeleton of the small-world network is still

satisfactory. The primary reason for a low TPR in this case is that about a third

of the predicted edges have wrong directions.

As we did in Section 2.5, we also made a comparison between the CD algorithm

and the PC-based method. Results of this comparison are reported in Table 3.2.

Recall that the reported results represent an upper bound that can be obtained

from a two-step PC-based method as we explained in Section 2.5. Based on

Table 3.2, we conclude that the performance of our CD algorithm is comparable
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Table 3.1: The average number of predicted (P), expected (E), reversed (R),
missed (M) and false positive (FP) edges and the average TPRs and FDRs for
DAGs learned by the CD algorithm from discrete data sets

Network
CD algorithm

P E R M FP TPR FDR

Markov chain 53.8 44.0 5.0 0.0 4.8 0.898 (0.035) 0.181 (0.052)

Scale-free 52.0 44.3 4.7 0.0 3.0 0.904 (0.048) 0.146 (0.078)

Small-world 89.7 54.1 30.6 15.3 5.0 0.541 (0.058) 0.397 (0.035)

Note: The numbers in parentheses are the standard deviations across 10 data sets.

Table 3.2: The average performance of the two-step PC-based method and the
average performance of the CD algorithm on discrete data sets when models are
selected to match the number of edges of those learned by the PC-based method

Network
PC-based method CD algorithm

P Bi TPR FDR P TPR FDR

Markov chain 49.2 46.9 0.957 (0.136) 0.046 (0.139) 49.2 0.898 (0.035) 0.106 (0.034)

Scale-free 41.2 39.8 0.824 (0.032) 0.019 (0.029) 46.7 0.869 (0.087) 0.089 (0.042)

Small-world 64.9 15.1 0.405 (0.035) 0.375 (0.058) 65.1 0.415 (0.037) 0.362 (0.057)

Note: The column “Bi” lists the average number of bidirected/undirected edges
for CPDAGs learned by the PC algorithm. The numbers in parentheses are the
standard deviations across 10 data sets.
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to the PC-based method. Note that for Markov chain and the scale-free network,

directionality of most predicted edges cannot be determined by the PC algorithm

alone. This is because the two networks are very sparse and the size of their

corresponding equivalence class is large.

3.6 Conclusions

We have extended the penalized likelihood framework for estimating Gaussian

Bayesian networks to discrete Bayesian networks in this chapter. We adopt the

multi-logit model to model causal interactions in a discrete Bayesian network so

that the development of the penalized likelihood method is relatively straightfor-

ward. The adaptive lasso penalty is no longer appropriate in the discrete setting

since it penalizes separately individual dummy variables corresponding to the

same discrete variable. Instead, the adaptive group lasso penalty is utilized to en-

courage selection of grouped variables together. A blockwise coordinate descent

algorithm has been proposed where each coordinate descent step is solved by iter-

atively applying a quadratic approximation. Computation needed for estimating

discrete Bayesian networks is much more demanding than that for Gaussian case

and improvements over the current implementation are left for future work. We

have also established asymptotic theory parallel to the one developed in the last

chapter for the proposed learning procedure. Our method has been evaluated

on three types of simulated networks: a Markov chain, a scale-free network and a

small-world network. The latter two are thought to resemble many real-world net-

works. We have demonstrated that the performance of the discrete CD algorithm

is comparable to the two-step PC-based procedure.
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3.7 Appendix

3.7.1 Proof of Theorem 3.2

We prove the first claim (3.23) by contradiction. Suppose φ 6= φ∗ and P (x|φk) =

P (x|φ∗k) a.e. for k = 1, . . . , p. Let S(G) denote the set of topological sorts of a

DAG G. There are two cases for Gφ and Gφ∗ if φ is different from φ∗:

Case 1 : S(Gφ)∩S(Gφ∗) 6= ∅. Let @ ∈ S(Gφ)∩S(Gφ∗), i.e., an ordering compat-

ible with both Gφ and Gφ∗ . Assume without loss of generality that in this ordering

i ≺ j if i < j. Apparently, @ is also compatible with Gφk and Gφ∗k for k = 1, . . . , p.

Then we can write P (x|φk) =
∏p

i=1 P (xi|x1, . . . , xi−1,φk) =
∏p

i=1 P (xi|Π
Gφk
i ,φk)

and P (x|φ∗k) =
∏p

i=1 P (xi|x1, . . . , xi−1,φ
∗
k) =

∏p
i=1 P (xi|Π

Gφ∗
k

i ,φ∗k). Since

P (x|φk) = P (x|φ∗k), it follows that Π
Gφk
i = Π

Gφ∗
k

i for all i and thus Gφk = Gφ∗k for all

k. However, since φ 6= φ∗, there exists some k such that φk 6= φ∗k. Therefore, there

exists a k such that, the common probability mass function P (x|φk) = P (x|φ∗k),

factorized according to a common structure Gφk = Gφ∗k , can be parameterized by

two different parameters φk and φ∗k. This is apparently impossible.

Case 2 : S(Gφ)∩S(Gφ∗) = ∅, that is, none of the orderings of Gφ∗ is compatible

with Gφ. In this case, there must exist a pair of indices (i, j) such that in Gφ∗

Xi ∈ an(Xj), but in Gφ Xj is a non-descendant of Xi. Then Xj is independent

of Xi in P (x|φi), since in Gφi Xi has no parents and Xj is a non-descendant

of Xi. However, in Gφ∗i we still have Xi ∈ an(Xj). Since φ∗ is natural, Xi

and Xj are dependent in P (x|φ∗i ). Therefore, there exists 1 ≤ i ≤ p such that

P (x|φi) 6= P (x|φ∗i ), which contradicts our assumption.

So in both case 1 and case 2 we have a contradiction. Thus, the first claim

holds.
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For the second claim (3.24), first note that by the law of large numbers,

1

n
(L(φ)−L(φ∗)) =

p∑
k=1

nk
n

1

nk

∑
h∈Ik

log
P (Xh·|φk)
P (Xh·|φ∗k)

−→p

p∑
k=1

αkEφ∗k

[
log

P (Y|φk)
P (Y|φ∗k)

]
,

(3.25)

where Y is a random vector with probability mass function P (x|φ∗k). Then the

desired result follows immediately using Jensen’s inequality and (3.23).

3.7.2 Proof of Theorem 3.3

Let

I(φk) = Eφk

{[
∂

∂φk
logP (x|φk)

] [
∂

∂φk
logP (x|φk)

]T}
be the Fisher information matrix.

Consider φ ∈ nb(φ∗), where nb(φ∗) is an arbitrarily small neighborhood of φ∗.

The components of φ must satisfy φi 6= 0 if φ∗i 6= 0 (i = 1, . . . , p2), since otherwise

‖φ−φ∗‖2 ≥ minj:φ∗j 6=0‖φ∗j‖2. In particular, this implies that if φ ∈ nb(φ∗), i→ j

in Gφ for all i→ j in Gφ∗ and thus Gφ and Gφ∗ have compatible orderings. If we

restrict to the lower dimensional space Ωk = {φk : φ ∈ Ω}, the same arguments

apply to an arbitrarily small neighborhood of φ∗k in this space, that is, Gφk and

Gφ∗k have compatible orderings. Then it follows from the arguments used in Case

1 in the proof of Theorem 3.2 that P (x|φk) 6= P (x|φ∗k) for φk ∈ nb(φ∗k)\ {φ∗k}.

It follows that I(φ∗k) is positive definite for all k.

Let u ∈
{
u : φ∗ + n−1/2u ∈ Ω

}
and uj be its jth component. Here uj is

defined in the same way as φj. Further, let uk be the vector defined similarly as

φk, k = 1, . . . , p. Note that
∑p

k=1‖uk‖2
2 ≥ ‖u‖2

2. Let δkmin > 0 be the minimal

eigenvalue of I(φ∗k) and ρ = mink(αkδ
k
min/2). Then

p∑
k=1

αk
2

uTk I(φ∗k)uk ≥
p∑

k=1

αk
2
δkmin‖uk‖2

2 ≥ ρ

p∑
k=1

‖uk‖2
2 ≥ ρ‖u‖2

2. (3.26)
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Now we study the behavior of R(φ) in a small neighborhood of the true value

φ∗ by expanding L(φ) around φ∗. We have, as n→∞,

R(φ∗ + n−1/2u)−R(φ∗)

≤ L(φ∗ + n−1/2u)− L(φ∗)− λn
∑
j∈B

τj(‖φ∗j + n−1/2uj‖2 − ‖φ∗j‖2)

≤
p∑

k=1

[
Lk(φ

∗
k + n−1/2uk)− Lk(φ∗k)

]
+ λnn

−1/2
∑
j∈B

τj‖uj‖2

=

p∑
k=1

[
n−1/2L′k(φ

∗
k)
Tuk −

1

2
nkn

−1uTk I(φ∗k)uk {1 + op(1)}
]

+ λnn
−1/2

∑
j∈B

τj‖uj‖2

=

p∑
k=1

[
√
αk
L′k(φ

∗
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(φ∗k)uk {1 + op(1)}
]

+ λnn
−1/2

∑
j∈B

τj‖uj‖2

≤
p∑

k=1

[
√
αk
L′k(φ

∗
k)
T

√
nk

uk {1 + op(1)}
]
− ρ‖u‖2

2 {1 + op(1)}

+ λnn
−1/2

∑
j∈B

τj‖u‖2. (3.27)

The last inequality is due to (3.26). From the central limit theorem, n
−1/2
k L′k(φ

∗
k) =

Op(1) for all k. By assumption, τj = Op(1) for j = 1, . . . , p2 and

λn/
√
n = op(1). Therefore, for a sufficiently large C, the second order term

in the last line of (3.27) dominates the first and third terms uniformly in{
u : ‖u‖2 = C,φ∗ + n−1/2u ∈ Ω

}
. Hence, for any given ε > 0, there exists a

sufficiently large C such that

P

(
sup
‖u‖2=C

R(φ∗ + n−1/2u) < R(φ∗)

)
≥ 1− ε, (3.28)

which implies that with probability at least 1− ε, there exists a local maximizer
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φ̂ of R(φ) in the ball
{
φ∗ + n−1/2u ∈ Ω : ‖u‖2 ≤ C

}
. Thus, there exists a local

maximizer φ̂ of R(φ) such that ‖φ̂− φ∗‖2 = Op(n
−1/2).

3.7.3 Proof of Theorem 3.4

We omit the proof of the first part of Theorem 3.4, since it is similar to that of

Theorem 3.3. To prove the second part, let us first, by permuting the indices,

rewrite the parameter φ as φ = (φTa ,φ
T
b )T = (φTA,φ

T
B ,φ

T
(2))

T , where φa = φA

and φb = (φTB ,φ
T
(2))

T . Let r = |A| be the number of zero components of φ∗.

Now we only need to show that with probability tending to 1, for any φb

satisfying ‖φb − φ∗b‖ = Op(n
−1/2) and any constant C > 0,

(0T ,φTb )T = arg max
‖φa‖2≤C/

√
n

R
(
(φTa ,φ

T
b )T
)
. (3.29)

To establish (3.29), we again study the behavior of R(φ) around the point

(0T ,φTb )T by expanding L(φ) around (0T ,φTb )T . Let φo = (0T ,φTb )T , and

φ = φo + n−1/2u ∈ Ω, where u = (uTa ,u
T
b )T , ‖u‖2 ≤ C and ub = 0. Then

we have the following result similar to that in Theorem 3.3:

R(φo + n−1/2u)−R(φo)

=

p∑
k=1

[
√
αk
L′k(φ

o
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(φok)uk {1 + op(1)}
]

− λn√
n

r∑
j=1

τj‖uj‖2

=

p∑
k=1

[
√
αk
L′k(φ

o
k)
T

√
nk

uk {1 + op(1)} − αk
2

uTk I(φok)uk {1 + op(1)}
]

− λn√
n
nγ/2

r∑
j=1

‖
√
nφ̃j‖−γ2 ‖uj‖2. (3.30)

Note that both the first and second terms in the last line of (3.30) are on
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the order of Op(1) for any fixed constant C. Since φ̃j is
√
n-consistent, we have

‖
√
nφ̃j‖2 = Op(1), for j = 1, . . . , r. Then the third term in the last line of (3.30)

is on the order of λnn
(γ−1)/2 → ∞. Therefore, (3.29) holds, and the proof is

complete.
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CHAPTER 4

A Real Data Example

In this chapter, we illustrate the usage of our CD algorithm in analyzing a flow

cytometry data set. This data set has been extensively studied. It is ideal for our

purpose since a continuous version as well as a discrete version of the data set is

available. After giving a general description of the data set, we report results of

our analysis using methodologies developed in the last two chapters.

4.1 Description of the Data Set

The data set was generated from a flow cytometry experiment conducted by Sachs

et al. (2005). Flow cytometry is a technique frequently employed for cell sort-

ing and biomarker detection. It allows simultaneous measurement of the expres-

sion levels as well as modification states of multiple proteins and other cellular

molecules in thousands of individual cells (De Rosa et al. 2001; Perez and Nolan

2002). Therefore, it can be used to produce large multivariate data sets containing

interventional data.

Sachs et al. (2005) studied a well-known signaling network in human primary

CD4+ T-cells of the immune system. This chosen network was perturbed by

9 stimulatory and inhibitory interventions. Each interventional condition was

applied to an individual component of the network and a total of 8 components

were perturbed in their experiment. Simultaneous measurements were taken on

p = 11 proteins and phospholipids of this network under each condition. Since 3
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interventions were targeted to proteins that were not measured, samples collected

under these conditions were observational. Data were collected from n = 7466

cells and contained continuous measurements. Hence, the original data set is

continuous with dimension 7466 × 11 and consists of a mixture of observational

and interventional samples. Among the 11 measured components, 5 proteins and

phospholipids were perturbed.

Figure 4.1A shows the known causal interactions among the 11 measured com-

ponents of this signaling network. These causal relationships are well established,

and no consensus has been reached on interactions beyond those present in the

network. Thus, this network structure is often used as the benchmark to assess the

accuracy of an estimated network structure, and we therefore call it the consensus

model.

The discrete flow cytometry data set, analyzed originally by Sachs et al. (2005),

was obtained from the source data after some preprocessing by Sachs et al. (2005).

The preprocessing includes elimination of outliers and discretization using some

information-preserving technique (Hartemink 2001). The discretization trans-

forms the variables into three levels, high, medium and low, which are coded

as 2, 1 and 0, respectively. As a result, the magnitudes of the original measure-

ments are partially preserved in the discrete data set. The discrete data set has

dimension 5400×11 and 600 samples were sampled for each of the 9 interventions.

In order to distinguish the two CD algorithms developed respectively in the

last two chapters, we will denote Algorithm 2.1 by the gCD algorithm and Algo-

rithm 3.1 by the dCD algorithm in this chapter.

4.2 Analysis of the Continuous Data Set

A number of researchers studied the flow cytometry data set, among whom Fried-

man et al. (2008) and Shojaie and Michailidis (2010) analyzed the continuous
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version. Friedman et al. (2008) applied their graphical lasso procedure to this

data set and estimated a number of graphical models using different values of

the L1 penalty. Their models are all undirected and they observed moderate

agreement between one of their estimates and the consensus model. Shojaie and

Michailidis (2010) also analyzed the same data set and estimated directed acyclic

graphs using penalized likelihood method by assuming the ordering of the vari-

ables is known a priori. Their estimated DAG using the adaptive lasso penalty

is shown in Figure 4.1B. This graph has 27 directed edges in total, among which

14 are expected and 13 are false positives. We obtained a sequence of estimated

DAGs after applying the gCD algorithm to the continuous flow cytometry data.

One of them is shown in Figure 4.1C. Our model also has a total of 27 directed

edges, of which 8 are expected, 6 are reversed, and 13 are false positives. It seems

that the performance of the gCD algorithm, if ignoring the directionality, is very

comparable to the method assuming a known ordering.

4.3 Analysis of the Discrete Data Set

To test the robustness of our method, we applied the gCD algorithm to the discrete

flow cytometry data set. A DAG with 26 edges is shown in Figure 4.1D. To

our surprise, this graph is qualitatively better than the one estimated using the

continuous data set. In this graph, there are 11 expected edges and 15 false

predictions (R+FP) (4th row of Table 4.1). We also applied the gCD algorithm to

100 bootstrap samples generated from the discrete data set to assess the sensitivity

of our method to data perturbations. For each bootstrap sample, we selected a

model with 26 edges and found that on average it shared 23.3 edges with the

model shown in Figure 4.1D, which confirms that our method is quite robust

to data perturbations. Moreover, though the gCD algorithm was designed for

Gaussian data, we were still able to obtain a reasonable network structure from
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Figure 4.1: (A) The classical signaling network of human immune system cells,
(B) Shojaie’s network estimated from the continuous flow cytometry data set.
The gCD networks estimated from (C) the continuous flow cytometry data set
and (D) the discrete flow cytometry data set.
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Table 4.1: Comparison among the gCD algorithm, the dCD algorithm, the or-
der-graph sampler and the multi-domain sampler applied to the discrete flow
cytometry data set

method P E R M FP

gCD algorithm (20 edges) 20 9 2 9 9

dCD algorithm (21 edges) 21 10 7 3 4

Order-Graph sampler 20 8 4 8 8

gCD algorithm (26 edges) 26 11 4 5 11

dCD algorithm (26 edges) 26 10 9 1 7

Multi-domain sampler 25.9 15.55 2.05 2.4 8.3

Note: The order-graph sampler result comes from the mean graph (Figure 11) in
Ellis and Wong (2008), while the multi-domain sampler result is the average over
20 independent runs (see Table 3 of Zhou (2011)).

the discretized data set which does not satisfy the Gaussian assumption.

Compared to the estimate obtained by Ellis and Wong (2008) using their

order-graph sampler, the result of our gCD algorithm is slightly better in terms

of the number of expected edges (E) and false predictions (R+FP) (1st row of

Table 4.1). The multi-domain sampler, recently developed by Zhou (2011) for

Bayesian inference, yields better result than the gCD algorithm. However, the

gCD algorithm is much faster than these Monte Carlo sampling approaches. For

large networks with hundreds of nodes, the gCD algorithm can still be used to

obtain reasonably good estimates of DAGs, while Monte Carlo methods may not

be applicable due to their long running time.

We also estimated DAGs from the discrete flow cytometry data set using the

dCD algorithm. Two networks with 21 and 26 edges respectively are shown in

Figure 4.2. As expected, both DAGs are qualitatively closer to the consensus

model than those estimated using the gCD algorithm (Figure 4.1), which con-

firms that a principled generalization of our methodology to discrete data types

does improve the quality of estimation. The detailed performance measures are
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Figure 4.2: Two DAGs estimated from the discrete flow cytometry data set using
the dCD algorithm.

reported in Table 4.1. Though the DAG estimated by the multi-domain sampler

still has higher TPR than the DAG estimated by the dCD algorithm, our result

is slightly better in terms of estimating the skeleton of the consensus model.

4.4 Conclusions

We performed an analysis of a flow cytometry data set generated from a signaling

network in human immune system cells. We analyzed both the continuous and the

discrete version of the data set and found that the quality of the estimated DAGs

obtained using the dCD algorithm was considerably better than those estimated

using the gCD algorithm. Results of comparisons with other methods are also

reported. Though we used the consensus model as the benchmark to assess the

accuracy of DAG estimation, the true network is not available. Hence, DAGs es-

timated using our method with different penalties provide new causal interactions

that could be tested in future experiments.

74



CHAPTER 5

Summary and Discussion

The problem of learning the structure of Bayesian networks has been studied

for a long time. We developed in this dissertation a unified penalized likelihood

framework to estimate sparse causal Bayesian networks using experimental data.

We considered both the Gaussian Bayesian networks and discrete Bayesian net-

works, which are two common types of Bayesian networks studied most in the

past. Our work was largely motivated by recent work on regularization methods

which became a dominating theme in statistics and machine learning literature.

We formulated estimation of Bayesian networks as an optimization problem

and proposed to solve this problem using coordinate descent types of algorithms.

Coordinate descent methods have been proved successful in various settings (Fu

1998; Friedman et al. 2007; Wu and Lange 2008) and their implementations are

relatively straightforward. The acyclic constraint imposed on the structure of

Bayesian networks can be solved in a natural way by coordinate descent algo-

rithms. Our CD algorithms estimate a number of Bayesian network models with

varying degrees of complexities over a grid of penalties.

For Gaussian Bayesian networks, the penalty we used is the adaptive lasso

penalty proposed by Zou (2006). The advantage of the adaptive lasso penalty

over the regular lasso penalty is that it satisfies the oracle properties (Fan and Li

2001). Using the adaptive lasso penalty, we have established that model selection

consistency can be achieved if the model parameter is natural and the proper

penalty parameter is chosen. Our CD algorithm developed for Gaussian Bayesian
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networks is fast. In fact, it is often faster than the PC algorithm in terms of

the time spent in estimating a single model. Sample sizes do not have significant

impact on the running time of the CD algorithm, because the key quantities

needed for CD updates are computed beforehand, an idea mentioned in Friedman

et al. (2007). However, the algorithm may require fewer iterations to stop if the

data set is large. An important issue that is not addressed in this dissertation

is the convergence problem of the CD algorithm. This is nontrivial since the

corresponding optimization is highly nonconvex. Both the objective function and

the constraint set are nonconvex. We plan to investigate this problem in the

future.

For discrete Bayesian networks, we used the so-called adaptive group lasso

penalty, an adaptive version of the group lasso penalty (Bakin 1999; Yuan and Lin

2006). The group lasso type of penalties are more appropriate for discrete variables

than the lasso type of penalties since they encourage sparsity at the factor level.

For easy application of the penalized likelihood framework, we adopted the multi-

logit model instead of the multinomial model for modeling causal interactions in

a discrete Bayesian network. Despite the difference of the form of models and

penalties, asymptotic theories developed for Gaussian Bayesian networks can be

readily extended to the discrete case. The CD algorithm for discrete Bayesian

networks solves each CD step using a quadratic approximation iteratively. Unlike

the Gaussian case, the speed of the current implementation of the discrete CD

algorithm is not quite satisfactory. One reason is that for each CD step, updating

the gradient in (3.13) involves a summation over the majority of samples under

the simulation settings we used. Another reason is that we aim to control the

amount of memory used when implementing the algorithm and therefore some

quantities are recomputed. For the algorithm to be truly effective in estimating

very large networks, much of our future work will be centered on improving the

computational efficiency of the discrete CD algorithm.
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Since the output from our CD algorithm consists of a sequence of Bayesian

networks, models should be selected using an appropriate criterion. Traditional

model selection criteria such as cross-validation and BIC turn out to be unsatis-

factory. Hence, we proposed an empirical model selection rule that is intuitive and

performs well in practice. However, we think that a more rigorous investigation

of the model selection problem for network estimation is worthwhile in future.

Finally, we are interested in extending our work to a more general setting where

Bayesian networks consist of both continuous and discrete variables. It seems that

coping with mixed data types will be straightforward given the development of our

penalized likelihood framework for both Gaussian and discrete Bayesian networks,

and it is left for future work as well.
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