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Physically Transparent Formulation of a 
Free-Electron Laser in the Linear Gain Regime 

William A. Barlettal, Andrew M. Sessler2 and Li-Hua Yu3 

Abstract: The recent 2-d.imensional analytic theories of a free-electron laser (FEL) in the 

linear regime are reformulated in terms of three dimensionless ratios that describe the 

degree to which the characteristics of the electron beam deviate from the cold beam 
limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic 

model equations of a fit that combines features of both of the 2-d.imensional analyses 

are given as a convenient computational tool. Graphs of the FEL gain eigenvalue 

computed with the combined 2-D formulation illustrate that the gain and the output 

power at saturation are reduced from the 1-D value, when any of the ratios is larger 
than unity. 

1. Introduction 

In recent years Yu, Krinsky, and Gluckstern [1] (the BNL group) and Chin, Kim, and 

Xie [2] (the LBL group) have derived analytical models of high gain FEL amplifiers 

operating in the linear regime that include 2-dimensional effects. Both models have 

been compared with the large numerical simulation codes, FRED and FELIX, and are 

found to agree with the simulations to within a few percent for beams for which 2-

dimensional effects are significant .. Thus one can base FEL design with confidence 

upon analytic theory rather than upon numerical simulation. 
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The analyses of Ref. [1] and [2], which are formulated for a beam with a 11Waterbag'' 

distribution and for a Gaussian beam distribution respectively, have yielded scaling 

laws and associated universal graphs of FEL behavior. The waterbag model has the 

advantage of reducing to the correct, cold-beam limit; however, it probably 

overestimates performance for realistic beams with significant energy spread, 

emittance, and non-uniform phase space distributions. In this latter case, the Vlasov 

model of a Gaussian beam [2] provides a more prudent basis for FEL design. Although 

Ref. [1] and [2] have proved useful to many workers, their physical interpretation is 

obscured to some degree because both analyses are formulated in variables with less­

than-obvious physical significance. For this reason the 2-D theories (often incorrectly 

referred to as 3-dimensional) have not been employed as widely as should be the case. 

Some years ago, a simple 1-dimensional analysis, with careful attention to the limits 

of validity of the one dimensional theory was given by Barletta and Sessler [3]. In 

particular, Ref. [3] introduced three dimensionless parameters, ft, f2, and 6, that 

characterize the validity of the 1-dimensional, r-scaling of FELs derived by Bonifacio, 

Pellegrini, and Narducci [4]. The fi are defined in terms of the rms beam characteristics 

as: 

(1) 

(2) 

f3 =!:.G. 
ZR 

(3) 

where en is the normalized emittance, r the BPN scaling parameter, 1 the radiation 

wavelength, g the relativistic factor, aw the dimensionless vector potential of the 

wiggler, ab the beam radius, Lc; the gain length for power, and ZR the Rayleigh range. 

In a careful restatement of arguments made by various workers through the years, 
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Ref. [3] argued that validity of the 1-D theory (in the sense that 2-D effects only reduce 

the gain) requires that all the {rs 1. Satisfying the resonance condition requires that f2 = 

£12 f3; hence, the three criteria are not independent despite the apparent differences in 

the physical arguments used in their derivation. As Ref. [3] assumed that the energy 

spread in the beam was negligibly small, a more complete analysis should introduce an 

additional parameter, fe, as a measure of the energy spread. One expects that fe should 

be small (<1) for the cold-beam, 1-D results to apply. 

The f-factors f1 and f3 are physically transparent in the sense that they allow for 

immediate physical interpretation. Therefore, they are easy to remember and to use. 

Can the more complete 2-D analyses of Ref. [1] and [2] be expressed in terms of f1, f3, 

and a transparent variable measuring the energy spread? The answer is yes. That the 

physically transparent variables completely describe the 2-dimensional state of the 

beam shows both the soundness of the physical arguments put forward in Ref. [3] and 

the underlying validity of the 1-dimensional analysis of the r-scaling of FEL 

performance first derived in Ref. [4]. In this sense we expect that if the 2-dimensional 

theories are expressed in terms of physically transparent variables, the resulting form of 

the theory will be easier to understand and to use. 

In the next section we define the physically transparent ratios, ri. These ratios are 

essentially the f-factors normalized to have unit value at the edge of the regime of 

applicability of the predictions of the 1-D theory. We then present model equations 

that represent a combined fit to features of both 2-D models. The combined fit aims at 

avoiding potential shortcoming of both models as applied to beams with realistic phase 

space distributions. To illustrate the consequences of the 2-D effects we present graphs 

of the linear growth rate in terqls of the ri. Our conclusion is that with the exception of 

the analysis of wiggler field errors and misalignment sensitivities (true 3-dimensional 

effects), the complete analysis of an FEL in the linear regime is in hand (thanks to the 

work of the BNL and LBL groups) and now in a form that is convenient to use. Indeed, 
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for the bulk of the work of designing optical FELs (without waveguides), one can 

simply make all the ri close to unity and use the 1--dimensional theory of Ref. [4]. 

2. Formulation 

Following the arguments given in Ref. [3], we introduce the ratios ri. The first ratio is 

the normalized, full width of the energy spread, 
aE 

r1 = 2--, 
pE 

(4) 

where the fractional energy spread, aE, is a rms value and where r is the BPN scaling 

parameter [4] for a planar wiggler, given by: 

= [ awrop'A.w JJ] i. 
p 81tc 

(5) 

In the formula lw is the wiggler wavelength, aw the dimensional vector potential of the 

wiggler strength, and wp is the relativistic plasma frequency of the drive beam. The 

Bessel function factor JJ is 

JJ = J I(~)- Jo(~) (6) 

where 

~- a~ 
- 2( 1 +a~}" 

(7) 

The second ratio is 
41t£ 

(8) rz = --. 

where e is the rms geometrical emittance of the drive beam, which is in terms of the 

normalized emittance, en/ g . The third ratio is 

r3 =LG 
ZR ' 

(9) 

where LG is the e-folding (gain) length for the power carried by the electromagnetic 

field as computed from the 1-dimensional theory. LG is given by the general 

expression, 
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Lo _ Aw 
- 4 1t p Im(2 ~ ) , 

(10) 

where lm(~) is the solution to the (cubic) eigenvalue equation for the FEL instability 

written for the field intensity. In the cold-beam, 1-D limit, lm(~) = -./3/ 2· The Rayleigh 

length, ZR, is related to the rms beam radius, ab, and to the optical wavelength, 1, by 

(11) 

In terms of the ri we may evaluate the linear gain contours, 1m ~(ri). The Gaussian 

beam model is a more conservative and probably more realistic model to use in design 

studies for cases in which two dimensional effects are important. Unfortunately the 

closed form, analytic formulae of Ref. [2] contain singularities for small values of r3 and 

the model does not show the correct physical limit as the ri go to zero. For this reason 

we have modified the analytical formulae of Ref. [2] to eliminate the singular behavior 

in the limit of no diffraction and to give much better agreement with the waterbag 

model in the cold beam limit. In terms of the physically transparent variables, we find 

the following model equations (valid for r3 > 0.05) for the combined fit to Gaussian 

beam in 2-D limit and waterbag model in the cold beam limit 

33/4 
B = 1.15 --r2 r}/2 + 0.0028 

2712 

X =Ln[---2_712 ___ ] 
0.0035 + 33/4 r33/2 

Y = 41.34 + 3.69 x + 3.62 x2 

5 

(12) 

(13) 

(14) 

(15) 

(16) 



W = { 0.33 + 0.095 rJ!3 -0.015 r2 ) S 2 + 2.18 S 4 + 70.9 S 6 

U= (o.739+0.197X+0.0175 x2 -0.00031 x3) 

R = 0.03 rl [1 - ( 1 ~exp (rz- 0·32 )} -
1
] + 33!2 (0.025 rl + 0.05 rf + O£f- r2

6) r; 
0.06 

Ln ( 
2 

Jl ) = - U { 1 + [ R l + Y W }
1
!2 

D 8 ( 0.17 + 0.0304 In B) 

(17) 

(18) 

(19) 

(20) 

A comparison of the combined model equations with the predictions of the 

waterbag and the Gaussian models for two cases with small diffraction is shown in Fig. 

1 . To assess the limits of validity of the 1-D model it is most useful to look at a plots of 

the gain surface, Im(Jl), as a function of the scaled emittance and diffraction. Two such 

plots for rt = 0 rt = 1 are given in Fig. 2 a, b. The behavior of the function Im Jl(ri) for ri 

< 0.05 has been suppressed. Note that even a small energy spread make the 

performance much more sensitive to emittance and diffractive effects. Fig. 3 shows the 

dependence of the gain, Im J.L(rt,r2), as a function of energy spread and emittance for 

two values of the diffraction parameter, r3. While strong diffraction does not 

significantly reduce the gain for a cold, mono-energetic beam, it does make performance 

much more sensitive to emittance and energy spread. 

The theory developed here can easily be extended to allow for conditioned 

beams, as has already been done in analytic form for the water bag model.[S] A graph 

of Im Jl for a Gaussian beam with a 11Conditioned" energy distribution, Fig. 4a, when 

compared with the corresponding graphs for a beam without conditioning, Fig. 4 b, 

shows very clearly the advantage of using conditioned beams to suppress emittance, 

energy spread and diffraction effects. 
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In optimizing an FEL design one may minimize the gain length; alternatively one 

might maximize the output power at saturation. Ref. [4] argues that the output power of 

the FEL at saturation can be expressed in terms of the scaling parameter r; i.e., 

Psat; 1-D = P Pbeam · (21) 

The corresponding expressions for the output power of the FEL at saturation given in 

Ref. [1] and [2] are not as easily interpreted. One can, however, rewrite these 

expressions in a form more readily understood in terms of the predictions of the 1-

dimensional theory. In particular the approximate expression of Ref. [2] reduces to 

P~ 2-D = ( 7fh) r p Pbeam . (22) 

Simulations indicate that the exact expression for the power at saturation in the 

presence of strong 2-D effects is far more complicated in its dependence on the ri than 

indicated in Eq. (22). If the figure of merit for the FEL optimization is the peak spectral 

brilliance, B5, one must recall that the gain-broadened line width of the radiation is r. 

Consequently, 

(23) 

This quantity always decreases with increased external focusing. One must be clear 

what figure of merit is to be optimized in the design of the free electron laser. 

3. Conclusions 

The results of the 2-dimensional theories of free electron laser amplifiers in the linear 

gain regime can be expressed in terms of the dimensionless, physically transparent 

ratios f1 , r2, and r3. The resulting dependences can be seen in the graphs of the gain 

eigenvalue which have been calculated on the basis analytic theories usin~ a waterbag 

model [1], a Gaussian model [2], and a combined fit that yields preferred limiting 

behavior. One sees that 2-dimensional effects are always "bad" in the sense that they 

reduce the 1-D gain length. Fortunately, in designing an FEL the deleterious 2:.....D-effects 
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can be eliminated by making the ri < 1 through a judicious choice of beam 

characteristics. Since making the ri small is difficult (and/ or expensive), it is usually 

most practical to design an FEL with the ri close to, but less than, unity. 

In practice, our prescription suggests that in designing an FEL one employs the 

lowest emittance gun one can obtain and, then, builds the lowest energy accelerator that 

allows r2 to be of the order of unity for the wavelength of interest. One then checks that 

r1 is of the order of unity. (If not, one either allows the energy spread to increase by 

obtaining more current from the gun or bunching the beam at an intermediate energy, 

or one decreases the energy spread in the beam by, for example, using a higher energy 

or lower current beam.) Finally one checks that r3 is near unity. If not, one decreases the 

gain length (for example by going to lower energy where lw is smaller), or in the 

opposite case, one can increase the focusing-beyond "natural focusing"--by the use of 

external magnetic elements or plasmas. At each point one must re-evaluate rand iterate 

the procedure. In all cases one should be sure to "optimize" FEL with respect to the 

appropriate figure of merit for the application desired. For example, if the extremely 

high peak power is essential for the application, one may be forced to increase the beam 

energy much higher than our prescription would indicate. The price will be a much 

longer wiggler to reach saturation. Alternatively, one may also leave the beam 

parameters as is and taper the wiggler to increase the output power. 

At this point one must also consider how the choice of beam characteristics will 

affect the alignment of the FEL and field tolerances in the wiggler. Unfortunately, there 

is not presently a complete analytic theory of such three dimensional effects for high 

gain FELs. In the absence of such a theory one might describe steering errors as leading 

to an equivalent emittance, which should then be kept less than 1/ 27t· Presently, one 

must resort to simulation for a sound, quantitative assessment at this stage of the design 

study. 
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Figure Captions 

Figure 1. Comparison of waterbag model (dashed line), Gaussian model (light gray 

line) and combined fit (solid line). 

Figure 2. The variation of FEL gain surface with scaled diffraction and scaled 

emittance as described in terms of physically transparent variables: 

Fig. 2a) r1 = 0, Fig.2b) r1 = 1.0. Vertical and horizontal scales are linear. 

Figure 3. Gain surface, Im JJ., versus scaled emittance and energy spread for two 

values of the diffraction parameter, r3. 

Figure 4. a) Gain contour, Im JJ., for an emittance conditioned beam, b) Gain contour 

for an unconditioned beam with a scaled emittance r2 = 1. 
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