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Abstract 

We provide a definition of ‘memory’ that is broad enough to 

apply to both natural and artificial systems. Inspired by 

computation and information theory, we define memory as a 

process that preserves information through time while 

maintaining its usefulness as an object to be computed. We 

defend the extensiveness of our definition by explaining how it 

applies to both brains and modern computers. We then consider 

potential objections to our definition. Our primary goal is to 

provide a definition of ‘memory’ that is broadly applicable 

across various cognitive sciences subfields. 

 

Keywords: memory; computation; representation; information 

Introduction 

Memory is a central topic within the cognitive sciences and 

its various contributing disciplines, such as computer science, 

neuroscience, and psychology. One likely reason for this is 

its centrality to various conceptions of cognition. Be it brains 

or modern computers, memory typically plays a central role. 

However, it is often unclear if ‘memory’ is used the same 

across contexts. What is apparent, however, is the efficacy of 

computational theory in the cognitive sciences. Given the 

successes computational theory has provided the study of 

cognition, and given that memory is central to computation, 

it follows that a computationally-inspired approach to 

memory can provide useful insights into the general nature of 

memory. As such, it is necessary for us to explicate the 

relevant features of information and computation before 

discussing our definition of memory. 

We begin with Piccinini and Scarantino’s (2011) definition 

of ‘computation’ as the processing of objects according to 

rules. Next, we connect that definition to Gallistel and King’s 

(2010) interpretation of Shannon’s classic information 

theory—that is, the reduction in uncertainty regarding the 

properties of an object—in order to show how computation 

allows for useful decisions about the world to be made. We 

then discuss some of the properties necessary for effective 

information processing and generic computation that 

describe modern computers, which may also be usefully 

applied to descriptions of brains as well. We pay special 

attention to the topic of representation. The ability of the 

definition to allow for determination of the boundaries of a 

computational system’s memory are examined. Finally, we 

present and respond to some potential critiques of the 

definition. 

The definition these claims and terms are applied to is as 

follows: Memory is a process that carries information 

forward in time, preserved in a fashion that maintains its 

usefulness as an object to be computed for the system to 

which the memory is said to belong. 

Defining Computation and Information 

Before presenting our definition of ‘memory,’ we must first 

establish definitions for ‘information’ and ‘computation.’ We 

begin with information because, as will be discussed below, 

computation does not necessarily need to involve 

information—though it can be more useful when it does. 

Gallistel and King relate Shannon’s definition of 

‘information’ as originating from a source, undergoing a 

process that ‘encodes’ the information into a ‘signal,’ and 

traveling to a receiver that ‘decodes’ the signal to derive a 

‘message’ from it (2010, p. 2). The amount of information 

contained by the signal is determined not only by the signal, 

but by the receiver as well. The following example will make 

these points more evident. 

Suppose an unseen coin is flipped and you are told, as a 

hint, that it might be heads or tails. You most likely already 

knew that and are wondering if this is really a hint at all. This 

highlights two important criteria for evaluating a signal’s 

informational content: First, a signal must be selected from a 

possible set of signals. How much information has been 

transmitted regarding an object depends on how the range of 

possible object states has been affected. The hint you 

received does not affect the range of possible outcomes from 

the coin flip, and thus holds no information. Second, the 

relative probability of the possible states under consideration 

plays an important role in evaluating the quantity of 

information transmitted. A coin is not a truly two-
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dimensional object. There is a small possibility that it has 

landed on its side. The hint you received actually has some 

informational content, it is just small because the eliminated 

state is unlikely. Note that Shannon’s definition of 

information does not restrict the types of objects and states 

that it describes. It may be something as quantitative as 

numerical data. Likewise, it may be something difficult to 

quantify numerically, such as the emotions of another. The 

key point is that there is a spectrum of possible properties and 

that the signal reduces their domain. 

Computation invokes many concepts similar to 

information. In fact, as Piccinini and Scarantino point out, 

computation and information processing are often mistakenly 

held to be synonyms (2011, p. 3). We utilize Piccinini and 

Scarantino’s definition of computation in general: “We use 

‘generic computation’ to designate the processing of vehicles 

according to rules that are sensitive to certain vehicle 

properties and, specifically, to differences between different 

portions of the vehicles” (2011, p. 10; italics added). In the 

case that these vehicles are signals containing information, 

information processing is a form of computation as just 

defined. However, not all computation involves the 

processing of information. Informational content is not an 

intrinsic property of an object. It is relative to an observer and 

depends on how much the message reduces the observer’s 

uncertainty (Gallistel & King, 2010, p. 7). Consider a 

computation that outputs ‘cuidado’ if the input is ‘el horno 

esta encendido’ and provides no output if the input is ‘el 

horno esta apagado.’ To an English-only-speaking observer, 

this computation does not process information—the objects 

have no meaning. But to a Spanish-speaker, this cautions 

them that the oven has been switched on. The computation 

performed is the same, regardless of the observer. Even if 

Spanish is forgotten, and the computation’s objects cease to 

be meaningful to anyone, it is still the same computation. 

Thus, computation does not necessarily process information. 

This definition of computation is clearly quite broad. It is 

so broad, in fact, that some philosophers believe that such an 

understanding of computation implies that everything 

performs computation, that is, ‘pancomputationalism’ 

(Piccinini & Scarantino, 2011, p. 5; cf. Chalmers, 2011; 

Copeland, 1996). It may be true that one could pick just about 

any physical phenomenon and find an arbitrary function that 

it computes (e.g., a rock; Chalmers, 1996). For 

“computation” to be a useful concept regarding research on 

cognition—such as memory—in the cognitive sciences, its 

scope must be appropriately pared down. 

Recall that, based on the above definition, a computation is 

only sensitive to certain properties of objects, not necessarily 

all of them. A function that determines whether or not a 

neuron fires may only be sensitive to the firing/pre-firing 

properties of other neurons. Any additional physical variables 

are irrelevant to the purposes of the computation at hand, 

namely, modeling the dynamics of single-neuron activity. 

Pancomputationalism draws attention to the worry that 

“computation” may be a meaningless concept in research if it 

does not refer to some finite range of properties (or messages) 

that determine the results of the computations carried out by 

some system. In other words, its properties must have 

informational content that are relevant to the system. 

With these conceptions of information and computation at 

hand, we can present a way to understand how they are 

present in the brain. Various brain processes can be usefully 

understood as computational, for example, the brain’s ability 

to draw conclusions (Gallistel & King, 2010, p. 59). Consider 

the recognition of an image containing text (Figure 1). The 

optic nerve transmits visual stimuli to the brain, but it does 

not interpret the text’s meaning. This is the role of a different 

portion of the brain. In this process there are signals (i.e., 

visual stimuli) that come from a set of possible messages (i.e., 

one image is distinguishable from another), which can be 

understood as processed in accordance to a set of rules that 

are sensitive to the signal’s properties (i.e., the shape of the 

image is that of a word, and the word has meaning 

independent from the image). Here we have all the 

characteristics of computation being used to process 

information. 

An important point to address is that of representation. In 

our discussion of information, we spoke of it as being 

encoded. In other words, it is represented within a certain 

syntactic structure. This encoding is what allows for reliable 

interpretation of the signal’s contents. Modern computers 

contain a type of software called a “driver.” Each driver 

instructs the computer how to interface with a certain type of 

peripheral device, such as a mouse or external hard drive. 

Despite the fact that both of these devices can communicate 

via a universal serial bus (USB) connection, the computer 

must use a very different set of rules when interfacing with a 

mouse than with a hard drive. Similarly, a computational 

description of the brain must refer to some syntactic structure   

when describing how the brain processes its signals. 

However, not any syntax will suffice. Both brains and 

computers are faced with a tremendous variety of possible 

objects to represent. A much simpler device than the brain is 

the TI-84 calculator. The largest number it can represent is 

approximately 10100. If it was forced to have a unique 

character for each value, the number of  unique characters 

would exceed the number of atoms in the known universe. 

The calculator avoids this conundrum by constructing its 

representations from a small number of symbols (i.e., 0/1 for 

binary, 0-9 for its decimal display) in a way that is sensitive 

to their relative positions. Similarly, the English language is 

represented through the use of twenty-six visual symbols 

(i.e., the alphabet) and forty-four audible symbols (i.e., 

phonemes) in a syntax that is sensitive to their relative 

positions in space and time respectively. All of these methods 

of representation are “compact,” that is, the resources 

required to construct a representation grow logarithmically as 

the range of possible messages increases (Gallistel & King, 

2010, p. 76). If even the humble TI-84 requires a robust 

syntax capable of compact representation, it follows that any 
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syntax that the brain may possess must also be capable of 

compactly representing the tremendous variety of messages 

it encounters (Gallistel & King, 2010, p. 82). 

Like binary or decimal, the brain’s syntax must be capable 

of constructing representations from a fairly small selection 

of basic elements. Otherwise, the incredible variety of 

sensory stimuli and the brain’s practically unlimited creative 

capacity cannot feasibly be represented. These basic elements 

need not be numerical, and they need not be universal 

throughout the brain. Different portions of the brain perform 

different functions, and different syntaxes may be used. 

There will need to be commonalities between regions that 

facilitate their interaction, but there may be specialized 

computations (e.g., facial recognition, speech 

comprehension, etc.) that take place within regions. These 

computations might use a specialized syntax internally but 

use a shared syntax for computations that interact with other 

portions. 

Having discussed computation, information, and 

representation, as well as what they mean in both the contexts 

of modern computers and the brain, we now move on to 

address how these ideas relate to memory and the role 

memory plays in the aforementioned contexts. 

Memory in Computers and Brains 

The property that distinguishes memory from other 

information-carrying signals in a brain or computer is its 

persistence through time. A fundamental requirement for a 

signal to be informative is that it is selected from a set of 

possible messages. There must be some way for this domain 

of possible messages to be established. When the layman 

enters an airliner cockpit, the array of dials and knobs are 

quite mysterious. To a trained pilot, each item denotes a 

meaningful piece of information. They know if an 

instrument’s reading is alarming or typical. They know this 

because of their prior experience—information which was 

presented to them in the past and has persisted. In other 

words, their memory. Memory is the process that establishes 

the informational content of new signals.  

Memory plays the same role in a modern computer. 

Without memory, a computer’s only information regarding 

its past is that which is implicitly contained within its current 

state. As a result, whatever computation it performs must 

capture every relevant aspect of the computer’s current state 

in order to determine the next state. Computers are often 

called upon to perform complex tasks that are combinations 

of a few basic functions (Gallistel & King, 2010, p. 109). 

Without a compact method for storing and preserving the 

results of past steps, any practical computation requires an 

absurdly large number of bits to define its state. Each 

instruction in a computer’s program would have to shepherd 

hordes of bits. Suppose an instruction were as simple as 

providing a 1 (ON) or 0 (OFF) for each pixel in a display. To 

control every pixel of a typical 1080p resolution display, such 

an instruction would require two million bits. For 

comparison, modern central processing units (CPUs) 

typically use a humble sixty-four bits for their instructions. 

For a computational system to deal with these sorts of 

situations, a system is needed that has accessibility to the 

information contained in previous states as well as current—

memory is needed (Gallistel & King, 2010, p. 131). 

How does our definition of memory tackle this issue? In a 

modern computer, a CPU is the device that actually carries 

out most of the computations. In order to be able to perform 

computations quickly, it does not capture all of the 

information that it needs to perform all of its functionality 

within itself. If a CPU modifies an image, one cannot look at 

the CPU a few seconds later and determine how or what 

modification it performed. Instead, the CPU stores the image 

in a memory device to be retrieved later as needed. Later, 

when it needs to use the image in a computation, it calls upon 

the memory, which loads the image into the CPU. This 

transfer of bits constitutes a message to the CPU that informs 

it of the image’s contents. The key point is that this is done 

without repeating the initial computation that resulted in the 

memory’s message. Without the ability to call upon this 

persistent information, a modern computer would be as 

 

Figure 1: Reading text as the computational processing of information. 
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cumbersome as a pilot that has to be retrained for dial-reading 

every time. 

Despite the similarity in the role of memory in brains and 

modern computers, there is a much greater degree of 

plasticity in the execution of the brain’s memory processes. 

In certain environments, the way the brain remembers events 

can be highly vulnerable to suggestion (Loftus & Palmer, 

1974, p. 588). This supports the idea that memory plays a role 

in establishing the informational content of new signals and 

highlights the dynamic nature of the brain’s syntax. In Loftus 

and Palmer’s experiment, use of the verb ‘hit’ versus ‘smash’ 

served to alter the subjects’ syntax by priming them to think 

in certain terms. This in turn changed the message they 

obtained when they referenced their memory regarding the 

presence of broken glass at the scene of an accident. In this 

way, our definition addresses the inconsistency of the brain’s 

memory—the syntax being used to interpret the stored 

information is constantly changing. These changes need not 

result in an insensible message. Rather, they result in a new 

interpretation. This differs from modern computers, where 

even slight changes in syntax can cause total malfunctions. 

Explicating the neurobiological processes underlying 

memory in brains is not necessary for our project. The scope 

of our definition is readily understood in terms of Marr’s 

three levels of description of information-processing systems 

(Marr, 1982/2010, p. 24). The first and most abstract level is 

the computational theory, which establishes the general 

feature of the system being investigated, such as vision, 

language, or memory. Next, is the representation and 

algorithm level, which describes the procedures for achieving 

said system feature. The final level is hardware 

implementation, which is concerned with the physical 

substrate forming the representations and carrying out the 

algorithms. In terms of explanatory strategies, these levels 

can be investigated individually. From this perspective, our 

definition is appropriately understood as working in the first 

two levels. Although we aim for our definition to be 

applicable to real systems, we leave work of explicating its 

physical implementation to others. 

For our purposes, we merely note that if our definition of 

memory is appropriate for the cognitive sciences, then it can 

guide research that successfully identifies brain regions and 

processes that facilitate the kind of persistent information 

seen in modern computers as sketched above (cf. Srimal & 

Curtis, 2008). If our definition is incorrect, then there will be 

no empirical evidence of such persistent information. This 

follows from one consequence of our definition, namely, that 

in both the brain and in modern computers, memory serves 

the role of preserving information and establishing the 

possible set of messages from which new signals arise. In the 

next section, we explain how our definition of memory 

provides a way to delineate boundaries around the system in 

which memory occurs. 

 

The Boundaries of Memory 

For a memory to be computationally useful in the system it 

belongs to, a consistent syntax must be utilized during the 

encoding process—that is, preservation and representation—

of signals. For example, the alphanumeric symbol ‘6’ must 

always denote the quantity six, and not three or four. This 

stipulation helps establish who or what a certain memory 

belongs to. The boundaries of the physical system that 

consistently realizes a computational system’s syntax then 

defines the boundaries of its memory. 

As discussed earlier, a computation is sensitive to some 

properties of an object but not necessarily all. Specifically, it 

is reactive to particular forms of content, that is, information. 

When this computation handles information, the rules of its 

sensitivity must match up to the syntax in which the 

information is represented. This feature allows one to 

determine what contributes to a computational system’s 

memory or not. In order to be memory, a process must not 

only carry some physical state forward in time, but the state 

it preserves must be preserved in accordance with the 

syntactic structure of that to which the memory is said to 

belong.  

 Modern computers possess a set of memory addresses, 

much like a set of street addresses in a neighborhood, that 

they have access to. Proper usage of these addresses is part of 

the syntactic structure of the memory process. Searching for 

an address outside of this range causes the memory process 

to malfunction. The signal the computer finds with such an 

address might be encoded using a different syntax, or there 

might not even be a physical signal present. Either way, if the 

sought signal is not represented in accordance with the syntax 

of the memory it is trying to find, it is not a part of the 

computer’s memory. The signals found may inform the 

computer, but the information will not be accurate. 

In many natural and artificial systems, it seems obvious 

where to draw the boundaries of—at least some of—their 

memory systems, for example, a human’s hippocampus and 

a laptop’s hard drive. In such cases, the syntax used by the 

computations are consistently applied only within the 

physical brain and hard drive. Accordingly, such memories 

are realized within an individual body or casing. With that 

said, our definition of memory is not a priori confined to 

brains and hard drives. As long as such features as 

information preservation and consistent syntax are 

maintained, the boundaries of memory systems are 

potentially quite broad. Though we aim here to apply our 

definition of memory to more traditional work in the 

cognitive sciences, we leave open the possibility of applying 

it to cases such as distributed cognition (e.g., shared 

remembering by couples; Harris et al., 2014) and cultural 

transmission (e.g., Rowlands, 1993). 

The possibility of distributed or extended memory systems 

should not be controversial. A removable USB storage stick 

is external memory for any modern computer with a USB 

port and appropriate software. The memory is only available 
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when the stick is plugged in, but a large number of different 

computational systems can all potentially access it. A written 

grocery list is external memory available to anyone who finds 

the list and can read the language it is written in (cf. Wagman 

& Chemero, 2014). The exact message the list presents will 

vary based on the individual’s own internal memory—recall 

that the informational content of a signal is determined by the 

observer. Nevertheless, it is information carried forward in 

time. As long as the list’s characters and words represent the 

intended message in a manner consistent with the reader’s 

understanding of the language, the list can function as 

contributing to an external memory system. 

We have attempted to show that our definition of memory 

is applicable to both narrow conceptions of cognition (e.g., 

isolated in brains), as well as more widespread notions (e.g., 

distributed cognition). Given that we discuss memory in 

terms of information processing, it is likely that the type of 

proponent of narrow conceptions who would readily accept 

our definition are those who think embodied, extended, and 

distributed cognition are still computational and 

representational in nature even if cognition is not isolated in 

brains (e.g., Barsalou, 2008; Hutchins, 1995; Wilson, 1994). 

On the other hand, it seems far less likely that anti-

computational and anti-representationalists regarding 

cognition would accept our definition. We provide reasons 

why proponents of more “radical” conceptions of cognition 

could accept our definition by presenting experimental work 

involving affordances and memory. 

Affordances are opportunities for behavior, and are based 

on the properties of the organism and environment (Gibson, 

1979/1986). A doorway, for example, affords passing 

through for a human with narrow enough shoulders. 

Experimental work involving affordances stem from 

Gibson’s ecological psychology (1979/1986). Contrary to 

representational approaches to perception, Gibson and his 

proponents argue that perception-action is not properly 

understood as centering on indirect representations. Visual 

perception, for example, is not a matter of an organism 

generating a mental image of the world, but instead is about 

an organism directly perceiving opportunities the world 

affords it. 

Experimental work on affordances and memory have 

motivated conceptions of memory that do not appeal to 

computations or representations of the kind ecological 

psychologists and their proponents have resisted (e.g., 
Thomas & Riley, 2014; Vicente & Wang, 1998). Boschker, 

Bakker, and Michaels (2002), for example, conducted a set 

of experiments on the visual perception of climbing walls by 

experts and novices. When asked to recall information 

concerning the locations and orientations of holds on 

climbing walls, results suggested that experts can recall more 

information, clusters of information, and focus on functional 

aspects of walls (i.e., affordances); whereas novices did not 

recall clusters and focused on the structure of walls and not 

their functionals aspects. Boschker et al. argue that their 

findings show that differences in skill level correspond to 

differences in visual perception and memory. A central 

finding is that experts have memory that is better and of a 

more functional nature because they have more experience of 

perceived action possibilities than novices. In other words, 

their increased recall is tied to their increased perception of 

affordances. Note that this work does not appeal to 

computations or representations. Yet, our definition still 

applies: Experts have better task memory because the 

“information” relevant to action capabilities carries forward 

in time over the course of experience, and it does so in a 

manner that maintains its usefulness (i.e., affordance) to be 

“computed” (i.e., used) by the system (i.e., climber) for which 

the information belongs. The relationship between our 

definition and non-computational and anti-representational 

conceptions of cognition requires further fleshing out. 

However, we have attempted to demonstrate that the areas are 

not necessarily mutually exclusive. Having presented our 

definition of memory and discussed related issues, we now 

respond to several critiques. 

Criticisms of a Computation-Based Definition 

The appropriateness of utilizing our definition of memory in 

the cognitive sciences is contingent on the notion that it is 

explanatorily fruitful to describe the brain as performing 

computations. Computational approaches in the cognitive 

sciences are not without challenge. One source of opposition 

stems from forceful arguments claiming that phenomena 

investigated in the cognitive sciences are in no substantial 

way “computational,” that is, “rule-governed manipulations 

of internal representations” (van Gelder, 1995). Therefore, 

our understanding of brains and cognition are set back by 

assuming they are like computers (Barrett, 2012). Another 

challenge centers on the claim that the prevalence of 

computationalism results from the prominent role of 

computers in modern society. Like other metaphors that were 

popular during their time, so too will the mind-as-computer 

metaphor pass (e.g., hydraulic pump, steam engine, etc.; 

Marshall, 1977). A third challenge is that many concepts 

underlying computational approaches have long and storied 

histories of imprecision. For example, many definitions of 

‘memory’ now seem outdated in light of further technological 

advancement (Roediger, 1980). Addressing those challenges 

is far beyond the scope of the current work. Here, we respond 

to these criticisms in order to motivate the claim that 

complete rejection of a “computational” approach in the 

cognitive sciences is ultimately unwarranted. 

First, unlike artifacts such as clay tablets or conveyor belts, 

computational theory is a set of formalized principles that are 

independent of any particular physical realization (Gallistel 

& King, 2010, p. 105). Computational theory becoming 

obsolete would be more akin to the obsolescence of calculus 

than that of the cellular phone. Computation is a field of 

mathematics, not a transient technology. While it is possible 

that computationally-based theories could be supplanted by 
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non-computational ones (e.g., Chemero, 2011; Edelman, 

1993; Kelso, 2009; van Gelder, 1995) for explaining all forms 

of cognition, such a shift would likely occur due to 

conceptual, methodological, and theoretical advances in the 

cognitive sciences, and not due to a technology’s life-cycle.  

Second, appealing to computational theory to investigate 

memory in both brains and computers does not necessitate 

that both compute digitally or numerically, or that their 

objects are both numeric or symbolic. Computational theory, 

in the form we appeal to, is consistent with identifying both 

modern computers and brains as “computational,” even if the 

objects being computed differ. This is because what matters 

more than the realizers of particular processes is the syntax. 

Because modern computers manipulate digital objects (i.e., 

binary ‘1s’ and ‘0s’), they are readily able to handle syntax 

involving computations of large digits, such as multiplication 

and division. Human brains, on the other hand, may not 

explicitly manipulate digital objects, which could account for 

the difference in speed of calculation. Specifically, brains 

may manipulate analog objects, which may not be as fast at 

processing syntax involving calculations of discrete 

numerical values. This would serve to explain why brains and 

modern computers have a different set of strengths and 

weaknesses and are better suited for performing different 

kinds of computation that are computations nonetheless. 

A third reason to consider computation in some form is to 

appeal to the primary motivation for the cognitive revolution, 

namely, the need to posit “internal” states to more fully 

account for some kinds of cognition, action, and perception 

(Gardner, 1985). To be more precise, those cognitive 

capacities that occur without externally observable processes, 

for example, predicting and learning. Cognitive systems can 

make accurate predictions following very complex causal 

chains. An electrical engineer can look at a wiring diagram 

and tell what will open a certain contact without interacting 

with the real circuit. A complete explanation of this capability 

implies some internal process for simulating events and 

evaluating them according to a syntax. Cognitive systems can 

learn to perform behaviors without actually doing them. If a 

hobbyist reads an article on how to solder a wire before 

attempting for first time, they will certainly do better than if 

they had tried with no prior study. From these examples we 

do not further claim that cognitive systems are not embodied, 

that learning via action is likely necessary during 

developmental stages, or that physical practice improves 

abilities. Yet, such examples motivate the need to appeal to 

internal processes to fully explain some cognitive 

phenomena. In some cases, the most parsimonious 

explanation for these capabilities is the presence of internal 

representations and rules for consistent execution. All of this 

suggests that appealing to some form of computation to 

explain certain cognitive phenomena is well-motivated. 

If we are correct that at least some cognitive capabilities 

(e.g., memory) are appropriately explained via internal 

processes of some sort, then the nature of how those 

processes represent must be accounted for as well. Although 

a tremendous deal of research and effort has gone into 

mapping and studying brain activity, there is yet to be 

evidence of a discernible syntax. This could be seen as 

evidence against computation in the brain. However, this may 

be a case of a lack of evidence not being evidence of absence. 

Gallistel and King explain that the more efficient and robust 

an encoding scheme is (i.e., representation), the less it 

resembles its message (2010, p. 4). The sheer variety of 

stimuli the brain is presented with suggests that its syntax 

would be extraordinarily complex, far more so than binary 

(e.g., neurons as on-off switches). Additionally, recall that it 

is not necessary for these representations to be discrete or 

numerical in nature. They might not even be expressible in 

terms of language. The brain has been produced by natural 

selection, not a highly-organized team of computer scientists. 

As such, there is no reason to believe that any criteria other 

than effectiveness for survival and reproduction has played a 

role in its development. There has been no force in natural 

selection pushing the brain’s representations to be legible to 

outside observers. With all this in mind, it is no surprise that 

the brain’s syntax remains a mystery. 

The definition of memory posited in this paper proposes a 

broader definition of computation and representation than are 

typically applied to the brain. It also does not propose 

computation as an explanation of brain structure and 

function. Rather, it appeals to computation to describe 

memory processes. The aim of this is to enable a discussion 

that escapes some of the limitations traditionally associated 

with computationalism. This paves the way for the utilization 

of computation as a descriptive tool without rejecting other 

accounts of cognition (e.g., dynamical). While some systems 

are better explained by either computational or dynamical 

models (van Gelder, 1995), others benefit from the use of 

multiple explanatory strategies (Favela & Chemero, 2019). 

Depending on the goals at hand, one model may be preferable 

to another, and it is possible that neither can give an all-

encompassing account of the system. Here, we are chiefly 

concerned with defining what memory is, and not the 

computations or dynamics that explain how it is realized in 

systems. 

Conclusion 

We have presented and defended a definition of memory. We 

began with Gallistel and King’s (2010) formulation of 

Shannon information and highlighted the feature of observer 

dependence. We then presented Piccinini and Scarantino’s 

(2011) broad conception of computation as the processing of 

objects according to rules sensitive to certain properties of 

those objects. Computational systems are distinguished from 

one another based on what properties they’re sensitive to. If 

the objects being processed are signals with informational 

content, then the computational system processes 

information. Both the brain and modern computers can be 

described as such systems. Casting memory in terms of 
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computation and information effectively describes memory 

as playing a role in establishing the meaning of new signals, 

that is, determining their informational content. The rules 

according to which these messages are interpreted are their 

syntax. In order to accommodate the wide variety of 

messages they represent, both the syntaxes used by brains and 

computers should be compact, that is, the resources required 

for representation should grow only with the logarithm of the 

number of possible signals. Having specific syntax for the 

purpose of carrying information forward in time allows for 

delineating boundaries around memory systems. We referred 

to ecological psychology’s concept of affordances in order to 

illustrate that our definition is not necessarily incompatible 

with non-computational and anti-representational 

conceptions of cognition. We defended our use of 

computation as a tool for describing brain processes. Despite 

its challenges, computation’s status as a set of formalized 

principles, as well as the ability of representations to serve as 

a succinct explanation of certain cognitive phenomena, make 

it well-suited for use as a descriptive tool. By limiting our use 

of computation to the description of memory, we remain 

nonpartisan as to the methods suitable for explaining its 

realization. As such, the following definition of memory is 

broadly applicable across the cognitive sciences: Memory is 

a process that carries information forward in time, preserved 

in a fashion that maintains its usefulness as an object to be 

computed for the system to which the memory is said to 

belong. 
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