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Special Article: Sleep, Circadian Rhythms, and Aging: Advancing Knowledge to  
Promote Older Adults
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Abstract

Background:  Growing evidence suggests bidirectional links between gut microbiota and sleep quality as shared contributors to health. Little 
is known about the relationship between microbiota and sleep among older persons.
Methods:  We used 16S rRNA sequencing to characterize stool microbiota among men (n = 606, mean [standard deviation] age = 83.9 [3.8]) 
enrolled in the Osteoporotic Fractures in Men (MrOS) study from 2014 to 2016. Sleep was assessed concurrently by a questionnaire (Pittsburgh 
Sleep Quality index [PSQI]), and activity monitor to examine timing (acrophase) and regularity of patterns (F-statistic). Alpha diversity was 
measured using Faith’s phylogenetic diversity (PD). Beta diversity was calculated with robust Aitchison distance with matrix completion 
(RPCA) and phylogenetic-RPCA (PRPCA). Their association with sleep variables was tested with partial distance-based redundancy analysis 
(dbRDA). Predictive-ratio biomarkers associated with sleep measurements were identified with CoDaCoRe.
Results:  In unadjusted analyses, men with poor sleep (PSQI >5) tended to have lower alpha diversity compared to men with normal sleep 
(Faith’s PD, beta = −0.15; 95% confidence interval [CI]: −0.30 to 0.01, p = .06). Sleep regularity was significantly associated with RPCA and 
PRPCA, even after adjusting for site, batch, age, ethnicity, body mass index, diabetes, antidepressant and sleep medication use, and health 
behaviors (RPCA/PRPCA dbRDA; p = .033/.002). In taxonomic analysis, ratios of 7:6 bacteria for better regularity (p = .0004) and 4:7 for worse 
self-reported sleep (p = .005) were differentially abundant: some butyrate-producing bacteria were associated with better sleep characteristics.
Conclusions:  Subjective and objective indicators of sleep quality suggest that older men with better sleep patterns are more likely to harbor 
butyrate-producing bacteria associated with better health.
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Abundant evidence suggests that adequate sleep health is an im-
portant aspect of healthy aging. Without it, persons are at in-
creased risk for a multitude of adverse health outcomes including 
cardiometabolic disorders, systemic inflammation, and all-cause 
mortality (1). Although adult humans spend about a third of their 
life sleeping, our understanding of its underlying physiologic basis 
is not completely understood. However, it is known that disrupted 
sleep and circadian misalignment are associated with metabolic 
dysregulation, and some hypothesize that the influence of sleep on 
metabolic health may be mediated by the gut–brain axis.

A growing number of animal and human studies implicate a bi-
directional relationship between sleep and the gut microbiome (2). 
For example, younger and middle-aged adults with insomnia have 
been reported to have decreased microbiome richness and diversity 
with a reduction in short-chain fatty acid (SCFA)-producing bacteria 
(3). In addition, circadian rhythms have gained attention as being 
important in regulating metabolism, and both humans and microbes 
contain clock genes that are important in synchronizing sleep–wake 
cycles (4). Theoretically, if it can be shown that the gut microbiota 
and its metabolites influence sleep health, altering intestinal bacterial 
composition and/or capitalizing on their relevant metabolites could 
potentially treat sleep disorders.

Sleep comprises multiple dimensions including duration, timing, 
regularity, continuity, and quality; yet previous studies in humans 
investigating sleep and the gut microbiome have focused on either 
self-reported or a single aspect of sleep, such as the effects of short-
term sleep restriction on microbial composition (5,6). In addition, 
although anywhere from 36% to 69% of older adults report sleep 
disturbances (7), few studies have included older adults, especially 
those over the age of 75. With increases in life expectancy now be-
yond 75, there is a considerable need to better understand how sleep 
health may impact later life span. With advancing age, there is an 
increasing risk of disease, disability, and dementia, all of which may 
be impacted by poor sleep. There are biologically plausible reasons 
why sleep and the gut microbiome might be integrally related, but 
few have tested this hypothesis. Therefore, we studied 606 older men 
from the Osteoporotic Fractures in Men (MrOS, https://mrosonline.
ucsf.edu/) study, to determine whether both subjective (self-reported) 
and objective measures of sleep (including timing and regularity 
assessed via activity monitor) were associated with within-person 
(alpha) and between-person (beta) gut microbial diversity as well 
as differential bacterial abundance. We hypothesized that (1) in-
dividuals with worse sleep quality scores would have lower alpha 
diversity; (2) have an overall distinctly different microbiome com-
position compared to those with higher sleep quality; and (3) sleep 
quality measures would be significantly correlated with the relative 
abundance of microbes previously associated with a healthy gut 
environment.

Method

Study Participants
Originating in 2000–2002, MrOS included 5 994 men aged 
65 years and older from 6 U.S. clinical sites (University of Alabama 
at Birmingham, Birmingham, AL; University of Minnesota, 
Minneapolis, MN; Stanford University, Palo Alto, CA; University of 
Pittsburgh, Pittsburgh, PA; Oregon Health and Science University, 
Portland, OR; and University of California, San Diego, San Diego, 
CA), with continued follow-up involving 4 full in-clinic examin-
ations through 2016 with 1 841 ongoing participants attending Visit 

4 (2014–2016). The study design and recruitment have been previ-
ously described (8). Starting in March 2015, men who attended Visit 
4 were also invited to provide stool specimens; 982 men provided a 
stool sample of which 919 were viable samples (Batch 1 = 599, Batch 
2 = 320) with 16S rRNA gene amplicon reads (16S) passing quality 
control (9). Because of the strong effect of recent antibiotic use on 
the gut microbiome and evidence that some antibiotics can affect 
sleep (10), we excluded men who reported antibiotic use in the past 
month (n = 46). For this study, 606 men who had both Visit 4 sleep 
data and sufficient sequencing data that passed quality filtering steps 
were included (Figure 1). The institutional review boards of the 6 
participating institutions approved the study protocol, and a written 
informed consent was obtained from all participants.

Sleep Measurements
For the objective sleep measures, SenseWear armband devices 
(Bodymedia Inc., Pittsburgh PA) were worn on the upper right arm 
for 1 week (participants were asked to remove the device only when 
bathing); this study included those with 90% wear time for at least 
five 24-hour periods. Minute-by-minute activity data were processed 

Figure 1.  Study flow diagram.
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to calculate 2 circadian rhythm variables based on the extended co-
sine model: (1) acrophase and (2) pseudo F-statistic. The acrophase 
measure captures the timing of the peak activity in the 24-hour cycle, 
and the pseudo F-statistic is a measure of robustness and rhythmi-
city, or consistency of the rhythm (e.g., regularity) and is calculated 
by goodness of fit to an extended cosine model based on 24-hour 
patterns (11). These 2 objective measures were chosen due to ac-
ceptable correlations with wrist actigraphy variables assessed in a 
subset of MrOS men (n  =  57) who wore both the gold-standard 
wrist actigraph and armband device (acrophase 0.83; F-statistic 
0.92; unpublished data). While the MrOS Study participants had 
wrist actigraphy measures for sleep assessed at previous study visits 
(2003–2005 and 2009–2012), the armband measures were the only 
objective sleep measures that were available at that same visit as 
when the stool was collected (2014–2016) and thus were used for 
the purposes of this study. Subjective sleep measurements, assessed 
between 2014 and 2016, such as quality of sleep and total sleep time 
(hours), were obtained based on self-reported Pittsburgh Quality 
Sleep Questionnaire (12).

Covariates
A list of covariates to include in our statistical models was selected 
a priori. Prior to data analysis, a discussion was held with the 
coauthors that included experts from a variety of fields including 
sleep, gerontology, internal medicine, microbiome, and biostatistics. 
We took into account the availability and completeness of data, vari-
ables known to significantly affect the microbiome, relevance to our 
overall aim, technical variables, and from a statistical perspective, the 
collinearity of variables as well as the maximum number of variables 
to include without compromising statistical power. A consensus was 
reached to include 10 covariates: sequencing batch, study site, age 
at visit, ethnicity, body mass index (BMI) (kg/m2) from the previous 
visit, alcohol intake, self-reported physical activity (assessed via the 
Physical Activity Scale for the Elderly), diabetes, and medication use 
(specifically antidepressants and benzodiazepines).

Stool Collection, DNA Extraction, and 16S rRNA 
Gene Amplicon Sequencing
MrOS participants collected fecal samples for microbiome analysis 
at home using the OMNIgene-GUT stool/feces collection kit (OMR-
200, DNA Genotek, Ottawa, Canada), and 16S rRNA gene amplicon 
sequencing was performed in 982 men. Details of the stool collec-
tion protocol and sequencing have been previously published (13). 
Briefly, fecal DNA was extracted on the Hamilton STARlet platform 
using the MoBio PowerMag Soil DNA extraction kit following the 
manufacturer’s recommendations. The V4 hypervariable region of 
the 16S bacterial rRNA gene was amplified using the 515F and 806R 
primers and sequenced on an Illumina MiSeq with 2 × 250 cycles 
according to manufacturer’s protocols (14).

Bioinformatics

Raw sequences were uploaded to Qiita (15) and processed using 
its recommended pipeline (https://qitta.ucsd.edu/workflows) 
for 16S data. Briefly, sequences were demultiplexed, trimmed to  
150 nucleotides, and microbial amplicon sequence variants (ASVs) 
were produced using the Deblur algorithm with the default param-
eters on Qiita (16). A  phylogenetic tree was constructed using a 
SATé-enabled phylogenetic placement technique as implemented in 
the q2-fragment-insertion (17) plugin with the Greengenes reference 

database (version 13.8) (18) as the backbone tree. The resulting ASV 
table and phylogenetic tree were imported into QIIME 2 (version 
2020.6) (19) for additional processing. Taxonomic classification was 
carried out using the q2-feature-classifier plugin (20). The classifier 
was trained on the GTDB database(release 89) (21) after extracting 
the specific V4 region covered by the primers. To improve classi-
fication accuracy, human stool-specific taxonomic abundance in-
formation was acquired from the readytowear taxonomic weights 
repository (https://github.com/BenKaehler/readytowear) and added 
to the training step of the classifier. This weighted bespoke taxo-
nomic approach improves classification accuracy over the common 
Naive Bayes classification methods (22). Any ASVs that were not 
successfully classified to at least the Phyla level were removed.

To calculate within-sample diversity (alpha diversity), the ASV 
table was normalized using the scaling with ranked subsampling 
(SRS) application (23) with a fixed depth of 5 963 counts. The SRS 
normalization approach better preserves the original community 
structure of samples while addressing unequal sampling depth bias. 
From this table, we calculated ASV richness, Shannon diversity, 
Pielou’s evenness, and Faith’s phylogenetic diversity (PD) for down-
stream analysis.

To measure between-sample (beta) diversity, the robust Aitchison 
distance with matrix completion (RPCA) (24), its phylogenetic-based 
counterpart, PRPCA (25), and the presence/absence unweighted 
UniFrac (26) distances were calculated. The non-normalized ASV 
table was used to calculate RPCA and PRPCA as these tools are 
compositionally aware and do not require rarefying/normalization; 
however, for unweighted UniFrac distance calculation, the SRS-
normalized table was used.

To identify key microbes associated with sleep variables of 
interest, we used multiple differential abundance (DA) approaches. 
Numerous tools exist that differently address complexities of 
microbiome data such as compositionality, sparsity, and uneven sam-
pling depth. These DA approaches have been shown to vastly differ 
in identifying significant taxa, depending on the underlying structure 
of the data (27). Given the lack of an a priori list of microbes to spe-
cifically test, we planned to conduct this analysis in an exploratory 
manner by utilizing multiple approaches as sensitivity analyses and 
to cross-validate the results. For all DA approaches, we first filtered 
our non-normalized table to remove any ASVs that did not appear 
in at least 25% of our samples or did not have a total of 600 counts 
across all samples. We first attempted to estimate and sort the dif-
ferential ranks using songbird’s (28) multinomial model, which we 
then visualized using qurro (29). While we saw no improvements in 
model performance, as assessed by pseudo-Q2 (a value analogous to 
R2 in linear regression), when our adjusted model was compared to 
an intercept-only model, the resulting ranks were still used to manu-
ally explore and select potentially interesting sets of ASV log-ratios 
(also referred to as balances). We next used a learning algorithm to 
automatically select important balances most associated with sleep 
variables using the Compositional Data via Continuous Relaxations 
(CoDaCoRe) package (30). Finally, ASV abundance data were pro-
jected onto distance-based redundancy analysis (dbRDA) models 
using the vegan package’s sppscores() function: this produces species 
scores corresponding to the relationship between each taxon and a 
response variable within the constrained ordination space.

Statistical Approach
To test the association between sleep variables and alpha diver-
sity measures, we regressed alpha diversity measures on sleep 
measures and covariates, and we tested the sleep measures using 
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a type II ANOVA test as implemented in the car package. For 
each sleep measure, we fit 3 models: an unadjusted model, a base 
model (adjusted for age, race, site, and sequence batch), and a full 
model (adjusted for base-model variables plus BMI, diabetes, al-
cohol intake, physical activity score, depression medications, and 
benzodiazepine use).

For beta diversity, we used a similar set up as described for 
alpha diversity. We first performed a series of covariate-adjusted 
PERMANOVA tests using the vegan package’s adonis2() function, 
with the microbiota distance matrices as our response variable and 
the various model sets (i.e., unadjusted, base, or full-model variables) 
as our explanatory terms. The PERMANOVA test’s assumption of 
similar multivariate dispersion was assessed using the betadisper() 
function; as this test only operates on factorial variables, we used 
the quartile-transformed version of our continuous sleep variables.

PERMANOVA tests of covariates suggested that certain base-
model covariates (such as site, batch, and race) were associated with 
beta diversity and may confound associations with sleep variables. To 
remove the influence of these covariates, we additionally performed 
a partial dbRDA using our full-model variables while removing the 
effects of the base-model covariates. When the overall main effects 
were statistically significant, as determined by an ANOVA-like per-
mutation test using the anova.cca() function, a sequence of terms as 
well as marginal test was carried out.

All statistical analyses were conducted using R statistical soft-
ware 4.2 (31). Significance was defined as p < .05 or 95% confidence 
intervals (CIs) excluding the null.

Results

The 606 men included in the analysis had a mean age of 84 years 
(standard deviation [SD]  =  3.78), an average BMI of 27  kg/
m2 (SD  = 3.53) and were overall very physically active (Table 1). 
Consistent with other observational sleep studies, 40% of men had 
poor sleep (defined as a PSQI > 5) and 24.2% reported taking sleep 
medications during the past month.

Sleep Measures and Alpha Diversity
Worse subjective sleep quality in participants was marginally as-
sociated with lower alpha diversity, as measured by Faith’s PD 
(beta = −0.15; 95% CI = −0.30, 0.01; p = .06; Figure 2). The findings 
lost further significance after adjustment for covariates (beta = −0.07; 
95% CI = −0.23, 0.09; p = 0.39). No other measures of alpha diver-
sity including ASV richness, Pielou’s evenness, or Shannon’s diversity 
were significantly associated with sleep quality (p > .05). Additionally, 
there were no significant associations between objectively measured 
sleep and any measure of alpha diversity (p > .05).

Sleep Measures and Βeta Diversity
In all beta diversity results (PERMANOVA and dbRDA), there was a 
limited ability to predict beta diversity based on taxa presence versus 
taxa abundance as shown by compositionally aware RPCA and 
PRPCA distances having higher predictive power than unweighted 
UniFrac as assessed by the global model’s R2 and pseudo F test-statistic 
(Supplementary Material 1). In the unadjusted models, sleep regu-
larity was significantly associated with PRPCA (p < .008, R2 = 0.9%, 
F = 5.43) and remained so after adjustment for base-model covariates  
(p < .007 R2 = 0.8%), but not in the fully adjusted model (p = .19, 
R2  =  0.3%). Similarly, sleep regularity was also weakly associated 
with beta diversity measured by RPCA (p = .088, R2 = 0.4%) in the 

unadjusted model, and remained significant after adjusting for base-
model covariates (p = .02, R2 = 0.7%), but not after adjusting for the 
full-model covariates. Tests of our base-model covariates also iden-
tified collection site and race as significant variables in both RPCA 
and PRPCA models. No sleep variables were associated with any of 
the beta diversity distances in fully adjusted models. However, the full 
model with the highest explanatory power was sleep regularity ex-
plaining PRPCA diversity. Tests of covariates in this model identified 
race, BMI, history of diabetes, physical activity score, and medication 
for depression as significant variables with modest explanatory power. 
Given that these signals are more robust than the association with 
sleep regularity itself, we attempted to isolate this signal by removing 
the effect of the base-model covariates using a partial dbRDA.

Table 1,  Characteristics of 606 MrOS Participants

Characteristic Mean (SD), n (%), or Ratio 

Age, y 83.9 (3.8)
Body mass index (kg/m2) 27.2 (3.4)
Diabetes (no:yes) 549:103
Race/ethnicity:
  White 545 (89.9 %)
  Black 20 (3.3 %)
  Asian 22 (3.6 %)
  Hispanic 9 (1.5 %)
  Other race/ethnicity 10 (1.6 %)
Alcohol consumption (drinks/wk):
Non-drinker 238 (39.3 %)
  <1 69 (11.4 %)
  1–2 68 (11.2 %)
  3–5 92 (15.2 %)
  6–13 111 (18.3 %)
  14+ 26 (4.3 %)
Physical activity score 125.5 (65.3)
Antidepressant use (no:yes) 554:52
Benzodiazepine use (no:yes) 592:14
Sleep quality (range: 0–21) 5.2 (3.0)
Activity acrophase 13.2 (1.6)
Sleep regularity (pseudo-F-statistic) 951.1 (476.0)
Alpha diversity:
  Richness 213.9 (71.8)
  Shannon Diversity Index 5.07 (0.8)
  Evenness 0.66 (0.074)
  Faith’s phylogenetic diversity 19.9 (5.7)

Figure 2.  Faith phylogenetic diversity (PD) is associated with sleep quality. 
Results of the unadjusted regression model show a weak but significant 
association between (beta  =  −0.15; 95% CI: −0.30, 0.01; p  =  .06). Faith PD 
and Pittsburgh Sleep Quality index (PSQI). The solid line and shaded area 
correspond to the regression line and 95% CI, respectively.
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The dbRDA models with only the base-model covariates were 
significantly associated with all 3 beta diversity distances. Among 
these, the base models best explained variation in RPCA (p < .001, 
adj.R2  =  4.5%). We then constructed partial dbRDA models that 
included sleep regularity, full set of variables, but partialled out 
(removed) the effect of base-model variables. The results of the 
global models for all 3 distance matrices were statistically signifi-
cant, with RPCA having the highest explanatory power (p < .001, 
adj.R2  =  4.4%). In the follow-up sequential ANOVA-like per-
mutation tests (Table 2), sleep regularity was statistically signifi-
cant when positioned as the first variable in the model (RPCA,  
p < .03, F = 4.7, R2 = 0.8%), although other covariables had higher 
explanatory power than sleep regularity. In the marginal tests  
(Table 2), sleep regularity and alcohol intake were the only 
nonsignificant terms, suggesting that other stronger signals overlap 
with sleep regularity’s signal.

Sleep Measures and Specific Taxa
We aimed to identify significant ASVs that were associated with sleep 
measures using different statistical methods. Initial ASV selection 
was attempted using a multinomial model (songbird) but we were 
unable to construct models with informative rankings. CoDaCoRe’s 
learning algorithm, however, selected 5 ASV balances that had 
the strongest correlation with sleep regularity. Of these, the top  
2 balances were significantly associated with sleep regularity after 
adjusting for full variables, as assessed by a marginal ANOVA test 
(Balance 1: beta = 0.493; 95% CI: 0.221, 0.71; p < .001; Balance 2: 
beta = 0.380; 95% CI: 0.113, 0.648; p =.005). Balance 1 (Figure 3) 
contained 13 ASVs and was defined by the log relative abundance 
of 7 ASVs (classified as Faecalibacterium prausnitzii G, 2 Prevotella 
copri A ASVs, Bacteroides B vulgatus, Bacteroides B dorei, Alistipes 
onderdonkii, and Ruminococcus D bicirculans) versus the rela-
tive abundance of 6 ASVs (classified as Akkermansia muciniphila, 
Bacteroides caccae, Bacteroides faecichinchillae, Bacteroides fragilis, 
Buttiauxella agrestis, and Ruminiclostridium E siraeum). Balance 2 
contained 11 ASVs, 10 of which overlapped with Balance 1.  The 
log ratio for Balance 1 and 2 was associated with better sleep regu-
larity scores after adjustment for covariates. The algorithm also pre-
dicted a single balance that would significantly predict sleep quality 
(Figure 4). This balance was significantly associated with sleep 
quality (beta = 0.38, 95% CI: 0.11–0.65; p < .05) and consisted of 
the ratio of 4 ASVs (classified as Ruthenibacterium lactatiformans, 
Bacteroides uniformis, Alistipes putredinis, and Escherichia 
dysenteriae) to 7 ASVs (classified as F.  prausnitzii_G, 2 ASVs of 
P.  copri_A, Bacteroides_B vulgatus, B.  agrestis, Ruminococcus_D 

bicirculans, and Oscillibacter valericigenes). The ratio of these taxa 
was associated with higher PSQI sleep scores indicating worse sleep 
quality. On the dbRDA triplot (Supplementary Figure 1), the top 5 
ASVs positively associated with sleep regularity were F. prausnitzii 
G, OEMS01 sp0900199405, O. valericigenes, F. prausnitzii A, and 
F. prausnitzii C.

Discussion

We determined that both subjectively reported and objectively meas-
ured sleep correlated with the gut microbiome diversity measures as 
well as differential bacterial abundance in a relatively large sample 
of community-dwelling older men. In particular, we found that men 
with poorer self-reported sleep ascertained by the PSQI had lower 
alpha diversity, although these results, in contrast to our hypothesis, 
were no longer statistically significant after multivariable adjust-
ment. We found that mean sleep regularity was, in accordance with 
our hypothesis, significantly associated with differences in beta di-
versity, the implications of which support the findings in an emerging 
field of circadian rhythms and the gut microbiome (32). In exam-
ining specific taxa and in agreement with our hypothesis, we found 
that sleep regularity predicted DA of 13 taxa (more specifically, the 
higher relative abundance of 7 taxa vs the lower relative abundance 
of 6 other taxa). Six of the 7 bacterial species associated with better 
sleep regularity have been previously linked to better gut health 
and 4 out of 6 bacterial species associated with worse sleep regu-
larity have been described as being potentially pathogenic, including 
A. muciniphila, B. fragilis, and Escherichia dysenteriae (33–35). We 
also found that sleep quality was associated with the DA of 11 taxa. 
Interestingly, there was a substantial overlap (71.4%) in the specific 
species of bacteria identified with both better sleep regularity and 
self-reported sleep.

It has been long accepted that there are important interactions 
between the gut–brain axis (2). Within the past 15 years, emerging 
evidence shows important communication between gut micro-
biota and the central nervous system that primarily occurs through 
microbial-derived intermediates including the SFCA (36), secondary 
bile acids (37), and tryptophan metabolites (38). More recently, es-
pecially in animal models, there is increasing evidence that the gut 
microbiota may modulate host circadian rhythms (37). Our study 
results support an important link between gut microbiota and self-
reported sleep as well as sleep regularity, at least in older men.

Of the 7 different taxa that were significantly associated with 
better sleep, whether determined by more consistent regularity or 
self-report, at least 5 (F. prausnitzii G, Provotella copri A, Bacteroides 

Table 2.  Results summary of partial dbRDA based on RPCA distance

Term df 

Sequence of Terms Results Marginal Test Results

Variance Test Statistic p Value Variance Test statistic p Value 

Sleep regularity 1 0.008 4.67 .031 0.001 0.603 .461
BMI 1 0.01 6.28 .018 0.008 4.959 .031
Diabetes 1 0.013 7.66 .006 0.012 6.962 .006
Alcohol intake 5 0.009 1.08 .382 0.008 0.9 .511
Physical activity score 1 0.009 5.36 .019 0.007 4.01 .037
Medication for depression 1 0.014 8.1 .005 0.012 7.32 .008
Use of benzodiazepines 1 0.002 1.13 .268 0.002 1.127 .268

Notes: We carried a partial dbRDA using RPCA distances using all variables from the full model. The effect of batch, site, age, and race were “partialled” out 
(i.e., removed) using the Condition() parameter. The order of the terms in the table correspond to the order in which they were included in the model formula. 
dbRDA = distance-based redundancy analysis; RPCA = robust Aitchison distance with matrix completion.
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B vulgatus, and Bacteroides B dorei) are known to produce bu-
tyrate, the predominant SCFA associated with overall gut health. 
Although Ruminoccocus and Oscillobacter are both associated with 
SCFA production of butyrate, R. D bicirculans and Oscillobacter 
valericegenes, which were associated with better sleep in this study, 
have been less well characterized with regards to human gut health.

In examining the taxa associated with worse sleep regularity and 
poor self-reported sleep, we found that 75%–80% of those taxa 
have been associated with human disease, with the remaining 2 
(Akkermansia species, Rutherbacterium lactatiformans) not having 
enough information to suggest a beneficial or harmful effect in hu-
mans. Since exploratory studies can yield false positive results, the 
observation that most of the identified taxa (>70%) have a known 
biological impact and are found to be associated with sleep charac-
teristics in the expected direction supports the validity of findings.

Considering possible mechanisms, a bidirectional effect be-
tween sleep and the gut microbiome is plausible. Human sleep 
behaviors are hypothesized to affect the composition of the gut 
microbiome through the differences in the timing of food intake 
and fasting (e.g., through direct metabolic effects) (39). In mice, the 
diurnal rhythmicity of microbiota affects bacterial adherence to the 
gut wall or changes in microbial pathways related to chemotaxis; 
these functional oscillations then influence the global programming 
of the host circadian transcriptional, epigenetic, and metabolic os-
cillations (40).

Much attention has been focused on SCFA, specifically bu-
tyrate, propionate, and acetate as important modulators in the 
gut–microbiome–brain axis. Leone et al. demonstrated that butyrate 
modulated the expression of clock genes in the liver (41), whereas 
Szentirmai et al. demonstrated that butyrate enhanced sleep in rats 
(42). Secondary bile acids may also link the gut microbiome to sleep. 
When humans ingest food, primary bile acids are produced from 
cholesterol in the liver and secreted into the gut. The gut microbiota 
then converts the primary bile acids into secondary bile acids that 
regulate hepatic and ileal clock genes in mice (37). Finally, serotonin 
of which 90% is derived from dietary tryptophan absorbed in the 
gut has been implicated in sleep–wake cycles (37).

Our study results confirm previous investigations done in hu-
mans suggesting an important link between the gut microbiota and 
sleep (43–46). However, at the taxonomic level, only the largest 
study of over 1 800 individuals also implicated Ruminococcaceae as 
protective against chronic insomnia (46). A combination of various 
factors may explain certain discrepancies from our results to pre-
vious ones. For example, the older population in our cohort, smaller 
sample sizes (<50) in other studies, methods of high-throughput 
sequencing and bioinformatics processing, and choice of appro-
priate and robust statistical models could differentially influence 
the results. Our study findings that support underlying biologically 
plausible explanations for the key taxa identified using the latest 
taxonomic analyses lend credence to what has been reported in mice 
models of sleep and the gut microbiome.

This study has multiple strengths including a large sample size, 
detailed subjective and objective measures of sleep characteristics, 
and state-of-the-art high-throughput sequencing analyses for micro-
biota characterization. This study also has some limitations worth 
noting. First, since we studied predominantly white older men of 
mean age of 84 years, the results may not apply to different demo-
graphics including women and younger persons. However, this 
population has hitherto been underrepresented in gut microbiome 
research, thus the current study fills an important gap. Second, this 
study was cross-sectional in design, so directionality cannot be in-
ferred. To determine the possible mechanisms and directionality of 
associations, future studies that incorporate longitudinal designs, 
gnotobiotic animal models, and randomized controlled trials are 
required. These studies can also elucidate the mechanisms of ac-
tion by exploring the functional pathways involved with the use of 
other technologies such as shotgun metagenomics, metabolomics, 
proteomics, etc. Third, although we attempted to improve our taxo-
nomic classifier by incorporating environment-specific information, 
species-level designations using 16S methods have its own limita-
tions and require validation using other more sensitive methods 
(47,48). However, in this setting, the underlying ASV signals would 
not be incorrect if species names were in fact falsely classified. 
Fourth, the stool samples were collected at a single time point, while 
the gut microbiota is known to oscillate diurnally, so the relationship 
between sleep and gut microbiota could differ depending upon the 

Figure 4.  Top predicted ASV log ratio is correlated with self-reported sleep 
quality index. The results of the linear regression model showing the top 
CoDaCoRe selected balance is significantly associated (beta = 0.38, 95% CI: 
0.11–0.65; p < .05) with the self-reported Pittsburgh Sleep Quality Index, even 
after adjustment for all variables from the full model. The solid line and adjacent 
shaded area correspond to regression line and 95% CIs, respectively. The 
numerator consists of 4 ASVs classified as Ruthenibacterium lactatiformans, 
Bacteroides uniformis, Alistipes putredinis, and Escherichia dysenteriae; the 
denominator consists of 7 ASVs classified as Faecalibacterium prausnitzii_G, 
2 ASVs of Prevotella copri_A, Bacteroides_B vulgatus, Buttiauxella agrestis, 
Ruminococcus_D bicirculans, and Oscillibacter valericigenes. ASV = amplicon 
sequence variant; CI = confidence interval.

Figure 3.  Top predicted ASV log ratio is correlated with sleep regularity. The 
results of the linear regression model shows the top CoDaCoRe selected 
balance is significantly associated (beta  =  0.493; 95% CI: 0.221, 0.71;  
p < .001) with objective sleep regularity score, even after adjustment for 
all variables from the full model. The solid line and adjacent shaded area 
correspond to regression line and 95% CIs, respectively. The numerator 
consists of 7 ASVs classified as Faecalibacterium prausnitzii G, 2 Prevotella 
copri A  ASVs, Bacteroides B vulgatus, Bacteroides B dorei, Alistipes 
onderdonkii, and Ruminococcus D bicirculans; the denominator consists 
of 6 ASVs classified as Akkermansia muciniphila, Bacteroides caccae, 
Bacteroides faecichinchillae, Bacteroides fragilis, Buttiauxella agrestis, 
and Ruminiclostridium E siraeum. ASV  =  amplicon sequence variant; 
CI = confidence interval.
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time of sample collection. Despite these limitations, this study con-
tributes to the small but growing literature on the link between gut 
microbiota and sleep.

Achieving a full understanding of the complex nature of each 
human’s gut microbial composition and how it may affect sleep 
will require a multidisciplinary approach. Even when specific bac-
teria are convincingly implicated in affecting sleep, there is tre-
mendous intraspecies variability resulting in remarkable genome 
divergence, and hence potential differing functional capabilities (33). 
Furthermore, recent research has demonstrated that microbial–mi-
crobial interactions can not only influence each other, but also alter 
host metabolism (49). With increasingly powerful analytic tools, it 
is conceivable that with careful experimental study design, poten-
tial therapies based upon manipulating the gut microbiota and/or 
harnessing their metabolic products to improve sleep are possible.

Supporting previous sleep-related research, sleep regularity ap-
pears to have important health implications. Our study findings 
highlight a new discovery of the importance of sleep regularity in 
relation to the gut microbiota in older men. Furthermore, we found 
that both poor self-reported sleep and worse regularity implicated 
butyrate-producing bacteria as a positive influence with traditionally 
pathogenic bacteria leading to human infection being associated with 
worse sleep patterns. In older adults, sleep disorders are common and 
although sleep medications can help persons sleep better in the short 
term, they are not recommended for habitual use (50). If our study 
results are further explored and mechanisms better understood that 
implicate diet and optimizing a healthy gut microbiome, perhaps a 
regular good night’s sleep may be possible for millions.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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