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Abstract  
Exhaled breath nitric oxide (NO) is an accepted asthma biomarker. Lung concentrations of NO and its amino 

acid precursor, L-arginine, are regulated by the relative expressions of the NO synthase (NOS) and arginase iso-
forms. Increased expression of arginase I and NOS2 occurs in murine models of allergic asthma and in biopsies of 
asthmatic airways. Although clinical trials involving the inhibition of NO-producing enzymes have shown mixed 
results, small molecule arginase inhibitors have shown potential as a therapeutic intervention in animal and cell 
culture models. Their transition to clinical trials is hampered by concerns regarding their safety and potential tox-
icity. In this review, we discuss the paradigm of arginase and NOS competition for their substrate L-arginine in the 
asthmatic airway. We address the functional role of L-arginine in inflammation and the potential role of arginase 
inhibitors as therapeutics. 
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INTRODUCTION
Asthma is a common disease characterized by a 

syndrome of persistent airway inflammation and re-
versible airway obstruction. Intermittent obstruction of 
the airways results from influx of inflammatory cells, 
increased mucus secretion, edema, and airway smooth 
muscle constriction. Chronic inflammation leads to 
long term remodeling of the lung including mucus cell 
hyperplasia and metaplasia[1], smooth muscle hyper-
plasia[1,2], and increased basement membrane thickness 

from accumulation of collagens in the submucosal and 
reticular basement membrane[3]. The airway remod-
eling and resultant reduction in overall lung function 
can become irreversible.

Current methods of diagnosing asthma and assess-
ing patient response to therapy are inexact and include 
measuring lung function with spirometry and as-
sessing noninvasive exhaled breath biomarkers[4] and 
expectorated sputum samples. One biomarker present 
in higher concentrations in the exhaled breath of asth-
matics, exhaled nitric oxide (NO), has been positively 
correlated with lung inflammation severity. However, 
clinical trials with inhibitors targeting the NO produc-
ing enzymes have produced mixed results[5,6], indicat-
ing that the role of NO during asthma exacerbation 
or mediation is much more complex than previously 
thought.

Derived primarily from the metabolism of L-ar-
ginine by the NO synthase (NOS) family of enzymes, 
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NO is essential in preserving normal lung function. 
The NO diffusion gradient ensures sufficient blood 
oxygenation by dilating vascular smooth muscle at 
regions of hypoxia, thereby maintaining proper ven-
tilation-perfusion matching[7-9]. NO also regulates the 
ciliary beat frequency[10] of columnar epithelial cells 
in the airway that clear potentially obstructive agents, 
including foreign materials and mucus from the upper 
conducting airways. As an inhibitory non-adrenergic 
non-cholinergic (iNANC) signaling molecule[11,12], 
NO controls smooth muscle tone in the airways by 
activating the soluble guanylate cyclase in the smooth 
muscle[13]. NO modulates inflammation by affecting 
leukocyte adhesion to the endothelium[14,15] and vas-
cular permeability[16] and also is an integral part of the 
immune system anti-microbial arsenal, reacting with 
other reactive species to form potent oxidant mol-
ecules[17,18].

Thus, despite the correlation of increased exhaled 
NO with inflammatory severity in the lung[4,19], reduc-
ing the overall production of NO by  inhibiting NOS 
enzymes would undoubtedly also affect NO-depend-
ent regulation of normal lung function. The variability 
in outcomes using NOS inhibitors in animal models of 
allergic inflammation supports the conclusion that not 
all sources of NO are equal (See Mathrani, et al. 2007 
for review of NOS inhibition in allergic asthma mod-
els[20]). Focusing entirely on regulating a measurable 
parameter, exhaled NO, does not take into account the 
sources of NO production or the delicate balance of 
NO in the lung as a whole. The more telling question 
may be whether there is “good NO” and “bad NO”, 
what their cellular sources are, and what changes oc-
cur in the lung during allergic inflammation that affect 
both “good” and “bad” NO.

THE FUNCTIONAL ROLE OF NO AND ITS 
PRESURSOR, L-ARGININE

Nitric oxide: function and form interdepend-
ence

The NO molecule is a neutral-charged free radical 
with a short half life in biological fluids (<1 ms) due 
to its reactivity with surrounding proteins, free radical 
species, and reducing molecules of the intra-  and ex-
tracellular compartments like glutathione. NO is pri-
marily derived from the enzymatic conversion of the 
amino acid L-arginine and molecular oxygen into NO 
and citrulline by the NOS family of enzymes. 

The NOS enzyme family is comprised of three 
isoforms, NOS1, NOS2 and NOS3, which vary in 
their regulatory mechanism and tissue expression pat-
terns[21]. NOS1 and NOS3 are constitutive NOS en-

zymes that require intracellular calcium/calmodulin 
binding for activation. In addition to a calcium con-
centration dependence, NOS3 activity is also regulated 
by multi-site phosphorylation of serine and threonine 
residues[22]. NOS2, the inducible NOS, is predomi-
nantly regulated at the transcriptional level. Due to its 
high affinity for calmodulin, NOS2 activity is rela-
tively independent of intracellular calcium fluxes but 
requires binding of transcriptional activators nuclear 
factor-kappa B(NF-κB), activator protein-1 (AP-1) or 
signal transducers and activators of transcription 1α 
STAT1α[23-25] for expression. The NOS2 isoform can 
be rapidly induced by pro-inflammatory cytokines, re-
sulting in heightened levels of NOS2 protein expres-
sion and NO production; thus, NOS2 can become the 
major source of NO under inflammatory conditions.

The three NOS isoforms are differentially expressed 
in numerous resident and inflammatory cell types in 
the lung and can vary in both expression and activ-
ity under normal and proinflammatory conditions. 
NOS1 is expressed mainly in airway epithelial cells[26] 
while NOS3 is expressed in the airway epithelium 
and vascular endothelium[27]. NOS1 and NOS3 are 
both expressed under basal conditions and contribute 
to the baseline concentrations of exhaled NO. NOS2 
is expressed at low to undetectable levels under non-
inflammatory conditions but can be expressed at high 
levels in the airway epithelium, airway smooth mus-
cle, inflammatory cells and alveolar type 2 cells under 
inflammatory conditions. NOS2 is thought to contrib-
ute to the increase in exhaled NO observed in asth-
matics and animal models of allergic inflammation. 
Despite tight regulatory controls over the constitutive 
NOS1 and NOS3 isoforms, NOS2 isoform expression 
can change depending on surrounding NO concentra-
tion and cytokine expression[28]. As a result, NO pro-
duction by the different enzymatic isoforms can vary 
significantly depending on the surrounding conditions 
and have sweeping effects on lung function.

The rate of clearance of NO also depends on nu-
merous factors. Accumulation in protected cellular 
compartments, including the plasma membrane, li-
pophilic protein folds and interstitial spaces (the in-
ner mitochondrial space or vesicles) can increase 
the half-life of the molecule[29]. Reaction of NO with 
glutathione, forming S-nitrosoglutathione (GSNO), 
or with albumin or hemoglobin can convert NO into 
a more stable intermediate, giving NO the capacity to 
have functional activity far removed from its tempo-
ral and positional origin. The oxidization products of 
NO, nitrate and nitrite, are more stable than NO and 
can serve as a substrate pool for NO under hypoxic 
conditions by enzymatic conversion using xanthine 
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oxidoreductase[30] or by non-enzymatic reduction via 
electron and proton transfer reactions with both free 
and protein-associated heme[31,32]. Excessive nitrate 
and nitrite can be filtered from the plasma and ex-
creted in the urine or exhaled from the lung directly as 
either NO or as one of its many oxidation products.

L –arginine and inflammation  
NO production can be greatly increased under in-

flammatory conditions but, like other enzymatic re-
actions, is limited by the amount of active enzyme 
present, the concentration of the enzymatic cofac-
tor, tetrahydrobiopterin (BH4), and of the substrate, 
L-arginine. L-arginine is a semi-essential amino acid 
that serves as a substrate for numerous enzymatic 
pathways and a precursor for protein synthesis[33]. In 
the body, circulating L-arginine concentration in the 
plasma is the sum of the dynamic interconversion 
of L-arginine downstream metabolites, protein syn-
thesis and degradation, dietary intake and excretion. 
L-Arginine is first absorbed in the gut through the 
epithelium of the small intestine where it is converted 
into L-citrulline and then enters the circulation. Syn-
thesis of L-arginine from L-citrulline occurs mainly in 
the kidney by the concerted enzymatic activities of the 
argininosuccinate synthase (AS) and argininosuccinate 
lyase (AL), although certain cell types, including al-
veolar macrophages, retain the capacity to regenerate 
L-arginine by this pathway.

L-arginine incorporated into proteins can be post-
translationally modified by methyltransferases, yield-
ing asymmetric dimethylarginine (ADMA), symmetric 
dimethylarginine (SDMA) and N-monomethylarginine 
(L-NMMA). After protein degradation, these methyl-
ated products are released back into the free amino 
acid pool[34,35] where they can competitively in-
hibit NOS activity and compete with L-arginine for 
transmembrane transport by the cationic amino acid 
transporter (CAT). The dimethylarginine molecules 
can also be enzymatically converted back into L-ar-
ginine by dimethylarginine dimethylaminohydrolase 
(DDAH) or excreted in the urine[36]. 

L-arginine is also metabolized by several differ-
ent metabolic pathways, resulting in the formation 
of downstream products such as creatine, agmatine, 
glutamate, proline, polyamines, ornithine and NO (Fig. 
1). These metabolic products can affect the develop-
ment of or perpetuate the asthmatic phenotype. Creat-
ine has been linked to increased airway hyperreactiv-
ity as measured by Penh and increased airway eosi-
nophilia, though only at high supplemented dosages[37]. 
Agmatine is a weak NOS inhibitor[38] and glutamine 
is a precursor for γ-aminobutyric acid (GABA) and 

glutathione, which increases mucus production in the 
airway epithelium or act as an antioxidant, respective-
ly[39,40]. Proline is a precursor for collagen, a component 
of the basement membrane that becomes thickened 
during asthmatic airway remodeling[41,42]. Polyamines 
are important regulators of the cell cycle, proliferation, 
differentiation and apoptosis[41-43].

With systemic or chronic inflammation, the rate 
of L-arginine reconversion may become insufficient 
to maintain normal plasma concentration[44-46]. In this 
case, total L-arginine catabolic and anabolic reaction 
rates have become unbalanced, producing an overall 
shift toward L-arginine catabolism. This L-arginine 
flux imbalance may occur throughout the whole body, 
reducing overall circulating L-arginine, be limited 
to a tissue microenvironment where the diffusion of 
L-arginine from the circulating plasma to the target 
tissues becomes the limiting factor, or occur within 
specific cellular compartments where diffusion and 
transmembrane transport rates may affect L-arginine 
supply[47-49]. 

Reduced L-arginine content has been detected in the 
airway compartment of mice exposed to ovalbumin 
(OVA) to mimic allergic airway disease[50,51]. In mod-
erate asthmatic subjects, circulating plasma L-arginine 
is reduced compared to control subjects (45 µmol/L L-
arginine compared to control values of 94 µmol/L). The 
decrease in plasma L-arginine in asthmatics coincides 
with a 3-fold increase in plasma arginase activity[52] 
and occurs concurrently with changes in the dynamics 
of L-arginine’s primary metabolic pathways, the NOS 
pathway and the arginase pathway. 

Expression of arginase I (Arg1) increases in murine 
models of allergic asthma induced by either OVA, A. 
fumigatis exposure[53-56], or house dust mite allergen 
(HDMA)[57] (up to an 8-fold increase in total Arg1 
expression in the airways of mice exposed to OVA). 
The increase in Arg1 expression in mice directly cor-
relates with increased arginase activity[56]. This change 
in L-arginine metabolism is thought to control NOS-
dependent production of NO by the depletion of their 

Protein
Creatine

Fig. 1  Schema of major L-arginine metabolic path-
ways
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common substrate, L-arginine.

L-arginine depletion: enzyme uncoupling  
The depletion of L-arginine in the airways can have 

consequences in addition to reducing total NO pro-
duction. Constitutive NOS isoforms perform a two 
step conversion of L-arginine and oxygen to L-citrul-
line and NO. In the absence of sufficient L-arginine 
(under 100 µmol/L) and/or BH4, NOS activity can 
produce superoxide (•O2

-). This is termed “uncoupling” 
as the oxygenase domain is uncoupled from the re-
ductase domain of the enzyme[58]. Uncoupling results 
in the constitutively active NOS enzymes producing 
a combination of NO and superoxide[59-61], which can 
combine to form peroxynitrite. 

The uncoupling phenomenon only occurs at low 
BH4 concentration in the inducible NOS isoform[62]. 
Examination of the catalytic mechanism of the NOS2 
enzyme identified the flavin-binding reductase do-
main, not the oxygenase domain, of NOS2 as the 
source of superoxide production[63]. This difference 
in catalytic mechanism in the NOS2 isoform, as con-
trasted with the constitutive NOS1 and NOS3 isofor-
ms, may exist because the antimicrobial action of NO 
depends on its reaction with the free radical species 
superoxide to form the more potent oxidant peroxyni-
trite. 

Arginase: a competitor for L-arginine 
The arginase enzymes are homotrimeric metalloen-

zymes stabilized in conformation by two Mn2+ ions 
per monomeric structure. There are two isoforms of 
arginase, Arg1 and arginase 2 (Arg2). Arg1 is often 
referred to as liver arginase, especially in older texts, 
as it is found at high levels in the liver as part of the 
urea cycle of enzymes, but it is also expressed in bone 
marrow-derived cells[64], such as neutrophils, macro-
phages[65] and red blood cells in humans, as well as in 
fibroblasts[66], epithelial and endothelial cells[67] upon 
activation by proinflammatory cytokines or hypoxia. 
Arg2 is found ubiquitously at low levels in mitochon-
dria and at high levels in the kidney.  

Although Arg1 and NOS2 are expressed in the air-
way and inflammatory cells of the lung, and in some 
cases within the same cell, there is controversy re-
garding the ability of arginase to compete with NOS 
for L-arginine due to kinetic properties of the two 
enzymes.  Kinetic assays using isolated arginase have 
indicated the maximum rate of hydrolysis of L-arginine 
into L-ornithine and urea at a Km of 1 mmol/L and a 
Vmax of 4,380 µmol/(min·mg)[68]. Based solely upon 
the calculated Km values, (Arg: 1 mmol/L, and NOS: 
10 µmol/L), the arginase enzymes do not appear capa-

ble of competing with the NOS enzymes at L-arginine 
concentrations below 100 µmol/L. However, the en-
zymes’ kinetic parameters were determined in a closed 
system with isolated enzymes and do not take into ac-
count enzyme coupling, non-freely diffusible substrate 
pools, intracellular localization of the enzymes and 
substrate transporter expression and activity, diffusion 
gradients, and potential sequestration[69-72]. 

In vitro studies in isolated endothelial cells note 
that increasing the extracellular arginine concentration 
increases NO production despite average intracellular 
L-arginine concentrations than would be considered 
saturating for the enzyme based upon its kinetics. Co-
localization of cationic amino acid transporters (CAT) 
1 and 2B, and L-arginine recycling enzymes, AS and 
AL, with NOS3 make the NOS3 enzyme depend-
ent upon extracellular L-arginine concentration, the 
concentration of other cationic amino acids that can 
compete for transport via CAT, and/or the rates of L-
arginine re-synthesis[73,74]. 

In the 1990s, research began to focus on the poten-
tial for arginase activity to regulate airway reactiv-
ity. In a series of experiments utilizing ex vivo airway 
preparations from allergen-exposed guinea pigs, de 
Boer et al. observed the dependence of airway hyper-
reactivity on NO deficiency[75,76] and that this defi-
ciency was L-arginine concentration dependent[77]. By 
analyzing NO production in the presence and absence 
of the arginase inhibitor Nω-hydroxy-nor-arginine 
(nor-NOHA), researchers showed that the deficiency 
of NO caused by arginase activity was the causative 
agent for the development of airway hyperreactiv-
ity[78-81]. Although this mechanism was previously 
identified in cultured macrophages[82,83] and endothe-
lial cells[84], the identification of this phenomenon in 
the resident airway cells of the lung had a significant 
impact on the understanding of NO function in the 
airways. 

Recently, we have found that systemic treatment 
of mice with a competitive inhibitor of arginase in a 
model of allergen-induced airway inflammation sig-
nificantly increased the amount of NO produced, as 
measured by the nitrite + nitrate (NOx) concentra-
tion in lung lavage supernatant[50]. We also verified 
that arginase inhibition increases L-arginine content 
in the conducting airways of C57BL/6 mice exposed 
to OVA (Fig. 2). Examination of Arg1 expression in 
OVA-exposed C57BL/6 and congenic NOS2 knock-
out mice[1] demonstrated that Arg1 content in the air-
way compartment may be regulated by NOS2 activity. 
Expression levels of Arg1 also vary between BALB/c 
mice and C57BL/6 strains[50,56], but these strain differ-
ences may be linked to variability in NF-κB signaling 
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which is altered in the two strains[85] and in the NOS2 
knockout mice. Given the apparent linked regulation 
of Arg1 and NOS, targeted therapeutic interventions at 
one of these enzymes will be needed to recognize and 
account for the effects on the other. 

L-arginine and arginase: potential therapeu-
tic targets

In addition to asthma, arginase activity has been 
shown to correlate with the disease severity in several 
lung diseases including COPD, cystic fibrosis and 
sickle cell anemia[86,87]. To better understand the role 
of arginase activity in perpetuating and/or potentiating 
inflammatory lung disease, arginase inhibitors have 
been used extensively in animal models of allergen-
induced inflammatory lung disease using tracheal 
explants and in cell culture. In these models, the inhi-
bition of arginases increases the production of NO, the 
product of the competing NOS pathway. 

The liver and kidneys contribute a significant por-
tion of the body’s overall arginase activity and pro-
longed treatment with arginase inhibitors may inad-
vertently target these highly perfused organ systems 
causing metabolic imbalance. Tissue-specific targeting 
of arginase inhibitors would limit systemic effects, but 
can be difficult to achieve due to the hydrophilic na-
ture of the currently available drugs, which are mainly 
structural analogues of arginine[88]. 

There are two basic subsets of arginase inhibitors: 
reversible and irreversible. The reversible inhibitors 
can be further divided into boronic acid-based inhibi-
tors and non-boronic acid-based inhibitors. Most re-
versible inhibitors are L-arginine molecular analogs, 
which mimic the transition-state structure of L-arginine 
during the arginase hydrolysis reaction (Fig. 3). The 
inhibitors are structurally similar to the molecule, Nω-
hydroxy-L-arginine (NOHA), an intermediate in the 
synthesis of NO by the NOS family of enzymes. Al-
though NOHA can act as an arginase inhibitor and a 
substrate for NOS, transition state inhibitors, such as 
nor-NOHA and N(G)-hydroxy-L-arginine (L-NOHA) 
cannot be converted to NO by the NOS enzymes or 
inhibit NOS enzyme activity. In addition to the NO-
HA-based molecules, there is a small group of amino 
acid sulfonamides that can inhibit arginase activity[89]. 
These compounds are also transition state mimetics 
with an activated guanidino group that bridges the bi-
nuclear manganese cluster, but with a lower binding 
efficiency than the boronic and NOHA-based inhibi-
tors. 

2-(S)-amino-5-(2-aminoimidazol-1-yl)pentanoic 
acid (A1P) is a recently developed arginase inhibi-
tor that utilizes a 2-aminoimidazole moiety in place 

of a guanidine side chain (Fig. 3). This newly de-
veloped arginase inhibitor has a Ki of 4 μmol/L and 
has recently been used in a murine model of allergic 
inflammation to significantly reduce airway hyperre-
sponsiveness[90]. Much like the non-boronic acid based 
inhibitors, the boron-based arginase inhibitors are also 
transition state inhibitors but with a significantly high-
er potency, ≥ 5-fold lower IC50 and 5-fold lower Ki, 
and cannot serve as a substrate for NOS enzymes[91,92]. 
Boron-based inhibitors, 2(S)-amino-6-boronohexonic 
acid (ABH) or S-(2-boronoethyl)-L-cysteine (BEC), 
have been used extensively in animal models of aller-
gic asthma with considerable success[79,93-95].

Fig. 2  L-arginine content in microdissected airways 
of BALB/c mice sensitized and exposed to ovalbumin 
(OVA) for two weeks.  Mice exposed to ovalbumin and 
treated with the arginase inhibitor Nω-hydroxy-nor-L-arginine 
(nor-NOHA) had higher levels of L-arginine in their dissected 
airways compared to mice exposed to ovalbumin alone. FA: fil-
tered air. *P < 0.05.
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The irreversible arginase inhibitor (+)-S-2-amino-6-
iodoacetamidohexanoic acid (2-AIHA) is also a potent 
inhibitor of the enzyme. 2-AIHA is an Nω-derivative 
of (+)-lysine with significant toxicity issues, including 
liver and kidney damage in mice[96].

Several other classes of drugs can also affect argin-
ase indirectly by acting as a general anti-inflammatory 
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agent: NSAIDs, corticosteroids, and statins – the latter 
two of which block Arg1 induction in murine and hu-
man tissues[66,97,98]

Several investigators have taken the information 
from previously described in vitro and ex vivo studies 
to examine animal models of allergic airway disease 
in order to better understand the complex relationship 
between NO, airway hyperreactivity and airway in-
flammation. Experiments utilizing arginase inhibitors 
and Arg1 RNAi have indicated that arginase inhibition 
can decrease airway inflammation and reduce airway 
hyperreactivity[56,93,94,99]. However, a study by Ckless 
et al.[100] noted an increase in airway inflammation and  
hyperresponsiveness, with significant increases in ni-
trotyrosine and S-nirosylation, indicating an increase 
in NO-based oxidative products. In this study, mice 
were treated with the inhibitor using a single intratra-
cheal dose 2 h after the final (3rd) allergen exposure. 
Although oxidative products increased with a single 
dose, there were reductions in IL-4; thus, the increase 
in oxidative stress products may have been due to pre-
established uncoupling of the NOS enzymes in the 
lung. 

Supplementation of L-arginine or manipulation of 
NOS expression has shown similar effects on airway 
hyperreactivity and inflammation, further supporting 
the theory that increasing NOS substrate concentra-
tion, either by manipulation of competing metabolic 
pathways or increasing substrate concentration, di-
rectly impacts upon the severity of the allergic re-
sponse[93,101]. For example, the deletion of the NOS2 
isoform increases the influx of inflammatory cells and 
airway hyperreactivity, whereas overexpression of 
NOS3 reduces these parameters[102-104]. It is interesting 
that both Ten Broeke et al[103] and Kobayashi et al[104] 
found that a strategy of overexpressing NOS3 in the 
vascular and airway epithelium of mice to increase 
NO levels decreased allergic airway inflammation, 
chemokine expression, and airway hyperrsponsive-
ness. Providing substrate to the “right” NOS isoform is 
appealing therapeutically, but clearly a challenge. For 
example, we found that supplementation of asthmatic 
patients with relatively high doses of L-arginine (5-8 
g/day) in order to increase substrate availability to the 
NOS enzymes gives unpredictable results. Some asth-
matic subjects boost exhaled NO levels, while others 
have a significant increase in the downstream products 
of arginase, as measured in serum. Furthermore, sup-
plementation in asthmatic patients may cause short 
term increases in plasma ADMA[105], which may result 
from increased efflux of intracellular ADMA into the 
plasma compartment. While the strategy of L-arginine 
supplementation is appealing because it is inexpensive 

and readily available, it will be important to discover 
a biomarker or NOS/arginase genotype that predicts 
some response to therapy.

The use of arginase inhibitors and of L-arginine ad-
ministration as a therapeutic intervention is not limited 
to models of allergic asthma. These approaches have 
also been used successfully in models of ischemia–
reperfusion injury[106-109], endothelial dysfunction[110-112], 
and Leishmania infection[113,114], all of which share the 
commonality of arginase depletion of L-arginine.

CONCLUSION
The current paradigm on the interaction between 

arginase and NOS enzymes in allergic airway inflam-
mation and hyperreactivity is that increased NOS and 
arginase activity results in competition between these 
two metabolic pathways for the common substrate, 
L-arginine. The competition between the ARG and 
NOS does not necessarily occur solely through the 
ARG1 and NOS2 isoforms, as this has been shown 
to vary depending on the tissue and disease state of 
interest[106-116]. The increase in L-arginine metabolism 
that accompanies allergic inflammation can lead to the 
depletion of L-arginine, which may be limited to the 
lung tissue or cause depletion of circulating plasma 
L-arginine. Supplementation of L-arginine and/or ar-
ginase inhibition can reduce the impact of the arginase 
metabolic pathways on NO production, reducing the 
severity of airway inflammation and the development 
of airway hyperreactivity. 
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