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Abstract

High-coverage Long Read DNA sequencing with the Oxford Nanopore MinION

by

Miten Jain

Nanopore sequencing was conceived in 1989 by Dave Deamer (UCSC). Over two decades
of development from research laboratories and, later on, Oxford Nanopore Technologies
resulted in the MinION nanopore sequencer. This work describes the developments in
MinION nanopore sequencing and software, and technical milestones achieved since the
MinION’s release in 2014. These developments include establishing DNA reads that
exceed 200 kb+ lengths and direct, simultaneous detection of nucleotide modifications
in DNA and RNA. Due to their portability and real-time aspect, MinIONs are poised

to become a routine tool for genomics and biology.
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The Oxford Nanopore MinION:
delivery of nanopore sequencing
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Abstract

Nanopore DNA strand sequencing has emerged as a competitive, portable tech-
nology. Reads exceeding 150 kilobases have been achieved, as have in-field detection
and analysis of clinical pathogens. We summarize key technical features of the Ox-

ford Nanopore MinlON, the dominant platform currently available. We then discuss



pioneering applications executed by the genomics community.

Introduction

Nanopore sequencing was pioneered by David Deamer at the University of
California Santa Cruz, and by George Church and Daniel Branton (both at Harvard
University). Beginning in the early 1990s, academic laboratories reached a series of
milestones towards developing a functional nanopore sequencing platform (reviewed in
[1,2]). These milestones included the translocation of individual nucleic acid strands in
single file order [3], processive enzymatic control of DNA at single-nucleotide precision
[4], and the achievement of single-nucleotide resolution [5, [6].

Several companies have proposed nanopore-based sequencing strategies. These
involve either: the excision of monomers from the DNA strand and their funneling, one-
by-one, through a nanopore (NanoTag sequencing (Genia), Bayley Sequencing (Oxford
Nanopore)); or strand sequencing wherein intact DNA is ratcheted through the nanopore
base-by-base (Oxford Nanopore MinION). To date, only MinION-based strand sequenc-
ing has been successfully employed by independent genomics laboratories. Where
possible, this review focuses on peer-reviewed research performed using the MinlION
[, (7, 18, 9} 1Ol [T, 12} 13, 14, 15, [16] 17, 18] 19, 20, 21, 22], 23], 24] 25] 26, 27, 28| 291 30,

31, 32, 133, 134, 35, 36], 37, 38]



DNA strand sequencing using the Oxford Nanopore Min-

ION

Oxford Nanopore Technologies (ONT) licensed core nanopore sequencing patents
in 2007, and began a strand sequencing effort in 2010 [2]. At the Advances in Genome
Biology and Technology (AGBT) 2012 conference, Clive Brown (Chief Technical Officer
of ONT) unveiled the MinION nanopore DNA sequencer, which was subsequently re-
leased to early-access users in April 2014 through the MinION Access Program (MAP).

The MinION is a 90-g portable device. At its core is a flow cell bearing up to
2048 individually addressable nanopores that can be controlled in groups of 512 by an
application-specific integrated circuit (ASIC). Prior to sequencing, adapters are ligated
to both ends of genomic DNA or ¢cDNA fragments (Fig. [0.1)). These adapters facilitate
strand capture and loading of a processive enzyme at the 5-end of one strand. The
enzyme is required to ensure unidirectional single-nucleotide displacement along the
strand at a millisecond time scale. The adapters also concentrate DNA substrates at
the membrane surface proximal to the nanopore, boosting the DNA capture rate by
several thousand-fold. In addition, the hairpin adapter permits contiguous sequencing
of both strands of a duplex molecule by covalently attaching one strand to the other.
Upon capture of a DNA molecule in the nanopore, the enzyme processes along one
strand (the ‘template read’). After the enzyme passes through the hairpin, this process

repeats for the complementary strand (the ‘complement read’).
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Figure 0.1: Data for a 2D read of a full-length A phage dsDNA from the MinlON
nanopore sequencer. (a) Steps in DNA translocation through the nanopore: (i) open
channel; (ii) dsDNA with lead adaptor (blue), bound molecular motor (orange) and
hairpin adaptor (red) is captured by the nanopore; capture is followed by translocation of
the (iii) lead adaptor, (iv) template strand (gold), (v) hairpin adaptor, (vi) complement
strand (dark blue) and (vii) trailing adaptor (brown); and (viii) status returns to open
channel. (b) Raw current trace for the passage of the single 48-kb A dsDNA construct
through the nanopore. Regions of the trace corresponding to steps i-viii are labeled. (c)
Expanded time and current scale for raw current traces corresponding to steps i-viii.
Each adaptor generates a unique current signal used to aid base calling.
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As the DNA passes through the pore, the sensor detects changes in ionic cur-
rent caused by differences in the shifting nucleotide sequences occupying the pore. These
ionic current changes are segmented as discrete events that have an associated duration,
mean amplitude, and variance. This sequence of events is then interpreted computation-
ally as a sequence of 3-6 nucleotide long kmers (‘words’) using graphical models. The
information from template and complement reads is combined to produce a high-quality
‘2D read’, using a pairwise alignment of the event sequences.

An alternate library preparation method does not use the hairpin to connect
the strands of a duplex molecule. Rather, the nanopore reads only one strand, which
yields template reads. This allows for higher throughput from a flow cell, but the

accuracy for these ‘1D reads’ is slightly lower than that of a ‘2D read’.

Benefits of MinlON compared to other next generation se-

quencing platforms

Detection of base modifications

Next generation sequencing (NGS) technologies do not directly detect base
modifications in native DNA. By contrast, single-molecule sequencing of native DNA
and RNA with nanopore technology can detect modifications on individual nucleotides.
Previously, Schreiber et al. [39] and Wescoe et al. [40] demonstrated that a single-
channel nanopore system can discriminate among all five C-5 variants of cytosine (cyto-

sine (C), 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine



(5-fC), and 5-carboxylcytosine (5-caC)) in synthetic DNA. The discrimination accura-
cies ranged from 92 to 98% for a cytosine of interest in a background of known sequences
[40].

In 2016, two research groups independently demonstrated that MinIONs can
detect cytosine methylation in genomic DNA [41] [42]. Rand et al. [41] (see Chapter [3))
developed a probabilistic method that combines a pair hidden Markov model (HMM)
and a hierarchical Dirichlet process (HDP) mixture of normal distributions. They per-
formed a three-way classification among C, 5-mC, and 5-hmC with a median accuracy
of 80% in synthetic DNA [4I]. Simpson et al. [42] performed a similar study in which
they trained an HMM to perform a two-way classification among C and 5-mC, with

82% accuracy in human genomic DNA.

Real-time targeted sequencing

There are significant advantages to acquiring and analyzing DNA or RNA
sequences in a few hours or less, especially for clinical applications. This is difficult
using conventional NGS platforms, but relatively straightforward using the MinION
because of its size, cost, simple library prep, and portability (see [14]). Beyond this,
the MinION platform permits real-time analysis because individual DNA strands are
translocated through the nanopore, allowing decisions to be made during the sequencing
run.

This real-time utility of MinION was first demonstrated by Loose et al. [43]

in a manuscript that described targeted enrichment (‘Read Until’) of 5 and 10 kb re-



gions from phage lambda double-stranded DNA (dsDNA). Briefly, a mixture of DNA
fragments is applied to the MinlON flow cell. While a DNA strand is captured and
processed in the nanopore, the resulting event levels are aligned against the expected
pattern for a target sequence. If the pattern matches, the sequencing continues (Fig.
). If the pattern does not match, the DNA strand is ejected from the nanopore so
that a subsequent DNA strand can be captured and analyzed (Fig. [0.2b). In doing
this, reads of the targeted strand are rapidly accumulated relative to the DNA strand
population as a whole. ‘Read Until’ demonstrates how MinlON sequencing could sig-
nificantly reduce the time required from biological sampling to data inference, which is

pertinent for in-field and point-of-care clinical applications.
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Figure 0.2: ‘Read Until’ strategy for selective sequencing of dsDNA molecules. The ionic
current profile obtained during translocation of a DNA strand through the nanopore is
compared in real time to the ionic current profile of a target sequence. a As sequencing of
the template strand of DNA proceeds (during step iv), the measured current is compared
to the reference current profile. If there is a match, sequencing of that strand continues
to completion (steps v-vii). A new strand can now be captured. b Alternatively, if the
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Extending read lengths using the MinION

A virtue of nanopore DNA strand sequencing is read lengths that substantially
exceed those of dominant NGS platforms. For example, 1D reads over 300 kb in length
and 2D reads up to 60 kb in length have been achieved using Escherichia coli genomic
DNA [44]. To demonstrate utility, Jain et al. [9] (see Chapter [1]) used 36-kb+ MinION
reads to resolve a putative 50-kb gap in the human Xq24 reference sequence. Previously,
this gap in the reference sequence could not be completed because it contained a series
of 4.8-kb-long tandem repeats of the cancer-testis gene CT47. This work established

eight CT47 repeats in this region (Fig. [0.3]).
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Figure 0.3: Estimate CT47-repeat copy-number on human chromosome Xq24. (a) BAC
end sequence alignments (RP11-482A22: AQ630638 and AZ517599) span a 247-kb re-
gion, including 13 annotated CT47 genes [45] (each within a 4.8-kb tandem repeat), and
a 50-kb scaffold gap in the GRCh38/hg38 reference assembly. (b) Nine MinION reads
from high molecular weight BAC DNA span the length of the CT47-repeat region, pro-
viding evidence for eight tandem copies of the repeat. The insert (dashed line), whose
size is estimated from pulse-field gel electrophoresis, with flanking regions (black lines)
and repeat region (blue line) are shown. Single-copy regions before and after the repeats
are shown in orange (6.6 kb) and green (2.6 kb), respectively, along with repeat copies
(blue) and read alignment in flanking regions (gray). The size of each read is shown to
its left. (c) Shearing BAC DNA to increase sequence coverage provided copy-number
estimates by read depth. All bases not included in the CT47 repeat unit are labeled as
flanking regions (gray distribution; mean of 46.2-base coverage). Base coverage across
the CT47 repeats was summarized over one copy of the repeat to provide an estimate
of the combined number (dark blue distribution; mean of 329.3-base coverage) and was
similar to single-copy estimates when normalized for eight copies (light blue distribution;
mean of 41.15-base coverage). (Figure reproduced from Jain et al. [9]).
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Detection of structural variants

Mistakes arising in assemblies of 450-base-long NGS reads are also problematic
when characterizing structural variants in human genomes. The problem is acute in
cancer, where examples of copy number variants, gene duplications, deletions, insertions,
inversions, and translocations are common. For reads that averaged 8 kb in length,
Norris et al. [46] used the MinION to detect structural variants in a pancreatic cancer
cell line. These authors concluded that the MinlON allowed for reliable detection of
structural variants with only a few hundred reads compared to the millions of reads

typically required when using NGS platforms.

RNA expression analysis

RNA expression analysis is most often performed by NGS sequencing of cDNA
copies. A drawback of this strategy is that the reads are relatively short, thus requiring
assembly of cDNA reads into full-length transcripts. This is an issue for the accurate
characterization of RNA splice isoforms because there is often insufficient information
to deconvolute the different transcripts properly. Full-length cDNA reads would avoid
this problem and can be executed with either the PacBio or MinlION platforms.

To illustrate, Bolisetty et al. [§] used the MinION to determine RNA splice
variants and to detect isoforms for four genes in Drosophila. Among these is Dscam1, the
most complex alternatively spliced gene known in nature, with 18,612 possible isoforms

ranging in length from 1806 bp to 1860 bp [8]. They detected over 7000 isoforms for
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Dscam1 with >90% alignment identity. Identifying these isoforms would be impossible

with 450-base-long NGS reads.

Bioinformatics and platform advances

The first manuscript to discuss MinlON performance was based on limited
data and ill-suited analysis, and thus yielded misleading conclusions about the plat-
form’s performance [24]. Over the subsequent 9-month period, ONT optimized MinION
sequencing chemistry and base-calling software. Combined with new MinlON-specific
bioinformatics tools (Table , these refinements improved the identity of sequenced
reads, that is, the proportion of bases in a sequencing ‘read’ that align to a matching
base in a reference sequence, from a reported 66% in June 2014 [9] to 92% in March
2015 [44]. Links to these tools are provided in Table and highlighted in the sections

that follow.

Table 0.1: Software tools developed specifically for MinlON sequence data; there are
existing tools that can also be made to work with nanopore data (not shown)

Name Applications Link
Poretools [22] Sequence data extraction https://github.com/arqbx/poretools

and statistics

poRe [37] Sequence extraction and https://sourceforge.net/projects/
basic statistics rpore/

BWA MEM [7]  Sequence alignment https://github.com/1h3/bwa

LAST [48] Sequence alignment http://last.cbrc.jp/
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NanoOK [20]

marginAlign [9]

Nanopolish [49]

GraphMap [12]

minimap

miniasm

CANU [50]

Nanocorrect [49)

PoreSeq [51]

NaS [23]

Nanocorr [13]

Sequence alignment,
statistics, and visualiza-
tion

Sequence alignment, SNV
calling, and statistics
Signal alignment and SNV
calling

Sequence alignment and
SNV calling

Fast approximate map-
ping

De novo assembly

De novo assembly

De novo assembly

De novo assembly and
SNV calling

De novo assembly

De novo assembly
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Mash [52] Species identification and https://github.com/marbl/mash

fast approximate align-

ments
minoTour [53] Real-time data analysis https://github.com/minoTour/minoTour
Read Until [43] Selective sequencing https://github.com/mattloose/
RUscripts
Nanocall [54] Local base-calling https://github.com/mateidavid/
nanocall
DeepNano [55] Recurrent neural network https://bitbucket.org/vboza/deepnano

(RNN)-based base-calling

SNV single nucleotide variant

De novo base-calling

The base-calling for MinlON data is performed using HMM-based methods
by Metrichor, a cloud-based computing service provided by ONT. Metrichor presently
requires an active internet connection [54, 55] and is a closed source. However, its
base-calling source code is now available to registered MinlON users under a developer
license. To create a fully open-source alternative, earlier in 2016, two groups inde-
pendently developed base-callers for MinION data. Nanocall [54] is an HMM-based
base-caller that performs efficient 1D base-calling locally without requiring an internet

connection at accuracies comparable to Metrichor-based 1D base-calling. DeepNano
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[55], a recurrent neural network framework, performs base-calling and yields better ac-
curacies than HMM-based methods. Being able to perform local, offline base-calling is

useful when performing in-field sequencing with limited internet connectivity [30].

Sequence alignment

When the MAP began, the first attempts at aligning MinION reads to reference
sequences used conventional alignment programs. Most of these are designed for short-
read technologies, such as the 250-nucleotide highly accurate reads produced by the
Illumina platform. Not surprisingly, when applied to lower accuracy 10-kb MinION
reads, these aligners disagreed in their measurement of read identity and sources of
error, despite parameter optimization (Fig. . MarginAlign was developed to improve
alignments of MinION reads to a reference genome by better estimating the sources of
error in MinION reads [9]. This expectation-maximization-based approach considerably
improves mapping accuracy, as assayed by improvements in variant calling, and yielded
a maximum likelihood estimate of the insertion, deletion, and substitution errors of the
reads (Fig. [0.4). This was later used by a MAP consortium to achieve a 92% read

accuracy for the E. coli k12 MG1655 genome [44].
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Figure 0.4: Maximum-likelihood alignment parameters derived using expectation-
maximization (EM). The process starts with four guide alignments, each generated
with a different mapper using tuned parameters. Squares denote error estimates de-
rived from different mappers when used without tuning; circles denote error estimates
post-tuning; and triangles denote error estimates post-EM. (a) Insertion versus deletion
rates, expressed as events per aligned base. (b) Indel events per aligned base versus
rate of mismatch per aligned base. Rates varied strongly between different guide align-
ments; but EM training and realignment resulted in very similar rates (gray shading in
circles), regardless of the initial guide alignment. (c¢) The matrix for substitution emis-
sions determined using EM reveals very low rates of A-to-T and T-to-A substitutions.
The color scheme is fitted on a log scale, and the substitution values are on an absolute
scale. (Figure reproduced from Jain et al. [9]).

MarginAlign refines alignments generated by a mapping program, such as
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LAST [48] or BWA mem [47], and is therefore reliant on the accuracy of the initial
alignment. GraphMap [12] is a read mapper that employs heuristics that are optimized
for longer reads and higher error rates. In their study, Sovic et al. [I2] demonstrated that
GraphMap had high sensitivity (comparable to that of BLAST) and that GraphMap’s

estimates of error rates were in close agreement with those of marginAlign.

De novo assembly

The current error profile of MinlON reads makes them largely unsuitable for
use with de novo assembly methods that are designed for short reads, such as de Bruijn
graph-based methods. This is principally for two reasons. First, these methods rely
on a sufficient fraction of all possible k-mers sequenced being reconstructed accurately;
the overall indel and substitution error rates produced by MinlON are unlikely to meet
this demand. Second, de Bruijn graphs, in their structure, do not exploit the longer-
read information generated by the MinION. Instead, nanopore sequencing is helping to
mark a return to overlap-consensus assembly methods [49], a renaissance that largely
started with the earlier advent of SMRT sequencing [56]. Overlap-consensus methods
were principally developed for lower-error-rate Sanger-based sequencing, and so novel
strategies are required to error correct the reads before they are assembled. The first
group to demonstrate this approach achieved a single contig assembly of the E. coli
K-12 MG1655 genome at 99.5% base level accuracy using only MinION data [49]. Their
pipeline, ‘nanocorrect’, corrected errors by first aligning reads using the graph-based,

greedy partial order aligner method [57], and then by pruning errors that were apparent
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given the alignment graph. The error-corrected reads were then assembled using the
Celera Assembler. This draft assembly was then further improved using Loman and

co-worker’s polishing algorithm, ‘nanopolish’ [49].

Single-nucleotide variant calling

Reference allele bias, the tendency to over-report the presence of the reference
allele and under-report non-reference alleles, becomes more acute when the error rate
of the reads is higher, because non-reference variants are more likely to be lost in noisy
alignments. To overcome this problem for MinION reads, several academic laboratories
have developed MinlON-specific variant calling tools.

The marginCaller module in marginAlign [9] uses maximum-likelihood param-
eter estimates and marginalization over multiple possible read alignments to call single
nucleotide variants (SNVs). At a substitution rate of 1% (in silico), marginCaller de-
tected SNVs with 97% precision and 97% recall at 60x coverage. Similarly, by optimiz-
ing read level alignments, Sovic et al. [12] used their GraphMap approach, for accurate
mapping at high identity, to detect heterozygous variants from difficult-to-analyze re-
gions of the human genome with over 96% precision. They also used in silico tests to
demonstrate that GraphMap could detect structural variants (insertions and deletions
of different lengths) with high precision and recall.

Nanopolish [49] uses event-level alignments to a reference for variant calling.
This algorithm iteratively modifies the starting reference sequence to create a consensus

of the reads by evaluating the likelihood of observing a series of ionic current signals
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given the reference nucleotide sequence. At each iteration, candidate modifications to
the consensus sequence are made and the sequence with the highest likelihood is chosen.
At termination of iteration, the alignment of the final consensus to the final reference
sequence defines the variants (differences) between the reads and the reference. This
approach was used to demonstrate the feasibility of real-time surveillance as part of a
study in West Africa in which Quick et al. [30] identified ebola virus sub-lineages using
the MinION with ~80% mean accuracy.

PoreSeq [51] is a similar algorithm to Nanopolish, published around the same
time, that also iteratively maximizes the likelihood of observing the sequence given a
model. Their model, which like Nanopolish uses MinlON event-level data, accounts
for the uncertainty that can arise during the traversal of DNA through the nanopore.
PoreSeq can achieve high precision and recall SNV-calling at low coverages of sequence
data. Using a 1% substitution rate in the M13 genome, Szalay and Golovchenko [51]
demonstrated that PoreSeq could detect variants with a precision and recall of 99%
using 16x coverage. This is around the same accuracy as marginAlign on the same
data, but at a substantially lower coverage, demonstrating the power of the event-level,

iterative approach.

Consensus sequencing for high accuracy

The read accuracy of 92% currently achieved by MinION is useful for some
applications, but at low coverage it is insufficient for applications such as haplotype

phasing and SNV detection in human samples, where the number of variants to be
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detected is smaller than the published variant-detection error rates of algorithms using
MinION data. One method previously used to improve the quality of single-molecule
sequence employed rolling circle amplification [56]. In a parallel method for the MinION,
Li et al. [58] used rolling circle amplification to generate multiple copies of the 16S
ribosomal RNA (rRNA) gene in one contiguous strand. MinION nanopore sequencing
of each contiguous strand gave a consensus accuracy of over 97%. This allowed sensitive

profiling in a mixture of ten 16S rRNA genes.

Current applications of the MinION

Analysis of infectious agents at point-of-care

Next-generation sequencing can detect viruses, bacteria, and parasites present
in clinical samples and in a hospital environment [I1} 14} 27 [34]. These pathogen se-
quences enable the identification and surveillance of host adaptation, diagnostic targets,
response to vaccines, and pathogen evolution [30]. MinIONs are a new tool in this area
that provide substantial advantages in read length, portability, and time to pathogen
identification, which is documented to be as little as six hours from sample collection
[14]. Pathogen identification can be performed in as little as four minutes once the sam-
ple is loaded on the MinION [I4]. The breadth of clinical applications demonstrated
to date include studies of chikungunya virus [14], hepatitis virus C [14], Salmonella
enterica [28], and Salmonella typhimurium [7], as well as work on antibiotic resistance

genes in five Gram-negative isolates and on the mecA gene in a methicillin-resistant
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Staphylococcus aureus (MRSA) isolate [17].

Arguably, the most inspired clinical use of the MinION to date involved teams
of African and European scientists who analyzed Ebola samples on-site in West Africa
[30, 5I]. The recent viral epidemic was responsible for over 28,599 Ebola cases and
more than 11,299 deaths [60]. In the larger of the two studies, Quick and colleagues
[30] transported a MinION field sequencing kit (weighing <50 kg, and fitting within
standard suitcases) by commercial airline to West Africa. Once there, they sequenced
blood samples from 142 Ebola patients in a field laboratory. Ebola virus sequence data
were generated within 24 h after sample delivery, with confirmation of Ebola sequences
taking as little as 15 min of MinION run time. To our knowledge, these studies by
Quick et al. [30] and by Hoenen et al. [59] are the first applications of any sequencing

device for real-time on-site monitoring of an epidemic.

Teaching and citizen science

The low cost of entry and portability of the MinlON sequencer also make it
a useful tool for teaching. It has been used to provide hands-on experience to under-
graduate students as part of a recently taught course at Columbia University [61] and
to teach graduate students at the University of California Santa Cruz. Every student
was able to perform their own MinlON sequencing. Similarly, the short and simple
process of preparing a sequencing library allowed researchers at Mount Desert Island
Biological Laboratory in Maine to train high school students during a summer course

and have them run their own MinlON experiments. Their Citizen Science initiative in-
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tends to address questions pertaining to health and environment that would otherwise

be implausible [62].

Aneuploidy detection

One of the immediate applications of the MinION is aneuploidy detection in
prenatal samples. The typical turnaround time for aneuploidy detection in such samples
is 1-3 weeks when using NGS platforms [63]. Wei and Williams [38] used the MinION
to detect aneuploidy in prenatal and miscarriage samples in under 4 h. They concluded

that the MinION can be used for aneuploidy detection in a clinical setting.

MinIONs in space

At present, it is hard to detect and identify bacteria and viruses on manned
space flights. Most of these analyses, along with understanding the effects of space travel
on genomes, occur when the samples are brought back to Earth. As a first step to resolve
this shortcoming, NASA plans to test MinlON-based real-time sequencing and pathogen
identification on the International Space Station (ISS) [64] [65]. In a proof-of-concept
experiment, Castro-Wallace et al. [66] demonstrated successful sequencing and de novo
assembly of a lambda phage genome, an E. coli genome, and a mouse mitochondrial
genome. They noted that there was no significant difference in the quality of sequence
data generated on the ISS and in control experiments that were performed in parallel

on Earth [66].
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Outlook

PromethION

The MinION allows individual laboratories to perform sequencing and subse-
quent biological analyses, but there is a part of the research community that is interested
in high-throughput sequencing and genomics. Realizing this need, ONT has developed
a bench-top instrument, PromethION, that is projected to provide high-throughput and
is modular in design. Briefly, it will contain 48 flow cells that could be run individually
or in parallel. The PromethION flow cells contain 3000 channels each, and are projected
to produce up to 6 Th of sequencing data each day. This equates to over 60 human

genomes per day at 30x coverage.

Read accuracy

Single read accuracy is 92% for the current MinION device [44], which is often
sufficient for applications such as the identification of pathogens or mRNA (cDNA)
splice variants. However, some medical applications, such as the detection of individual
nucleotide substitutions or base adducts in a single mitochondrial genome, would require
read accuracies exceeding 99.99%. Given prior experience, it is reasonable that ONT
will continue to improve their chemistry and base-calling software. Nevertheless, it is
probable that Q40 nanopore sequencing will entail a single strand re-read strategy [2].

As is true for all sequencing platforms, MinlON’s base-call accuracy is im-

proved using consensus-based methods. For example, for an E. coli strain where single
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reads averaged ~80% accuracy, consensus accuracy improved to 99.5% at 30x coverage
[49]. The remaining 0.5% error appears to be non-random. This improvement is in part
due to the inability of the present MinlON platform to resolve homopolymers longer
than the nanopore reading head (six nucleotides), and to the absence of training in the
detection of base modifications. It is plausible that resolving these two issues will push

nanopore consensus accuracy to >99.99%.

Read length

With the advent of single-molecule sequencing technologies (PacBio and Min-
ION), the average read lengths increased from 250 nucleotides to 10 kb. More recently,
reads of more than 150 kb have routinely been achieved with the MinION (Akeson, un-
published findings), and this is expected to improve in the next few months. Achieving
long reads will allow progress in understanding highly complex and repetitive regions

in genomes that are otherwise hard to resolve.

Direct RN A sequencing

Sequencing of direct RNA with nanopore technology is an active area of devel-
opment at ONT and in academic research groups. Single-molecule detection of tRNA
has been previously demonstrated in single-channel and solid-state nanopores [67, 68].
Nanopore sensing can also detect nucleotide modifications in both DNA [39] [40], 4T, 42]]
and tRNA [69]. Direct RNA sequencing will reveal insights in RNA biology that

presently can get lost due to issues with reverse transcription and PCR amplification.
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Single-molecule protein sensing

At present, mass spectrometry is the preferred technique for performing a
comprehensive proteomics analysis [70], but there are limitations to the sensitivity,
accuracy, and resolution of any one analytical technique [70]. In 2013, Nivala et al.
[71] demonstrated enzyme-mediated translocation of proteins through a single-channel
nanopore. Their study showed that sequence-specific features of the proteins could be
detected. They then engineered five protein constructs bearing different mutations and
rearrangements, and demonstrated that these constructs could be discriminated with
accuracies ranging from 86 to 99%. Protein sequencing will allow studies of complex

interactions among cells in different tissues [72].

Conclusions

Nanopore DNA strand sequencing is now an established technology. In the
short interval since the ONT MinlON was first released, performance has improved
rapidly, and the technology now routinely achieves read lengths of 50 kb and more
and single-strand read accuracies of better than 92%. Improvement in read lengths,
base-call accuracies, base modification detection, and throughput is likely to continue.
Owing to its portability, the MinlON nanopore sequencer has proven utility at the
point-of-care in challenging field environments. Further miniaturization of the platform
(SmidgION) and associated library preparation tools (Zumbador, VoITRAX) promise

an age of ubiquitous sequencing. Parallel applications, including direct RNA sequencing,
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are on the horizon.
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Abstract

Speed, single-base sensitivity, and long read lengths make nanopores a promis-
ing technology for high-throughput sequencing. We evaluated and optimized the per-

formance of the MinlON nanopore sequencer using M13 genomic DNA. Subsequently,
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we used expectation maximization to obtain robust maximume-likelihood estimates for
insertion, deletion and substitution error rates (4.9%, 7.8% and 5.1%, respectively).
Over 99% of high-quality 2D MinION reads mapped to the reference at a mean identity
of 85%. We present a single-nucleotide-variant detection tool that uses maximum-
likelihood parameter estimates and marginalization over many possible read alignments
to achieve precision and recall of up to 99%. By pairing our high-confidence alignment
strategy with long MinION reads, we resolved the copy number for a cancer-testis gene

family (CT47) within an unresolved region of human chromosome Xq24.

Introduction

In 2014, Oxford Nanopore Technologies (ONT) enlisted several hundred labo-
ratories to beta-test its 100-gram MinION sequencing device. The MinlON sequences
individual DNA molecules, providing long read lengths to help overcome some of the
drawbacks of short-read sequencing. As part of the MinION Access Program (MAP),
we evaluated the sequencing platform and then developed it to call single-nucleotide
variants (SNVs) and to resolve the repeat structure of highly repetitive regions. Our
open-source analysis tools are available online (Software 1 and 2; https://github.com/
mitenjain/nanopore/and https://github.com/benedictpaten/marginAlign for the
nanopore and marginAlign pipelines, respectively).

The MinION reads the sequences of individual DNA strands as they are driven

through biological nanopores by an applied electric field. The rate at which each DNA
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strand moves through a nanopore is controlled by a processive enzyme bound to the
DNA at the pore orifice. Up to 512 DNA molecules can be read simultaneously using
amplifiers that independently address each nanopore. Changes in ionic current, each
associated with a unique five-nucleotide DNA k-mer, are detected as DNA molecules
translocate through the nanopores at single-nucleotide precision. Metrichor, a cloud-
based software provide by ONT, calls DNA bases by using hidden Markov models
(HMMs) to infer sequences from these current changes.

We determined MinlON sequence-read quality and errors by analyzing the
genome of M13mp18, a phage from Escherichia coli host strain ER2738 with a 42% av-
erage GC content and a 7.2-kb genome (see . Using expectation maximization,
we inferred maximum-likelihood estimates (MLEs) for the rates of insertions, deletions,
and substitutions in MinION reads. We then realigned the reads to generate high-
confidence alignments and used the MLE models to demonstrate that MinlON reads
can be used for accurate SNV calling. By coupling this alignment strategy with long
MinION reads, we resolved the tandem-repeat organization of a CT47 cancer-testis gene
family on an unfinished segment of human chromosome Xq24. Our results document

the substantial improvements in the MinlON’s performance achieved during MAP.
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Results

The MinION reads both strands of duplex DNA

We prepared libraries as recommended by ONT, with modifications to ensure
the integrity of high-molecular weight DNA (see . A DNA construct analyzed
on the MinION (Fig. is composed of a lead adaptor that loads the processive
enzyme and facilitates DNA capture in the applied electric field; the DNA insert of
interest; a hairpin adaptor that permits consecutive reading of the template and com-
plement strands by the nanopore; and a tethering adaptor that concentrates DNA at

the membrane surface.
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Figure 1.1: Molecular events and ionic current trace for a 2D read of a 7.25 kb M13
phage dsDNA molecule. (a) Steps in DNA translocation through the nanopore: (i) Open
channel; (ii) , bound molecular motor (orange) and hairpin adaptor (red) is captured by
the nanopore; capture is followed by translocation of the (iii) lead adaptor, (iv) template
strand (gold), (v) hairpin adaptor, (vi) complement strand (dark blue) and (vii) trailing
adaptor (brown); and (viii) status returns to open channel. (b) Raw current trace for
the passage of the M13 dsDNA construct through the nanopore. Regions of the trace
corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw
current traces corresponding to steps i-viii. Each adaptor generates a unique current
signal used to aid base calling.
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Translocation of a single M13 genomic double-stranded DNA (dsDNA) copy
through a MinlON pore involves a series of steps, each associated with an identifi-
able ionic current pattern (Fig. [1.1)). These include (i) the open pore; (ii,iii) capture
and translocation of the lead adaptor; (iv) translocation of the template strand; (v)
translocation of the hairpin adaptor; (vi) translocation of the complement strand (giv-
ing two-directional or 2D sequence data); (vii) translocation of the tethering adaptor;
and (viii) release of the DNA strand into the trans compartment and the return to the
open-channel ionic current. At this point, another DNA molecule can be captured and
analyzed by the pore.

Over the first 6-month period of MAP, three MinION chemistry versions and
numerous base-calling algorithm updates resulted in successive improvements in device
performance (Fig. [1.2). The average observed identity (the proportion of bases in a
read that align to a matching base in a reference sequence) for 2D reads was 66% in
June 2014 (R6.0 chemistry release), 70% in July 2014 (R7.0 chemistry release), 78% in
October 2014 (R7.3 chemistry release), and 85% in November 2014 (Metrichor R.7X

2D version 1.9 update). The present study was based on MinlON R7.3 chemistry and

R7.X version 1.9 base-calling algorithms.
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Figure 1.2: MinlON technology progression. Progression of read identity distributions
with MinION versions since June 2014.

MinION throughput

We sequenced intact replicative-form M13 phage dsDNA using three Min-

ION flow cells that contained 337-473 functional channels (see [Methods|). Reads were

characterized as template’, ‘complement’, or '2D’. 2D’ represented reads obtained by
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computationally merging template and complement data from the same hairpin-linked
molecule. Each 48-h replicate run generated between 184 million and 450 million bases
from 63% template, 24% complement and 13% 2D reads (Table . Results presented
in this paper are based on reads classified by Metrichor as high quality, which totaled

between 60 million and 189 million bases per M13 sequencing run.

Table 1.1: Number of functional channels and total amount of bases (in millions) gener-
ated as throughput from three M13 replicate experiments using R7.3 chemistry. Total
throughput was obtained by adding the number of bases in the template and comple-
ment reads (from both pass and fail categories), and measures how many independent
bases were read directly from the device during a run.

pass fail
Experiment Channels Total
Template Complement 2D Template Complement 2D
1 473 60 64 65 253 74 43 450
2 470 38 42 42 241 101 55 422
3 337 20 20 20 112 32 17 184

Establishing a mapping pipeline for MinlION reads

To evaluate the quality of these MinlON reads, we experimented with four dif-
ferent alignment programs [73, (74, [75] [76] (see [Methods)). Each was run with its default
parameters and with tuned parameters that were selected either by experimentation or

by expert advice from other MAP participants (Table .
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Table 1.2: Parameters used for different mappers and their sources.

Program Parameters Source/Recommendation
BLASR -sdpTupleSize 8 -bestn 1 -m 0 MAP participants, tweaking at UCSC
BWA -X pacbio Heng Li for long reads

BWA -x ont2d Heng Li for MinION™ long reads
LAST s$2-T0-QO0-rl-al-bl-ql Quick et al [T7], MAP participants
LASTZ —hspthresh=1800 —gap=100,100 Oxford Nanopore

The proportion of reads that mapped to reference sequences (M13 or ONT

phage A DNA control) varied by aligner (Fig. [1.3). LAST [75] with tuned parameters

was the most inclusive alignment program, and stringency analysis indicated that few

of its alignments were false positives (Fig. [1.4). For data pooled from the three M13

experiments, tuned LAST mapped 95.26% of template, 98.31% of complement, and

98.96% of 2D reads. Most unmapped reads were homologous to E. coli, indicating

minor contamination [78, [79] (see Methods| Fig. [L.5p-c, Table [1.3).
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Figure 1.3: Venn diagram representing read mappability for MinION reads across three
replicate M13 experiments using R7.3 chemistry.

Mappability represents the proportion of reads that can be aligned to either the M13 or
the phage A DNA control using the tuned parameters for each mapper. In our analysis,
2D reads had the highest mappability, with 99% of reads being mappable, followed by
complement and template reads, with 98% and 95% of their respective read proportions
being mappable. Among the four aligners used, LAST and LASTZ performed the best
for M13, with LAST capturing the greatest proportion of mappable reads on its own.
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Per Mapper Mappability To Reversed Reference

Complement
BLASR BWA

Template

Figure 1.4: Venn diagram representing read mappability to a reversed reference for
MinION reads from three replicate M13 experiments using R7.3 chemistry. Because the
reference was reversed, effectively no reads should map; this is thus a proxy measure of
specificity. Results were obtained using the tuned alignment parameters.
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Mapped and Unmapped Read Length Distributions

a Template b Complement 2D
(=]
& _ 8
- [ o
- S
S _
o o
8
2 27,921 g 28,817 s 28,972
2 o ° S -
(=]
3817 2 Iy 8 - © Fy ,“2 7 8
e 8 ez o 2
5 9] 8 5 g
e g 2 g 8
3 3 E g8 °
[y S e T 24 ¥
o -
=3 1,350 « g
< 34 8
< © Blast Hits Unmapped Mapped 2 ol 86 452 281 52
Blast Hits Unmapped Mapped 8 | © " Blast Hits Unmapped Mapped
w
o - o - o -
r T T 1 r T T l r T T T
0 4,000 8,000 12,000 0 5,000 10,000 15,000 0 4,000 8,000 12,000
Read Length Read Length Read Length
d e Average Percent Identity f
f o A )
| 5] i ]
) | Py | - i\
§ Average % Identity \ Average % Identity | Average % Identity |
— | -LASTTuned  67.8 | ~LASTTuned  68.1 | - LASTTuned  83.0 A
) | = o > o C
g o ~LASTEM 73.3 | 3 § i ~LASTEM 70.9 l % 4 - LASTEM 84.6 |
EIR=] S 3
g g §
w [ i
o )
8 24 8
w
o+ o q (=R

T
0.4
Identity

T
0.4
Identity

Table 1.3: BLAST hits of unmapped reads

Sequence Name

2D reads unmapped by any mapper

Escherichia coli KLY, complete genome

Escherichia coli BTA, complete genome

Escherichia coli O157:H7 str. EDL933, complete genome
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Figure 1.5: Read-length distributions and identity plots for M13. (a-c) Read-length
histograms for mapped versus unmapped reads across three replicate M13 experiments
for (a) template, (b) complement and (c) 2D reads. Most reads mapped to phage A
DNA control or M13 reference sequences (peaks at 3.8 kb and 7.2 kb, respectively).
Insets show the proportion of mappable reads, unmappable reads and reads mapped to
potential contamination (BLAST). (d-f) Read-alignment identities for mappable reads
using tuned LAST, realigned LAST, and expectation-maximization (EM)-trained LAST
for (d) template, (e) complement and (f) 2D reads.
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Escherichia coli strain ST540, complete genome

Escherichia coli C321.deltaA, complete sequence

Escherichia coli UMNKSS8, complete genome

Escherichia coli str. K-12 substr. MC4100 complete genome

Escherichia coli str. K-12 substr. MG1655, complete genome

Escherichia coli LY180, complete genome

Escherichia coli plasmid pIS04_68, strain ISO4, complete sequence

Escherichia coli HS, complete genome

Escherichia coli P12b, complete genome

Escherichia coli E24377A, complete genome

Escherichia coli BL21(DE3), complete genome

Adenovirus type 2, complete genome

Human adenovirus C strain human/USA /Pitts_00109/1992/2[P2H2F2], complete genome
E. coli; the region from 81.5 to 84.5 minutes

Escherichia coli plasmid pH1038-142, complete sequence

Uncultured bacterium clone nbw890d10c1 16S ribosomal RNA gene, partial sequence
Homo sapiens chromosome 15, clone RP11-97TH17, complete sequence

Escherichia coli SE15 DNA, complete genome

Homo sapiens 3 BAC RP11-208P4 (Roswell Park Cancer Institute Human BAC Library)

complete sequence

Escherichia coli plasmid pH2291-144, complete sequence
Human alphoid repetitive DNA, subclone pHS53
Escherichia coli 0145:H28 str. RM 12581, complete genome

Escherichia coli DH1 (ME8569) DNA, complete genome

Homo sapiens 12 BAC RP11-478B9 (Roswell Park Cancer Institute Human BAC Library)

complete sequence
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Insertion sequence 1S3 (from E.coli) inversion termini

Homo sapiens chromosome 18, clone RP11-210K20, complete sequence

Escherichia coli ABU 83972, complete genome

Homo sapiens 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), RefSeqGene on chromosome 2
Escherichia coli O104:H4 str. 2009EL-2071 plasmid pAA-09EL71, complete sequence
Escherichia coli 042 complete genome

Escherichia coli strain ST2747, complete genome

Homo sapiens BAC clone CH17-417G10 from chromosome 1, complete sequence
Escherichia coli ATCC 8739, complete genome

Escherichia coli ETEC H10407, complete genome

Lactobacillus helveticus H9, complete genome

Salmonella enterica subsp. enterica serovar Typhimurium plasmid R64 DNA, complete se-
quence

Uncultured bacterium clone nck212c03cl 16S ribosomal RNA gene, partial sequence
Escherichia coli O157:H7 str. SS17, complete genome

Vibrio sp. 04Ya090 plasmid pAQU2 DNA, complete sequence

Shigella sonnei 53G main chromosome, complete genome

Achromobacter xylosoxidans A8, complete genome

Shigella boydii CDC 3083-94 plasmid pBS512_211, complete sequence

Homo sapiens 12 BAC RP11-693J15 (Roswell Park Cancer Institute Human BAC Library)
complete sequence

Escherichia coli BTA plasmid pEB4, complete sequence

Shigella boydii CDC 3083-94, complete genome

Homo sapiens chromosome 15, clone RP11-483019, complete sequence

Complement reads unmapped by any mapper
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Escherichia coli KLY, complete genome

Escherichia coli O157:H7 str. EDL933, complete genome

Escherichia coli C321.deltaA, complete sequence

Escherichia coli strain ST2747, complete genome

Escherichia coli BTA, complete genome

Escherichia coli 042 complete genome

Escherichia coli Trp repressor binding protein (wrbA) gene, complete cds
Escherichia coli W, complete genome

Escherichia coli 1540 plasmid pIP1206 complete genome

Escherichia coli O157:H7 str. EDL933 plasmid, complete sequence

Human adenovirus C strain DD28, complete genome

Escherichia coli strain D183 beta-lactamase TEM-1-like gene, partial sequence
Shigella dysenteriae strain 225-75 RNA polymerase subunit sigma-38-like (rpoS) gene, partial
sequence

Enterobacter asburiae L1, complete genome

Template reads unmapped by any mapper

Escherichia coli KLY, complete genome

Escherichia coli BTA, complete genome

Escherichia coli O157:H7 str. EDL933, complete genome

Escherichia coli gene for hypothetical protein, partial cds, clone: pYU38
Shigella flexneri 2a str. 301, complete genome 1

Escherichia coli APEC O78, complete genome

Escherichia coli C321.deltaA, complete sequence

Escherichia coli W, complete genome

Enterobacteriaceae bacterium strain FGI 57, complete genome
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Acidilobus saccharovorans 345-15, complete genome 1
Burkholderia cenocepacia MCO0-3 chromosome 1, complete sequence 1
Uncultured bacterium clone PL06G10 16S ribosomal RNA gene, partial sequence 1
Uncultured soil bacterium clone GOOVNXF07H12HG 16S ribosomal RNA gene, partial se- 1
quence

Rattus norvegicus 8 BAC CH230-416D7 (Children’s Hospital Oakland Research Institute Rat 1
(BN/SsNHsd/MCW) BAC library) complete sequence

Shigella flexneri 5 str. 8401, complete genome 1

Shigella dysenteriae Sd197, complete genome 1

We observed two distinct peaks for reads, one at about 7.2 kb, corresponding
to full-length M13 DNA, and one at 3.8 kb, corresponding to the ONT A\ phage DNA
control (Fig. [L.5h-c). A large number of reads spanned the full length of the M13
genome, whereas unmappable reads made up a small proportion (<0.2% of all 2D reads)

and were generally shorter than mappable reads.

Expectation maximization generates high-confidence read alignments

We found substantial disagreement among rates of substitution, insertion, and
deletion for alignments generated by different mapping programs (Fig. —b). A more
principled way to estimate true error rates is to propose a reasonable model of the error
process and calculate MLEs of the parameters (see [80]). Using expectation
maximization to train an HMM Fig. [[.7 and alignment-banding heuristics for efficiency
[81], we obtained robust convergence of parameter MLEs across all replicate experi-

ments, guide alignments, and random starting parameterizations (Fig —b, Fig. |1.§).
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This showed that insertions were less frequent than deletions by about twofold in 2D
reads and about threefold in template and complement reads. The combined insertion-
deletion (indel) rate was between 0.13 (2D reads) and 0.2 (template and complement
reads) events per aligned base. For all read types, indels were predominantly single
bases (Fig. [1.9). Substitutions varied from 0.21 (for template reads) to 0.05 (for 2D

reads) events per aligned base (Figs. [L.6k, and [1.11]). Substitutions errors were

not uniform; in particular A-to-T and T-to-A errors were estimated to be very low at

0.04% and 0.1% respectively (see [Supplementary Note 1)).
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Figure 1.6: Maximum-likelihood alignment parameters derived using expectation max-
imization (EM). The process starts with four guide alignments, each generated with a
different mapper using tuned parameters. (a) Insertion versus deletion rates, expressed
as events per aligned base. (b) Indel events per aligned base versus rate of mismatch per
aligned base (see . Rates varied strongly between different guide alignments;
however, EM training and realignment resulted in very similar rates (gray shading in
circles), regardless of the initial guide alignment. (c¢) The matrix for substitution emis-
sions determined using EM reveals very low rates of A-to-T and T-to-A substitutions.
The color scheme is fitted on a log scale, and the substitution values are on an absolute
scale.
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0.372,0.073 0.417,0.013 0.462,0.054 0.401,0.013

short delete

0.139,0.003

0.791,0.003

0.087,0.057

long delete

0.998,0.001
0.999,0.000 0.777,0.099 0.913,0.057

2D Trained HMM Complement Trained HMM

0.455,0.048 0.381,0.013

long delete

0.999,0.001 0.924,0.053
Template Trained HMM

Figure 1.7: Structure for the hidden Markov model (HMM) used for expectation maxi-
mization (EM).

Structure of HMM used for EM, along with the estimated parameters for transition
probabilities for template, complement and 2D reads. For each transition in order, the
mean estimates and standard error across all experiments for that read type are shown.
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Convergence of Likelihoods
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Running Log Likelihoods Ratio
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Figure 1.8: Convergence of log-likelihood ratios achieved using expectation maximiza-
tion.

Convergences of log-likelihood for three independent runs of expectation maximization,
each from a randomly parameterized model, each run for 100 iterations of training. The
y-axis gives likelihood normalized by the highest log-likelihood found. The training used
2D reads from one MinION run of the M13 data using release R7.3 chemistry and a
guide alignment generated by tuned LAST.
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Figure 1.9: Frequency plots for insertions and deletions in MinlON read alignments.
Representative insertion and deletion plot for reads (fitted with an exponential dis-
tribution) from one M13 experiment using R7.3 chemistry, aligned using expectation
maximization-trained LAST.
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Figure 1.10: Substitution
trained model.
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matrices from alignments using expectation maximization-

Maximume-likelihood estimates and standard-error parameters for substitution matrices
show trends across template, complement and 2D reads across three M13 experiments
using R7.3 chemistry. The top row illustrates the average maximum-likelihood estimates
for these substitutions, with the standard error represented in the lower row. For all
aligners, thymine-to-adenosine and adenosine-to-thymine substitution rates were low,
indicating that the device rarely miscalled one as the other. The color scheme is fitted

on a log scale, and the substitution values are on an absolute scale.
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Figure 1.11: Substitution matrices from alignments using tuned parameters.

Substitution matrices for each of the four tuned aligners across three M13 experiments
using R7.3 chemistry. For all aligners, thymine-to-adenosine and adenosine-to-thymine
substitution rates were low, indicating that the device rarely miscalled one as the other.
The color scheme is fitted on a log scale, and the substitution values are on an absolute

scale.
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Realigning reads using the MLE parameters and the AMAP objective func-
tion [82] yielded substantial improvements over the initial alignments for every tuned
program (see Figs. —f and . For high-confidence alignments, there
were no clear correlations between read length and errors (Fig. . However, there

were positive correlations among the rates of insertions, deletions and substitutions in

2D reads ([1.14} [Supplementary Note 2)).
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Figure 1.12: Realignment improves read identity.

Read identity for template, complement and 2D reads for three M13 replicate experi-
ments using R7.3 chemistry, aligned using LAST. Three versions of the LAST alignment
are shown: tuned LAST, trained LAST realignments and naive LAST realignments.
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Figure 1.13: An alignment quality measurement for 2D reads across three M13 replicate
experiments.

Alignments were obtained using expectation maximization-trained LAST realignments.
The two density clusters correspond to M13 and phage A DNA control.
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Figure 1.14: Error profiles for 2D reads after realigning using expectation maximization-
trained model.

Error profile analysis of 2D reads aligned using expectation maximization-trained LAST
realignments indicates a moderate correlation between mismatches and indels per
aligned base, and a weak correlation between insertions per aligned base and deletions
per aligned base.

We also analyzed our data using a newly available Burrows-Wheeler Aligner
(BWA) mode (ont2d) optimized for nanopore reads. The average percent identity
obtained with ont2d was slightly less than the value obtained through expectation
maximization (Table ; however, error rates were substantially closer to the MLE
parameters estimated by expectation maximization. This suggests that ont2d is an

improvement over the pacbio mode (for Pacific Biosciences) that we used originally.

o1



Table 1.4: Error rates obtained using tuned BWA (pacbio and ont2d modes), and EM-
based LAST.

Rate (%)
Program Parameters Average % Identity
Insertions Deletions Substitutions

BWA -x pacbio 6.8 8.6 1.8 85
BWA -x ont2d 3.1 5.4 104 83
LAST EM 4.9 7.8 5.1 85

To see whether our analysis pipeline produced similar results with larger, more
complex genomes, we analyzed the E. coli data set released by Quick et al. [77], which
used R7.3 chemistry and Metrichor R7.3 2D version 1.5. The most recent Metrichor
update was not available when Quick et al. [77] released their data set. We observed
an improvement in average identity from 80.1% with tuned LAST to 81.8% after re-
alignment using the AMAP objective function with MLE parameters. In addition, the
MLEs for the rates of insertions (0.0598 events per aligned base), deletions (0.0910),

and substitutions (0.0531) were similar to those found for the M13 data.

M13 sequencing depth and k-mer analysis

Sequencing depth was generally consistent across the 7.2-kb M13 genome (Figs.

and [1.16)). However, 192 positions (2.6%) were underrepresented (see [Supplemen-

tary Note 3)). Approximately 50% of these positions appeared at the beginning and
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end of the reference, and were likely the result of adaptor trimming by Metrichor. A
majority of the remaining underrepresented positions were associated with 5-mers rich
in polymeric nucleotide runs (Table . To determine whether the MinION has an
inherent bias toward certain k-mers, we compared counts of 5-mers for all three read
types (template, complement, and 2D) with the M13 reference sequence. The most un-
derrepresented 5-mers were homopolymers of poly(dA) or poly(dT), whereas the most
overrepresented 5-mers were GC-rich and absent homopolymer repeats (see

tary Note 3f Table|1.6). These findings are consistent with observations from Ashton et

al. [83].
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Figure 1.15: M13 sequencing depth. (a) The magenta line denotes coverage by position
in the genome (binned over a sliding 5-bp window), and the blue line depicts the local
percentage of GC for that position (binned over a 50-bp sliding window). (b) Coverage-
depth distribution fitted with a generalized extreme-value distribution.
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Figure 1.16: The coverage and percentage of GC across the M13 genome. (a-c) Coverage,
smoothed by binning over a sliding 5-bp window, matching the k-mer length used in
base calling. The GC content was calculated by binning over a 50-bp sliding window.
Halving and doubling this window size did not drastically alter the result. (d-f) Coverage
histograms across three M13 replicate experiments using R7.3 chemistry and aligned
using expectation maximization-trained LAST realignments. About 2.1%, 2.0% and
2.6% of the M13 genome was underrepresented in template, complement and 2D reads,
respectively.
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Table 1.5: 5-mers observed at the 100 underrepresented positions in the M13 genome.
These numbers do not consider positions at the beginning and end of M13 which are
likely to be under-represented as a result of adaptor trimming by Metrichor.

K-mer  # Positions | K-mer  # Positions | K-mer  # Positions
AAAAA 13 CCTCT 1 GTCTA 1
AAAAC 1 CCTTT 1 GTTTT 2
AAAAG 1 CGCCC 1 TAAAA 2
AAAAT 1 CGTCA 1 TACAA 1
AAACA 1 CTGGT 1 TACAC 1
AAATT 1 CTTTC 1 TACAT 1
AAGTG 1 CTTTT 5 TAGAT 1
AATCG 1 GAGCC 1 TAGTG 2
ACTCT 1 GAGGA 1 TATAT 1
AGCCT 1 GCAAC 1 TGAAG 1
AGGCT 1 GCCAC 1 TGACC 1
AGTTA 1 GCCCT 2 TGCTA 1
ATTCA 1 GCCTT 1 TGTAC 1
ATTTG 1 GGGAT 1 TTATA 1
ATTTT 1 GGGGG 1 TTCAT 1
CAAAA 5 GGGTG 1 TTCGC 1
CAGCT 1 GGTAC 1 TTTCA 1
CCACC 2 GGTAT 1 TTTGA 1
CCCCA 1 GGTGA 1 TTTTA 2
CCCCC 1 GGTTA 1 TTTTT 13
CCCTA 1 GTAAC 1
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Table 1.6: Over and under represented 5-mers between reads and M13 reference.
Lambda 5-mers were not counted in this comparison. Both strands are compared and
represented in this table. Below, over and under represented bSmers that span indels in
aligned reads across all three read types. (T - template; C - complement)

Top Kmers In Reads vs. M13 Reference

Ref  logFC 2D logFC  Ref  logFC C logFC  Ref  logFC T logFC
TGATC -inf ~ TTTTT 1.871 TGATC -inf ~ TTTTT 1.652 TGATC -inf  TTTTT 1.158
GATCA -inf ~ AAAAA 1871 GATCA -inf  AAAAA1.652 GATCA -inf  AAAAA 1.158
GTCCG-inf ~ CAAAA 0.936 GTCCG-inf  CAAAA 1.153 GTCCG-inf  ATTTT 1.017
CGGAC-inf  TTTTG 0.936 CGGAC-inf  TTTTG 1.153 CGGAC-inf  AAAAT 1.017
GGACC-1.95 ATTTT 0.812 GGACC-2.088 ATTTT 1.15  GGACC-2.279 CAAAA 0.951
GGTCC-1.95 AAAAT 0.812 GGTCC-2.088 AAAAT 1.15  GGTCC-2.279 TTTTG 0.951
CTAGG -1.553 CTTTT 0.774 CTAGG -1.85  ACCCT 1.055 CTAGG -2.177 CCACC 0.878
CCTAG -1.553 AAAAG0.774 CCTAG -1.85 AGGGT1.055 CCTAG -2.177 GGTGG0.878
ACACG -1.497 TATAT 0.727 TGTGC-1.826 TTTTA 0.983 TGTGC-1.641 ACCCT 0.822
CGTGT-1.497 ATATA 0.727 GCACA-1.826 TAAAA 0.983 GCACA-1.641 AGGGT0.822
TCGTG-1.321 CCACC 0.726  ACACG -1.783 CTTTT 0.901 ACACG -1.638 TGAAA 0.794
CACGA -1.321 GGTGG0.726 CGTGT-1.783 AAAAG0.901 CGTGT-1.638 TTTCA 0.794
TGTGC-1.317 ACCCT 0.695 TCGTG-1.658 GTTTT 0.9 CTTCG -1.575 CCTCA 0.702
GCACA -1.317 AGGGT0.695 CACGA -1.658 AAAAC 0.9 CGAAG-1.575 TGAGG 0.702
CTTCG -1.293 TTTTA 0.681 CTTCG -1.599 ATATT 0.894 ACTAG -1.54  CACCA 0.698
CGAAG-1.293 TAAAA 0.681 CGAAG-1.599 AATAT 0.894 CTAGT -1.54 TGGTG 0.698
ACTAG -1.183 CACCA 0.583 GTCCC -1.565 TTTAA 0.858 GCTAG -1.439 GAAAA 0.698
CTAGT -1.183 TGGTG0.583 GGGAC-1.565 TTAAA 0.858 CTAGC -1.439 TTTTC 0.698
ATCGA -1.138 GTTTT 0.546 ACTAG -1.357 GAAAA0.856 TCGTG-1.43  CGCCA 0.696
TCGAT -1.138 AAAAC 0.546 CTAGT -1.357 TTTTC 0.856 CACGA -1.43  TGGCG 0.696

Top Enriched Kmers Spanning Aligned Indels
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Ref logFC 2D logFC  Ref logFC C logFC  Ref logFC T logFC
GATCA -1.293 TTTTT 1.774  GATCC -1.177 TTTTT 1.35 CAGAG-1.14 GGTGGO0.99
GGATC -1.226 ACTGG 1.196 GATCA -0.984 AAAAA1.01 GATCA -1.0714 TGGTG 0.889
GATCC -1.223 TATAT 1.007 AACAG-0.983 GCGGT0.959 AGAGC-1.021 ACTGG 0.831
TTTGA -1.123 AGTTT 0.957 ACAGC-0.978 AGTTT 0.85 GAAGC-1.007 GGACT 0.829
GAACA-1.095 AAAAA0.954 CGTCA -0.951 TGCAA 0.844 TGATC -1.0 GCCTT 0.826
AGAGC-1.093 TCGGT0.949 GGATC-0.914 AGTAA 0.828 GAGAT -0.988 TGGCG0.805
TGATC -1.025 GCGGT0.947 ATCCA -0.887 AGTCT 0.821 AAGAG-0.943 AAAAAQ0.782
AGGGG-1.023 AGTCT 0944 GAACA-0.885 ACTGGO0.812 GGAAG-0914 CGGTGO.777
CTGTG-1.006 GTTTC 0913 CAGAG-0.87 ATCTT 0.775 GAACC-0.898 GGAGT 0.766
AAGAG-0.987 TTGTC 0.846 AGAGC-0.843 TAAAA 0.77 GAACA -0.879 AGTCT 0.722
TGAGA-0.934 CCAGT 0.83 TGAAC-0.819 TCGGTO0.756 AGGGG-0.878 GCGGT0.714
GAGCC-0.903 TGCAAO0.807 GAGCC-0.806 TTTTG 0.751 GACCC -0.85 TTTTT 0.696
GAAGC-0.874 TGGTGO0.795 CGATC -0.801 GGTGGO0.751 CAGGG-0.846 TTAGT 0.694
GGAAG-0.845 GGAAAO0.793 TGATC -0.766 TTGTC 0.75 CTAGG -0.844 TTGCA 0.685
GAGAG-0.84 TAATA 0.793 CTACG -0.766 AATCT 0.743 ACAGC-0.818 GGTTA 0.672
AAGCA -0.837 CGGTGO0.772 CTGTG-0.764 GTTTT 0.734 ATCAC -0.816 TAGTT 0.658
GACCC-0.836 CTTGGO0.763 CATCC -0.733 TAATA 0.726 CAGAT -0.81 GTGAC 0.654
ATCAC -0.835 CTCTC 0.758  ATAAC -0.73 GACAA0.725 GCCGC-0.7195 GGTGAO0.645
CAAAG -0.83 CGAAA0.751  GAAGC-0.719 TATAT 0.701 GAGAG-0.779 TCGGT 0.641
GCCGC-0.824 CCTTG0.744 ACGTC-0.717 CGGTGO0.696 GCAGG-0.776 GTGGT 0.629

MinION reads can call SNVs with high recall and precision

SNV detection is important for metagenomics and microbial strain detection

[841 185, [86]. To determine if MinION reads could be used for SNV discovery in monoploid
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genomes, we computationally introduced random substitutions into the M13 reference
sequence at 1-t0-20% frequency. Using this altered sequence as an alignment reference

we attempted to recover these substitutions using a Bayesian transducer framework [87]

(see [Methods; [Supplementary Note 4)) and assessed performance in terms of precision,

recall, and F-score. These experiments also addressed the accuracy of alignment and
error models while avoiding reference-allele bias. Reference-allele bias can skew simple
metrics like alignment identity.

Using all the 2D read data and a posterior base-calling threshold that gave the
optimal F-score, we achieved a recall of 99% and precision of 99% at 1% substitution
frequency (Fig. [1.17a). When we reduced the sequencing depth down to a more reason-
able 60x by sampling, we achieved recall and precision of 97%. Increasing the mutation
frequency decreases the F-score progressively, presumably because alignment between
the reads and the mutated reference becomes more difficult (Fig. |1.17b)

One particularly powerful strategy that we employed was marginalization over
many possible alignments for each read, which helped factor out the considerable align-
ment uncertainty (Fig. [L.17c). In contrast, using fixed LAST alignments but otherwise

keeping the method the same resulted in substantially higher rates of false positives for

a given recall value (Fig. [L.17pa-b).
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Figure 1.17: Exploring SNV calling with MinION reads.

(a,b) Variant calling with substitution frequencies of (a) 1% and (b) 5%. Dashed lines
in both a and b represent results from variant calling using a transducer model condi-
tioned on a fixed, tuned LAST alignment. Different sampled read coverages are shown.
Each curve was produced by varying the posterior base-calling threshold to trade pre-
cision for recall. Solid lines in both a and b represent results from variant calling using
the same transducer model as used for the tuned LAST alignments but incorporating
marginalization over the read to reference alignments using a trained alignment model.
Results shown are averaged over three replicate M13 experiments and, for each coverage
level, three samplings of the reads. The ‘All’ curve reflects all the available data for
each experiment. (¢) The distribution of posterior match probabilities shows that there
was substantial uncertainty in most matches and demonstrates that marginalizing over
the read alignments is a powerful approach.

Resolving the organization of a cancer-testis gene family

A strength of the MinION device is its ability to produce long, single-molecule
reads. In addition to routinely observing full-length 2D reads of M13 genomic DNA (Fig.
, we found substantially longer reads but at a lower frequency, when very large intact
DNA fragments were delivered to the sequencer (for example, a full-length 48-kb 2D
read of phage A DNA mapped back to the reference with 87% identity (Fig. . We
reasoned that long MinION reads, coupled with our high-confidence alignment strategy,

could be used to resolve complex and often unfinished regions of genomes.
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Figure 1.18: MinION data for full-length (48-kb) A phage dsDNA. Data for a 2D read of
a full-length A phage dsDNA from the MinION. (a) Molecular events for translocation
of a single 48-kb A\ dsDNA molecule through the MinION nanopore sequencer. DNA
length and conformation are simplified for purposes of illustration. (i) Open channel.
(ii) dsDNA with ligated loading (blue and brown) and hairpin adaptors (red) captured
by the nanopore with the aid of a membrane anchor and an applied voltage across
the membrane. (iii) Translocation of the 5 end of the loading adaptor through the
nanopore under control of a molecular motor and driven by the applied potential across
the membrane. DNA translocation through the nanopore starts. (iv) Translocation of
the template strand of DNA (gold). (v) Translocation of the hairpin adaptor (red). (vi)
Translocation of the complement strand (blue). (vii) Translocation of the 3’ portion
of the loading adaptor. (viii) Return to open-channel nanopore. (b) Raw current
trace for the entire passage of the DNA construct through the nanopore (approximately
2,789 s). Regions of the ionic current trace corresponding to steps i-viii are labeled.
(c¢) Expanded 1-s time scale of raw current traces for DNA capture and translocation
of 5 loading adaptors (i-iii), template strand (iv), hairpin adaptor (v), complement
strand (vi), 3’ loading adaptor and return to open channel (vii-viii). Each adaptor
generates a unique signal used for position reference in base determination. The FASTA
sequence is available at http://figshare.com/articles/UCSC_Full_Length_Lambda_
2D_Read/1209636.

To test this, we examined the organization of a human-specific tandem-repeat
cluster spanning a putative 50-kb assembly gap on human Xq24 (hg38 chrX:120,814,747-
121,061,920) (Fig. [1.19n). Each 4,861-bp tandem repeat in this region contains a
single annotated cancer-testis gene from the CT47 gene family with observed expression
in testes, lung and esophageal cancer cells [88]. The high level of homology between
adjacent copies (95%-100% sequence identity) is likely to result in recombination or
replication errors, leading to alleles with different numbers of repeats that are often
difficult to represent accurately by standard short-read assembly [89]. Furthermore,
copy-number expansion and contraction involving genes contribute to variability in gene

expression, epigenetic regulation and association with human disease [90} 91].
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Figure 1.19: Resolution of CT47 repeat copy-number estimate on human chromosome
Xq24. (a) BAC end sequence alignments (RP11-482A22: AQ630638 and AZ517599)
span a 247-kb region, including 13 annotated CT47 genes16 (each within a 4.8-kb tan-
dem repeat), and a 50-kb scaffold gap in the GRCh38/hg38 reference assembly. (b)
Nine MinION reads from high-molecular weight BAC DNA span the length of the
CT47-repeat region, providing evidence for eight tandem copies of the repeat. Insert
size estimated from pulse-field gel electrophoresis (dashed line) with flanking regions
(black lines) and repeat region (blue line) are shown. Single-copy regions before and
after the repeats are shown in orange (6.6 kb) and green (2.6 kb), respectively, along
with repeat copies (blue) and read alignment in flanking regions (gray). The size of
each read is shown to its left. (c) Shearing BAC DNA to increase sequence coverage
provided copy-number estimates by read depth. All bases not included in the CT47 re-
peat unit are labeled as flanking regions (gray distribution; mean: 46.2-base coverage).
Base coverage across the CT47 repeats was summarized over one copy of the repeat to
provide an estimate of the combined number (dark blue distribution; mean: 329.3-base
coverage) and was similar to single-copy estimates when normalized for eight copies
(light blue distribution; mean: 41.15-base coverage).

We used the MinION to acquire long reads from a human BAC (RP11-482A22)

that contained the CT47 repeats within the unresolved Xq24 segment. Nine 2D reads
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from 36 kb to 42 kb spanned all the repeats and together indicated eight tandem copies

within the gap (see [Methods| Fig. [1.19b, and Table [L.7)). This copy-number prediction

was supported by pulse-field gel electrophoresis, which revealed a repeat array of 37-

42 kb, or 7.5-8.6 copies of the 4.8-kb repeat (Fig. [1.20). As an additional test, we

obtained 40x-60x sequence coverage of the unresolved Xq24 segment using shorter (~10

kb) MinION reads from sheared BAC DNA. A copy-number estimate based on these

reads also indicated eight CT47 repeats within the unresolved region (Fig. )
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Figure 1.20: Pulse-field gel electrophoresis of RP11-482A22 BAC DNA to determine
insert length. The span of BAC end sequences relative to GRCh38 reference assembly
provides estimates of 57 kb to the right of the repeats and 76 kb to the left of the repeats
(depicted in black). To determine the length of the repeats, we performed Notl and
Aatll digests on RP11-482 DNA. The Notl digest isolates the insert DNA in its entirety
from the cloning vector insert, pBACe3.6, providing evidence for a cloned insert in the
range of 170-175 kb (blue) and an 11.6-kb cloning vector band (red). After subtraction
of the known flanking region sizes, this estimate provides a repeat region in the range
of 36.7-41.7 kb, or 7.5 to 8.5 copies of the CT47 repeat. The Aatll digest was expected
to cut the BAC three times, as illustrated in the schematic, providing three resulting
fragments: (a) 108 kb including the upstream flanking region (50 kb), the downstream
flanking region (46 kb) and the cloning vector insert (11.6 kb), shown in purple; (b) a
23-kb region directly downstream from the repeat array (blue), and a region observed
by PFGE to be ~50 kb that spans the CT47 repeat cluster (providing evidence for a
37-kb repeat region after subtraction of 12 kb of known flanking sequence, marked with
gray shading). Regions providing evidence for repeat copy number are highlighted in
yellow. 66



Discussion

We began this study by documenting MinION performance using M13 phage
dsDNA. We found that consecutive reads of adaptor-linked template and complement
DNA strands (~14.4 kb total) were routinely achieved. Approximately 99% of 2D reads
mapped to a reference (M13 or phage A DNA control) and yielded 85% average identity.
Using expectation-maximization training of an HMM, we were able to robustly parse
the error sources into mismatches, insertions, and deletions. This information was
used to generate high-confidence alignments that allowed us to call SNVs accurately
and characterize an unresolved region of human Xq24 rich in repetitive DNA. A dual-
MinION sequencing strategy that employed both long read scaffolds and higher-coverage
shorter reads was essential for copy-number estimates in that region.

Comparisons with prior results [83] 92] demonstrated improved read quality
during MAP. We anticipate that the number of correct base calls will continue to increase
beyond the average 85% identity observed in the current study. We also expect that the
MinION will be used to report features of genomic DNA that are observable because
the nanopore sensor directly touches each base on native DNA strands. These features
include epigenetic modifications [93] 94], 95], abasic residues [96, O7], DNA adducts [98],
thymine-thymine dimers, and strand breaks.

In summary, we have shown that the MinlON has sufficient accuracy to resolve
important biological questions by sequencing long, native DNA strands. This accuracy

is improving rapidly.
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Methods

M13 MinlON Experiments

We generated three replicate experiments with M13mpl8 phage dsDNA to
establish the reproducibility and performance characteristics of the MinION. Below we

describe the M13 sequencing-standard preparation and MinlON sequencing protocols.

M13mpl8 DNA sequencing standard

M13mpl8 dsDNA was obtained from New England Biolabs (NEB) (catalog
no. N4018S). The host for this phage is E. coli strain ER2738, and the genome is
7.2 kb in size with a 42% average GC content. Thirty micrograms of M13mpl8 was
linearized by means of overnight double digestion with High-Fidelity HindIII (NEB,
catalog no. R3104S) and High-Fidelity BamHI (NEB, catalog no. R3136S). Digests
were performed according to NEB recommendations using Cut Smart Buffer supplied
with restriction enzymes. Two hundred nanograms of M13mp18 double digest was run
on a 1% Tris borate EDTA (TBE) agarose gel to confirm complete linearization of
the circular replicative-form genome. The restriction digest was then extracted once
with an equal volume of TE (10 mM Tris, 1 mM EDTA, pH 8) buffer-equilibrated
phenol:chloroform (OmniPur, catalog no. 6805) and twice with TE buffer-equilibrated
chloroform (pH 8) and then ethanol precipitated by the addition of 1/10 volume of
3 M sodium acetate (pH 5.2) (Teknova, catalog no. S0296) and 2 volumes of ice-

cold 100% ethanol. Samples were centrifuged to pellet DNA, and the M13mpl8 pel-
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let was washed twice with 70% ethanol, allowed to dry to remove ethanol, resus-

pended in MilliQ water and quantitated using a Nanodrop. The M13 sequence was
confirmed using Sanger sequencing (UC Berkeley DNA Sequencing Facility, with an

ABI Model 3730 XL DNA Sequencer (Applied Biosystems, Life Technologies, Thermo

Fisher Scientific)). Sequencing primers TAAGGTAATTCACAATGATTAAAGTTG,
CTGTGGAATGCTACAGGC, CACCTTTAATGAATAATTTCCGTC, CATGCTCG-
TAAATTAGGATGG, GTTTTACGTGCTAATAATTTTGATATG, CAAGGCCGATAGTTTGAGT,
CACTGGCCGTCGTTTTA, GAGGCTTTATTGCTTAATTTTGC, AGGTCTTTAC-
CCTGACTATTATAG, AGGCTTTGAGGACTAAAGAC, AATGGATCTTCATTAAAGCCAG,
CAGCCTTTACAGAGAGAATAAC, TCCGGCTTAGGTTGGG, GTGAGGCGGTCAGTAT-
TAAC, GAGATAGGGTTGAGTGTTGT and TTCTCCGTGGGAACAAAC were ob-

tained from Integrated DNA Technologies (http://www.idt.com/).

M13 MinION sequencing

The libraries for MinION runs were prepared as recommended by ONT. Un-
sheared DNA was used for preparation of the M13 sequencing library. For BAC DNA,
sequencing libraries were prepared using unsheared DNA as well as DNA sheared to an
average length of 10 kb using g-TUBE (Covaris, catalog no. 520079). Briefly, the DNA
sample was spiked with ONT X\ DNA control, end-repaired using NEBNext End Repair
Module (NEB, catalog no. E6050S) and cleaned up using Agencourt AMPure XP beads
(Beckman Coulter, catalog no. A63880). The purified end-repaired DNA then under-

went dA tailing with the NEB dA-Tailing Module (NEB, catalog no. E6053S). This was
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followed by ligation of ONT sequencing adaptors (adaptor Mix and HP adaptor) using
Blunt/TA Ligase Master Mix (NEB, catalog no. M0367S). Using Dynabeads His-Tag
Isolation and Pulldown (Life Technologies, catalog no. 10103D), we enriched the library
for DNA molecules ligated to the ONT HP adaptor. The adapted and enriched DNA
was eluted in ONT-supplied elution buffer. This prepared library was then mixed with
proprietary ONT EP Buffer and ONT Fuel Mix before being added to the MinION flow
cell. Three 48-h sequencing runs were performed, each using a new flow cell.

The MinION data were base called using ONT Metrichor software (workflow
R7.X 2D rev1.9). The base caller used classifies reads as pass or fail. Unless otherwise
noted, all the analyses reported in this paper were performed using the ‘pass’ reads from

R7.3 chemistry.

Establishing a mapping strategy for MinION reads

We experimented with four different initial read-mapping programs: BLASR
[73] (PacBio’s long read mapper designed for mapping PacBio reads; commit abf9c38c55¢2fb5f
40316885dce39f5308¢91F25 from https://github.com/PacificBiosciences/blasr), BWA-MEM
Release 0.7.11 ([74, 99]) (H. Li’s popular adaptation of the BWA mapper altered for
handling long reads), LAST Version 490 ([75, 100]) (a fast, sensitive, adaptable and
popular pairwise-alignment tool) and LASTZ Release 1.02.00 ([76]) (a more traditional
BLAST-type seed-and-extend program).

For each mapping experiment, reads were mapped both to the M13 reference

sequence and to control DNA, a 3.8-kb segment of A phage DNA supplied by ONT to
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measure baseline performance. For each mapping program, a sizable fraction of reads
could not be aligned to either reference when the default parameters were used (data
not shown). The use of tuned parameters substantially improved the number of reads
mapped to the reference sequences.

To establish whether the mappers produced substantial numbers of false pos-
itive mappings, the reference sequences were reversed but not complemented, and the
reads were mapped to these reversed sequences. The rationale for this experiment was
that in the resulting reversed sequences, the base composition in terms of GC con-
tent and reversible Markov chain-like properties would be preserved, but it was highly

unlikely that the sequences would be similar to the reads (Fig. [1.4]).

BLAST analysis for unmapped reads

In order to characterize the small minority of unmapped reads, we used BLAST
2.2.29 to align the unmapped reads to the NCBI Nucleotide database. The Nucleotide
database contains entries from all of the traditional divisions of GenBank, the European
Molecular Biology Laboratory, and the DNA Data Bank of Japan [78],[79]. The majority
of unmapped 2D reads had BLAST hits (Fig. and Table , most representing a

low level of E. coli contamination.

Learning the MinION error model

The MinION error model we propose is a five-state pair HMM|[I01] that has

two sets of insertion-deletion states (Fig. , one set for modeling short insertions
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and deletions and one for modeling long insertions and deletions. The latter was in-
cluded to account for large gaps at the beginnings and ends of the alignments—that is,
to convert a local alignment model into a global alignment, as described by Durbin et
al.J[I0I]. To train the model, we used a hybrid form of the Baum-Welch algorithm (a
type of expectation maximization). For each read, this hybrid algorithm works within
an alignment band around a fixed guide alignment[81]. The band is constructed as de-
scribed by Paten et al.[81] using code adapted from the Cactus alignment program[102].
The guide alignment comes from a mapping program. In contrast to alignment mod-
els learned from sequences related by evolution, no assumption of reversibility (and,
therefore, symmetry) was made, and parameters for each transition and emission were
learned independently.

We trained the alignment model for each possible combination of guide map-
ping program (tuned versions of the four mapping programs tested), MinION run (of
three replicates) and read-type set (template, complement and 2D). For each training
experiment we performed three independent runs, in each case starting from a randomly
parameterized model and running for 100 iterations. Figure [I.§ shows the results of one
training experiment, in which there is convergence of log-likelihood for all three runs to
essentially the same value. Figure [I.§ also shows the resulting transition parameters for
each read type. We observed excellent agreement in parameter estimates both between
runs for the same training experiment and between training experiments with differ-
ent MinION runs and different guide alignments. This indicated that our parameter

estimates were robust.
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Figure [I.6h,b shows, as a cross-check, the calculation of insertion, deletion,

and substitution rates for 2D reads from realignments computed (see [Realignment with)|

[a trained modell) from each guide alignment using the alignment and the trained model.

In each case, despite the fact that the starting guide alignments had different estimates
of these error rates, the realigned alignments gave consistently close error rates for
these parameters. Interestingly, these values agreed relatively closely with the starting
tuned-BLASR alignments. This indicated that tuned-BLASR was the most closely

parameterized to our estimates of the maximum-likelihood rates.

Realignment with a trained model

For each possible combination of guide mapping program (tuned versions of
BLASR, BWA-MEM, LAST and LASTZ; see Table , MinION run (of three repli-
cates) and read-type set (template, complement and 2D), we trained the alignment
model and then realigned the reads using the resulting model. We call such alignments
trained realignments. To realign the reads, we used the aforementioned banding strategy
around the guide alignment and picked a single alignment using the AMAP objective
function[82]. The AMAP objective function calculates an alignment that accounts for
the posterior expectation of each match and indel. As a control experiment to account
for the effects of realigning the reads, we also realigned the reads using the same guide-
alignment strategy and objective function, but with an untrained model (the default
HMM used by Cactus[102], which was parameterized for vertebrate sequences related by

natural selection). The control experiment showed that such alignments had substan-
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tially lower identity, indicating that the training, and not the process of realignment,

was responsible for the improvement in identity (Fig. [1.12]).

SNV calling with the MinION

To determine how useful MinION reads are for simple SNV discovery in mono-
ploid genomes, we took the M13mp18 reference sequence and randomly introduced sub-
stitutions at frequencies of 1%, 5%, 10% and 20%, picking the alternate allele with equal
probability for each possible alternate base. We called each altered sequence a mutated
reference sequence. For each read type of each replicate of the M13mpl8 experiment,
we aligned the reads to each mutated reference sequence with a given mapper and ran

an algorithm to call SNVs with respect to the mutated reference sequence.

Briefly, the SNV-calling algorithm (see [Supplementary Note 4| for a full de-

scription) has two steps: computing posterior alignment match probabilities between
the bases in the reads and the reference, and calculating posterior base-calling proba-
bilities for each reference base. By varying the threshold on the posterior base-calling
probability, we traded precision for recall (Fig. [1.17). The reported precision and recall
values were chosen to optimize the overall F-score.

The posterior match probabilities were computed using the guided-realignment
strategy described above. The HMM used was composed by combining the described
pair HMM (trained using expectation maximization on 2D reads with tuned LAST used
as the guide alignment, as described earlier) with a substitution model that accounts

for the introduced mismatches. Each model was described as a branch transducer[87],
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and the models were combined to create an overall HMM, using the evolutionary HMM

formalism[87]. The addition of the substitution model was found to be essential for

high performance; [Supplementary Note 4] describes the parameters used and algorithm

variations.

Sequence scaffolding across the CT47 repeat cluster

High-molecular weight BAC DNA (RP11-482A22) was isolated using standard
methods for purification of large constructs (QIAGEN Large-Construct Kit, catalog no.
12462). To avoid DNA shearing for high-molecular weight sequencing, we performed
NotI-HF (NEB, catalog no. R3189S) restriction digestion (expected to isolate the insert
from pBACe3.6 cloning vector, gi|4878025) followed by end repair using Klenow in the
same mix. This mixture underwent dA tailing directly after being added with separately
end-repaired ONT-supplied control DNA. The rest of the steps then proceeded according
to the standard ONT recommendations, as mentioned above. The device was operated
using ONT’s MinKNOW software according to the provided instructions. The flow cells
used were chemistry version R6.0 and R7.0. The read files were base called using ONT’s
Metrichor software, version 2D base calling, v1.2 and v1.3.1.

Long reads spanning the CT47-repeat cluster were identified using three se-
quence models[103]: a single-copy sequence directly upstream of the repeat array (6.6
kb, hg38 chrX:120865735 120872351), the CT47 repeat (4.8 kb, hg38 chrX:120932375-
120937233) and a single-copy sequence directly downstream from the repeat array (2.7

kb, hg38 chrX:120986928-120989651). Reads were trimmed to the only present se-
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quences involved in the repeat-classification models. Pecan software[81] was used to
generate multiple alignment of reads (data available in the European Nucleotide Archive;
the primary accession number is PRJEB8230, and the secondary accession number is

ERP009289).

Copy-number estimates by sheared BAC sequencing

To increase the MinION sequence throughput, we sheared RP11-482A22 BAC
DNA to an average fragment length of 10 kb using g-TUBE (Covaris, catalog no.
520079). By alignment to the hg38 reference sequence (hg38 chrX:120,814,747-121,061,920,
omitting a 50-kb scaffold gap), using tuned BLASR (as described above), we identified
2,006 2D reads that mapped to the RP11-482A22 DNA. Base coverage was determined
from a sorted-alignment RP11-482A22 BAM file using bedtools genomecov[104] with
the command bedtools genomecov -d -ibam mapping.sorted.bam. Coverage estimates
were converted to a BED file with each row entry defining coverage at a single base
and at base + 1. Then they were subdivided into bases that overlapped with the CT47
repeat region and those that did not, with the latter labeled as flanking regions (bedtools
intersect -woa and -v, respectively)[104]. A histogram of base coverage was generated
to encompass all flanking bases and was determined to have a mean coverage value of
46.2 bases. Base-coverage estimates across the CT47 repeats were merged to represent
a combined coverage depth over a single 4.8-kb repeat unit (mean observed base cov-
erage: 329.3). Normalization of the read depth for eight copies of the repeat predicted

an average read depth of 41 bases. We obtained the distribution of the normalized read
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depth by dividing by 8 across all base positions of the repeat with combined sequence

depth.

Pulse-field gel electrophoresis validation

The RP11-482A22 BAC insert length estimate of NotI-HF-digested (NEB,
catalog no. R3189S) or Aatll-digested (NEB, catalog no. R0117S) DNA (1 ug) was
determined by pulse-field gel electrophoresis (PFGE) using a CHEF-DRII system (Bio-
Rad). Length estimates were determined using standard PFGE markers Low-range
(NEB, catalog no. N0350S) and MidRange I (NEB, catalog no. NE551S). Samples
were run for 15 h (gradient, 6.0 V/cm; angle, 120°; switch time, linear; initial ramping,
0.2 s, finishing at 26 s) in 1% Pulsed Field Certified Agarose (Bio-Rad) and 0.5 TBE
buffer at 4°C. Banding was identified using standard SYBR Gold (Life Technologies)

staining.

Code availability

The analysis software is open-source and available (nanopore pipeline at https:
//github.com/mitenjain/nanopore; and marginAlign pipeline at https://github.
com/benedictpaten/marginAlignl
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Supplementary Note 1

Adenosine to thymine and thymine to adenosine substitution errors are

rare in MinION reads

Fig. and Supplementary Fig. shows the trained estimates of the
substitution parameters of the model, for each of the read types. Surprisingly, the
proportion of adenosine to thymine errors was estimated to be sparse, and similarly,
but less pronounced, the proportion of thymine to adenosine errors was also estimated
to be low. To check that these rather striking results were not training artifacts, we
calculated estimates of the substitutions directly from alignments produced by the dif-
ferent mapping programs (Supplementary Fig. . In each case, we saw the same
trend. To ascertain if the low substitution error rates were influencing the transition
parameters during training (e.g. certain substitutions being traded for higher rates of
insertions/deletions, Supplementary Fig. , we tied the emission parameters during
training so that substitutions occurred at the same rate regardless of the bases involved,
and so that indel emissions were flat (the same for each base regardless of type). The
resulting trained HMMs had virtually the same transition parameters as the untied
models (data not shown), suggesting that the trained transition parameters were not
biased by the asymmetries of the trained emission parameters. Though more data on
a diversity of different sequencing samples was needed to confirm these results, we note
that mapping results could probably be improved by taking into account these bias in

substitution errors when considering seed alignments (e.g. discounting seed matches
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with numerous adenosine to thymine matches).

Supplementary Note 2

Insertion, deletion and substitution errors correlate in 2D reads

We compared rates of insertion, deletion, and mismatch against each other
for all three replicates of M13 (Supplementary Fig. . For 2D reads, we found a
correlation between the rate of mismatches and indels, R? = 0.735, and a suggestive
correlation between the rates of insertions and deletions, R? = 0.387. Looking at the
template and complement reads, we did not find any such correlation (data not shown).
One hypothesis that explained the apparent correlation was that error rates for 2D reads
were dictated by the ratio of the lengths of its constituent template and complement
reads. For example, if there was a full template read, but the complement read was
short, much of the 2D read would be inferred only from the template read. This was
without the benefit of a full second observation of the read sequence. We did not
find a convincing correlation between read identity for 2D reads and the number of
segments in their respective template and complement reads (data not shown). Using
R7.3 chemistry with older versions of Metrichor (R7.3 2D Version 1.5), Quick et al.
observed a correlation between read identity for 2D reads and the number of segments

in the template and complement reads [77].
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Supplementary Note 3

Assessing MinIlON read coverage

We measured sequencing depth, termed coverage, across the M13mp18 refer-
ence. The coverage for template/complement/2D reads across three replicate experi-
ments is shown in Supplementary Fig. [I.I6p-c respectively. For all three read types
coverage was largely consistent across the genome, apart from at the very ends of the
genome, and did not appear to fluctuate substantially based upon GC content. How-
ever, the short length and relatively narrow fluctuation in GC across the M13mp18
genome precludes a thorough assessment of this issue.

Fitting a generalized extreme value distribution [I05] (Supplementary Fig.
1.16d-f) to the 2D read coverage, we identified 192 sites (2.6%) across M13 genome
as under-represented using non-parametric statistical analysis. Briefly, we selected out-
liers based on positions where the observed coverage deviated beyond two standard
deviations. We found the under-represented sites to be divisible into subsets. The first
49 and the last 43 nucleotides of the M13 reference were under-represented. We hypoth-
esize these under-represented sites are the result of adaptor trimming by the base-calling
software. A close examination of 5-mers overlapping the remaining 100 positions (four
preceding nucleotides along with the nucleotide at the position of interest) revealed

these sites to be rich in homopolymeric nucleotide runs (Supplementary Table [1.5).
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Homopolymer containing k-mers are under-represented in MinION reads

Coverage drops at homopolymeric sites was not unexpected because nanopore
sequencers do not read individual bases. Rather, they measure a continuous change in
current, with five bases within the pore at any time. To resolve this into a sequence
of individual nucleotides, the base calling algorithm integrates the signal over 5-mer
windows. To test whether any of the possible 1024 5-mers were under or overrepresented,
we evaluated relative enrichment patterns in the M13 sequence datasets.

We employed a sliding window analysis (spanning five bases with a slide of
one base) to determine the frequency of all possible 5-mers in both forward and reverse
complement orientation within both datasets. Briefly, enrichment/depletion significance
was tested through simulation. 5-mers were drawn 5,000 times across 1,000 replicates
from the distributions counted from the data. Then the Kolmogorov-Smirov test was
used to compare these distributions, assigning a Bonferroni-corrected p-value to each
comparison (not shown). Consistent with the observed coverage drops, the most under-
represented 5-mers in the read set contain poly-dA or poly-dT. The most enriched
5-mers are G/C rich and did not contain homopolymer repeats (Supplementary Table
13).

We also compared 5-mers spanning indels in alignments. For this experiment,
indels were defined as any 5-mer which has an alignment gap of any size in the four
internal positions. We found similar trends in these 5-mers as in the overall counts, with

poly-dA and poly-dT 5-mers being under-represented in the read set. The similarity
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of these two comparisons was not surprising given the interspersed and highly common
nature of 1-2 bp indels in these alignments (Supplementary Table .

In both comparisons, no systematic difference was seen between template,
complement and 2D reads. Individual comparisons have different ordering of enriched
and depleted 5-mers, but similar trends are found across each read type within each

comparison.

Supplementary Note 4

Approach to SNV detection

The relatively high error rates of MinION reads make single nucleotide variant
(SNV) discovery potentially challenging (Supplementary Fig. . Here we describe a
method for variant calling that can tolerate this level of error. Let a DNA sequence S =
S1,...,Sm be a finite string over the alphabet of nucleotide characters 7 = {A,C, T, G},
termed bases. Let X = {X! ... X"} be the set of read DNA sequences, Y the given
mutated reference DNA sequence, Z the true M13mpl8 reference DNA sequence, 6 a
read error model that can be used to calculate P(X|Z,0), w a substitution model that
can be used to calculate (Z]Y,w), and ¢ a generator model that can be used to calculate
(Y|¢). Each of 6, w and ¢ can be described as forms of a branch transducer model,
which are a subtype of graphical model that receive input symbols (here individual
bases) from an input sequence and output symbols (again, here individual bases) to

an output sequence conditional on the input symbols [87]. Branch transducers can be
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composed together to form evolutionary HMMs, which give HMM models for arbitrary
phylogenies. Here w is very simple, having a single parameter, «, corresponding to
substitution frequency:
@ END SIGNAL —»
1-a

O v

CuATCH)  CMISWATOH

Supplementary Fig. S 1.21: Substitution model.

In the above representation of w the WAIT state is a silent state that receives
bases from the input sequence until it receives the END-SIGNAL, at which it transitions
to the end state. For each input base, it chooses with probability « to emit the input
base (MATCH state), else a different base (MISMATCH state). The transducers ¢ and
0 composed together, ¢ o 6, are equivalent to the 5-state HMM described earlier (i.e.
P(X,Z|po0) = P(X|Z,0)P(Z|$)). Composing the branch transducers together, we
get an evolutionary HMM modeling the reads and reference sequences (where € is the

empty string):

84



S TRRcato

&

Supplementary Fig. S 1.22: Model.

A simple way to define the variant calling problem is that of finding a member
of

f(X)Y) = argZIPaX = P(Z'|Y,w)P(Y|9) HP(Xi|Z', 9), (1.1)

a maximum likelihood (ML) prediction of the true reference sequence, Z, given the mu-
tated reference sequence and the reads. Unfortunately, this optimization, corresponding
to the multiple sequence alignment problem, is NP-hard [I06]. However, exact dynamic
programming algorithms that are exponential in the cardinality of X exist, and a num-
ber of principled heuristics have been proposed [107].

Let ~ represent a pairwise alignment of each read sequence to the mutated
reference Y. We write Y; ~ X ,i to indicate element 7 of the mutated reference sequence Y’

is aligned to element k of read sequence X7. As the alignment allows for only indels and
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matches, for each read sequence X7, ~ defines a strictly increasing relationship between
the indices of aligned bases in Y and X7. A probability calculated using an HMM can
be conditioned on such an alignment by restricting the state space investigated to a
subspace of the overall space. Here, we define this restriction as requiring the HMM to
emit the sets of aligned bases in the order defined by the sequences. While computing
f is intractable, it is straightforward, given the simple definition of w, to compute a

member of

f,(vaaN) = argmaXP(Z,|K va)P(Y’ d))HP(XZ‘Z/vN?e)v (12)
zZ! i

a ML estimate of the true reference sequence conditional on a fixed alignment, because,
it is easy to show, this corresponds to calculating the ML base independently for each

column ¢ containing one or more aligned read positions:

arg max P(Z]|Y;,w)P(Vily) [ P(X]|Z,0), (1.3)
7

Xj~y;
concatenating the resulting ML bases together in order to form Z'.

To generate an alignment, ~, we used one of the mapping programs described
earlier, or the composed transducer ¢ ow o 6 (see below), which combines the five-state
HMM error model described earlier with the simple model for substitutions between Y
and Z and the sequencing generating transducer ¢. The parameters for the error model
were determined using the EM training described earlier, the substitution parameter

for w was set by manual, empirical investigation.

A simple improvement over using the fixed alignment algorithm is to use the
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posterior match probabilities between bases in the alignments to replace ([1.3)) with

arg max P(Z{|Y;,w)P(Yi|¢) [ [ D P(X{1Z/,0)P(X] ~ Yi|powo ),  (1.4)
Z; ik

where P(X,Z ~ Yj|¢ o w o @) is the posterior probability that the element k
of sequence X7 is aligned to element i in sequence Y given the composed transducer
¢owof. Note this is not the same as evaluating f directly, but instead is equivalent to the
column calculation in marginalising over the probability of all pairwise alignments
between each read and the mutated reference sequence.

Instead of calculating [1.4] we can alternatively calculate the related posterior
base calling probability that the base at given index of Z is equal to a given base,
and so obtain the likelihood of each alternate base (bases not the same as the given
mutated reference base) for our chosen parameters. We can then assess the number of
non-reference true positive and false positive predictions with a posterior probability
greater than or equal to a given value. We define a false positive for an index ¢ and
posterior probability p as a base x not equal to either Y; or Z; and with posterior base
calling probability > p. Conversely, we define a true positive to be when zx is equal to
Z;, not equal to Y; (because we are interested in sites that have changed between the
true and mutated reference), and the posterior base calling probability is > p. Given
these definitions, summing over all columns, we use standard the information theoretic
measures of precision, recall and F-score to judge performance for a given posterior

probability threshold.
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In practice, the model ¢ o w o # was composed by combining an EM trained
HMM model (¢06) on 2D reads using tuned LAST as the guide alignment (as described
earlier) with the substitution model w, setting o« = 0.8, which was found to work well
and which corresponds to a mismatch rate of 20%.

Supplementary Fig. and Supplementary Table S1.8| show the results.
Note the numbers in the table (and subsequent tables) are the average precision/recall /F-
scores over all replicates, where for each replicate the precision/recall/F-score value
shown is for the optimal F-score for that replicate. In the figure (and subsequent fig-
ures), the precision and recall value pairs which define the curves are the average over all
replicates as a function of the posterior base calling probability threshold. To demon-
strate the methods and parameters we chose were reasonable, we compared to a number
of parameter and algorithm variations.

In calculating the posterior match probabilities by setting o = 0.6 (a mismatch
rate of 40%), we see a decrease in F-score for a 1% mutation frequency (average across
all coverages), but a gain for 5% and greater mutation frequencies (Supplementary Fig.
and Supplementary Table S1.9). This suggests, as might be expected, that «
should be set lower when the expected divergence between the reference and sample
is greater. With o = 0.6, we achieve an average precision and recall of 98% for a 5%
mutation frequency.

For a = 1.0 (equivalent to not modeling mismatches), we see significantly
lower performance (Supplementary Fig. and Supplementary Table . We

speculate the relatively large o values work well because the trained model strongly
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prefers to avoid certain matches (e.g. adenosine to thymine), but such matches should
be made when aligning the reads to a mutated reference sequence rather than the
true reference sequence. The higher substitution rates, therefore, allow the model to
overcome this bias, rather than giving weight to likely alternative scenarios (e.g. the
creation of additional indels to avoid these matches).

Next, we calculate the posterior base calling probabilities using a replacement
0 instead of 6 from our EM trained model. The replacement 6 is from a model that
has equal probabilities for all substitutions. This strategy is equivalent to picking the
base with the highest posterior match probability expectation. In so doing, we see
a slight decrease in performance (Supplementary Fig and Supplementary Table
S1.11)). This suggests that the trained substitution model performs better than a naive
strategy.

Switching from using posterior match probabilities to a fixed input alignment
in the calculation of the posterior base calling probability, we find significantly lower
performance (Supplementary Fig. and Supplementary Table . This is
unsurprising given that the modal posterior match probability is less than 90% (Fig.
LT7(C)).

As might be expected, switching to using template or complement reads instead
of 2D reads causes substantially poorer performance (Supplementary Fig. S1.29H1.30
and Supplementary Tables . However, this may be somewhat due to using

an alignment model trained for 2D reads.
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Supplementary Fig. S 1.23: Visualization of an alignment of 2D reads with M13 us-
ing trained LAST realignments on the UCSC Genome Browser. The high indel and
mismatch rate are clearly evident.
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Supplementary Fig. S 1.24: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used
2D reads starting with the tuned LAST (run using the ‘-s 2 -T 0 -Q 0-a 1’ flags)
mapping algorithm. Variant calling was calculated using posterior match probabilities
to integrate over every possible read alignment to the mutated reference. We used the
initial guide alignment to band the calculations. Variant calling also used a trained
substitution matrix to calculate the maximum likelihood base (see method description).
Posterior match probabilities were calculated using the EM trained HMM model. Each
assumed 20% divergence to account for substitution differences between the mutated
reference and the true reference. The variant calling results shown are for a posterior
base calling probability threshold that gives the optimal F-score. Mutation frequency
is the approximate proportion of mutated sites called as variants in the aligned reads.
Coverage is the total length of reads sampled divided by the length of the reference.
ALL symbolizes all the reads for a given experiment. Results shown are across three
replicate experiments. There are three different samplings of the reads at each coverage
value.
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Supplementary Fig. S 1.25: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used
2D reads starting with the tuned LAST (run using the ‘-s 2 -T 0-Q 0 -a 1’ flags) map-
ping algorithm. Variant calling was performed using posterior match probabilities to
integrate over every possible read alignment to the mutated reference. The initial guide
alignment was used to band the calculations. Variant calling used a trained substitution
matrix to calculate the maximum likelihood base (see method description). Posterior
match probabilities were calculated using the EM trained HMM model. We assumed
40% divergence to account for substitution differences between the mutated reference
and the true reference. The variant calling results shown are for a posterior base calling
probability threshold that gives the optimal F-score. Mutation frequency is the approx-
imate proportion of sites mutated in the reference that get called as variants when reads
are aligned. Coverage is the total length of reads sampled divided by the length of the
reference. ALL corresponds to using all the reads for a given experiment. Results shown
are across three replicate experiments. There are three different samplings of the reads
at each coverage value.
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Supplementary Fig. S 1.26: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used 2D
reads starting with the tuned LAST (run using the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping
algorithm. Variant calling used posterior match probabilities to integrate over every
possible read alignment to the mutated reference. The initial guide alignment was used
to band the calculations. Variant calling used a trained substitution matrix to calculate
the maximum likelihood base (see method description). Posterior match probabilities
were calculated using the EM trained HMM model. Here, we do not account for sub-
stitution differences between the mutated reference and the true reference. We use the
posterior base calling probability threshold that gives the optimal F-score for variant
calling. Mutation frequency is the approximate proportion of mutated sites in the ref-
erence that get called as variants in aligned reads. Coverage is the total length of reads
sampled divided by the length of the reference. ALL corresponds to using all the reads
for a given experiment. Results shown are across three replicate experiments. There
are three different samplings of the reads at each coverage value.
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Supplementary Fig. S 1.27: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10, and 20 percent. Variant calling used 2D
reads starting with the tuned LAST (run using the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping
algorithm. For variant calling, we used posterior match probabilities to integrate over
every possible read alignment to the mutated reference. The initial guide alignment
was used to band the calculations. This variant strategy corresponds to choosing the
maximum-frequency /expectation of a non-reference base. Posterior match probabilities
were calculated using the EM trained HMM model. Therein, we assume 20% divergence
to account for substitution differences between the mutated reference and the true ref-
erence. For variant calling, we used the base calling probability threshold that gives the
optimal F-score. Mutation frequency is the approximate proportion of mutated sites in
the reference that get called as variants in aligned reads. Coverage is the total length
of reads sampled divided by the length of the reference. ALL corresponds to using all
the reads for a given experiment. Results shown are across three replicate experiments.
There are three different samplings of the reads at each coverage value.
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Supplementary Fig. S 1.28: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used 2D
reads starting with the tuned LAST (run using the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping
algorithm. Variant calling was conditioned on the fixed input alignment. Variant calling
also used a trained substitution matrix to calculate the maximum likelihood base (see
method description). Posterior match probabilities were calculated using the EM trained
HMM model. Therein, we assume 20% divergence to account for substitution differences
between the mutated reference and the true reference. For variant calling, we used the
base calling probability threshold that gives the optimal F-score. Mutation frequency is
the approximate proportion of mutated sites in the reference that get called as variants
in aligned reads. Coverage is the total length of reads sampled divided by the length of
the reference. ALL corresponds to using all the reads for a given experiment. Results
shown are across three replicate experiments. There are three different samplings of the
reads at each coverage value.
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Supplementary Fig. S 1.29: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used
complement reads starting with the tuned LAST (run using the s 2 -T 0 -Q 0 -a
1’ flags) mapping algorithm. For variant calling, we used posterior match probabil-
ities to integrate over every possible read alignment to the mutated reference. The
initial guide alignment was used to band the calculations. Variant calling also used
a trained substitution matrix to calculate the maximum likelihood base (see method
description). Posterior match probabilities were calculated using the EM trained HMM
model. Therein, we assume 20% divergence to account for substitution differences be-
tween the mutated reference and the true reference. For variant calling, we used the
base calling probability threshold that gives the optimal F-score. Mutation frequency is
the approximate proportion of mutated sites in the reference that get called as variants
in aligned reads. Coverage is the total length of reads sampled divided by the length of
the reference. ALL corresponds to using all the reads for a given experiment. Results
shown are across three replicate experiments. There are three different samplings of the
reads at each coverage value.
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Supplementary Fig. S 1.30: Precision/recall curves show variant calling performance
for four different mutation frequencies: 1, 5, 10 and 20 percent. Variant calling used
template reads starting with the tuned LAST (run using the ‘s 2 -T 0 -Q 0 -a 1’
flags) mapping algorithm. For variant calling, we used posterior match probabilities
to integrate over every possible read alignment to the mutated reference. The initial
guide alignment was used to band the calculations. This variant strategy corresponds to
choosing the maximum-frequency/expectation of a non-reference base. Posterior match
probabilities were calculated using the EM trained HMM model. Therein, we assume
20% divergence to account for substitution differences between the mutated reference
and the true reference. For variant calling, we used the base calling probability threshold
that gives the optimal F-score. Mutation frequency is the approximate proportion of
mutated sites in the reference that get called as variants in aligned reads. Coverage is the
total length of reads sampled divided by the length of the reference. ALL corresponds
to using all the reads for a given experiment. Results shown are across three replicate
experiments. There are three different samplings of the reads at each coverage value.
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Abstract

The human genome remains incomplete due to the challenge of assembling
long tracts of near-identical tandem repeats, or satellite DNAs, that are highly enriched
in centromeric regions. To address this, we have implemented a nanopore long-read
sequencing strategy to generate high-quality reads capable of spanning hundreds of
kilobases of highly repetitive DNAs. Here, we use this advance to produce an initial
sequence assembly and characterization of the centromeric region of a human Y chro-

moso1e.

Sequence-based studies rely on accurate chromosome assemblies to explore
genome biology and function. However, most complex genomes that have been se-
quenced remain incomplete due to the inability to generate true, haplotype-resolved
linear assemblies of centromeric regions, which are known to be enriched in long, often
multi-megabase sized tracts of near-identical tandem repeats, or satellite DNAs [108].
Efforts to resolve these regions capitalize on a small number of sparsely arranged se-
quence variants that offer unique markers to break the repeat monotony and ensure
proper overlap-layout-consensus assembly DNAs [109, 110]. Identifying and spanning
sequence variants that may be spaced hundreds of kilobases away within a given array
requires long and highly accurate sequence reads. Achieving this will involve an ad-

vancement in standard single-molecule sequencing, which is error-prone and offers a low

106



throughput of sufficiently long-reads (100 kb+) [9, [1T11].

Here we present a strategy that generates long reads capable of spanning the
complete sequence insert of bacterial artificial chromosomes (BACs) that are hundreds
of kilobases in length (~100-300kb). We demonstrate that these reads are sufficient to
resolve the linear ordering of repeats within a single satellite array on the Y chromosome,
allowing the first complete sequence characterization of a human centromere.

BACs used in this study were previously determined to span the centromere
(DYZ3) locus, and are known to contain centromeric alpha satellite DNAs [112]. No-
tably, DYZ3 sequences, unlike shorter satellite DNAs [I13], [114], have been observed to
be stable and cloned without bias [I15] [IT6]. To bypass the challenge of repeat assembly
within each BAC, we generated long reads with nanopore sequencing (MinION sequenc-
ing device, Oxford Nanopore Technologies), capable of traversing the entire BAC insert.
To do so, we optimized a transposase-based method (1D Longboard Strategy) designed
to linearize the BAC with a single cut-site. This resulted in a linearization of the BAC

followed by addition of the necessary sequencing adaptors (as described in Figure

and [Material and Methods|). Plotting read lengths to evaluate nanopore sequencing

yield reveal an enrichment for complete read lengths of the BAC DNA (i.e. vector and
full-length insert) (Figure and Figure 2.2)). In total, we generated over >3500 full-
length 1D reads that span the entirety of 10 BACs (1 control BAC from Xq24 and 9

BACs that mapped to the DYZ3 locus) with MinION sequencing (Table [2.1)).
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Figure 2.1: BAC based 1D Longboard nanopore sequencing strategy on the MinION.
(a) Optimized strategy to cut each circular BAC once with transposase, resulting in a
linear and complete DNA fragment of the BAC. After ligation of sequencing adaptors
we perform MinION sequencing. (b) Yield plots of BAC DNA (RP11-648J18) provide
enrichment, or peaks, supporting BAC lengths. Shading demonstrates the selection of a
narrow range of read lengths used in deriving the consensus, the blue dotted line reveals
the median value within the selected region providing the closest estimate of insert size.
(c) To generate the high quality consensus sequence for each BAC we performed multiple
alignment of 60 full length 1D reads (shown as blue and yellow for both orientations)
sampled at random with 10 iterations, followed by polishing steps (green) with the
entire nanopore long read data and Illumina data. (d) A Circos representation of the
polished RP11-718M18 BAC consensus sequence (insert shown in grey: 217 kb, vector
in red: 8.8 kb). Blue boxes indicate the positions of each 5.7kb DYZ3 repeat found in
a head-to-tail orientation. Purple shading indicates low copy variants, marking tandem
DYZ3 repeat structural variants (6 kb).
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Figure 2.2: MinlON yield versus read length. Each subpanel corresponds to the yield
in megabases vs read length for a particular BAC with the selected sequence used to
generate the consensus sequence highlighted in grey and blue dotted lines providing
information for the median value, or expected size of the full-length BAC.

Table 2.1: Throughput for each of the BAC runs.

BAC ID Type # reads Yield (Mb) Selected # reads Yield (Mb) Consensus
full-length length (bp)
Range (kb)
108114 Yp-arm 21143 663 75-85 2172 174 80455
531P03 DZY3 array; unknown order 25666 484 150-165 140 22 160837
808MO02 DZY3 array; unknown order 25981 180 140-170 154 24 148529
1226J10 Yqg-arm+HSATIII 67218 1392 150-170 858 138 160770
909C13 DZY3 array; unknown order 56610 1695 160-180 727 126 174237
744B15 DZY3 array; unknown order 22017 778 170-190 98 18 180480
890C20 DZY3 array; unknown order 10584 419 170-185 76 14 179559
648J16 DZY3 array; unknown order 20675 561 180-190 59 109 185171
718M18 DZY3 array; unknown order 81594 2704 190-210 596 121 204864
482A22 Control (Xq24) 32386 2426 150-200 1483 254 170145

BAC-based assembly across the DYZ3 locus requires overlap among a few in-
formative sequence variants, thus placing great importance on the accuracy of base-calls.
Individual 1D reads (MinION R9.4 chemistry) provide inadequate sequence identity to

ensure proper assembly [9, [ITT]. Using individual reads obtained from a control BAC
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(Xq24; RP11-482A22) we observed a median alignment identity of 84.8% and estimated
the median rates of insertions, deletions, and mismatches to be 3.6%, 4.6%, and 3.4%
respectively. These measurements are consistent with those observed for the nanopore

human genome [I11I]. To improve the overall base quality we derived a consensus from

multiple alignments of 1D reads that span the full insert length for each BAC (Mate-|

frial and Methods|). We found that we were able to improve the consensus quality with

modest coverage increase and sampling (multiple alignments from 60 full-length reads
with 10 iterations) (Figure ) Additional polishing steps were performed using re-
alignment of all full-length nanopore reads for each BAC to improve consensus sequence

base quality (99.2% observed for control BAC, RP11-482A22; and an observed range of

99.4 - 99.8% for vector sequences in DYZ3-containing BACs; [Material and Methods|).

To provide a truth set of repeat sequence variants and to evaluate any inher-

ent nanopore sequence biases, we performed Illumina high-coverage BAC resequencing

(coverage range: ~700-2400; [Material and Methods]). In reference to the Illumina 5 base

pair frequencies for each BAC, we observed homopolymer improvement in our consensus
alignment strategy compared to the initial 1D reads (Figure . DYZ3 satellite repeat
copy number, as determined by Illumina read depth were concordant with estimates ob-
tained from nanopore BAC consensus sequences (r = 0.97; Figure ) Sequence cov-
erage observed for the vector in Illumina datasets were used to confidently identify and

validate single-copy sequence variants within each BAC (illustrated for RP11-718M18;

Figure ,c; [Material and Methods)). Using a k-mer strategy (where k=21 bp), we

observed an average positive prediction value of 95.8 between Illumina and our polished
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sequences, allowing us to identify and mask all sites not supported by Illumina reads as
a false positive variant. Finally, standard quality polishing with pilon [I17] was applied
strictly to unique (that is, non-satellite DNA) sequences on the proximal p and q arm
to improve final quality. Alignment of polished consensus sequences from our control
BAC from Xq24 (RP11-482A22) and non-satellite DNA in the p-arm adjacent to the
centromere (Ypl1.2, RP11-531P03), revealed base-quality improvement to > 99% iden-
tity. Given the improvements of this strategy, we present high-quality BAC sequences
that describe long-range repeat structure, (e.g. 217 kb for RP11-718M18) to guide the

ordered assembly of BACs from p-arm to g-arm, spanning the Y centromere (Figure

2 14).
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Figure 2.3: Comparisons of 5-mer enrichment and biases. As shown for the RP11-
718M18 data, (a) Illumina 5-mer frequencies relative to 5-mer frequencies for a syn-
thetic BAC insert assuming no variants, (b) Illumina 5-mer frequency relative to the
reads obtained from the MinION (Albacore base-calling), (c¢) Illumina 5-mer frequency
relative to consensus polished RP11-718M18 nanopore data, (d) investigating the ex-
pected proportion of homopolymers (AAAA/TTTT), we observe a correction in calls
in our polishing step, which agrees with data from the Illumina read database.

111



0T 1=0.9694 1200 -
sl 718M18 m P mun
1000 g 20
0L 909C13 m = £
w- 648)16m 4 g0 £ .
g8 2 808M02 w890C20W - £ 151
= _ 1126J10m o a
2g £ 600 &
28 L > =
20 744815 m - 2 o
400 -
15-
sk
10 531P03 200 .
108114 -
L] 1 L L 1 L J 1
55 10 15 20 25 30 35 0IOOO 1100 1200 1300 1400 1500 1600 %oo 1200
llumina pBACe3.6 Average
(DYZ3 HOR) K-mer Depth K-mer Depth
(k=21) (k=21)

Figure 2.4: Tllumina BAC resequencing data are concordant for DYZ3 repeat copy
estimates. (a) Using k-mer (where k=21) counts for sites specific to the vector sequence
we can determine a range of expected depth or frequency to identify single copy sites
for each BAC sequence library, as shown for RP-11 718M18 (b) Overlapping 21-mers
with frequency counts within the range of the vector sequence for each BAC library is
useful in identifying informative satellite variants (c).

We predicted the ordering of nine BACs using 38 sequence variants (with
emphasis on 7 variants that ensured proper overlap between BACs spanning the p-arm
and g-arm, as shown in Figure resulting in 354,250 bp of assembled centromeric
alpha satellite DNA (Figure . The majority of the centromeric sequence is defined
by a 302 kb array of a 5.7 kb DYZ3 higher-order repeat (HOR) [118, 119] that, at
the genomic level, is functionally associated with kinetochore assembly and centromere
identity [116] 120]. The predicted length of the RP11 Y centromere is consistent with
DYZ3 array estimates for 96 individuals from the same Y haplogroup (R1b) (Figure
mean: 315 kb; median: 350 kb) [121} [122]. This finding is in agreement with pulse-field
gel electrophoresis (PFGE) DYZ3 size estimates presented in previous physical mapping
of the Y centromeric region [119, [123] 124]. Using a Y-haplogroup matched cell line

[125], we find concordant PFGE array size estimates across 6 restriction digests with
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our RP11 centromere Y length prediction (Figure . Pairwise comparison between
52 HOR repeats in the DYZ3 array reveal limited sequence divergence between copies
(average: 99.7%), as expected for highly homogenized HORs. Further, in agreement
with previous assessment of sequence variation within the DYZ3 array [118, 119], we
detect a 6 kb HOR structural variant, and provide evidence for 9 copies that are, in all
but one occasion, found in tandem [I119]. We defined nine DYZ3 repeat haplotypes using
linkage between variant bases that are frequent in the array, revealing three local blocks
that are enriched for distinct haplotype groups, consistent with previous demonstrations

of short-range homogenization of satellite DNA sequence variants [119] [124].
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718M18 GAATGCTTCTGTGTAGCTTTAATATGAAGACATTTAGTTTT
909C13 GAATGCTTCTGTGTAGCTTTAATATGAAGACATTTAGTTTT
1126J10 GAATGCTTCTGTGTAGCTTTAATATGAAGACATTTAGTTTT
808C20 GAATGCTTCTGTGTAGCTTTAATATGAAGACATTTAGTTTT
718M18 TCAAATGGAAGGTTCAAAACTGTGACATGAATGCCCACATC
909C13 TCAAATGGAAGGTTCAAAACTGTGACATGAATGCCCACATC
1126J10 TCAAATGGAAGGTTCAAAACTGTGACATGAATGCCCACATC
808C20 TCAAATGGAAGGTTCAAAACTGTGACATGAATGCCCACATC
718M18 TGAGTGCACAAATCACAAAGAAGTTTCTCAAAATGCTTCTG
909C13 TGAGTGCACAAATCACAAAGAAGTTTCTCAAAATGCTTCTG
1126310 TGAGTGCACAAATCACAAAGAAGTTTCTCAAAATGCTTCTG
808C20 TGAGTGCACAAATCACAAAGAAGTTTCTCAAAATGCTTCTG
718M18 TCCACTTTCAGATTCT-~--ACAAGAGAGGTTCAAAACTA
909C13 TCCACTTTCAGATTCT-~-~-ACAAGAGAGGTTCAAAACTA
1126310 TCCACTTTCAGATTCT-~~-ACAAGAGAGGTTCAAAACTA
808C20 TCCACTTTCAGATTCT---ACAAGAGAGGTTCAAAACTA
718M18 AAACACATCACAAATAAG-TTCC
909C13 AAACACATCACAAATAAG-TTCC
1126J10 AAACACATCACAAATAAG-TTCC
808C20 AAACACATCACAAATAAG-TTCC
718M18 TCGGAATTCTTCTGTGTAGTATTTATGTGAAGATATTTCCT
1126310 TCGGAATTCTTCTGTGTAGTATTTATGTGAAGATATTTCCT
808C20 TCGGAATTCTTCTGTGTAGTATTTATGTGAAGATATTTCCT

Figure 2.5: Evidence for satellite variants in overlap region between repeats 28-35.
Informative variants useful in ensuring proper overlap are shown for repeat 30 (yellow)
and repeat 35 (light purple). Support for seven variant positions are shown for all BACs
(blue) with the reference base indicated in red. Relevant alignments for each variant
are provided with shared variant bases/positions indicated in red.
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Figure 2.6: Linear assembly of the RP11 Y centromere. Ordering of nine DYZ3-
containing BACs spanning from proximal p-arm to proximal g-arm provided evidence
for a 354,250 bp region enriched in alpha satellite DNA. Vertical purple lines and shaded
boxes indicate DYZ3 satellite repeats that contain at least one single copy variant used
to ensure proper BAC overlap-layout-consensus assembly. Highly divergent monomeric
alpha satellite (~171 bp, dark blue), indicative of the edges of the otherwise highly ho-
mogeneous array, is observed at > 99% sequence identity with sequences in the GRCh38
assembly. The centromere locus is defined by the DYZ3 conical 5.7 kb higher-order re-
peat (HOR) (light blue), that is observed in a head to tail orientation from p-arm to
g-arm, for a total of 301 kb. Nine HOR variants (6 kb, shown in purple) have been
identified, with all but one identified in tandem. DYZ3 HORs were classified into nine
haplotypes using four frequent satellite DNA variants in the array (haplotype (H)1 red,
H2 orange, H3 yellow, H4 green, H5 blue, H6 dark orange; H7 purple, H8 dark purple,
H9 grey). We identified three predominant blocks: H1 proximal to the p-arm (I), H4 in
the middle of the array (II), and H5 adjacent to the g-arm (III).
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Figure 2.7: Distribution of array lengths estimates for R1b Y-haplogroups from the
Phase 1 1000 genome project. The assembled DYZ3 array length for the RP11 donor
genome is shown as a dashed blue line.
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Figure 2.8: DYZ3 array length estimates by pulse field gel electrophoresis (PFGE)
Southern using digests with a Y-haplogroup R1b matched individual (HuRef cell line).
DNA digest is shown in top panel for 6 enzymes used with corresponding CHEF gel.
Lane 7 is used as a negative control (GM12708 female cell line). Size estimates were
made using chromosomes from S. cerevisiae strain YNN295 and lambda DNA as mark-
ers (marker sizes in kilobase pairs at left). Size estimates assuming the RP11 DYZ3
assembly are presented in the table relative to the relative positions of restriction sites
in the human reference assembly flanking the centromeric region (GRCh38).

In conclusion, we have implemented a long read strategy to generate high
quality, finished sequences to advance sequence characterization of repetitive DNAs.
In doing so, we report the long-range repeat organization and structure of a human
centromere on chromosome Y. We expect that this work will contribute to ongoing

efforts to complete complex genomes.
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Material and Methods

A. 1D Longboard MinION Protocol

BAC DNA Preparation and Validation. Bacterial artificial chromo-
somes (BACs) clones used in this study were obtained from BACPAC RPCI1-11 li-
brary, Children’s Hospital Oakland Research Institute in Oakland, California, USA
(http://www.chori.org/bacpac/). BACs that span the human Y centromere: RP11-
108114, RP11-1226J10, RP11-808M2, RP11-531P03, RP11-909C13, RP11-890C20, RP11-
744B15, RP11-648J16, RP11-718M18, and RP11-482A22, were determined based on
previous hybridization with DYZ3-specific STSs probes sY715 and sY78 [112]. BAC
DNA was prepared using the QIAGEN Large-Construct Kit (Cat No./ID: 12462). To
ensure removal of the E.coli genome, it was important to include an exonuclease incu-
bation step at 37C for 1 hour, as provided within the QIAGEN Large-Construct Kit.
BAC DNAs were hydrated in TE buffer. BAC Insert length estimates were determined
by pulsed-field gel electrophoresis (PFGE) (data not shown).

Transposase-mediated 1D long reads. MinlONs can process long frag-
ments, as has been previously documented [0, [111]. While these long reads demonstrate
the processivity of nanopore sequencing, they are also few in numbers. To systemati-
cally enrich for the number of long reads per MinlON sequencing run, we developed a
strategy that uses ONT Rapid Sequencing Kit (RAD002). We performed a titration be-
tween the transposase from this kit (RAD002) and circular BAC DNA. This was done

to achieve conditions that would optimize the probability of circular BAC fragments

118



being cut by the transposase only once. To this end, we diluted the ‘live’ transposase
from the RADO002 kit with the ‘dead’ transposase provided by ONT. For pulsed-field
gel electrophoresis (PFGE) based tests, we used 1 pul of ‘live’ transposase and 1.5 pul of
‘dead’ transposase per 200 ng of DNA in a 10 ul reaction volume. This reaction mix
was then incubated at 30°C for 1 minute and 75°C for 1 minute, followed by PFGE.
Our PFGE tests used a 1% high-melting agarose gels and were run with standard 180°

FIGE conditions for 3.5 hours. An example PFGE gel is shown below:
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Figure 2.9: Representative gel image from a pulsed-field gel electrophoresis assay to
test NotIHF digest of BACs and to assess titration of DNA:ONT transposase (‘dead’
FRM + ‘live’ FRM). Data shown for two BACs: RP11-482A22 (~175 kb Control BAC
from Xq24) and RP11-718M18 (~217 kb DYZ3-containing BAC). Circularized BACs
are indicated in purple. High fidelity NotI (NotI-HF; NEB R3189S) was used to identify
insert sequence (blue) and vector sequence (orange). Addition of transposase (‘dead’
FRM + ‘live’ FRM) indicates that the the majority of linearized DNAs (light orange,
transposase-cut BAC) are full-length or only cut once.

For MinION sequencing library preparation, we used 1.5 ul of ‘live’ transposase
and 1 pl of ‘dead’ transposase (supplied by ONT) per 1 pg of DNA in a 10 pl reaction

volume. Briefly, this reaction mix was then incubated at 30°C for 1 minute and 75°C for
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1 minute. We then added 1 pl of the sequencing adapter and 1 ul of Blunt/TA Ligase
Master Mix (New England Biolabs) and incubated the reaction for 5 minutes. This was
the adapted BAC DNA library for the MinION. R9.4 SpotON flow cells were primed
using ONT recommended protocol. We prepared 1 ml of priming buffer with 500 ul
running buffer (RBF) and 500 ul water. Flow cells were primed with 800 ul priming
buffer via the side loading port. We waited for 5 minutes to ensure initial buffering
before loaded the remaining 200 ul of priming buffer via the side loading port but with
the SpotON open. We next added 35 pul RBF and 28 ul water to the 12 ul library for a
total volume of 75 ul. We loaded this library on the flow cell via the SpotON port and
proceeded to start a 48 hour MinION run.

When a nanopore run is underway, the amplifiers controlling individual pores
can alter voltage to get rid of unadapted molecules which will otherwise block the pore.
With R9.4 chemistry, ONT introduced global flicking that reversed the potential every
10 minutes by default to clear all nanopores of all molecules. At 450 bps speed, a
200 kb BAC would take around 7.5 minutes to process. To ensure sufficient time for
capturing BAC molecules on the MinION, we changed the global flicking time period to
30 minutes. This is no longer the case with an update to ONT’s MinKNOW software,

and on the later BAC sequencing runs we did not change any parameters.
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B. Multiple alignment strategy and polishing steps to improve sequence

quality.

We selected BAC full-length reads as determined by observed enrichment in
our yield plots. Full-length reads used in this study were determined to contain at least
3 kb of vector sequence, as determined by BLASR [126] (-sdp TupleSize 8 -bestn 1 -nproc
8 -m 0) alignment with the pBACe3.6 vector (GenBank Accession: U80929.2). Reads
were converted to the forward strand. Reads were reoriented relative to a fixed 3 kb
vector sequence by aligning the transition from vector to insert. In cases where the
vector sequence was not identified at the end of the read, the sequence preceding the
vector was added to the end of the original sequence. We sampled 60 reoriented reads
at random and performed a multiple sequence alignment (MSA) using kalign [127]. We
computed the consensus from the MSA using a custom python script (github, needed),
where the most prevalent base at each position was called. Gaps were only considered
in the consensus if the second most frequent nucleotide at that position was present in
less than 10 reads. We performed random sampling followed by MSA iteratively 10x,
resulting in a panel of 10 consensus sequences. We next performed an MSA on the
collection of consensus sequences to generate a final consensus sequence, as discussed.
Consensus sequence polishing was performed by aligning full-length 1D nanopore reads
for each BAC to the consensus (BLASR [126], -sdpTupleSize 8 -bestn 1 -nproc 8 -m
0). We used pysamstats [I128] to identify read support for each base call. We masked

consensus bases that had less than 50% support in the total read alignments. Finally, we
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performed two rounds of pilon [I17] polishing using Illumina sequence data (described
below) for the non-alpha higher-order regions on the p and q arm that had unique
alignments.

We performed Illumina re-sequencing (Miseq V3 600bp; 2 x 100 bp) for all nine
DYZ3-containing BACs to validate identified repeat variants in the nanopore consensus
sequence and ultimately guide BAC-based assembly of the array. Overall read depth
for each BAC was determined by mapping Illumina reads from each BAC library to
the pBACe3.6 vector. DYZ3 copy number estimates were determined by the frequency
of Illumina reads that mapped to a reference 5785 bp DYZ3 repeat (presented in tan-
dem to remove edge-effects mapping artifacts), multiplied by the total BAC consensus
length. DYZ3 copy number in each consensus sequence derived from nanopore reads was
determined using HMMER3 [129] (v3.1b2) with a profile constructed from the DYZ3
reference repeat. To characterize individual consensus bases, Illumina read data was
reformatted into a k-mer library (where k=21 bp, with 1 bp slide) in forward and re-
verse orientation. K-mers that matched the pBACe3.6 sequence exactly were labeled
as ‘vector’. As the vector sequence is expected to be present once in each BAC the
distribution of counts for 21-mers that had an exact match with pBACe3.6 provided a
range of k-mer frequency and/or k-mer depth expected for single-copy DNA (as shown
in Supplementary Figure 3b for RP11-718M18). DYZ3 repeat variants (satVARs) were
determined as 21-mers not identified to have an exact match with either the vector
or DYZ3 reference repeat. Single copy satVARs were observed once in the consensus

sequence and had a k-mer depth profile in the range of the corresponding BAC vector
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k-mer distribution. Additionally, satVARs used in overlap-layout-consensus assembly

must be supported by 2 or more Illumina 21-mers that support a single-copy site.

C. Prediction and validation of DYZ3 array.

BAC ordering was determined using 34 overlapping informative satVARs (in-
cluding the nine DYZ3 6 kb structural variants) in addition to alignments directly to
either assembled sequence on the p-arm or g-arm of the human reference assembly
(GRCh38). Full length DYZ3 HORs (ordered 1-52) were evaluated by MSA (using
kalign [127]) between overlapping BACs, with emphasis on repeats 28-35 that define
the overlap between BACs anchored to the p-arm or g-arm. RPC1-11 BAC library has
been previously referenced as derived from a known carrier of haplogroup R1b [130}, 131].
We compared our predicted DYZ3 array length with 93 R1b Y-haplogroup matched in-
dividuals by intersecting previously published DYZ3 array length estimates for 1000
genome phase 1 data [121} 122] with donor-matched Y-haplogroup information [132].
To investigate concordancy of our array prediction with previous physical maps of the
Y-centromere, we identified the positions of referenced restriction sites that directly
flank the DYZ3 array in the human chromosome Y assembly (GRCh38) [119] 124 123].
It is unknown if previously published individuals are from the same population cohort
as the RPC1-11 donor genome. Therefore, we performed similar PFGE DYZ3 array
PFGE length estimates using the HuRef B-lymphoblast cell line (now available from
Coriell Institute as GM25430), which was previously characterized to be in the R1-b

Y-haplogroup [125].
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PFGE alpha satellite Southern. High-molecular-weight HuRef genomic
DNA was resuspended in agarose plugs using 5e6 cells per 100 ul of 0.75% Clean-
Cut Agarose (CHEF Genomic DNA Plug Kits Cat #: 170-3591 BIORAD). A female
lymphoblastoid cell line (GM12708) was included as a negative control. Agarose plug
digests were performed overnight (8-12hrs) with 30-50U of each enzyme with matched
NEB buffer. PFGE Southern experiments used 1/4 - 1/2 agarose plug per lane (with an
estimate of 5-10ug) in an 1% SeaKem LE Agarose gel and 0.5 X TBE. CHEF Mapper
conditions were optimized to resolve 0.1-2.0 Mb DNAs: voltage 6V /cm, runtime: 26:40
hrs, in angle: 120°, initial switch time: 6.75 s, final switch time: 1m33.69s, with a linear
ramping factor. We used the Lambda (NEB; N0340S) and S. cerevisiae (NEB; N0345S)
as markers. Methods of transfer to nylon filters, prehybridization, and chromosome spe-
cific hybridization with 32P-labeled satellite probes have been described [133]. Briefly,
DNA was transferred to nylon membrane (Zeta Probe GT nylon membrane; CAT#
162-0196) for ~24hrs. DYZ3 probe (50 ng DNA labelled ~2 cpm/mL; amplicon prod-
uct using previously published STS DYZ3 Y-A and Y-B primers [134]) was hybridized
for 16 hrs at 42°C. In addition to standard wash conditions [133], we performed two
additional stringent wash (buffer: 0.1% SDS and 0.1x SSC) steps for 10 min at 72°C to

remove non-specific binding. An image was recovered after a 20hr exposure.
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Chapter 3

Relevant MinlON work

Below, I present some of the MinlON work that I have contributed to. To
keep this writeup succinct, only the abstracts for the research are shown along with the

author contributions. I will place website links for all the papers and informatics tools

presented in this thesis in the [Appendix]
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Abstract

The advent of a miniaturized DNA sequencing device with a high-throughput
contextual sequencing capability embodies the next generation of large scale sequencing
tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore
Technologies™ in April 2014, giving public access to their USB-attached miniature
sequencing device. The MinION Analysis and Reference Consortium (MARC) was
formed by a subset of MAP participants, with the aim of evaluating and providing
standard protocols and reference data to the community. Envisaged as a multi-phased
project, this study provides the global community with the Phase 1 data from MARC,
where the reproducibility of the performance of the MinlON was evaluated at multiple
sites. Five laboratories on two continents generated data using a control strain of
Escherichia coli K-12 by preparing and sequencing samples according to a revised ONT
protocol. Here, we provide the details of the protocol used, along with a preliminary
analysis of the characteristics of typical runs including the consistency, rate, volume,
and quality of data produced. Further analysis of the Phase 1 data are presented here,

and additional experiments in Phase 2 of E. coli from MARC are already underway to
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identify ways to improve and enhance MinlON performance.
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to publish, or preparation of the manuscript.

Synopsis

The MARC consortium comprises of laboratories from all over the globe. In
this work, we performed biological and technical replicate experiments using the MinION
in five different laboratories. We then performed marginAlign [9] analyses (alignments,
EM, statistics) on these data. The data were achieved using R7.3 chemistry-based
experiments and were termed as Phase 1 release from MARC.

I helped with data generation and performed MinlON sequencing experiments
using genomic DNA from F. coli. 1 also helped with data uploads and downloads,

and sequence data extraction. In addition, I performed sequence alignments using
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marginAlign [9] (with bwa [99] chaining and bwa [99] EM) to estimate the error model
from the data and to compute alignment statistics. I also helped with writing the

manuscript.

131



Whole genome sequencing and assembly of Caenorhabditis

elegans genomes using the MinlON sequencing device

JR Tyson!", NJ O’Neil>*, M Jain®", HE Olsen®, P Hieter*, TP Snutch'

!Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University
of British Columbia, Vancouver, Canada. 2Michael Smith Laboratories, University of British Columbia,
Vancouver, BC, Canada V6T 1Z4. 3UC Santa Cruz Genomics Institute and Department of Biomolec-
ular Engineering, University of California, Santa Cruz, California, USA. *“Michael Smith Laboratories,
University of British Columbia, Vancouver, BC, Canada V6T 1Z4; Department of Medical Genetics,
University of British Columbia, Vancouver, BC, Canada V6T 1Z3. Correspondence should be addressed

to T.P.S. (snutch@mail.ubc.ca).

Abstract

Advances in 3'¥ generation sequencing have opened new possibilities for ‘bench-
top’ whole genome sequencing. The MinION is a portable device that uses nanopore
technology and can sequence long DNA molecules. MinION long sequence reads are well
suited for de novo assembly of novel complex genomes as they facilitate the construc-
tion of highly contiguous physical genome maps obviating the need for labor-intensive
physical genome mapping. MinION derived contigs can be polished using highly accu-
rate Illumina derived sequence data to generate an accurate highly contiguous genome
sequence. To assess the feasibility of this hybrid sequencing approach to de novo as-

sembly of large complex genomes, we sequenced the genome of two Caenorhabditis
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elegans strains, a wild type strain and a strain containing two complex rearrangements.
MinION sequence data was used to assemble a highly contiguous wild type C. elegans
genome containing 55 contigs (N50 contig length = 3.0 Mb) that covered >99% of the
100,286,401 base reference genome. MinIlON sequence data and de movo genome as-
sembly also identified complex rearrangements in the mutant strain. This demonstrates
that large complex genomes can be assembled from MinlON data and that the long

reads of MinION sequencing can be used to elucidate complex genomic rearrangements.

Contributions

JRT and NO’N performed the experiments and analysis. MJ and HEO helped
with assembly and sequence-level analysis. TPS directed the project. All authors

contributed to writing the manuscript.

Synopsis

In this work, we used MinlON data to understand genome complexities in
the worm genome. We were able to improve high-quality, contiguous assemblies using
MinION reads. This assembly could then be polished to almost 100% completion using
Illumina short-read data.

I helped with running the genome assemblies using SPAdes [135] (for Illumina
data) and Canu [136] (for nanopore data). For Illumina data, I helped with quality-value
based filtering of data for assembly. I assessed assembly quality using QUAST [137] and

performed sequence alignments between the various assemblies and the sequence data
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(both nanopore and Illumina) using marginAlign [9] (bwa [99]). Using these alignments
and QUAST [137] output, I calculated alignment and summary statistics. I also helped

with writing the manuscript.
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Mapping DNA methylation with high-throughput nanopore

sequencing

Arthur C Rand2, Miten Jain!2, Jordan M Eizengal'?, Audrey Musselman-

Brown!, Hugh E Olsen!, Mark Akeson! & Benedict Paten?!
g

!Department of Biomolecular Engineering and Genomics Institute, University of California,
Santa Cruz, Santa Cruz, California, USA. 2These authors contributed equally to this work. Correspon-

dence should be addressed to B.P. (benedict@soe.ucsc.edu).

Abstract

DNA chemical modifications regulate genomic function. We present a frame-
work for mapping cytosine and adenosine methylation with the Oxford Nanopore Tech-
nologies MinION using this nanopore sequencer’s ionic current signal. We map three
cytosine variants and two adenine variants. The results show that our model is sensitive
enough to detect changes in genomic DNA methylation levels as a function of growth

phase in Escherichia col.

Contributions

BP conceived of the experiments. BP and MA directed the research. ACR im-
plemented the models and performed analysis. MJ and HEO performed the sequencing
experiments and performed sequence data analysis. JME implemented the HDP model

and Gibbs sampler. AM-B performed initial experiments. All authors contributed to

135



writing the manuscript.

Synopsis

In this work, we demonstrated that MinlON sequencing can detect cytosine
and adenine DNA methylation using synthetic DNA and genomic DNA. We used syn-
thetic DNA constructs to discriminate among 3 C-5 variants of Cytosine (C, 5-mC, and
5-hmC) at 80% median accuracy [138].

Using this approach for genomic FE. coli, we mapped the methylation status
(C vs. 5-mC) for 96% of cytosines in the CC[A/T]|GG context (underlined C being
probed for methylation). We also mapped the methylation status for 86% of adenines
(A vs. 6-methyladenine (6-mA)) in the GATC context in pUC19 plasmid DNA. The
methylation status was mapped using modest coverage (20X for cytosines and 40X for
adenines).

I helped with designing and executing MinlON sequencing experiments that
used synthetic DNA substrates and E. coli (genomic and whole-genome amplified).
The genomic DNA runs included various growth phases of E. coli (0.4 OD, 0.8 OD,
and stationary phase). I performed sequence-level data analysis using marginAlign [9]

to estimate error-rates from these data, as well as to compute alignment-level statistics.
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Nanopore sequencing and assembly of a human genome

with ultra-long reads

M Jain'8, S Koren?$, J Quick®$%, AC Rand$, TA Sassani*®*$, JR
Tyson™8, AD Beggs®, AT Dilthey?, IT Fiddes!, S Malla®, H Marriott?,
KH Miga!, T Nieto®, J O’Grady!?, HE Olsen', BS Pederson*5, A Rhie?,
H Richardon!®, AR Quinlan*%%, TP Snutch?, L Tee®, B Paten!, AM

Phillippy?, JT Simpson'"'2, NJ Loman®”, M Loose®"

1UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA. 2Genome
Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Re-
search Institute, Bethesda, Maryland, USA. 3Institute of Microbiology and Infection, University of Birm-
ingham, Birmingham B15 2TT, UK. *Department of Human Genetics, University of Utah, Salt Lake
City, UT, USA. SUSTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA.
SDepartment of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA. "Michael Smith
Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Van-
couver, Canada. ®Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of
Birmingham, UK. °DeepSeq, School of Life Sciences, University of Nottingham, UK. **Norwich Medical
School, University of East Anglia, Norwich, UK *!Ontario Institute for Cancer Research, Toronto M5G
0A3, Canada. ?Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada.
§These authors contributed equally to this work. * Authors for correspondence n.j.loman@bham.ac.uk,

matt.loose@nottingham.ac.uk
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Abstract

Nanopore sequencing is a promising technique for genome sequencing due to
its portability, ability to sequence long reads from single molecules, and to simulta-
neously assay DNA methylation. However, until recently, nanopore sequencing has
been mainly applied to small genomes, due to the limited output attainable. We
present nanopore sequencing and assembly of the GM12878 Utah/Ceph human ref-
erence genome generated using the Oxford Nanopore MinlON and R9.4 version chem-
istry. We generated 91.2 Gb of sequence data ( 30x theoretical coverage) from 39
flowcells. De novo assembly yielded a highly complete and contiguous assembly (NG50
3Mb). We observed considerable variability in homopolymeric tract resolution between
different basecallers. The data permitted sensitive detection of both large structural
variants and epigenetic modifications. Further, we developed a new approach exploit-
ing the long read capability of this system and found that adding an additional 5-
coverage of ‘ultra-long’ reads (read N50 of 99.7kb) more than doubled the assembly
contiguity. Modeling the repeat structure of the human genome predicts extraordinar-
ily contiguous assemblies may be possible using nanopore reads alone. Portable de novo
sequencing of human genomes may be important for rapid point-of-care diagnosis of
rare genetic diseases and cancer, and monitoring of cancer progression. The complete
dataset including raw signal is available as an Amazon Web Services Open Dataset at:

https://github.com/nanopore-wgs-consortium/NA12878.
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Contributions

NJL, ML, JTS, and JRT conceived the study. JQ developed the long read
protocol. ADB, MJ, ML, HM, SM, TN, JO’G, JQ, HR, JRT, and LT prepared materials
and/or performed sequencing. ATD, ITF, MJ, SK, NJL, ML, KHM, HEO, BP, BSP,
AMP, ARQ, ACR, AR, TAS, JTS, and JRT performed bioinformatics analysis and
wrote or modified software. ITF, MJ, SK, NJL, ML, KHM, JO’G, HEO, BP, AMP, JQ,
ARQ, ACR, TAS, JTS, TPS, and JRT wrote and edited the manuscript. All authors

approved the manuscript and provided strategic oversight for the work.

Synopsis

Over the past three years, MinlON nanopore sequencing improved in both
sequence quality and throughput. The Nanopore Human Genome consortium sequenced
the GM12878 human genome using 44 flow cells. Six laboratories (hailing from the UK,
Canada, and the USA) generated the sequence data. The sequencing was performed by
eight laboratories that are spread across the UK, Canada, and USA. The data analysis
was then performed by several laboratories in tandem.

I helped generate sequence data at UCSC. I used marginAlign EM [9] on these
data to estimate the error model. Additionally, I performed kmer analysis to understand
under and over-represented dmers in the data. I also compared the sequence quality
from the different basecallers that were used as part of the study. These included

sequence calls from Metrichor (ONT’s cloud basecaller), Nanonet (ONT’s open-source
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basecaller), and Scrappie (ONT’s homopolymer basecaller). I also helped with writing

the manuscript.

140



Reading canonical and modified nucleotides in 16S riboso-

mal RNA using nanopore direct RNA sequencing

Andrew M Smith!, Miten Jain!, Logan Mulroney!, Daniel R Garalde?

and Mark Akeson?!

'UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA 95064.
20xford Nanopore Technologies, Oxford, UK. Correspondence should be addressed to M.A. (make-

son@soe.ucsc.edu)

Abstract

The ribosome small subunit is expressed in all living cells. It performs numer-
ous essential functions during translation, including formation of the initiation complex
and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core
constituent of the small ribosomal subunit is a 1.5 kb RNA strand in prokaryotes (16S
rRNA) and a homologous 1.8 kb RNA strand in eukaryotes (185 rRNA). Traditional
sequencing-by-synthesis (SBS) of rRNA genes or rRNA ¢DNA copies has achieved wide
use as a ‘molecular chronometer’ for phylogenetic studies [I39], and as a tool for identify-
ing infectious organisms in the clinic [140]. However, epigenetic modifications on rRNA
are erased by SBS methods. Here we describe direct MinlON nanopore sequencing of
individual, full-length 16S rRNA absent reverse transcription or amplification. As little
as b picograms (~10 attomole) of E. coli 16S rRNA was detected in 4.5 micrograms of

total human RNA. Nanopore ionic current traces that deviated from canonical patterns
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revealed conserved 16S rRNA base modifications, and a 7-methylguanosine modifica-
tion that confers aminoglycoside resistance to some pathological E. coli strains. This
direct RNA sequencing technology has promise for rapid identification of microbes in

the environment and in patient samples.

Contributions

AMS designed and performed RNA bench experiments, conceived and designed
MinION experiments, helped perform MinlON experiments and bioinformatics, and co-
wrote the paper. MJ helped conceive and design MinlON experiments, helped perform
MinION experiments and bioinformatics, and co-wrote the paper. LM helped design
RmtB experiments and engineered an E. coli strain that carried RmtB. DRG co-wrote
the manuscript and helped conceive and design MinION experiments. MA co-wrote the

manuscript, helped conceive and design experiments, and oversaw the project.

Synopsis

In this work, we developed and implemented direct RNA sequencing to 16S
ribosomal RNA. We developed an enrichment-based approach for selective sequencing of
rRNA in a human total RNA background. We also demonstrated simultaneous detection
of two nucleotide modifications on 16S rRNA from F. coli. We also performed microbial
classification using 16S rRNA data from four different microorganisms.

I helped with design and execution of MinION sequencing experiments for

data generation and processing. Thereafter, I performed signal-level data analysis us-
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ing marginAlign [9] and nanoraw [I41]. I helped with estimating error model in the
data using marginAlign EM [9], and computing alignment statistics. I also contributed

towards writing the manuscript.
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MinION Analysis and Reference Consortium: Phase 2 data

release and analysis of R9.0 chemistry

Miten Jain®", John R Tyson?”, Matthew Loose®", Camilla LC Ip%5~,
David A Eccles®, Justin O’Grady”, Sunir Malla3, Richard M Leggett?,
Ola Wallerman®, Hans J Jansen'?, Vadim Zalunin'!, Ewan Birney'"",
Bonnie L Brown!?", Terrance P Snutch®”, Hugh E Olsen’", MinION

Analysis and Reference Consortium

!University of California at Santa Cruz, Santa Cruz, CA, USA. 2Michael Smith Labora-
tories and Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver,
Canada. 3School of Life Sciences, University of Nottingham, Nottingham, UK. *Wellcome Trust Cen-
tre for Human Genetics, University of Oxford, Oxford, UK. 5Peter Medawar Building for Pathogen
Research, University of Oxford, Oxford, UK. *Malaghan Institute of Medical Research, Wellington,
New Zealand. “Norwich Medical School, University of East Anglia, Norwich, UK. ®Earlham Insti-
tute, Norwich Research Park, Norwich, UK. ®Science for Life Laboratory, IGP, Uppsala University,
Uppsala, Sweden. '°ZF-screens B.V., Leiden, Netherlands. '*European Molecular Biology Laboratory
(EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK. 12Virginia
Commonwealth University, Richmond, VA, USA. “Equal contributors. Correspondence should be
addressed to Miten Jain (miten@soe.ucsc.edu), John R Tyson (jtyson@msl.ubc.ca), Matthew Loose
(loose@nottingham.ac.uk), Camilla LC Ip (camilla.ip@well.ox.ac.uk), Ewan Birney (birney@ebi.ac.uk),

Bonnie L Brown (blbrown@vcu.edu), Terrance P Snutch (snutch@msl.ubc.ca), or Hugh E Olsen (he-
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olsen@soe.ucsc.edu).

Abstract

Background: long read sequencing is rapidly evolving and reshaping the suite of
opportunities for genomic analysis. For the MinIlON in particular, as both the platform
and chemistry develop, the user community requires reference data to set performance
expectations and maximally exploit third-generation sequencing. We performed an
analysis of MinION data derived from whole genome sequencing of Escherichia coli
K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry.

Methods: We computed the error-rate estimates for insertions, deletions, and
mismatches in MinlON reads.

Results: Run-time characteristics of the flow cell and run scripts for R9.0
were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases
per second (from 30 bps in R7.3 and SQK-MAPOQ05 library preparation, to 250 bps
in R9.0) processed by individual nanopores, and less drop-off in yield over time. The
2-dimensional (“2D”) N50 read length was unchanged from the prior chemistry. Using
the proportion of alignable reads as a measure of base-call accuracy, 99.9% of “pass”
template reads from 1-dimensional (“1D”) experiments were mappable and 97% from
2D experiments. The median identity of reads was 89% for 1D and 94% for 2D
experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D
“pass” reads from 9.1% in R7.3 to 7.5% in R9.0 and for template “pass” reads from

26.7% in R7.3 to 14.5% in R9.0.
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Conclusions: These Phase 2 MinION experiments serve as a baseline by pro-
viding estimates for read quality, throughput, and mappability. The datasets further
enable the development of bioinformatic tools tailored to the new R9.0 chemistry and
the design of novel biological applications for this technology.

Abbreviations: K: thousand, Kb: kilobase (one thousand base pairs), M: mil-

lion, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).

Contributions

MJ and JT coordinated the study. The MARC group collectively designed the
study. ML, SM, and JT performed the experiments. VZ, RL, ML, MJ, RL, and CI
ran data pre-processing steps. MJ, CI, and JT analysed the data. MJ and BB drafted
the manuscript. All authors participated in discussions relating to the generation and

analysis of the data and edited and approved the final manuscript for submission.

Synopsis

In this work, we performed biological and technical replicate experiments using
the MinION in two different laboratories. We then performed marginAlign [9] analy-
ses (alignments, EM, statistics) on these data. The data were achieved using R9.0
chemistry-based experiments and were termed as Phase 2 release from MARC.

I helped with running the consortium, and performing data analyses. I used
marginAlign [9] (with and without EM) for estimating the error-model in the data, and

to compute the alignment statistics. I also helped with writing the manuscript.
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Conclusion

The work I present demonstrates the utility and recent advances in nanopore
sequencing. One of the most striking improvements has been in read length. DNA read
lengths of 10 kb became routine with the release of the MinION in 2014. Now, 200
kb+ read lengths are routinely achievable, with the longest measured at 882 kb. This
advance in read lengths allowed us to assemble the first human centromere. It is likely
these unprecedented read lengths will reveal new insights into the complex, unresolved
regions of the human genome.

The MinION DNA sequencing accuracy went from 66% in June 2014 to ~95%
in early-2017. This was achieved by ONT with successive improvements in chemistry,
from R6 in June 2014 to R9.5 in March 2017 (with R7, R7.3, R9.0, and R9.4 chemistries
in between). The main changes in chemistry was with the use of a new nanopore,
CsgG@, in R9.0 chemistry and ones following it. This new pore, combined with software
improvements substantially improved both accuracy and throughput. The new 1d2 (1d-
squared) chemistry now achieves >95% median sequencing accuracy, and yields of >15

Gb per MinION flow cell are routine.
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The improvements with R9.4 chemistry made it feasible for a consortium to
sequence a human genome using the MinlON. This effort required 39 flow cells to
achieve ~30X coverage of the genome. If redone with the subsequent improvements,
this sequencing could be done today with ~10 flow cells.

Nanopore direct RNA sequencing became available in 2016, and has opened
a new frontier for single-molecule analysis of native RNA. Full-length reads of native
RNA molecules permit further annotation of various RNAs, along with direct detection
of nucleotide modifications simultaneously.

ONT democratized sequencing with MAP in 2014. This allowed individual
laboratories to perform their own sequencing as well as analyses. From this spawned a
host of software tools for analysis of nanopore data. Some of these tools also are able
to combine information from other sequencing platforms, such as Illumina short-reads,
with nanopore data. These tools are becoming a standard practice in the community
for nanopore analysis now. Some examples of these tools include marginAlign and
GraphMap for sequence alignment, Canu for genome assembly, and marginCaller and
nanopolish detection of single nucleotide variants.

It is foreseeable that MinlON’s will become a common laboratory equipment,
akin to a PCR machine or a gel electrophoresis equipment. Nanopore sequencing can
play an essential role in resolving complex genomic regions, analyzing nucleotide modi-

fications in native DNA and RNA, and understanding DNA and RNA structure.

148



Appendix

Table 3.1: Manuscript titles and weblinks

Title ‘Weblink

The Oxford Nanopore MinION: delivery of https://genomebiology.
nanopore sequencing to the genomics commu- biomedcentral.com/articles/10.1186/

nity s13059-016-1103-0

Improved data analysis for the MinlON http://www.nature.com/nmeth/journal/

nanopore sequencer v12/n4/abs/nmeth.3290.html

Linear Assembly of a Human Y Centromere

using Nanopore Long-Reads

Mapping DNA methylation with high- http://www.nature.com/nmeth/journal/

throughput nanopore sequencing v14/n4/abs/nmeth.4189.html

Nanopore sequencing and assembly of a hu- http://biorxiv.org/content/early/

man genome with ultra-long reads 2017/04/20/128835
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1103-0
http://www.nature.com/nmeth/journal/v12/n4/abs/nmeth.3290.html
http://www.nature.com/nmeth/journal/v12/n4/abs/nmeth.3290.html
http://www.nature.com/nmeth/journal/v14/n4/abs/nmeth.4189.html
http://www.nature.com/nmeth/journal/v14/n4/abs/nmeth.4189.html
http://biorxiv.org/content/early/2017/04/20/128835
http://biorxiv.org/content/early/2017/04/20/128835

Reading canonical and modified nucleotides
in 16S ribosomal RNA using nanopore direct

RNA sequencing

Whole genome sequencing and assembly of a
Caenorhabditis elegans genome with complex
genomic rearrangements using the MinION se-

quencing device

MinION Analysis and Reference Consortium:

Phase 1 data release and analysis

MinION Analysis and Reference Consortium:
Phase 2 data release and analysis of R9.0

chemistry

http://biorxiv.org/content/early/

2017/04/29/132274

http://biorxiv.org/content/early/

2017/01/08/099143

https://£1000research.com/articles/
4-1075/v1
https://£1000research.com/articles/

6-760/v1
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Table 3.2: Software pipelines and weblinks

Pipeline Link
marginAlign https://github.com/benedictpaten/marginAlign
nanopore https://github.com/mitenjain/nanopore
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Table 3.3: Data repositories and weblinks

Data Link

M13mp18 PRJEBS8230 - http://www.ebi.ac.uk/ena/data/view/PRIJEB8230

ERP009289 - http://www.ebi.ac.uk/ena/data/view/ERP009289

NA12878 https://github.com/nanopore-wgs-consortium/NA12878
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