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Abstract

Congenital idiopathic megaesophagus (CIM) is a gastrointestinal (GI) motility disorder of dogs

in which reduced peristaltic activity and dilation of the esophagus prevent the normal transport

of food into the stomach. Affected puppies regurgitate meals and water, fail to thrive, and expe-

rience complications such as aspiration pneumonia that may necessitate euthanasia. The Ger-

man shepherd dog (GSD) has the highest disease incidence, indicative of a genetic

predisposition. Here, we discover that male GSDs are twice as likely to be affected as females

and show that the sex bias is independent of body size. We propose that female endogenous

factors (e.g., estrogen) are protective via their role in promoting relaxation of the sphincter

between the esophagus and stomach, facilitating food passage. A genome-wide association

study for CIM revealed an association on canine chromosome 12 (P-val = 3.12x10-13), with the

lead SNPs located upstream or within Melanin-Concentrating Hormone Receptor 2 (MCHR2),

a compelling positional candidate gene having a role in appetite, weight, and GI motility. Within

the first intron of MCHR2, we identified a 33 bp variable number tandem repeat (VNTR) con-

taining a consensus binding sequence for the T-box family of transcription factors. Across

dogs and wolves, the major allele includes two copies of the repeat, whereas the predominant

alleles in GSDs have one or three copies. The single-copy allele is strongly associated with

CIM (P-val = 1.32x10-17), with homozygosity for this allele posing the most significant risk. Our

findings suggest that the number of T-box protein binding motifs may correlate with MCHR2

expression and that an imbalance of melanin-concentrating hormone plays a role in CIM. We

describe herein the first genetic factors identified in CIM: sex and a major locus on chromo-

some 12, which together predict disease state in the GSD with greater than 75% accuracy.
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Author summary

German shepherd dogs (GSDs) are predisposed to an inherited motility disorder of the

esophagus, termed congenital idiopathic megaesophagus (CIM), in which swallowing is

ineffective and the esophagus is enlarged. Affected puppies are unable to properly pass

food into their stomachs and consequently regurgitate their meals and show a failure to

thrive, often leading to euthanasia. Here, we discovered that male GSDs are affected at a

ratio of almost 2-to-1 over females, suggesting a protective biological advantage in

females. In humans, estrogen is thought to play a role in the male predominance of esoph-

ageal disorders like reflux esophagitis and esophageal cancer. In a genome-wide scan, we

identified an association with CIM on chromosome 12 and, within this region, a repetitive

sequence in MCHR2. This gene encodes a receptor for melanin-concentrating hormone, a

signaling molecule that is linked to appetite, weight, and gut motility. Together, sex and

the MCHR2 repeat sequence accurately predict affection status in over 75% of dogs, and a

genetic test is now available to facilitate breeding decisions aimed at reducing disease

incidence.

Introduction

Esophageal motility is an integrated neuromuscular process that, when dysregulated, causes an

array of digestive disturbances [1]. Normally, the consumption of foods and liquids stimulates

afferent signaling of vagus nerve receptors extending from the pharynx to the lower esophageal

sphincter (LES), triggering an efferent vagal response comprised of peristaltic contractions

and LES relaxation [2,3]. In humans, the most recognized and studied esophageal dysmotility

is achalasia [4], characterized by constriction of the LES and aperistalsis, causing difficulty

swallowing, coughing, chest pain, and regurgitation [5,6].

The most common esophageal dysmotility in dogs is congenital idiopathic megaesophagus

(CIM) [7]. While gravity aids motility of the vertical human esophagus, it does not facilitate

food passage in the horizontally-oriented canine esophagus. CIM-affected dogs have ineffec-

tive peristalsis, which leads to food retention that stretches and dilates the esophagus [8]. Overt

clinical signs include coughing and regurgitation, usually beginning upon weaning at around

four weeks of age [3,9]. CIM encompasses a broad phenotypic spectrum ranging from subclin-

ical cases that may only be detected via radiography to severe cases with regurgitation episodes

several times a day [7,9]. A CIM diagnosis is confirmed by observation of esophageal dilation

on thoracic radiographs, with or without barium contrast [3,10] (Fig 1). Affected puppies fail

to thrive and are at risk for aspiration pneumonia [11] and intussusception [12,13].

Neonatal mortality is high, but many CIM cases can be managed with a high-caloric liquid

diet, frequent meals, and an elevated feeding regimen wherein dogs are held vertically to facili-

tate passage of food into the stomach [14]. Recently, administration of sildenafil was shown to

ameliorate the clinical signs of both canine CIM and human idiopathic achalasia by promoting

relaxation of the LES [15,16]. Most dogs with CIM require lifelong symptomatic management,

but 20% to 46% of cases will spontaneously resolve by one year of age, suggesting that the dis-

ease may be attributed to delayed nerve development in the esophagus [3,17,18]. An esopha-

gus-specific defect in afferent vagal innervation has been described in CIM-affected dogs

[19,20].

CIM occurs across breeds, but the German shepherd dog (GSD) has the highest incidence,

followed by Labrador retrievers, Great Danes, dachshunds, and miniature schnauzers [18,21–
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23]. We previously hypothesized that heritable factors underlie the high frequency of CIM in

the GSD, and a preliminary study indicated a suggestive region of association on chromosome

12 and a complex pattern of inheritance [24]. We aim herein to conduct a robust genome-

wide association study (GWAS) to identify genomic regions contributing to CIM and identify

genetic variants that can be used as a tool to facilitate breeder efforts to reduce disease

incidence.

Results

Study population

We recruited blood or buccal samples from 530 GSDs: 124 CIM-affected (70 males, 54

females) and 406 unaffected (165 males, 241 females) dogs (S1 Table). Samples were obtained

primarily from two discrete United States populations: “pet GSDs” representing pets and other

privately-owned dogs (108 affected, 303 unaffected) and “service GSDs” from breeding colo-

nies maintained by multiple service organizations (16 affected, 103 unaffected). Genome-wide

Fig 1. Barium-contrast radiographs of affected and healthy puppies. Radiographs were taken 40 minutes after a

barium meal in five-week old puppies. A) Barium coats the enlarged esophagus of a CIM-affected GSD and (B) passes

through to the stomach and intestines in a healthy GSD.

https://doi.org/10.1371/journal.pgen.1010044.g001
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SNP genotypes were generated for 114 dogs (107 pet, 7 service). A principal component analy-

sis showed no underlying population substructure (S1 Fig).

Phenotypic records were obtained from 755 GSDs (16 are part of the aforementioned study

population) from a service organization that maintains a private breeding colony (S2 Table).

All dogs (affected and healthy) underwent barium studies at five weeks of age. In this larger

cohort with stringent phenotyping, a significant proportion of cases were male (Fig 2A; 109

males, 62 females, P-val = 0.0004). Because GSD adult males are larger than females, we inves-

tigated whether body weight is correlated with CIM. Between the sexes, birth weights did not

differ significantly (Fig 2B; 346 males, 330 females, P-val = 0.41). Weights of affected individu-

als were not significantly different from controls at birth (Fig 2C; 92 affected, 584 unaffected,

P-val = 0.58), or at adulthood (Fig 2D; 35 affected males, 259 unaffected males, P-val = 0.24).

Genome-wide association study

We conducted a GWAS for CIM, with sex as a covariate, using 59 cases (24 female, 35 male),

53 controls (35 female, 18 male), and 117,451 SNPs, after filtering. A single region of associa-

tion extending from 56.5 to 60 Mb on chromosome 12 includes 82 SNPs exceeding Bonferroni

correction (P-val� 4.26x10-7; Fig 3A and 3B). The lead SNP, chr12:58158449, has a P-val of

3.12x10-13 and R-squared of 0.43. High linkage disequilibrium (LD) with the lead SNP, defined

Fig 2. Phenotypic data from a private breeding colony. A) Bar graph of sex distribution in CIM cases shows a

significant overrepresentation of males. Boxplots illustrate the absence of statistically significant differences in (B) birth

weights between all males and females, (C) birth weights between affected and unaffected dogs, and (D) adult weights

between affected and unaffected males.

https://doi.org/10.1371/journal.pgen.1010044.g002
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by r2 >0.6, extends from 57.3 to 58.4 Mb and contains eight protein-coding genes (Fig 3C),

none of which is known to underlie phenotypes in the dog.

To identify sex-specific loci contributing to CIM, we conducted independent GWASs in

females (24 cases, 35 controls) and males (35 cases, 18 controls). Each GWAS yielded a pri-

mary signal on chromosome 12 (females: chr12:58314490, P-val = 3.92x10-8; males:

chr12:58158449, P-val = 1.13x10-6) and neither revealed additional loci surpassing Bonferroni

significance (Figs 3D and S2).

Identification of candidate variants

Whole genome resequencing (WGS) data (ranging from 30 to 54X coverage) were generated

for three, ancestrally diverse, affected female GSDs that were homozygous for the risk alleles of

the leading 10 chromosome 12 SNPs (S3 Table). In the aforementioned 1.1 Mb region of high

LD, 1,737 variants were homozygous in all three affected dog genomes. We used a variant call

format (VCF) file containing WGS data from 1,330 domesticated dogs of pure and mixed

breeds to evaluate non-structural variant allele frequencies. None of the 1,737 variants are

unique to the affected dogs or the GSD breed. We generated structural VCF files and manually

scanned the three affected GSD genomes in Integrative Genomics Viewer (IGV) to identify

mobile elements and large deletions and insertions within the 1.1 Mb interval. All structural

Fig 3. Genome-wide association results for CIM in GSDs. A) Manhattan plot of results from a GWAS for CIM using 59 affected and 53 control GSDs, with

sex as a covariate. The –log10P-vals for 117,451 SNPs are plotted against genome position (CanFam3.1), with Bonferroni significance denoted by the black

horizontal line. The P-val and position of the lead SNP are given. B) A Q-Q plot shows observed vs. expected –log10P-vals, with 454 SNPs within 5 Mb of the

lead SNP indicated in orange. The genomic inflation factor (λ) is given. C) Regional chromosome 12 GWAS results are color-coded based on pairwise LD (r2)

with the lead SNP (purple diamond), calculated using all 53 controls. The positions of protein-coding genes within the region are indicated by blue bars below,

with MCHR2 labeled. D) Miami plot of results from independent GWASs for CIM in females (top; 24 cases, 35 controls, λ = 1.042) and males (bottom; 35

cases, 18 controls, λ = 1.036).

https://doi.org/10.1371/journal.pgen.1010044.g003
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variants are present in multiple non-GSD genomes. No variants in the interval are predicted to

impact protein sequence. Together, these results indicate that the CIM-associated variant is a

non-coding polymorphism found across breeds.

We observed that 85% of affected dogs from the GWAS were homozygous for the risk allele,

compared to only 19% of controls, indicating that homozygosity for the chromosome 12 locus

is a strong risk factor. We therefore delimited a narrower interval of 648 kb, wherein a maxi-

mum number of affected individuals are homozygous for the risk haplotype, defined by four

heterozygous individuals to the centromeric end and three telomerically (Fig 4). Filtering to

retain homozygous variants present in the three CIM genomes and absent from a publicly-

available male GSD genome lacking the risk haplotype yielded 577 variants. Of these, 21 were

in intronic or untranslated regions of Melanin-Concentrating Hormone Receptor 2 (MCHR2,

ENSCAFG00000003533.5), and the remaining were located intergenically to protein-coding

genes and outside of promoter regions.

We next selected candidate variants for genotyping in a larger cohort to further assess their

association with CIM. Within the 648 kb region of high homozygosity among cases (Fig 4), we

identified three intronic variants in positions potentially impacting splicing or regulation of

MCHR2: 1) a 4 bp deletion located 20 bp upstream of the exon six splice acceptor site, 2) a SNP in

a transcribed region of an antisense transcript (CFRNASEQ_AS_00025246), and 3) a 33 bp vari-

able number tandem repeat (VNTR) in a transcribed region of a non-coding transcript (CFRNA-
SEQ_IGNC_00025249), upstream of the MCHR2 translation initiation site. We also identified a

compelling structural variant, a long-interspersed nuclear element (LINE) insertion, that lies

within an intron of a lincRNA (CFRNASEQ_IGNC_Spliced_00025252) expressed in esophagus

and brain. In the larger data set, the 4 bp deletion did not segregate with CIM, and the more dis-

tant LINE insertion was less significantly associated than either the antisense SNP or the VNTR.

The latter two variants were similarly highly associated (S4 Table), with the differences in P-value

appearing to be driven predominantly by genotypic changes among unaffected dogs.

The antisense SNP is not well conserved evolutionarily across mammals, including those

expressing MCHR2, and occurs in a transcript that is not annotated in the genomes of other

species. Within the 33 bp VNTR are multiple predicted binding motifs, most notably an 8 bp

T-half site (TCACACCT; P-val = 3.41x10-6 from TOMTOM) that matches the optimal con-

sensus binding sequence for T-box family members (Fig 5) [25–28]. We focus the remainder

of this study on the VNTR, although the complex inheritance of CIM and high regional LD

prevent the exclusion of other linked variants as contributors to CIM.

VNTR analysis

To further evaluate the association of the VNTR, we genotyped an additional 58 CIM-affected

(47 pet, 11 service) and 351 unaffected (253 pet, 98 service) GSDs. In the total VNTR genotyp-

ing population (n = 525), we detected three different alleles that we denote as 1, 2, or 3, corre-

sponding to the number of repeats of the 33 bp sequence (Fig 5 and S5 Table). The CanFam

3.1 reference genome has allele 2. GSDs inherit two to six total copies of the repeat. Allele 1 is

the major allele (56%) among healthy GSDs (n = 404), followed by alleles 3 and 2 (40% and

4%, respectively; Fig 6A). Allele 1 was strongly associated with CIM in the larger population

(n = 492, P-val = 1.32x10-17; females: n = 278, P-val = 4.21x10-9; males: n = 214, P-

val = 8.11x10-11; Fig 6A), with homozygosity for this allele conferring more significant risk

(n = 303, P-val = 3.96x10-10) than heterozygosity (n = 264, P-val = 0.029). We observed signifi-

cantly different probabilities of disease between the sexes, with 1/1 males having a 1.5X greater

risk for disease compared to 1/1 females, and 1/3 males having a 2.2X greater risk than 1/3
females (Fig 6B).

PLOS GENETICS MCHR2 intronic VNTR in canine megaesophagus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010044 March 10, 2022 6 / 19

https://doi.org/10.1371/journal.pgen.1010044


Fig 4. Haplotypes at the CIM-associated locus on chromosome 12. Genotypes from 23 female and 33 male cases (above the white line) and 34 female

and 17 male controls are shown for the 1.1 Mb region of high LD. CIM-associated homozygous genotypes are orange while homozygous opposite

genotypes are purple, heterozygous genotypes are light green, and missing genotypes are white. Uninformative SNPs were removed. Vertical red lines

demarcate a 648 kb interval of high homozygosity among cases, defined by four heterozygous individuals to the centromeric end and three telomerically.

CanFam3.1 positions are marked for the antisense transcript SNP (magenta triangle), VNTR (blue diamond), male GWAS lead SNP (male symbol),

LINE insertion (green circle), and female GWAS lead SNP (female symbol). Genes and transcripts within the region of high homozygosity are shown

below with variant positions noted. �The male GWAS shares the same lead SNP as the original GWAS with both sexes.

https://doi.org/10.1371/journal.pgen.1010044.g004
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Across 1,323 dogs of pure and mixed breed ancestries, allele 2 is the major allele (73%) and

alleles 1 and 3 have frequencies of 19% and 8%, respectively (Fig 7 and S6 Table). Allele 1
occurs in homozygosity in 9% of dogs and appears to be the major allele in Labrador retrievers

and miniature schnauzers, both of which have high incidences of CIM (Fig 7). Among wolves

(n = 48), 2 is the predominant allele (70%), followed by 1 (22%) and 3 (8%; Fig 7 and S6

Table). Three coyotes, one dhole, and one golden jackal have 2/2 genotypes, suggesting that

allele 2 is the ancestral allele for canids, including the domestic dog (S6 Table). The VNTR is

canid-specific; reference genomes of humans and other mammals that express MCHR2 con-

tain a single copy.

Together, the VNTR and sex predict disease with 77% accuracy. To identify additional loci

involved in CIM, we conducted a second GWAS using the full cohort (59 cases, 53 controls)

with sex and VNTR genotypes as covariates. No signals surpassed or approached Bonferroni

significance (S3 Fig).

Fig 5. VNTR sequence and genotyping. Sequence of the 33 bp VNTR is shown, with the 8 bp T-box protein

consensus sequence in underlined red text. IGV screenshot displays homozygosity for alleles 1 (top), 2 (middle;

reference allele), and 3 (bottom) of the VNTR.

https://doi.org/10.1371/journal.pgen.1010044.g005
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Discussion

Our study reveals a sex bias in CIM and a strong association with a VNTR in MCHR2 on chro-

mosome 12. MCHR2 encodes one of two G-protein coupled receptors for melanin-concentrat-

ing hormone (MCH) [29,30], a neuropeptide synthesized in the region of the brain critical for

feeding and reward [31,32]. MCH levels are directly correlated with food intake, weight, and

gastrointestinal (GI) motility [33–38]. MCH is expressed across mammals, but MCHR2 tran-

scripts are only present in dogs, primates, and other higher order members [39,40]. Transgenic

mice expressing human MCHR2 have reduced food intake and body weight [40], whereas

humans with deletions encompassing MCHR2 and an adjacent gene, Single-Minded Homolog

Fig 6. Observed VNTR genotypes and disease probabilities in GSDs. A) Observed numbers of cases and controls

having each genotype are reported by sex in order of genotypic frequency. B) Probability of disease (y-axis) for the

three most common genotypes (x-axis) are plotted for females and males. Probability of disease is significantly

different between the sexes for the 1/1 (n = 228, P-val = 0.009) and 1/3 (n = 189, P-val = 0.046) genotypes.

https://doi.org/10.1371/journal.pgen.1010044.g006
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1 (SIM1), have increased appetite and obesity [41]. The MCHR2/SIM1 locus also exerts sex-

discordant effects on puberty timing, wherein the allele associated with earlier voice breaking

in males is also linked to later onset of menarche in females [42].

Within intron one and upstream of the translational start site in exon two of MCHR2, we

found a 33 bp canid-specific VNTR that contains a T-box binding consensus sequence known

as a T-half site. The number of VNTR copies is inversely related to probability of CIM disease:

dogs having six total copies are least likely to be affected whereas those with only two total cop-

ies have the highest disease incidence. The T-half site is bound by T-box transcription factors

[25–28], and previous studies have illustrated that the number of T-half sites directly correlates

with DNA binding [27]. T-box transcription factors can repress or activate target genes [43].

Fig 7. VNTR allele frequencies in dogs and wolves. Frequencies of alleles 1, 2, and 3 of the VNTR are given for our

case and control cohorts, 27 dog breeds with VNTR genotypes from at least 10 individuals (including non-study GSDs

from publicly available WGS data), and wolves. The number of individuals of each breed is shown in parentheses.

Breeds having high incidences of CIM are bolded [23].

https://doi.org/10.1371/journal.pgen.1010044.g007
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Future studies will be necessary to determine if MCHR2 expression correlates with the number

of T-half sites and if through this mechanism the VNTR influences MCH concentrations and

GI motility.

GI motility is a key mediator of the sensations of hunger and fullness [44], with accelerated

gastric emptying causing a shorter period of satiety and a stronger desire for food [45]. Feeding

behaviors are under selection in dogs because food is commonly used as an incentive for posi-

tive behavior [46,47,48]. For example, a pro-opiomelanocortin (POMC) mutation associated

with hunger and weight in Labrador retrievers has higher frequencies in service dog popula-

tions [46,47]. Neurons expressing POMC contribute to satiety signaling via regulation of GI

motility [49], and it is worth noting that MCH mediates food intake through inhibition of

POMC neuronal activity [50]. We posit that the number of VNTRs is directly related to GI

motility: more repeats correlate with higher food motivation and protection from CIM, and

fewer repeats correspond with reduced appetite and increased disease risk [51].

Our study reveals a significant sex bias in CIM. Females are affected less often than males

and have lower penetrances of the VNTR risk genotypes. Although body size is a fundamental

sexually-dimorphic trait, our data illustrate that CIM does not correlate with birth or adult

weights. These findings hint at a female protective effect, wherein females have a biological

advantage and therefore require a greater number of risk alleles, or genetic liability, to manifest

CIM than do males [52].

The female sex hormone, estrogen, plays a role in increasing concentrations of the smooth

muscle dilator nitric oxide (NO), which is the major neurotransmitter responsible for relaxing

the LES [53,54]. Sex hormones are secreted before and after birth [55,56,57], thus they can

impact the development of congenital disorders, like CIM. Higher female sex hormone levels

have been linked to decreased LES pressure in pregnant women and postmenopausal women

undergoing hormone replacement therapy [54]. Female dogs may have greater LES relaxation

due to endogenous factors (e.g., higher estrogen levels), thereby facilitating the passage of food

into the stomach and preventing the food retention that causes megaesophagus. We propose

that in the absence of this protective effect, males are more susceptible to CIM. Our observa-

tions are consistent with male biases in human esophageal disorders, including reflux esopha-

gitis and esophageal cancer, in which estrogen is thought to play a role [58].

In humans, the esophagus is comprised predominantly of smooth muscle, whereas in

canids, nearly the entire length of the esophagus is striated muscle [59,60]. The LES is the only

component of the canine esophagus dilated by NO [61]. Sildenafil, a drug widely used to treat

CIM, reduces LES tone through the prevention of NO degradation [16]. NO levels also directly

correlate with MCH levels [62], suggesting that a MCH imbalance may contribute to CIM sta-

tus by impacting LES pressure.

In summary, we have uncovered a sex bias in CIM and a VNTR, intronic to MCHR2, that is

strongly associated with CIM in GSDs. Together, sex and the VNTR predict greater than 75%

of disease risk, but it is clear that there are additional factors influencing CIM in the breed. A

genetic test is now available to help breeders increase the frequency of the low-risk allele 3.

Further studies are warranted to investigate the contribution of the VNTR and sex to CIM in

other breeds, as well as gastric dilatation-volvulus (bloat), another GI motility disorder highly

prevalent among GSDs [63].

Materials and methods

Ethics statement

All samples were obtained with informed consent according to protocols approved by the

Clemson University Institutional Review Board (2013–18).
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Biologic sample population

Whole blood or buccal cells were obtained from 124 CIM-affected and 406 unaffected pri-

vately-owned and service GSDs from across the United States. All cases were diagnosed by a

veterinarian via exclusion of non-idiopathic causes (e.g., persistent right aortic arch, myasthe-

nia gravis) and a history of clinical signs from puppyhood, in conjunction with a standard or

barium contrast radiograph. Pedigrees and radiographs were collected when available. Among

GWAS cases, 95% of dogs were diagnosed at under one year of age. GWAS controls were over

one year of age with no history of clinical signs consistent with CIM and no known relatives

affected by CIM. Genomic DNA was isolated using the Gentra Puregene DNA Isolation kit

(Qiagen). DNA concentration was quantitated by a NanoDrop 1000 spectrophotometer

(Thermo Scientific).

Phenotypic data population

Sex and CIM-affection data were collected from 755 affected and unaffected GSDs from a pri-

vate breeding colony. All dogs underwent a barium swallow examination at five weeks of age.

Birth and adult weight were obtained from subsets of 676 and 599 dogs, respectively.

Genome-wide association and LD analyses

Individuals were selected for the association study such that sex and coat color were roughly

balanced between cases and controls, and known relatives were excluded. Genome-wide SNP

profiles were generated for 114 dogs (60 female, 54 male) using the Illumina CanineHD Bead-

Chip, containing 220,853 SNPs (GeneSeek, Inc.). All filtering and statistical analyses were per-

formed using SNP & Variation Suite v8 (SVS, Golden Helix) with chromosome positions in

CanFam3.1. Two samples having call rates < 80% were pruned, as were 103,402 markers

having< 95% call rates, minor allele frequencies < 0.05, and/or Hardy Weinberg Equilibrium

P-values < 0.0004. Combined-sex GWASs for CIM were conducted with sex and VNTR geno-

types as covariates, and P-values were calculated using a linear regression following a full vs.

reduced model. All 53 controls were used in LD pairwise analyses between the lead SNP

(chr12:58158449) and chromosome 12 SNPs, and plotted via LocusZoom [64]. Sex-specific

GWASs were conducted using a linear regression following a full model and a marker set iden-

tical to the combined-sex GWASs. All chromosome positions are reported in CanFam3.1.

Whole genome resequencing

Three affected GSDs were selected for WGS: a black/tan female with German ancestry

(SRR15446412), a white female from the Netherlands (SRR15446416), and a black/tan female

from an American service dog breeding colony (SRR15446414). Resequencing of genomes

from the latter two dogs was performed using an Illumina HiSeq X Ten, generating 2x150 bp

paired-end reads. Total reads generated ranged from 861 to 869 million per sample. Paired-

end reads were trimmed, aligned to the indexed reference (CanFam3.1), sorted, and indexed

to be viewed in IGV [65] using the Illumina DRAGEN (Dynamic Read Analysis for GENo-

mics) Bio-IT platform [66]. WGS data for the third affected GSD were generated on an Illu-

mina HiSeq 2000, with 2x125 bp paired-end reads. A total of 584 million reads were trimmed,

aligned to CanFam3.1 with Bowtie2 [67], and sorted and indexed using SAMtools [68].

Variant filtering

The DRAGEN pipeline was used to generate VCF files for two affected dogs, and SAMtools

and BCFtools [69] were used to generate a VCF file for a third case. A VCF containing
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publicly-available WGS data from 1,330 dogs of pure and mixed breeds and 54 wild canids,

generated following the methods described in [70], was used to assess allele frequencies in a

broader canid population (S6 Table). Homozygous variants shared across the three affected

dogs were selected using SVS. Within a 648 kb region of high homozygosity among cases

(chr12:57,747,387–58,395,480), variants present in a male GSD lacking the risk haplotype

(SRX4036121) were excluded from further analysis.

Structural VCF files were generated for the three affected GSDs and one GSD lacking the

risk haplotype using SvABA [71]. The following settings for SvABA were used: ‘-r all’, ‘-k

chr12:1–72,498,081’, and ‘-p 19’. The presence of alternate structural variants in other breeds

was manually investigated in IGV using 15 genomes of nine other breeds (see Data Availability

Statement).

Coding and splice site variants within predicted exons plus 50 bp flanking sequences were

identified using CanFam3.1 Ensembl 89. Promoter and untranslated regions were defined in

hg38 using GENCODEV36 and GeneHancer v5.4 and lifted over in the UCSC Genome

Browser to CanFam3.1 positions. Transcription factor binding motifs were identified in TOM-

TOM [72].

Genotyping

Primer sequences are given in S7 Table. The PCR for CFRNASEQ_IGNC_Spliced_00025252
g.58216509_58216510ins(6444) used two forward primers, one upstream of and one within

the LINE insertion, and a single downstream reverse primer. PCR for MCHR2
g.58084223_58084226del was carried out using 2X ReddyMix (Thermo Scientific), and PCRs

for MCHR2 g.58093157T>A, MCHR2 g.58117748_58117780del, chr12.g.58158449A>G, and

CFRNASEQ_IGNC_Spliced_00025252 g.58216509_58216510ins(6444) were carried out using

Taq DNA Polymerase (Fisher BioReagents). MCHR2 g.58117748_58117780del and CFRNASE-
Q_IGNC_Spliced_00025252 g.58216509_58216510ins(6444) PCR products were run on a 3%

agarose gel to determine genotypes by size (S4 Fig). Sanger sequencing (Eton Bioscience) was

performed for the remaining variants using the BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems) and an ABI 3730xl DNA Analyzer (Applied Biosystems). Three cases

and two controls from the GWAS population were excluded from variant genotyping due to

inadequate DNA quantities.

The VCF of 1,384 canid genomes was used to genotype MCHR2 g.58117748_58117780del.

At this positon, the reference allele contained two copies of the repeat and the alternate alleles

were denoted as either a 33 bp deletion or insertion, corresponding to one or three copies of

the repeat, respectively.

Statistical analyses

Fisher’s exact two-tailed P-values were calculated to evaluate allelic and genotypic associations

with CIM using VassarStats (http://vassarstats.net/). Because only 33 GSDs possessed the

VNTR allele 2, those individuals were excluded from the VNTR allelic association analysis.

The genotypic associations of 1/1 and 1/3 with CIM were calculated using 3/3 dogs as a com-

parison. A one-way chi square test was used to assess the significance of male overrepresenta-

tion among cases (http://vassarstats.net/). Two-sample t tests were used to evaluate mean

weight differences in males vs. females and affected vs. unaffected dogs. Probability of disease

was calculated for each sex by dividing the number of cases having a particular genotype by

the total number of dogs with that genotype. Fisher’s exact one-tailed P-values were calculated

to assess the significance of disease probability differences between the sexes within the 1/1
and 1/3 genotypic groups (http://vassarstats.net/).
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Our disease phenotype is binary, dogs are either affected or unaffected. The evaluation of

such data is typically conducted with logistic regression, where we define the probability of dis-

ease for a dog of the i-th sex and j-th genotypic class as pij. Accordingly, we define the logit of

this probability as yij ¼ log½pij=ð1 � pijÞ�where the subsequent analysis is built with the follow-

ing linear model:

yij ¼ b0 þ sexi þ genotypej

where b0 is an unknown constant common to all dogs, sexi is the contribution of the i-th sex (i
= F/M) and genotypej is the contribution of the j-th genotypic (j = 1/1, 1/2, 1/3, 2/3, 3/3) class.

Estimation of the unknown effects and predictions of the risk of disease, are provided by the

glm function of the public domain language R [73]. The accuracy of this model (and any addi-

tional sub-models) in the prediction of disease can be assessed through the receiver operating

characteristic curve (using the area under the curve), fitted with the R package pROC [74].

Dyad DOI

https://doi.org/10.5061/dryad.f7m0cfxz3 [75]

Supporting information

S1 Fig. Principal component analysis of the CIM combined-sex GWAS cohort (n = 112).

Principal components 1 and 2 are plotted on the x- and y-axes, respectively.

(TIFF)

S2 Fig. Q-Q plots of observed vs. expected –log10P-vals for GWASs for CIM in females

(top) and males (bottom). The genomic inflation factors (λ) are given.

(TIFF)

S3 Fig. Manhattan plot of GWAS results for CIM in GSDs (59 cases, 53 controls) with sex

and VNTR genotypes as covariates. The –log10P-vals (y-axis) for 117,451 SNPs are plotted

against chromosome position (x-axis). The threshold for Bonferroni significance is shown as a

black horizontal line.

(TIFF)

S4 Fig. Gel electrophoresis image of VNTR amplicons from dogs with various genotypes,

shown above each lane.

(TIFF)

S1 Table. Phenotypic and genotypic data for 530 GSDs from the biologic sample popula-

tion.

(XLSX)

S2 Table. Phenotypic data for 755 GSDs from a private breeding colony.
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S3 Table. Top 10 associated SNPs in GWAS for CIM.
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S4 Table. Candidate variants in chromosome 12 region of high LD. �The MCHR2
g.58117748_58117780 reference allele includes two copies and alternate alleles have one (del)

or three (dup) copies. Because the two-copy allele is uncommon in GSDs, individuals having

two-copy alleles were excluded from the MCHR2 g.58117748_58117780del statistics. For the

PLOS GENETICS MCHR2 intronic VNTR in canine megaesophagus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010044 March 10, 2022 14 / 19

https://doi.org/10.5061/dryad.f7m0cfxz3
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s008
https://doi.org/10.1371/journal.pgen.1010044


remaining variants, A1 corresponds to the alternate allele and A2 to the reference allele.

(XLSX)

S5 Table. Observed VNTR genotypes in service and pet GSDs.

(XLSX)

S6 Table. VNTR genotypes and accession numbers for 1,384 publicly available canid

genomes.

(XLSX)

S7 Table. Primers for variant genotyping.

(XLSX)

Acknowledgments

The authors wish to thank the Orthopedic Foundation for Animals Canine Health Informa-

tion Center (CHIC) for providing archival DNAs, as well as the dog owners and veterinarians

who submitted biologic samples. We thank members of the Upright Canine Brigade for help-

ing recruit study participants and Drs. Alison Starr-Moss and Mike Vaughan for critical read-

ing of the manuscript.

Author Contributions

Conceptualization: Sarah M. Bell, Jacquelyn M. Evans, Kate L. Tsai, Leigh Anne Clark.

Data curation: Sarah M. Bell, Jacquelyn M. Evans, Katy M. Evans, Rooksana E. Noorai,

Dolores M. Holle.

Formal analysis: Sarah M. Bell, Jacquelyn M. Evans, Rooksana E. Noorai, Thomas R. Famula,

Leigh Anne Clark.

Funding acquisition: Sarah M. Bell, Leigh Anne Clark.

Investigation: Sarah M. Bell, Jacquelyn M. Evans, Katy M. Evans, Kate L. Tsai, Dolores M.

Holle.

Supervision: Leigh Anne Clark.

Validation: Sarah M. Bell, Jacquelyn M. Evans, Kate L. Tsai, Thomas R. Famula, Leigh Anne

Clark.

Visualization: Sarah M. Bell, Jacquelyn M. Evans.

Writing – original draft: Sarah M. Bell, Jacquelyn M. Evans, Leigh Anne Clark.

Writing – review & editing: Sarah M. Bell, Jacquelyn M. Evans, Kate L. Tsai, Leigh Anne

Clark.

References

1. Nikaki K, Sawada A, Ustaoglu A, Sifrim D. Neuronal control of esophageal peristalsis and its role in

esophageal disease. Current gastroenterology reports. 2019 Nov; 21(11):1–9. https://doi.org/10.1007/

s11894-019-0728-z PMID: 31760496

2. Hornby PJ, Abrahams TP. Central control of lower esophageal sphincter relaxation. The American jour-

nal of medicine. 2000 Mar 6; 108(4):90–8. https://doi.org/10.1016/s0002-9343(99)00345-9 PMID:

10718459

3. Johnson BM, DeNovo RC, Mears EA. Canine megaesophagus. Kirk’s Current Veterinary Therapy.

14th ed., Saunders Elsevier, St. Louis. 2009:486–92.

PLOS GENETICS MCHR2 intronic VNTR in canine megaesophagus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010044 March 10, 2022 15 / 19

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010044.s011
https://doi.org/10.1007/s11894-019-0728-z
https://doi.org/10.1007/s11894-019-0728-z
http://www.ncbi.nlm.nih.gov/pubmed/31760496
https://doi.org/10.1016/s0002-9343%2899%2900345-9
http://www.ncbi.nlm.nih.gov/pubmed/10718459
https://doi.org/10.1371/journal.pgen.1010044


4. Gockel HR, Schumacher J, Gockel I, Lang H, Haaf T, Nöthen MM. Achalasia: will genetic studies pro-
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