
UCLA
UCLA Previously Published Works

Title
PyHFO: lightweight deep learning-powered end-to-end high-frequency oscillations
analysis application.

Permalink
https://escholarship.org/uc/item/11n5m5w0

Journal
Journal of Neural Engineering, 21(3)

Authors
Zhang, Yipeng
Liu, Lawrence
Ding, Yuanyi
et al.

Publication Date
2024-05-28

DOI
10.1088/1741-2552/ad4916

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11n5m5w0
https://escholarship.org/uc/item/11n5m5w0#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

J. Neural Eng. 21 (2024) 036023 https://doi.org/10.1088/1741-2552/ad4916

Journal of Neural Engineering

OPEN ACCESS

RECEIVED

18 October 2023

REVISED

19 April 2024

ACCEPTED FOR PUBLICATION

9 May 2024

PUBLISHED

28 May 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

PyHFO: lightweight deep learning-powered end-to-end
high-frequency oscillations analysis application
Yipeng Zhang1, Lawrence Liu1, Yuanyi Ding1, Xin Chen1, Tonmoy Monsoor1, Atsuro Daida2,
Shingo Oana2, Shaun Hussain2, Raman Sankar2, Aria Fallah3, Cesar Santana-Gomez4,
Jerome Engel4,5,6, Richard J Staba4, William Speier7,8, Jianguo Zhang9, Hiroki Nariai2
and Vwani Roychowdhury1,∗
1 Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
2 Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los
Angeles, CA, United States of America

3 Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, United States of America
4 Department of Neurology, UCLAMedical Center, David Geffen School of Medicine, Los Angeles, CA 90095, United States of America
5 Department of Neurobiology, University of California, Los Angeles, CA, United States of America
6 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States of America
7 Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
8 Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States of America
9 Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, People’s Republic of
China

∗ Author to whom any correspondence should be addressed.

E-mail: vwani@g.ucla.edu

Keywords: convolutional neural networks, neurophysiology, high-frequency oscillations

Abstract
Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that
streamlines the application of deep learning (DL) methodologies in detecting neurophysiological
biomarkers for epileptogenic zones from EEG recordings. Approach. We introduced PyHFO, which
enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term
energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for
artifact and HFO with spike classification, designed to operate efficiently on standard computer
hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the
first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth
electrodes, and the third derived from rodent studies, which sampled the neocortex and
hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently,
with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional
HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use
their EEG data for custom model training. Significance. PyHFO successfully bridges the
computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies,
presenting a feasible solution for both clinical and research settings. By offering a user-friendly and
computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG
data analysis tools in clinical practice and fosters potential for large-scale research collaborations.

1. Introduction

Human and animal studies of epilepsy have suggested
that intracranially-recorded interictal high-frequency
oscillations (HFOs) in EEG signals are a promising
spatial neurophysiological biomarker of the epilep-
togenic zone. Many retrospective studies [1–5] have

demonstrated that the removal of brain regions pro-
ducing HFOs correlates with post-operative seizure
freedom. More recently, various studies [6–13] have
suggested that HFOs potentially have different mech-
anistic origins, and hence, only a subset of HFO
events -often referred to as pathological HFOs—
constitute meaningful biomarkers for epileptic zones,

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ad4916
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ad4916&domain=pdf&date_stamp=2024-5-28
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2869-4692
https://orcid.org/0009-0005-7579-5084
https://orcid.org/0009-0006-5566-675X
https://orcid.org/0000-0003-1350-7700
https://orcid.org/0000-0001-6947-8852
https://orcid.org/0000-0002-5609-0362
https://orcid.org/0000-0002-9703-0964
https://orcid.org/0000-0001-9163-5615
https://orcid.org/0000-0001-6324-5716
https://orcid.org/0000-0003-2285-5627
https://orcid.org/0000-0002-0890-8684
https://orcid.org/0000-0002-8318-2924
https://orcid.org/0000-0003-0832-6489
mailto:vwani@g.ucla.edu

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

while others of physiological origins might be useful
for characterizing, for example, the eloquent cortices
[12]. Such further refinements of HFOs include tasks,
such as artifact rejection, HFOs with spike-wave dis-
charges (spkHFO) detection, epileptogenic HFO dis-
covery, and physiological HFO detection.

However, translating these research findings into
a clinical setting to enhance post-operative seizure-
free outcomes poses significant challenges. It requires
a multidisciplinary approach involving experts in
machine learning, artificial intelligence, neurology,
and epileptology to refine and establish the clinical
relevance of different types of HFOs and potentially
discover more effective biomarkers. Such collabora-
tion necessitates the development of a scalable soft-
ware platform that enables advanced data analysis,
annotation, expert verification, and sharing of patient
outcome data in a user-friendly manner.

Within the field of EEG studies, a consider-
able number of open-source software applications
aim to offer visualization tools (e.g. EEGLab [14],
EEGnet [15], EPViz [16], and Brainstorm [17]) as
well as an array of computational biomarker detec-
tion algorithms implemented in various program-
ming languages (e.g. MNE [18], YASA [19], and
PyEEG [20]) that collectively allow detection and
visualization of EEG biomarkers.

Meanwhile, significant efforts have been devoted
to deep learning (DL) for event classification in both
scalp EEG [21] and invasive EEG [22] to facilitate
EEG decoding [23], artifact rejection [24], and dis-
ease detection [25]. However, as these methods grow
in complexity, there are dramatically increasing com-
putational costs and greater reliance on the technical
expertise of operators. Consequently, there is a con-
siderable scientific and engineering gap between the
research on DL-powered EEG analysis tools and the
distribution of state-of-the-art DL methods to clini-
cians’ personal computers for practical application.
So far, efforts to bridge this gap have been insufficient.

A similar scenario prevails in HFO studies.
RIPPLELAB [26], an open-source Matlab-based soft-
ware, has facilitated early studies on HFOs, incor-
porating EEG visualization and mainstream HFO
detection algorithms. This software is widely used
in several studies across the community [27–32].
Simultaneously, many recent studies leverage DL
models to carry out HFO analysis [11, 12, 33].
The research community values open-source HFO-
analysis software like RIPPLELAB; however, the
absence of an integrated platform for clinicians to
employ these DL models hinders the full potential of
HFOs and associated biomarkers.

Therefore, a software platform compatible with
popular DL frameworks is highly desirable for
enabling advanced machine learning and DL tools
to automate various steps of HFO refinement and
deploy them efficiently, even on moderately powerful
machines commonly available to clinicians.

In this paper, we present our initial efforts to
develop such an application, addressing three key
engineering challenges:

• We developed time-efficient detection algorithms
of HFO events, by re-implementing the HFO
detectors in Python and significantly reducing the
detection run-time by at least 93% in comparison
to RIPPLELAB in three datasets

• We addressed the demanding task of integration of
DL-basedHFOclassification by simplifying artifact
and spkHFO classification networks introduced in
a previous study [11], allowing theDLmodel to run
smoothly on the ‘clinician-grade’ CPUs.

• We built an open-source executable software
that integrates both time-efficient HFO detection
algorithms and simplified artifact and spkHFO
classification networks.

The integration of all of the functionalities, PyHFO,
holds great potential for facilitating seamless collab-
oration and enabling large-scale EEG data analysis.

2. Method

PyHFO is a multi-window graphical user interface
(GUI) desktop application specifically designed for
the efficient analysis and classification of HFOs. It
presents a user-friendly and intuitive interface that
caters to both technical and non-technical users,
streamlining the process of HFO detection and clas-
sification. PyHFO operates through four primary
stages upon loading an EEG recording: EEG sig-
nal reading, data filtering, HFO detection, and DL-
based HFO classification. These stages are detailed
in a data flowchart, as seen in figure 1. The out-
put of this pipeline includes detected events based on
the implemented detection algorithm, accompanied
by annotations of real HFOs, artifacts, and spkHFO,
generated using pre-trained DL-based HFO classific-
ation models. The specifics of each critical stage are
elaborated upon in the subsequent sections.

2.1. HFO detection algorithms
In PyHFO, we implemented two automatic HFO
detection algorithms into the standalone executable
software. We selected the short time energy (STE)
[34] and the Montreal Neurological Institute and
Hospital detector (MNI) [35] to implement because
they are the two primary detection algorithms in
the widely used Matlab-based HFO analysis tool,
RIPPLELAB, where they have demonstrated success
in numerous studies [27–32, 36, 37]. The PyHFO’s
modular architecture, coupled with the open-source
property of the project, allows for easy integration
of alternative HFO detection methods if required.
Developers need to adhere to a straightforward

2

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure 1. Our study’s overall data processing workflow is
shown as a flowchart. We adopted a multi-processing
mechanism in both HFO detection and feature extraction
for DL networks, which significantly increased the
efficiency of the HFO analysis. Specifically, the HFO
detectors detected HFO events from the EEG recordings
and returned the start and end timestamps of the detected
HFO events. For each event detection, the classification
pipeline used the start-end information to compute the
center and defined a window of width±285 ms around the
center time stamp. These time windows were used to
extract EEG segments from the recordings. Then, features
computed from the EEG segments were sent to the
pretrained DL models for HFO classification. See figure 5
for the overall graphic user interface for PyHFO.

interface. Moreover, any added methods will inher-
ently benefit from the established multi-processing
paradigm.

We have faithfully replicated the precise para-
meters and computational implementation of both
algorithms from RIPPLELAB in Python. We have
put a detailed explanation in the tables B.1 and B.2.
However, we have introduced certain modifications.
This includes replacing functions, such as the gamma
distribution parameter estimation, with the official
Scipy’s APIs. Additionally, we have exposed the ran-
dom seed to the user to ensure the reproducibility
of the MNI detector. More importantly, to enhance
execution efficiency, we have replaced the for loop
with matrix multiplication, particularly in the Gabor
wavelet computation. These alterations may result
in slightly divergent detection outcomes compared
to those obtained from RIPPLELAB. A comprehens-
ive analysis and comparison of these results will be
presented in the dedicated analysis section.

2.2. HFO detector implementation details
2.2.1. Data reading
PyHFO is designed to accept mainstream EEG data
file formats such as the European data format (EDF).
Additionally, it can process data in the widely-used
NumPy format when users employ the deployed
Python package (see section 2.5). In processing an
EDF file, raw data is stored in binary format. Upon
reading, to convert the digital (raw) values Draw to
the real-world physical voltage V, the digital values
are calibrated using maximum and minimum phys-
ical voltage Vmax,Vmin and maximum and minimum

digital values Dmax,Dmin The equation used by most
EEG data processing tools, such as MNE [18], is
given in equation (1). In this equation, R is the cal-
ibration ratio, defined as the ratio of the difference
between the maximum and minimum physical val-
ues to the difference between themaximum andmin-
imum digital values, and an offset O is defined as the
difference between the minimum physical value and
the product of the calibration ratio and theminimum
digital value.

V= R ·Draw +O,

where R=
Vmax −Vmin

Dmax −Dmin
,

O= Vmin −R ·Dmin.

(1)

It’s worth noting that RIPPLELAB processes EDF
files differently than other mainstream EDF read-
ing tools. Contrastingly, RIPPLELAB performs cal-
ibration only through V= R ∗Draw, with no offset
adjustment, resulting in data readings with a DC
offset between RIPPLELAB and other EDF reading
tools. In our implementation within PyHFO, we have
elected to use the more robust calibration equation,
equation (1), as the open-sourced Python package
MNE.

2.2.2. Signal filtering
The voltage value read from EDF was then passed
through a bandpass filter to extract the signal in the
desired frequency domain with the specified ripple
and attenuation. The bandpass filter used in the
RIPPLELAB was the Chebyshev type II filter; the
parameter of this filter consisted of PassBand(Fp),
StopBand(Fs), PassBand Ripple(rp), and StopBand
Attenuation(rs). For constructing such a filter, the
order of the filter was first estimated, and then
the frequency response was constructed. We noticed
that Matlab sometimes could not achieve an exact
match to the desired PassBand Ripple and StopBand
Attenuation. Therefore, in implementing the PyHFO,
we chose to use the filter construction by Scipy as it
could produce a more aligned frequency response to
the specification. However, since the Scipy could not
replicate the filter parameter specified in RIPPLELAB,
Fp = 80 Hz, Fs = 500 Hz, rp = 0.5 dB, and rs = 100
dB due to the numerical overflow, we used the closest
number in StopBand Attenuation rs = 93 dB instead
in our implementation. We visualized such premen-
tioned phenomena in figure 2.

2.2.3. Multi-processing-based detection framework
To improve the efficiency of our HFO detection
pipeline, we leveraged themulti-processing capability
of Python. In figure 1, we illustrated how we paral-
lelized the time-consuming steps, namely data filter-
ing andHFOdetection, across each channel. Since the
computation for each channel was independent, we

3

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure 2. A comparison between Matlab (left) and Scipy
(right) regarding filter construction. For the given
parameters Fp = 80 Hz, Fs = 500 Hz, rp = 0.5 dB, and
rs = 100 dB, which is specified in RIPPLELAB, Matlab did
not precisely match the frequency response to the desired
PassBand Ripple and StopBand Attenuation. In contrast,
Scipy utilized in our implementation generates a more
closely aligned frequency response. Owing to numerical
overflow, we use a slightly adjusted StopBand Attenuation
value of rs = 93 dB in our PyHFO implementation (Fp:
PassBand, Fs: StopBand, rp: PassBand Ripple, rs: StopBand
Attenuation).

assigned each channel’s data to different CPU cores
to run simultaneously. This approach maximized the
use of available CPU cores, leading to a significant
reduction in the detection time. To demonstrate the
acceleration of our detector’s running speed, we com-
pared the detection times for MNI and STE detectors
using our detector and the RIPPLELAB detector on
different hardware machines.

2.3. Lightweight DL-based HFO classification
We followed the same artifact and spk-HFO classi-
fier design in [11] as it had already shown promising
performance against expert annotation. The train-
ing data was from HFO detected by STE detector
via RIPPELAB in UCLA dataset along with annota-
tion from experts (NH and SH) [11]. However, sev-
eral limitations prevent them from being directly
used in the natural setting: (1) Currently, the HFO
analysis is majorly conducted in CPU machines;
access to GPU is not very popular in this domain of
study. Application of the proposed network in [11]
in CPU is time-consuming. (2) Then, the general-
ization ability of models in [11] cannot be ensured
in HFOs detected by other detectors such as MNI.
To address (1), we reduced the computational cost
of the model by first seeking the smallest informa-
tion (input size) that can maintain the classification
performance and then employing the state-of-the-art
neural network pruning technique to reduce the net-
work size. To address limitation (2), we developed
a data-augmentation strategy in the neural network
training to improve the generalization ability of the
model.

2.3.1. DL model training with data augmentation
Two DL models were trained in PyHFO: the arti-
fact rejection model and the spkHFO classification
model. The artifact rejection model classified all
events detected from the HFO detector into arti-
fact and real HFO events (the union of spkHFO and

non-spkHFO).Meanwhile, the spkHFO classification
model classifies the real HFO events into spkHFO and
non-spkHFO. The models were evaluated through
five-fold cross-validation. The dataset was randomly
shuffled and divided into five groups; each group rep-
resented the test set of each fold in cross-validation.
Within each fold, the remaining 80% of the data was
then split into a training set (70% of the whole data-
set) and a validation set (10% of the whole data-
set). During the training, we used time-domain aug-
mentation to improve the generalization ability of the
artifact rejection model and spkHFO classification
model. For each event within the training batch, we
randomly flipped the EEG signals and randomly shif-
ted the center of the HFO event forward and back-
ward 50 ms, as shown in figures 3 and C.1. Both
neural networks were trained for 30 epochs; thus,
each data sample was augmented 30 times. In the val-
idation and test sets, augmentation was not applied to
ensure that events were represented accurately during
evaluation. Both networks were trained with a batch
size of 128 using Adam [38] optimizer with a learn-
ing rate of 0.0003. The final DL models were selected
based on achieving the lowest validation loss across
epochs during the training process.

2.3.2. Reduction of the computational cost
The computational cost of a neural network could
be measured by the total number of multiply accu-
mulate (MACs) for a fixed number of inputs, which
was influenced by the input dimension and the archi-
tecture size. To reduce the computational complexity
introduced in the input dimension, we first reduced
the redundancy in the dimension of the input by only
using one time-frequency plot for the artifact detector
and concatenation of only the time-frequency plot
and amplitude coding plot as input for the spk-HFO
classifier. Then, we reduced the input dimension from
224 × 224 to 128 × 128 by only taking 10 to 290 Hz
in the frequency domain and ±285 ms of the cen-
ter of the event in the time domain; these values
were chosen by empirical analysis of balancing the
computational complexity of the neural network and
the classification accuracy (figure 3). Then we sim-
plified the architecture of the artifact and spk-HFO
detector, respectively, by pruning the neural network
using DepGraph [39] as shown in figure 4. The inter-
active pruning was conducted for 5000 iterations,
and the model was fine-tuned every 250 iterations
by five epochs. Finally, we imposed a rule-based fil-
ter by treating all HFOs detected in the beginning
one second and last one second as artifacts because
the beginning and the ending of the recording would
lead to artifacts production. The simplified network
should run at the best tradeoff between speed and
performance in CPU, and we also enabled the use of
GPU for users with GPU access on their machine. We
evaluated the model complexity by computingMACs
using one data sample. Additionally, wemeasured the

4

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure 3. Deep learning network architecture and
complexity; (A). The time-domain augmentation consisted
of two steps: (1) random time-domain shift, the window of
selecting EEG tracing to generate feature (initially center at
the middle of the HFO with±285 ms around it, purple
region) could be randomly shifted±50 ms in the time
domain (orange region). (2) the EEG signal was randomly
flipped in the time domain. Then, the time-frequency plot
(representing 10-290 Hz in the frequency domain and
570 ms in the time domain) and amplitude coding plot
with size 128× 128 are generated. (see figure C.1 for the
detailed pipeline and example of how the time-domain
augmentation was conducted dynamically during the
training). (B). Empirical analysis of the model input size,
network performance, and model complexity: While
keeping the information resolution (2.18 Hz/pix and
4.46 ms/pix) the same, we trained and evaluated the two
classifiers with different input sizes from 32× 32
(10-80 Hz,±72 ms) to 224× 224 (10-500 Hz,±500 ms),
we plotted the error rate of these two classifiers and the
average run time with the corresponding input size
together. The error rate of these two classifiers was defined
as 1–0.5

(
Accartifacts +AccspkHFO

)
in five-fold

cross-validation and the average run time (T) was the time
to predict 1000 samples on CPU using a Linux Machine 10
times, 1

10

∑
(Tartifacts +TspkHFO). We chose 128 as the input

size because it gave us the best tradeoff between speed and
performance. (Acc: accuracy).

average running speed of themodel inference on 1000
data samples to get a more straightforward overview
of the model complexity.

2.4. Framework evaluation
2.4.1. Evaluation patient cohort and intracranial EEG
(iEEG) recording
We evaluated the performance of the HFO detectors
and classification by using three iEEG datasets.

UCLA iEEG Dataset (UCLA) [11, 40]: iEEG data
was obtained via grid/strip electrodes using Nihon
Kohden Systems (Neurofax 1100A, Irvine, California,

Figure 4. Flowchat of the training and pruning procedure;
after the training completes, the pruning and fine-tuning
are conducted iteratively to reduce the model size to save
computational cost.

USA). The recording was acquired with a digital
sampling frequency of 2000 Hz. It contained 19
drug-resistant focal epilepsy subjects. For each sub-
ject, separate 10 min EEG segments from slow-wave
sleep were selected at least two hours before or after
seizures, before anti-seizuremedication tapering, and
before cortical stimulation mapping, which typic-
ally occurred two days after the implant. This data-
set contained 19 ten-minute EEG recording segments
across 19 patients with 1709 monopolar channels (a
median of 94monopolar channels in each recording).
The annotation (Artifact, HFO-with-spike, HFO-
without-spike) obtained from expert labeling from
a previous study [11] of each STE HFO event was
also included in this data (see section 3.3 for detailed
annotation statistics).

Zurich iEEG HFO Dataset (Zurich) [41]: iEEG data
(both grid/strip and depth electrode) was obtained
with 4000 Hz digital sampling frequency with an
ATLAS recording system (0.5–1000 Hz pass-band,
Neuralynx, www.neuralynx.com) and downsampled
to 2000 Hz. It contained 20 drug-resistant focal epi-
lepsy subjects. Several runs of five-minute EEG seg-
ments of interictal slow-wave sleep were recorded for
each subject. We followed the same preprocessing
procedure in [41] to create bipolar EEG recordings.
This dataset contained 385 five-minute EEG record-
ing segments across 20 patients with 9360 bipolar
channels (a median of 23 bipolar channels in each
recording).

UCLA Rodent Dataset (Rodent) [42]: Rodent iEEG
data was obtained with 2000 Hz digital sampling

5

www.neuralynx.com

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

frequencywithRHD2000 electrophysiology amplifier
chips (pass-band between 0.1 Hz and 1000 Hz). It
contained two ten-minute EEG segments from two
rodent subjects from the neocortex and hippocam-
pus sampling via depth electrodes. One EEG record-
ing was from a subject with traumatic brain injury
(nine channels), and the other one was from a sham-
injured control subject (ten channels). Please see the
published data [42] for a detailed description of this
dataset

2.4.2. Standard protocol approvals, registrations and
patient consents
For the UCLA dataset, the institutional review board
at UCLA approved using human subjects and waived
the need for written informed consent (IRB#18-
001 599). All testingwas deemed clinically relevant for
patient care, and all the retrospective EEG data used
for this study were de-identified before data extrac-
tion and analysis. This study was not a clinical trial,
and it was not registered in any public registry. For
the Rodent dataset, All procedures were approved by
the University of California Los Angeles Institutional
Animal Care and Use Committee (protocol 2000-
153-61 A) (for more details, see [43]).

2.4.3. HFO detector parameters
We used the same parameter settings for RIPPLELAB
andPyHFO to compare the consistency of their detec-
tion results and runtime because PyHFO essentially
replicates the detection pipeline of RIPPLELAB. The
STE and MNI detectors utilized identical default
parameter settings in RIPPLELAB and PyHFO for
the UCLA and Zurich datasets. For the Rodent data-
set, we applied the suggested parameters for the STE
detector as introduced in the original paper [42].
However, since no suggested parameters existed in
the MNI detector in [42], we used the default para-
meter introduced in RIPPLELAB. Tables B.1 and B.2
provides exact parameters used in each dataset.

2.4.4. HFO detector evaluation
To conduct a mathematical evaluation of the detec-
tion results between PyHFO and RIPPLELAB,
we established a defined representation of events
detected by each algorithm. For PyHFO, an event
was denoted as (startp,endp), indicating the exact
time location within the EEG recording. Similarly,
for RIPPLELAB, an event was represented as
(startr,endr). To quantify the degree of overlap
between these two sets of events, we introduced the
concept of an overlapping ratio, which was defined

as min(endr,endp)−max(startr,startp)
max(endr,endp)−min(startr,startp)

. The resulting value

ranged from 0 to 1, with 1 value indicating an exact
match. To ensure a fair comparison and avoid double
counting, we enforced the condition that an event
detected by PyHFO can only matched with a unique
event detected by RIPPLELAB. Additionally, the com-
parison was performed on a channel-by-channel

basis, and there was no overlap within events detected
by the same detector by the definition of the detect-
ing algorithm. The match of a specific event was
defined when the overlapping ratio exceeds a certain
threshold, such as 50%. Furthermore, the discrep-
ancy between the two algorithms could be quantified
by calculating the ratio of the number of matches to
the total number of events detected by RIPPLELAB.

We conducted four experiments to evaluate the
success of our detector implementation, assessing the
impact of eachmodule independently in the pipeline.
For simplicity, we denoted the data reading (Read),
filter design (Filter), and detection algorithm (Algo)
of RIPPLELAB as Readr Filterr and Algor , where the
subscript r represents the RIPPLELAB implement-
ation, and we used the subscript p to denote the
PyHFO implementation. To verify the correctness of
our Python implementation, we first extracted the
filtered EEG signal from RIPPLELAB. We fed it into
our detectors (Readr + Filterr + Algop), compar-
ing the detection overlap with RIPPLELAB (Readr
+ Filterr + Algor), which we referred to as Exp1.
Since we replicated the logic of the two detectors, i.e.
Algor = Algop, we expected almost 100% matching
between them. To assess the impact of the data read-
ing, we conducted Exp2, replicating the frequency
and phase response from RIPPLELAB in Python
(Readp + Filterr +Algop). For Exp3, we evaluated the
effect of the filter design by feeding the EEG signal
read by RIPPLELAB into our Python pipeline (Readr
+ Filterp + Algop). Finally, we compared the com-
plete implementation of PyHFO (Readp + Filterp +
Algop) with the RIPPLELAB implementation (Readr
+ Filterr + Algor). We conducted all experiments
on our evaluation cohort and evaluated the imple-
mented STE and MNI, respectively. For each exper-
iment, we compared the detected HFOs with those
detected from RIPPLELAB on the total number of
HFOs, number of exact match HFOs, and the num-
ber of at least 50% overlap, evaluating the discrep-
ancies between RIPPLELAB and our implementation
in each step of the data processing. By evaluating the
effect of each module independently, we were able to
demonstrate the success of our detector implement-
ation, providing a comprehensive assessment of the
performance of our PyHFO implementation.

2.4.5. DL-based neural network evaluation
The performance of our trained artifact and spk-
HFO detectors was evaluated by comparing the res-
ults with the label. We adopted standard metrics for
machine learning classification tasks to assess the
model’s performance, including Precision= TP

TP+FP ,

Recall= TP
TP+FN , Accuracy(Acc)=

TP+TN
TP+TN+FP+FN , and

F1-score= 2× Precision×Recall
Precision+Recall , where TP represents

True Positives, FP represents False Positives, FN rep-
resents, and TN represents. Given that the model
was trained using five-fold cross-validation on STE

6

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

HFOs, the reported metric values were the mean
results of the five-fold cross-validation (on different
test sets) with a 95% confidence interval. To evaluate
the model performance on the MNI HFOs, experts
annotated MNI HFOs from representative patients.
Models trained in five-fold cross-validationwere used
to predict all events. The reportedmetric was thus the
mean of the metrics from five models, again with a
95% confidence interval.

2.4.6. Runtime analysis
We conducted our run time analysis on a Linux
machine, a macOS machine, and a Windows
machine. The Linux machine had an AMD Ryzen
Threadripper 2950X 32-core processor; the Windows
machine had an Intel i9-13 900 K 24-core pro-
cessor; and the macOS machine had an Apple M1
Pro 8-core processor. For timing the HFO detect-
ors in RIPPLELAB, we followed the modification of
RIPPLELAB in [11] to run theMatlab-based detector
and report the runtime for detecting STE and MNI
HFOs in the Linux machine. For PyHFO, we ran the
detector with the same parameters as in RIPPLELAB
and reported the runtime by using single-core (n-jobs
= 1) and multi-core (n-jobs = 32 for Linux, n-jobs
= 8 for Windows and Mac machines). see tables B.1
and B.2 for exact parameter setting in both detect-
ors. For benchmarking the DL models, we used DL
models to predict 1000 samples ten times to get the
mean and 95% confidence interval of the run time
in different machines with PyTorch default setting,
and we also reported the inference time on an Nvidia
Titan RTX GPU for reference.

2.5. Software overview
The software version PyHFO is a multi-window GUI
developed in PyQt. It is intended to be a user-
friendly and intuitive tool that users with tech-
nical and non-technical backgrounds can use to
detect and classify HFOs time-efficiently. PyHFO has
been released under Academic Licenses (Licenses for
Sharing Software Code Non-commercially, UCLA
TDG). The GUI interface was implemented in PyQt
version 5.15 to make it compatible with hardware
platforms such as macOS, Linux, and Windows.
The HFO detectors were implemented in Python
3.9.0, and the DL-based detector was implemented in
PyTorch 1.6. We chose Python as the programming
platform because it is widely used in large-scale data
analysis and DL in the medical image field. The com-
pleted procedure for detecting and analyzing HFOs
through PyHFO, consists of several steps briefly dis-
cussed in figure 1. We here presented the GUI of the
software in figures 5 and E.1. After setting the para-
meters of different detectors and DL-based classifier,
the original EEG signal will be displayed in the main
visualization window, and HFO with different attrib-
utes (artifacts, HFO-with-spike, and HFO-without-
spike) will be annotated with different colors. The

statistics of different kinds of HFOs will be displayed
on the summary panel for each channel. All of these
statistics can be exported in Excel format for further
study by the user.

2.6. Data sharing and availability of the methods
Anonymized EEG data (UCLA and Rodent) used
in this study are available to the correspond-
ing author upon reasonable request. Public iEEG
data (Zurich) can be downloaded from open
neuro at https://openneuro.org/datasets/ds003498/
versions/1.1.1. The source code, documentation,
and executable application of the PyHFO soft-
ware application are available at https://github.com/
roychowdhuryresearch/pyHFO. For technical back-
ground users, we also release our multi-processed
HFO detector in Python Package Index (PyPI),
which can be installed by pip install HFODetector
and DL-based HFO classifiers at https://github.
com/roychowdhuryresearch/HFO-Classification/
tree/main/Pruning-pipeline so that python users can
easily install it.

3. Results

3.1. HFO detector evaluation
In the UCLA dataset, RIPPLELAB detected detec-
ted 12,494 STE HFOs and 10,392 MNI HFOs, while
PyHFO detected 12,501 STE HFOs and 10,355 MNI
HFOs. In the Zurich dataset, RIPPLELAB detected
31,744 STE HFOs and 70,988 MNI HFOs, while
PyHFO detected 31,869 STE HFOs and 70,538 MNI
HFOs. In the rodent dataset, RIPPLELAB detected
375 STE HFOs and 42 MNI HFOs, while PyHFO
detected 378 STE HFOs and 39 MNI HFOs. In
table 1, we demonstrated the breakdownperformance
of each experiment. Specifically, in Exp1, we demon-
strated that PyHFO successfully replicated the detec-
tion algorithms implemented in RIPPLELAB. The
discrepancy in the MNI detector was due to different
random seed mechanisms RIPPLELAB and PyHFO
used. Controlled variable experiments showed that
different data readings (Exp2) and filter (Exp3) do
affect the performance of the detector but with
a minimal effect of around 3 to 7% difference
between RIPPLELAB’s detection and PyHFO. The
overall discrepancy was defined as the sum of the
number of new HFOs detected by the RIPPLELAB
(new-RIPPLELAB) and the number of new HFOs
detected by the PyHFO (new-PyHFO) divided by the
total number of HFOs detected by the RIPPLELAB.
The discrepancies between PyHFO and RIPPLELAB
of STE and MNI detector were 10% and 14%,
respectively.

As highlighted in section 2.2, the implement-
ation within PyHFO closely adheres to prevailing
methods for data reading. Additionally, it provides
a more accurate representation of the input para-
meters utilized in the construction of the bandpass

7

https://openneuro.org/datasets/ds003498/versions/1.1.1
https://openneuro.org/datasets/ds003498/versions/1.1.1
https://github.com/roychowdhuryresearch/pyHFO
https://github.com/roychowdhuryresearch/pyHFO
https://github.com/roychowdhuryresearch/HFO-Classification/tree/main/Pruning-pipeline
https://github.com/roychowdhuryresearch/HFO-Classification/tree/main/Pruning-pipeline
https://github.com/roychowdhuryresearch/HFO-Classification/tree/main/Pruning-pipeline

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure 5. The multi-window overview of the PyHFO application, outlining the user interaction process. For a more detailed
explanation, users should consult the PyHFO project page (see section 2.5). In summary, the process is as follows: load EEG: the
user can select and load a recording (EDF or BrainVision data format) for EEG data analysis. EEG information and the EEG
waveform are then displayed in the ‘EEG info view’ and ‘Waveform Display View’, respectively. HFO detection: users can specify
filter parameters in the ‘Filter Param Display View’, select the HFO detector and its parameters in the ‘HFO Detector Param View’,
and click ‘detect’ to start HFO detection. The progress is displayed in the ‘Progress Display View’, and detected HFOs are shown in
the ‘Waveform Display View’. DL-based HFO classification: users can select a pre-trained network or use the pre-installed models
in PyHFO from the ‘DL-Classifier Param View’. After clicking ‘HFO Classification’, a progress bar appears in the ‘Progress Display
View’, and once the process completes, classified HFOs are marked in the ‘Waveform Display View’. Results can be exported in
Excel or NPZ formats. To simplify the process, users can also use the ‘Quick Detection Window’ to specify all parameters for the
whole pipeline, bypassing GUI interaction.

filter. Consequently, PyHFO’s methodology exhibits
greater implementation accuracy compared to most
mainstream publicly released software.

3.2. HFO detector runtime comparison
Table 2 presented a runtime comparison between
PyHFO and its Matlab-based counterpart
(RIPPLELAB) across various hardware specifica-
tions on UCLA, Zurich, and Rodent datasets. To
save computational resources, we reported only the
runtime of RIPPLELAB on the Linux machine. Since
different datasets had different numbers of record-
ings and lengths, we normalized the runtime to
measure the detection speed: how many seconds the

detector will take to process one minute of recording
in one channel (120k data samples at sampling fre-
quency = 2000 Hz). We also put the rough total
time processing each dataset in parentheses (see
table D.2 for detailed runtime in minutes). When
comparing the detection speed of HFO detection by
using the same detection parameters, PyHFO signi-
ficantly outperformed RIPPLELAB in both single-
core (n = 1) and multi-core (n > 1) configurations,
as detailed in 2.4.6 for hardware setup specifica-
tions. For the UCLA dataset, the detection speed
of PyHFO could be at least 50 times faster (1.309
seconds/channel/minute for RIPPLELAB and 0.018
seconds/channel/minute for PyHFO on STE detector

8

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Table 1. Event comparison of differences between RIPPLELAB and PyHFO implementations in UCLA, Zurich, and Rodent dataset. The
new-RIPPLELAB row represents the number of new events detected by RIPPLELAB, and the new-PyHFO row represents the number of
new events detected by PyHFO for the specific experiment we conducted when the agreement of two events is defined as the 50%
overlap of two events. Please note that the difference between 90% overlap and 50% overlap is minimal, amounting to no more than

0.2%
(

noverlap 50%;−noverlap 90%;

noverlap 90%;

)
. (Exp1: data reading and bandpass filter were from RIPPLELAB, but detection algorithm was from PyHFO;

Exp2: data reading was from RIPPLELAB, but bandpass filter and detection algorithm were from PyHFO; Exp3: bandpass filter was
from RIPPLELAB, but data reading and detection algorithm were from PyHFO; PyHFO: all data reading, bandpass filter and detection
algorithm were from PyHFO).

No. Events from STE detector No. Events from MNI detector

RIPPLELAB Exp1 Exp2 Exp3 PyHFO RIPPLELAB Exp1 Exp2 Exp3 PyHFO

UCLA

Total HFO 12 494 12 494 12 421 12 582 12 501 10 392 10 390 10 320 10 422 10 355
Exactly same — 12 494 11 442 9147 8643 — 10 368 10 035 7729 7487
90% overlap — 12 494 12 192 12 126 11 876 — 10 390 10 136 9828 9612
50% overlap — 12 494 12 192 12 144 11 892 — 10 390 10 136 9835 9619
new-RIPPLELAB — 0 302 350 602 — 2 256 557 773
new-PyHFO — 0 229 438 609 — 0 184 587 736

Zurich

Total HFO 31 744 31 744 31 527 32 089 31 869 70 988 70 538 69 760 71 994 71 067
Exactly same — 31 744 28 330 22 372 20 656 — 70 496 68 361 52 158 50 939
90% overlap — 31 744 30 667 30 703 29 775 — 70 532 68 860 67 183 65 739
50% overlap — 31 744 30 667 30 740 29 811 — 70 532 68 862 67 277 65 834
new-RIPPLELAB — 0 1077 1004 1933 — 456 2126 3711 5154
new-PyHFO — 0 860 1349 2059 — 6 898 4717 5233

Rodent

Total HFO 375 375 375 378 378 42 42 39 42 39
Exactly same — 375 374 324 325 — 42 39 34 31
90% overlap — 375 375 370 370 — 42 39 42 39
50% overlap — 375 375 370 370 — 42 39 42 39
new-RIPPLELAB — 0 0 5 5 — 0 3 0 3
new-PyHFO — 0 0 8 8 — 0 0 0 0

Table 2. Comparative analysis of runtime (measured in runtime (seconds)/channel/recording minutes) in RIPPLELAB and PyHFO:
Detection of all events from UCLA, Zurich, and Rodent dataset. We put the roughly total time of detection into parentheses. When n>
1 represents when PyHFO runs in a multi-core setup, n-jobs= 32 for the Linux machine and n-jobs= 8 for macOS and Windows
machines. The best performance in each machine and dataset was highlighted in bold. Abbreviation: d: day(s), h: hour(s), m: minute(s),
s: second(s).

Linux Windows macOS

STE MNI STE MNI STE MNI

UCLA (19 ten-minute recordings, 1709 channels)

RIPPLELAB 1.309 (≈5.2 h) 19.82 (≈4d) — — — —
PyHFO(n=1) 0.201 (≈1.0 h) 3.410 (≈16 h) 0.121 (≈0.5 h) 3.277 (≈16 h) 0.13 (≈0.5 h) 2.316 (≈11 h)
PyHFO(n> 1) 0.018 (≈5.2 m) 0.292 (≈1.4 h) 0.031 (≈9.0 m) 0.398 (≈1.9 h) 0.026 (≈7.7 m) 0.401 (≈1.9 h)

Zurich (385 five-minute recordings, 9360 channels)

RIPPLELAB 0.600 (≈7.8 h) 12.30 (≈6.6d) — — — —
PyHFO(n=1) 0.165 (≈2.2 h) 3.097 (≈1.6d) 0.089 (≈1.2 h) 2.014 (≈1d) 0.136 (≈1.8 h) 1.856 (≈1d)
PyHFO(n> 1) 0.029 (≈22 m) 0.415 (≈5.5 h) 0.028 (≈22 m) 0.411 (≈5.3 h) 0.037 (≈28 m) 0.304 (≈4.0 h)

Rodent (2 ten-minute recordings, 19 channels)

RIPPLELAB 0.473 (≈1.5 m) 15.72 (≈50 m) — — — —
PyHFO(n=1) 0.121 (≈23 s) 4.399 (≈13.9 m) 0.084 (≈16 s) 2.725 (≈8.6 m) 0.111 (≈21 s) 1.983 (≈6.3 m)
PyHFO(n> 1) 0.032 (≈6 s) 1.042 (≈3.3 m) 0.041 (≈8 s) 0.795 (≈2.5 m) 0.047 (≈9 s) 0.631 (≈2.0 m)

and 19.82 seconds/channel/minute for RIPPLELAB
and 0.292 seconds/channel/minute for PyHFO on
MNI detector). PyHFO in the UCLA dataset (median

of 94 channels per recording) can utilize the multi-
processing (when n = 32) better than that in the
Zurich dataset (median of 23 channels per recording)

9

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Table 3. Performance analysis using five-fold cross-validation: mean of accuracy, f1-core, recall, and precision on the test set in five-fold
cross-validation with 95% confidence interval versus expert labeling.

STE MNI

Artifacts spkHFO Artifacts spkHFO

Accuracy 98.56± 0.19 89.18± 0.82 98.72± 0.64 89.79± 3.12
F1-score 99.08± 0.13 91.40± 0.60 90.16± 4.88 94.14± 1.93
Recall 99.18± 0.27 90.78± 1.91 94.79± 2.72 90.85± 4.15
Precision 98.98± 0.29 92.07± 2.11 100.0± 0.00 97.75± 0.69

Table 4. Comparative analysis of computational costs across models: MACs and model run-time (in seconds) for GPU, Linux, mac OS,
and Windows (CNN was the model design in [11]; Dim. Optim. was the run-time after input dimension optimization; Pruning was the
model runtime after dimension optimization and pruning). The best performance was highlighted in bold.

MACs GPU Linux macOS Windows

Artifact rejection

CNN [11] 1.82G 0.14± 0.10 9.78± 0.20 20.28± 1.89 15.68± 0.10
Dim. Optim. 568.94 M 0.04± 0.01 3.52± 0.13 4.13± 0.02 6.93± 0.04
Pruning 146.05M 0.02± 0.00 1.53± 0.05 1.68± 0.01 2.88± 0.01

spkHFO classification

CNN [11] 1.82G 0.14± 0.11 9.84± 0.25 19.43± 1.16 16.01± 0.74
Dim. Optim. 581.58 M 0.17± 0.01 3.67± 0.11 4.14± 0.02 7.49± 0.02
Pruning 152.37M 0.04± 0.01 1.56± 0.05 1.71± 0.02 3.42± 0.03

and Rodent dataset (median of 9.5 channels per
recording). Nonetheless, the PyHFO ran at least 15
times faster than RIPPLELAB in these three data-
sets. Even when operating with a single core, PyHFO
still offers at least a six-times improvement in speed.
Compared to STE, theMNI detector’s longer runtime
is due to an iterative procedure within its computa-
tional pipeline. It took days for RIPPLELAB to detect
MNI HFOs for a fairly large dataset (4 days for the
UCLA dataset and 6.6 days for the Zurich dataset),
which blocked feasibility for large-scale HFO analysis
in the community. However, using the PyHFO under
a multi-core setting, the runtime could be signific-
antly reduced to within six hours.

3.3. HFO event annotation
The HFO annotation was conducted on STE HFO
events from the UCLA dataset (n = 12 494). Two
experts (NH and SH) annotated HFO events into
one of the three classes: artifact, HFO-with-spike
(spkHFO), and HFO-without-spike (non-spkHFO).
The inter-rater reliability of these two expert annot-
ators was measured by the Cohen kappa score (kappa
= 0.96 for labeling artifact, 0.85 for labeling HFO-
with-spikes). The evaluation procedure was repor-
ted in [11]. This annotation yielded 6294 HFOs with
spikes (spkHFO), 3459 HFOs without spikes (non-
spkHFO), and 2741 artifacts. To ensure the DL mod-
els trained from the STE detector also generalize well
in HFO events detected by the MNI detector, an
expert (HN) annotated MNI HFOs into the arti-
fact, spkHFO, non-spkHFO from representative sub-
jects (3 subjects, n = 758, included 416 artifacts, 312
spkHFOs, and 30 non-spkHFO) and the performance

metric of themodel against the expert annotationwas
reported.

3.4. Machine learning algorithm against expert
labeling
In five-fold cross-validation, for STE HFOs (19 sub-
jects, n= 12 494), the model achieved an accuracy of
98.6% and 89.1% for classifying artifacts and HFO
with spikes, respectively, as shown in table 3. This per-
formance is almost the same as that was [11] (arti-
facts: 98.8%, spkHFO 89.1%) but with much lower
MACs and runtime when we classified HFOs in CPUs
in table 4. More importantly, the trained model using
STE HFOs could successfully classify the MNI HFOs,
demonstrating the success of the data augmenta-
tion and generalization-ability of the model, which
enables these twoDLmodels to be used in natural set-
tings. The excellent performance across detectors also
demonstrates the morphological similarity between
the spkHFO in MNI and STE detectors.

3.5. Neural network complexity comparison
In table 4, we compare the MACs on a single data
sample as input and runtime of inference 1000 data
samples using GPU and CPUs between state-of-the-
art and PyHFO. We reported the performance met-
ric of spk-HFO and artifact classifier, respectively.
By computing the MACs, the classifiers in PyHFO
are more computationally efficient than the mod-
els proposed in [11], which provide theoretical sup-
port for later empirical experiments. Furthermore,
even though both classifiers from [11] and PyHFO
run at comparable speeds in GPU, the artifacts clas-
sifier in PyHFO runs at least 4 times faster than

10

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

its counterpart, and PyHFO’s spkHFO detector runs
three times faster in CPUs. As another ablation
study, we blindly pruned the published network using
the same pruning and fine-tuning parameters but
without input dimension optimization. Even though
the performance of the pruned model was still com-
parable,MACswere still around 500Mwhich ismuch
higher than our approach.

4. Discussion

Our work was implemented based on strong clin-
ical motivation. Prior observational studies [5, 40]
and a clinical trial [4] have shown issues with time
constraints in HFO analysis in clinical settings. The
clinical use of HFOs detection sites during epilepsy
surgery planning requires a fast, reliable, and user-
friendly application of HFO detection. It also needs
to simulate human experts’ judgment to complement
the entire process, including the detection and clas-
sification of HFOs. Our platform incorporated such
capacities and has capacities to use multiple HFO
detection methods and also has classifiers, including
artifact rejection and HFOs with spikes vs. without
spikes. Additionally, this system is portable, allow-
ing any physician or researcher with a laptop to util-
ize DL-based algorithms in various settings, such
as the epilepsy monitoring unit or the operating
room. This capability has the potential to facilitate
clinical trials. While developing our PyHFO applic-
ation, we demonstrated that our HFO detection
algorithm is comparable with another open-source
work, RIPPLELAB. We comprehensively tested our
HFO detection algorithms on three datasets: UCLA
(grids/strips), Zurich (grids/strips and depth elec-
trodes), and Rodent dataset. While we implemen-
ted the Python version of this HFO analysis applic-
ation, EEG data reading and input format were
deployed using the Python package. We followed the
same EEG reading calibration as MNE [18], while in
RIPPLELAB, the calibrationwas only done by voltage,
without the offset adjustment. Furthermore, there
were slight differences in the data filtering imple-
mentation. We chose to use the filter construction by
Scipy as it can produce a more accurate frequency
response. Our study reported minor differences in
HFO detection numbers between RIPPLELAB and
PyHFO, and we concluded that those are based on
differences in data reading and filtering implement-
ation between Matlab and Python. We fully credit
RIPPLELAB for developing the pioneering, user-
friendly,MATLAB-basedHFO analysis software. This
foundational effort greatly informed our Python-
based platform, and we also proved that our Python-
based implementation is accurate based on engineer-
ing aspects.

We combined multiple methods to decrease
the run time of the whole pipeline. We utilized
the multi-processing feature of Python, employed

vectorization implementation in wavelet computa-
tion, optimized the neural network’s input size and
pruned the neural network architecture. We also
developed a data-augmentation strategy in the neural
network training to improve the generalization abil-
ity of the model. We demonstrated that with the use
of our application, the run-time was at least 15 times
faster in STE detection and MNI detection compared
toRIPPLELAB.We also achieved high performance in
classifying artifacts andHFOs with spikes (98.6% and
89.1%, respectively, on five-fold cross-validation and
98.7% and 89.8%, respectively, on an independently
annotated test set).

There are several limitations to our study. Our
study did not validate our detected HFOs against
clinical outcomes, such as postoperative seizure out-
comes. Rather, we aimed to establish the engineering
validity of our detection algorithms using grid/strip,
SEEG, and rat EEG data. The generalizability of our
application is still considered limited as it stands,
based on a relatively small number of datasets we
tested on. However, our application has the poten-
tial to expand its capacity. Additionally, there were
some interesting features we did not include in this
current implementation. For example, (1) the current
artifact rejection only considered event-level classi-
fication but did not consider cross-channel artifacts
(HFOs occur simultaneously across many channels);
(2) a standalone interface for detecting ripple and fast
ripple separately; (3) data reading from more brain
recording formats such as BioSemi data format (.bdf).

In the near future, we have plans to incorpor-
ate a diverse dataset into our system. We aim to test
the system on a larger dataset comprising over 100
subjects, including pediatric and adult patient data
acquired through grids/strips and SEEG. We will also
be able to validate the detection results against clin-
ical outcomes using larger datasets. The versatility of
our application is evident as we strive to incorporate
additional detection methods, such as Hilbert [44] or
SLL [45]. As we continuously expand the dataset and
introduce new functionalities, the algorithm’s per-
formance will progressively improve through train-
ing. The invaluable real-time feedback from front-
line physicians and researchers will contribute signi-
ficantly to this iterative process.

Data availability statement

The data cannot be made publicly available upon
publication because they contain sensitive personal
information. The data that support the findings of
this study are available upon reasonable request from
the authors.

Acknowledgments

The authors have no conflict of interest to dis-
close. H N is supported by the National Institute

11

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

of Neurological Disorders and Stroke (NINDS)
K23NS128318, the Sudha Neelakantan & Venky
Harinarayan Charitable Fund, the Elsie and Isaac
Fogelman Endowment, and the UCLA Children’s
Discovery and Innovation Institute (CDI) Junior
Faculty Career Development Grant (#CDI-TTCF-
07012021). A D is supported to research abroad by
the Uehara Memorial Foundation and SENSHIN
Medical Research Foundation. SAH has received
research support from the Epilepsy Therapy
Project, the Milken Family Foundation, the Hughes
Family Foundation, the Elsie and Isaac Fogelman
Endowment, Eisai, Lundbeck, Insys, Zogenix, GW
Pharmaceuticals, UCB, and has received honor-
aria for service on the scientific advisory boards of
Questcor, Mallinckrodt, Insys, UCB, and Upsher-
Smith, for service as a consultant to Eisai, UCB, GW
Pharmaceuticals, Insys, and Mallinckrodt, and for
service on the speakers’ bureaus of Mallinckrodt
and Greenwich Bioscience. RS serves on scientific
advisory boards and speakers bureaus and has
received honoraria and funding for travel from Eisai,
Greenwich Biosciences, UCB Pharma, Sunovion,
Supernus, Lundbeck Pharma, Liva Nova, and West
Therapeutics (advisory only); receives royalties from
the publication of Pellock’s Pediatric Neurology
(Demos Publishing,2016) and Epilepsy:Mechanisms,
Models, and Translational Perspectives (CRC Press,
2011). R J S is supported by the National Institute
of Neurological Disorders and Stroke (NINDS)
R01NS106957 and Christina Louise George Trust.

Appendix A. Details of two detection
algorithms

A.1. STE HFO detection algorithm
The first implemented algorithm, STE, detects HFO
events by selecting the energy of the filtered raw EEG
signal with an estimated energy threshold for each
10min epoch. In detail, the EEG signal is processed
through a bandpass filter in frequencies between 80
and 500 Hz. The energy of the filtered signal is then
computed based on root mean square (RMS) with
N = 3 ms window. The estimation of the energy
threshold is 5 standard deviations (SD) above the
overall RMS mean. Finally, all HFO events selected
should have a duration ofmore than 6ms and contain
more than 6 peaks greater than 3 SD above the filtered
signal mean value. Figure A.1 demostrated the com-
putational flowchart.

A.2. Montreal Neurological Institute’s HFO
detection algorithm
Another implemented algorithm MNI detector
(MNI) was proposed by Zelmann et al For this
approach, similar to the STE algorithm, the raw
EEG signal is also filtered by the bandpass filter and
the energy of the filtered signal is then computed
using RMS with 2 ms window. A key block for

Figure A.1. The computational flowchart of the STE HFO
detection algorithm.

Figure A.2. The computational flowchart of the MNI HFO
detection algorithm.

MNI algorithm is the baseline detector, designed to
construct the baseline interval. The baseline, defined
as EEG segments with no oscillation, is detected by

12

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Table B.1. Detailed parameters with units in parenthesis of STE
detector used in UCLA, Zurich, and Rodent datasets; filter_freq:
frequency band in bandpass filter; rms_window: RMS window
time; min_window: minimum time for an HFO; min_gap:
minimum distance time between two HFO candidates; min_osc:
minimum oscillations per interval; rms_thres: threshold for RMS
in standard deviation (SD); epoch_len: duration of determining
energy threshold.

UCLA Zurich Rodent

filter_freq (Hz) [80, 500] [80, 500] [80, 500]
rms_window (s) 3× 10−3 3×10−3 3×10−3

min_window (s) 6×10−3 6×10−3 6×10−3

min_gap (s) 10∗1×10−3 10∗1×10−3 10∗1×10−3

min_osc (count) 6 6 4
rms_thres (in SD) 5 5 5
peak_thres (in SD) 3 3 2
epoch_len (ms) 600 600 600

computing the wavelet entropy of the autocorrelation
of the filtered signal. For each 125 ms EEG segment
with 50% shift, the segment is considered as baseline
if the wavelet entropy is greater than the threshold.
From the baseline detector, possible HFO events
could be detected by selecting energy of the filtered
signal using RMS above the energy threshold for each
epoch. The energy threshold is computed in two dif-
ferent methods if more than or less than 5 smin−1

of the amount of all detected baseline. If a sufficient
baseline was found, the energy threshold was selec-
ted from RMS values for each 10 s baseline segment
at the 99.9999 percentile of its empirical cumulative
distribution function. If less baseline was detected, we
consider the channel with continuous high-frequency
oscillatory activity. The energy threshold is iteratively
selected from RMS values for each 60 s segment at the
95 percentile of its empirical cumulative distribution
function. The value is found by continuously detect-
ing and removing the highest energy till no more new
HFO events are detected. All possible HFO events
from the two situations are finally selected with a
duration of more than 6 ms. Figure A.2 demostrated
the computational flowchart.

Appendix B. HFO detector parameters

We used the same parameter settings for RIPPLELAB
andPyHFO to compare the consistency of their detec-
tion results and runtime because PyHFO essentially
replicated the detection pipeline of RIPPLELAB. The
STE and MNI detectors utilized default parameter
settings in RIPPLELAB and PyHFO for the UCLA
and Zurich datasets. For the Rodent dataset, we
applied the suggested parameters for the STE detector
as introduced in the original paper [42]. However,
since no suggested parameters existed in the MNI
detector in [42], we used the default parameter intro-
duced in RIPPLELAB. Tables B.1 and B.2 showed the
exact parameters of STE and MNI detectors in each
dataset. In these tables, we used the naming of the
parameters from PyHFO, but it was easy to find the
corresponding parameters from RIPPLELAB.

Table B.2. Detailed parameters with units in parenthesis of MNI
detector used in UCLA, Zurich, and Rodent datasets. filter_freq:
frequency band in bandpass filter; epo_CHF: continuous
high-frequency epoch; per_CHF: continuous high-frequency
percentile threshold; min_win: minimum HFO time; min_gap:
minimum distance time between two HFO candidates; thrd_perc:
threshold percentile; base_seg: baseline window; base_shift:
baseline shift window (representing the ratio of the baseline
window is shifted); base_thrd: baseline threshold; base_min:
baseline minimum time.

UCLA Zurich Rodent

filter_freq (Hz) [80 500] [80 500] [80 500]
epo_CHF (s) 60 60 60
per_CHF (%) 95% 95% 95%
min_win (s) 10×10−3 10×10−3 10×10−3

min_gap (s) 10×10−3 10×10−3 10×10−3

thrd_perc (%) 99.9999% 99.9999% 99.9999%
base_seg (s) 125×10−3 125×10−3 125×10−3

base_shift (0-1) 0.5 0.5 0.5
base_thrd (0-1) 0.67 0.67 0.67
base_min (%) 5 5 5
epoch_time (ms) 10 10 10
seed 0 0 0

Appendix C. Data augmentation

The data augmentation was conducted dynamic-
ally with model training; transformations of data
samples (HFO event/EEG tracing) could be random-
ized at each batch, leading to a more robust model.
In PyHFO, we trained our models using two aug-
mentation types: time-domain random shifting and
time-domain random flipping. Specifically, each data
sample (HFO event/EEG tracing) underwent this
augmentation process in each training epoch. We
trained our models in 30 epochs; thus, we would
have 30 variations of each event during the train-
ing. Figure C.1 demonstrated this procedure with a
detailed example.

Appendix D. More statistics on detection
comparison

D.1. Relevance for clinical decisions
We drew the HFO rates from all detected results from
PyHFO and RIPPLELA. We demonstrated the HFO
rate (number of events/minutes) for each channel
from one example subject and all subjects across all
three datasets in term of histograms (figure D.1) and
scatter plots (figure D.2) comparison. The high cor-
relation between the HFO rates produced by PyHFO
and RIPPLELAB demonstrated that using PyHFO
will not affect clinical decisions based on the HFO
rate.

D.2. Discrepancy analysis
Since the table 1 only compared the raw detected
events but did not include if the detection results
discrepancy was mostly from artifact events or real
events. We then used the trained artifact rejection
model to predict all the new events from PyHFO and

13

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure C.1. Data augmentation was dynamically conducted during neural network training. Within each training epoch, batches
of data were sampled from the dataset. For each data sample (HFO event), a time-domain augmentation shift, t, was uniformly
sampled from−50 ms to+50 ms. The region of interest for generating features (centered at the middle of the HFO with a 285 ms
window) was then shifted on the time axis to select an EEG tracing; for example, in this figure, when t =+50 ms, the window
became−235 ms to 335 ms from−285 ms to 285 ms. Subsequently, an integer (0 or 1) was randomly chosen to determine
whether the EEG tracing should be flipped in the time domain, with 0 indicating no flipping and 1 indicating flipping. The
processed EEG tracing was used to generate two feature images: the time-frequency plot and the amplitude coding plot (the latter
only for spk-HFO classification). These images were then fed into the CNN for neural network training.

Figure D.1.HFO rate comparison across three datasets and two detectors. We calculated the HFO rate, measured as the number
of events per minute (n min−1), in each channel from each patient and plotted the histogram of the rate in each channel from
example patients (column 1 for STE HFOs and column 3 for MNI HFOs) and from all patients (column 2 for STE HFOs and
column 4 for MNI HFOs). The gray area of the histogram indicates the detections by both RIPPLELAB and PyHFO. Events only
detected by RIPPLELAB are shown in blue, and events only detected by PyHFO are shown in orange.

RIPPLELAB. Table D.1 showed classification results
for the new events from PyHFO and RIPPLELAB.
The accuracy of the artifact rejection model was

almost 99% in comparison to the expert labeling;
we believed that the trained DL model was good
enough to replicate the expert behavior in classifying

14

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Figure D.2. Comparison of HFO rates between RIPPLELAB and PyHFO across three datasets and two detectors. We calculated
the HFO rate, expressed as events per minute (n/min), for each channel in each subject and plotted these using scatter plots. The
x-axis represented RIPPLELAB rates, while the y-axis represented PyHFO rates, with each data point corresponding to one
channel. The plots were organized into four columns: columns 1 and 3 displayed HFO rates from example subjects (STE and MNI
HFOs, respectively), while columns 2 and 4 displayed rates across all subjects, using different colors to represent various subjects.
Additionally, the Pearson correlation coefficients, displayed at the top of each subplot, indicate a high degree of correlation,
suggesting comparable performance between PyHFO and RIPPLELAB.

Table D.1.HFO classification on new events produced by RIPPLELAB and PyHFO in three datasets.

STE MNI

Total Real Artifact Total Real Artifact

UCLA

new-RIPPLELAB 602 519 83 773 607 166
new-PyHFO 609 520 89 736 577 159

Zurich

new-RIPPLELAB 1933 1064 869 5154 2292 2862
new-PyHFO 2059 1994 65 5233 3387 1846

Rodent

new-RIPPLELAB 5 5 0 3 3 0
new-PyHFO 8 7 1 0 0 0

artifact events and real HFO events. In table D.1,
even though the number of artifacts in newly detected
eventswas slightly lower for PyHFO thanRIPPLELAB
in the Zurich dataset, the results were generally com-
parable between RIPPLELAB and PyHFO in both
detectors.

D.3. Run-time comparison
Table D.2 shows a comparative analysis of runtime
(measured in minutes) in RIPPLELAB and PyHFO:
Detection of all events from UCLA, Zurich, and
Rodent datasets.When n>1 represents when PyHFO
runs in a multi-core setup, n-jobs = 32 for the Linux

15

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Table D.2. Comparative analysis of runtime (measured in minutes) in RIPPLELAB and PyHFO: Detection of all events from UCLA,
Zurich, and Rodent datasets. When n>1 represents when PyHFO runs in a multi-core setup, n-jobs= 32 for the Linux machine and
n-jobs= 8 for macOS and Windows machines. The best performance in each machine and dataset was highlighted in bold.

Linux Windows macOS

STE MNI STE MNI STE MNI

UCLA

RIPPLELAB 372.83 5647.12 — — — —
PyHFO(n=1) 57.43 971.35 34.57 933.31 35.90 659.63
PyHFO (n> 1) 5.18 83.30 9.03 113.59 7.56 114.35

Zurich

RIPPLELAB 468.07 9595.09 — — — —
PyHFO (n= 1) 129.07 2416.18 69.80 1570.95 105.93 1447.27
PyHFO (n> 1) 22.39 324.02 21.80 320.96 31.25 237.38

Rodent

RIPPLELAB 1.50 49.78 — — — —
PyHFO (n= 1) 0.38 13.93 0.27 8.63 0.35 6.28
PyHFO (n> 1) 0.1 3.3 0.13 2.52 0.15 2.00

Table D.3. Ripple events (HFOs with peak frequency<250 Hz, subcategorized from table 1) comparison of differences between
RIPPLELAB and PyHFO implementations in UCLA, Zurich, and Rodent dataset. The new-RIPPLELAB row represents the number of
new events detected by RIPPLELAB, and the new-PyHFO row represents the number of new events detected by PyHFO for the specific
experiment we conducted when the agreement of two events is defined as the 50% overlap of two events. Additionally, the difference

between 90% overlap and 50% overlap is minimal, amounting to no more than 0.2%
(

noverlap 50%;−noverlap 90%;

noverlap 90%;

)
. (Exp1: data reading and

bandpass filter were from RIPPLELAB, but detection algorithm was from PyHFO; Exp2: data reading was from RIPPLELAB, but
bandpass filter and detection algorithm were from PyHFO; Exp3: bandpass filter was from RIPPLELAB, but data reading and detection
algorithm were from PyHFO; PyHFO: all data reading, bandpass filter and detection algorithm were from PyHFO.)

No. Events From STE Detector No. Events FromMNI Detector

RIPPLELAB Exp1 Exp2 Exp3 PyHFO RIPPLELAB Exp1 Exp2 Exp3 PyHFO

UCLA

Total Ripples 12 188 12 188 12 115 12 262 12 175 10 098 10 096 10 028 10 125 10 061
Exactly Same — 12 188 11 179 9142 8694 — 10 076 9730 7562 7346
90% overlap — 12 188 11 878 11 827 11 605 — 10 096 9823 9516 9321
50% overlap — 12 188 11 878 11 844 11 620 — 10 096 9823 9513 9328
new-RIPPLELAB — 0 295 345 553 — 2 258 584 750
new-PyHFO — 0 237 418 555 — 0 205 612 733

Zurich

Total Ripples 30 464 30 464 30 465 30 784 30 795 67 084 66 820 66 440 68 169 67 638
Exactly Same — 30 464 27 439 21 354 19 912 — 66 780 65 063 49 440 48 448
90% overlap — 30 464 29 638 29 421 28 751 — 66 815 65 524 63 514 62 434
50% overlap — 30 464 29 638 39 456 28 785 — 66 845 65 526 63 601 62 523
new-RIPPLELAB — 0 826 1008 1679 — 269 1558 3483 4561
new-PyHFO — 0 827 1328 2010 — 5 914 4568 5115

Rodent

Total Ripples 117 117 117 115 115 39 39 36 39 36
Exactly Same — 117 117 96 96 — 39 36 31 28
90% overlap — 117 117 113 113 — 39 36 39 36
50% overlap — 117 117 113 113 — 39 36 39 36
new-RIPPLELAB — 0 0 4 4 — 0 3 0 3
new-PyHFO — 0 0 2 2 — 0 0 0 0

16

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Table D.4. Fast ripple events (HFOs with peak frequency≥250 Hz, subcategorized from table 1) comparison of differences between
RIPPLELAB and PyHFO implementations in UCLA, Zurich, and Rodent dataset. The new-RIPPLELAB row represents the number of
new events detected by RIPPLELAB, and the new-PyHFO row represents the number of new events detected by PyHFO for the specific
experiment we conducted when the agreement of two events is defined as the 50% overlap of two events. Additionally, the difference

between 90% overlap and 50% overlap is minimal, amounting to no more than 0.2%
(

noverlap 50%;−−−noverlap 90%;

noverlap 90%;

)
.(Exp1: data reading

and bandpass filter were from RIPPLELAB, but detection algorithm was from PyHFO; Exp2: data reading was from RIPPLELAB, but
bandpass filter and detection algorithm were from PyHFO; Exp3: bandpass filter was from RIPPLELAB, but data reading and detection
algorithm were from PyHFO; PyHFO: all data reading, bandpass filter and detection algorithm were from PyHFO.

No. Events from STE detector No. Events from MNI detector

RIPPLELAB Exp1 Exp2 Exp3 PyHFO RIPPLELAB Exp1 Exp2 Exp3 PyHFO

UCLA

Total HFO 306 306 320 320 326 294 294 292 297 294
Exactly same — 306 274 252 228 — 294 290 208 207
90% overlap — 306 292 299 288 — 294 290 263 260
50% overlap — 306 292 299 288 — 294 290 263 260
new-RIPPLELAB — 0 14 7 18 — 0 2 31 34
new-PyHFO — 0 14 21 38 — 0 2 34 34

Zurich

Total HFO 1280 1280 1062 1305 1074 3904 3718 3320 3825 3429
Exactly same — 1280 900 1061 791 — 3716 3292 2272 2545
90% overlap — 1280 1001 1230 970 — 3717 3313 3370 3040
50% overlap — 1280 1001 1230 970 — 3717 3313 3372 3041
new-RIPPLELAB — 0 279 50 301 — 187 591 532 863
new-PyHFO — 0 61 75 104 — 1 7 453 388

Rodent

Total HFO 258 258 258 263 263 3 3 3 3 3
Exactly same — 258 257 228 228 — 3 3 3 3
90% overlap — 258 258 255 255 — 3 3 3 3
50% overlap — 258 258 255 255 — 3 3 3 3
new-RIPPLELAB — 0 0 3 3 — 0 0 0 0
new-PyHFO — 0 0 8 8 — 0 0 0 0

machine and n-jobs = 8 for macOS and Windows
machines.

D.4. Events comparison on detecting fast ripple
We further subcategorized the detected events from
table 1 into ripple (peak frequency<250 Hz) and
fast ripple (peak frequency>250 Hz) and com-
pared the detection results between PyHFO and
RIPPLELAB separately. Tables D.3 and D.4 demon-
strated the detection comparison. The overall dis-
crepancy was defined as the sum of the number
of new HFOs detected by the RIPPLELAB (new-
RIPPLELAB) and the number of new HFOs detec-

ted by the PyHFO (new-PyHFO) divided by the
total number of HFOs detected by the RIPPLELAB.
The discrepancies between PyHFO and RIPPLELAB
of STE and MNI detector were comparable to
when we compared them jointly in table 1. It
was important to note that the total discrepancy
count (for instance, new-RIPPLELABripple + new-
RIPPLELABfast ripple) might be slightly higher than
the figures reported in table 1. This variation could
occur because certain events with peak frequencies
near the threshold (250 Hz) might be classified dif-
ferently due to minor variations in their start and
end times.

17

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

Appendix E. PyHFO sub-windows

Figure E.1. Detailed showcase of each sub-window in PyHFO. A. ‘Quick Detection Window’ is for users to simplify the process by
specifying all parameters for the whole pipeline, bypassing GUI interaction. B. ‘Channel Selection Window’ is for users to select
desired channels to display in the GUI. C. ‘HFO Detector Param(eter) View’ is for users to specify parameters in STE and MNI
detector. D. ‘DL Classifier Param(enter) View’ is for users to specify parameters for deep learning HFO classification model; in
this view, the users can specify the pre-trained DL model released within PyHFO or use their own models trained and pruned by
the released training pipeline.

18

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

ORCID iDs

Yipeng Zhang https://orcid.org/0000-0003-2869-
4692
Lawrence Liu https://orcid.org/0009-0005-7579-
5084
Yuanyi Ding https://orcid.org/0009-0006-5566-
675X
Atsuro Daida https://orcid.org/0000-0003-1350-
7700
Shaun Hussain https://orcid.org/0000-0001-6947-
8852
Raman Sankar https://orcid.org/0000-0002-5609-
0362
Aria Fallah https://orcid.org/0000-0002-9703-
0964
Cesar Santana-Gomez https://orcid.org/0000-
0001-9163-5615
Jerome Engel https://orcid.org/0000-0001-6324-
5716
Richard J Staba https://orcid.org/0000-0003-
2285-5627
William Speier https://orcid.org/0000-0002-0890-
8684
Hiroki Nariai https://orcid.org/0000-0002-8318-
2924
Vwani Roychowdhury https://orcid.org/0000-
0003-0832-6489

References

[1] Weiss S A et al 2018 Visually validated semi-automatic
high-frequency oscillation detection aides the delineation of
epileptogenic regions during intra-operative
electrocorticography Clin. Neurophysiol. 129 2089–98

[2] Boran E, Ramantani G, Krayenbühl N, Schreiber M,
König K, Fedele T and Sarnthein J 2019 High-density ECoG
improves the detection of high frequency oscillations that
predict seizure outcome Clin. Neurophysiol. 130 1882–8

[3] Dimakopoulos V, Mégevand P, Boran E, Momjian S,
Seeck M, Vulliémoz S and Sarnthein J 2021 Blinded study:
prospectively defined high-frequency oscillations predict
seizure outcome in individual patients Brain Commun.
3 fcab209

[4] Zweiphenning W et al 2022 Intraoperative
electrocorticography using high-frequency oscillations or
spikes to tailor epilepsy surgery in the Netherlands (the HFO
trial): a randomised, single-blind, adaptive non-inferiority
trial Lancet Neurol. 21 982–93

[5] Jacobs J, Wu J Y, Perucca P, Zelmann R, Mader M, Dubeau F,
Mathern GW, Schulze-Bonhage A and Gotman J 2018
Removing high-frequency oscillations: a prospective
multicenter study on seizure outcome Neurology
91 e1040–52

[6] Akiyama T et al 2011 Focal resection of fast ripples on
extraoperative intracranial EEG improves seizure outcome in
pediatric epilepsy Epilepsia 52 1802–11

[7] Wu J, Sankar R, Lerner J, Matsumoto J, Vinters H and
Mathern G 2010 Removing interictal fast ripples on
electrocorticography linked with seizure freedom in children
Neurology 75 1686–94

[8] Jacobs J, Zijlmans M, Zelmann R, Chatillon C, Hall J,
Olivier A, Dubeau F and Gotman J 2010 High-frequency
electroencephalographic oscillations correlate with outcome
of epilepsy surgery Ann. Neurol. 67 209–20

[9] van’t Klooster M A et al 2017 Tailoring epilepsy surgery with
fast ripples in the intraoperative electrocorticogram Ann.
Neurol. 81 664–76

[10] Monsoor T et al 2023 Optimizing detection and deep
learning-based classification of pathological high-frequency
oscillations in epilepsy Clin. Neurophysiol. 154 129–40

[11] Zhang Y et al 2022 Refining epileptogenic high-frequency
oscillations using deep learning: a reverse engineering
approach Brain Commun. 4 fcab267

[12] Zhang Y et al 2022 Characterizing physiological
high-frequency oscillations using deep learning J. Neural
Eng. 19 066027

[13] Foffani G, Uzcategui Y G, Gal B and de la Prida L M 2007
Reduced spike-timing reliability correlates with the
emergence of fast ripples in the rat epileptic hippocampus
Neuron 55 930–41

[14] Delorme A and Makeig S 2004 EEGLAB: an open source
toolbox for analysis of single-trial EEG dynamics including
independent component analysis J. Neurosci. Methods
134 9–21

[15] Hassan M, Shamas M, Khalil M, El Falou W and Wendling F
2015 EEGNET: an open source tool for analyzing and
visualizing M/EEG connectome PLoS One 10 e0138297

[16] Currey D, Craley J, Hsu D, Ahmed R and Venkataraman A
2023 EPViz: a flexible and lightweight visualizer to facilitate
predictive modeling for multi-channel EEG PLoS One
18 e0282268

[17] Baillet S, Friston K and Oostenveld R 2011 Academic
software applications for electromagnetic brain mapping
using MEG and EEG Comput. Intell. Neurosci. 2011 12–12

[18] Gramfort A et al 2013 MEG and EEG data analysis with
MNE-Python Front. Neurosci. 7 1–13

[19] Vallat R and Walker M P 2021 An open-source,
high-performance tool for automated sleep staging Elife
10 e70092

[20] Bao F S et al 2011 PyEEG: an open source Python module
for EEG/MEG feature extraction Comput. Intell. Neurosci.
2011 406391

[21] Jacobs D, Liu Y, Hilton T, Campo M, Carlen P and
Bardakjian B 2019 Classification of scalp EEG states prior to
clinical seizure onset IEEE J. Trans. Eng. Health Med.
7 pp 1–1

[22] Wang S, Wang I Z, Bulacio J C, Mosher J C,
Gonzalez-Martinez J, Alexopoulos A V, Najm I M and
So N K 2013 Ripple classification helps to localize the
seizure-onset zone in neocortical epilepsy Epilepsia
54 370–6

[23] Yin W, Liang Z, Zhang J and Liu Q 2022 Partial least square
regression via three-factor SVD-type manifold optimization
for EEG decoding Chinese Conf. on Pattern Recognition and
Computer Vision (PRCV) (Springer) pp 778–87

[24] Zhang H, Zhao M, Wei C, Mantini D, Li Z and Liu Q 2021
EEGdenoiseNet: a benchmark dataset for deep learning
solutions of EEG denoising J. Neural Eng. 18 056057

[25] Lu M, Zhang Y, Daida A, Oana S, Rajaraman R R, Nariai H
and Hussain S A 2023medRxiv 2023–06

[26] Navarrete M, Alvarado-Rojas C, Le Van Quyen M,
Valderrama M and Charpier S 2016 RIPPLELAB: a
comprehensive application for the detection, analysis and
classification of high frequency oscillations in
electroencephalographic signals PLoS One 11 e0158276

[27] Nariai H et al 2020 Scalp EEG interictal high frequency
oscillations as an objective biomarker of infantile spasms
Clin. Neurophysiol. 131 2527–36

[28] Gliske S V, Irwin Z T, Chestek C, Hegeman G L,
Brinkmann B, Sagher O, Garton H J, Worrell G A and
Stacey W C 2018 Variability in the location of high frequency
oscillations during prolonged intracranial EEG recordings
Nat. Commun. 9 2155

[29] Kuroda N, Sonoda M, Miyakoshi M, Nariai H, Jeong J-W,
Motoi H, Luat A F, Sood S and Asano E 2021 Objective
interictal electrophysiology biomarkers optimize prediction
of epilepsy surgery outcome Brain Commun. 3 fcab042

19

https://orcid.org/0000-0003-2869-4692
https://orcid.org/0000-0003-2869-4692
https://orcid.org/0000-0003-2869-4692
https://orcid.org/0009-0005-7579-5084
https://orcid.org/0009-0005-7579-5084
https://orcid.org/0009-0005-7579-5084
https://orcid.org/0009-0006-5566-675X
https://orcid.org/0009-0006-5566-675X
https://orcid.org/0009-0006-5566-675X
https://orcid.org/0000-0003-1350-7700
https://orcid.org/0000-0003-1350-7700
https://orcid.org/0000-0003-1350-7700
https://orcid.org/0000-0001-6947-8852
https://orcid.org/0000-0001-6947-8852
https://orcid.org/0000-0001-6947-8852
https://orcid.org/0000-0002-5609-0362
https://orcid.org/0000-0002-5609-0362
https://orcid.org/0000-0002-5609-0362
https://orcid.org/0000-0002-9703-0964
https://orcid.org/0000-0002-9703-0964
https://orcid.org/0000-0002-9703-0964
https://orcid.org/0000-0001-9163-5615
https://orcid.org/0000-0001-9163-5615
https://orcid.org/0000-0001-9163-5615
https://orcid.org/0000-0001-6324-5716
https://orcid.org/0000-0001-6324-5716
https://orcid.org/0000-0001-6324-5716
https://orcid.org/0000-0003-2285-5627
https://orcid.org/0000-0003-2285-5627
https://orcid.org/0000-0003-2285-5627
https://orcid.org/0000-0002-0890-8684
https://orcid.org/0000-0002-0890-8684
https://orcid.org/0000-0002-0890-8684
https://orcid.org/0000-0002-8318-2924
https://orcid.org/0000-0002-8318-2924
https://orcid.org/0000-0002-8318-2924
https://orcid.org/0000-0003-0832-6489
https://orcid.org/0000-0003-0832-6489
https://orcid.org/0000-0003-0832-6489
https://doi.org/10.1016/j.clinph.2018.06.030
https://doi.org/10.1016/j.clinph.2018.06.030
https://doi.org/10.1016/j.clinph.2019.07.008
https://doi.org/10.1016/j.clinph.2019.07.008
https://doi.org/10.1093/braincomms/fcab209
https://doi.org/10.1093/braincomms/fcab209
https://doi.org/10.1016/S1474-4422(22)00311-8
https://doi.org/10.1016/S1474-4422(22)00311-8
https://doi.org/10.1212/WNL.0000000000006158
https://doi.org/10.1212/WNL.0000000000006158
https://doi.org/10.1111/j.1528-1167.2011.03199.x
https://doi.org/10.1111/j.1528-1167.2011.03199.x
https://doi.org/10.1212/WNL.0b013e3181fc27d0
https://doi.org/10.1212/WNL.0b013e3181fc27d0
https://doi.org/10.1002/ana.21847
https://doi.org/10.1002/ana.21847
https://doi.org/10.1002/ana.24928
https://doi.org/10.1002/ana.24928
https://doi.org/10.1016/j.clinph.2023.07.012
https://doi.org/10.1016/j.clinph.2023.07.012
https://doi.org/10.1093/braincomms/fcab267
https://doi.org/10.1093/braincomms/fcab267
https://doi.org/10.1088/1741-2552/aca4fa
https://doi.org/10.1088/1741-2552/aca4fa
https://doi.org/10.1016/j.neuron.2007.07.040
https://doi.org/10.1016/j.neuron.2007.07.040
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0138297
https://doi.org/10.1371/journal.pone.0138297
https://doi.org/10.1371/journal.pone.0282268
https://doi.org/10.1371/journal.pone.0282268
https://doi.org/10.1155/2011/972050
https://doi.org/10.1155/2011/972050
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.7554/eLife.70092
https://doi.org/10.7554/eLife.70092
https://doi.org/10.1155/2011/406391
https://doi.org/10.1155/2011/406391
https://doi.org/10.1109/JTEHM.2019.2926257
https://doi.org/10.1109/JTEHM.2019.2926257
https://doi.org/10.1111/j.1528-1167.2012.03721.x
https://doi.org/10.1111/j.1528-1167.2012.03721.x
https://doi.org/10.1088/1741-2552/ac2bf8
https://doi.org/10.1088/1741-2552/ac2bf8
https://doi.org/10.1371/journal.pone.0158276
https://doi.org/10.1371/journal.pone.0158276
https://doi.org/10.1016/j.clinph.2020.08.013
https://doi.org/10.1016/j.clinph.2020.08.013
https://doi.org/10.1038/s41467-018-04549-2
https://doi.org/10.1038/s41467-018-04549-2
https://doi.org/10.1093/braincomms/fcab042
https://doi.org/10.1093/braincomms/fcab042

J. Neural Eng. 21 (2024) 036023 Y Zhang et al

[30] Lisgaras C P and Scharfman H E 2023 High-frequency
oscillations (250-500 Hz) in animal models of Alzheimer’s
disease and two animal models of epilepsy Epilepsia
64 231–46

[31] Barth K J et al 2023 Flexible, high-resolution cortical arrays
with large coverage capture microscale high-frequency
oscillations in patients with epilepsy Epilepsia 64 1910–24

[32] Petito G T et al 2022 Diurnal rhythms of spontaneous
intracranial high-frequency oscillations Seizure
102 105–12

[33] Navas-Olive A, Amaducci R, Jurado-Parras M-T,
Sebastian E R and de la Prida L M 2022 Deep learning-based
feature extraction for prediction and interpretation of
sharp-wave ripples in the rodent hippocampus Elife
11 e77772

[34] Staba R J, Wilson C L, Bragin A, Fried I and Engel J J 2002
Quantitative analysis of high-frequency oscillations (80–500
Hz) recorded in human epileptic hippocampus and
entorhinal cortex J. Neurophysiol. 88 1743–52

[35] Zelmann R, Mari F, Jacobs J, Zijlmans M, Chander R and
Gotman J 2010 Automatic detector of high frequency
oscillations for human recordings with macroelectrodes 2010
Annual Int. Conf. IEEE Engineering in Medicine and Biology
(IEEE) pp 2329–33

[36] Sakakura K, Kuroda N, Sonoda M, Mitsuhashi T,
Firestone E, Luat A F, Marupudi N I, Sood S and Asano E
2023 Developmental atlas of phase-amplitude coupling
between physiologic high-frequency oscillations and slow
waves Nat. Commun. 14 6435

[37] Lisgaras C P and Scharfman H E 2023 Interictal spikes in
Alzheimer’s disease: preclinical evidence for dominance of
the dentate gyrus and cholinergic control by the medial
septum Neurobiol. Dis. 187 106294

[38] Kingma D P and Ba J 2015 Adam: a method for stochastic
optimization 3rd Int. Conf. on Learning Representations,
ICLR 2015 (Conf. Track Proc.) (San Diego, CA, USA,
7 May–9 May 2015) ed Y Bengio and Y LeCun

[39] Fang G, Ma X, Song M, Mi M B and Wang X 2023
Depgraph: towards any structural pruning Proc. IEEE/CVF
Conf. on Computer Vision and Pattern Recognition
pp 16091–101

[40] Nariai H et al 2019 Prospective observational study: Fast
ripple localization delineates the epileptogenic zone Clin.
Neurophysiol. 130 2144–52

[41] Fedele T, Burnos S, Boran E, Krayenbühl N, Hilfiker P,
Grunwald T and Sarnthein J 2017 Resection of high
frequency oscillations predicts seizure outcome in the
individual patient Sci. Rep. 7 13836

[42] Santana-Gomez C et al 2019 Harmonization of pipeline for
detection of HFOs in a rat model of post-traumatic epilepsy
in preclinical multicenter study on post-traumatic
epileptogenesis Epilepsy Res. 156 106110

[43] Ndode-Ekane X E et al 2019 Harmonization of lateral
fluid-percussion injury model production and post-injury
monitoring in a preclinical multicenter biomarker discovery
study on post-traumatic epileptogenesis Epilepsy Res.
151 7–16

[44] Crépon B, Navarro V, Hasboun D, Clemenceau S,
Martinerie J, Baulac M, Adam C and Le Van Quyen M 2010
Mapping interictal oscillations greater than 200 Hz recorded
with intracranial macroelectrodes in human epilepsy Brain
133 33–45

[45] Gardner A B, Worrell G A, Marsh E, Dlugos D and Litt B
2007 Human and automated detection of high-frequency
oscillations in clinical intracranial EEG recordings Clin.
Neurophysiol. 118 1134–43

20

https://doi.org/10.1111/epi.17462
https://doi.org/10.1111/epi.17462
https://doi.org/10.1111/epi.17642
https://doi.org/10.1111/epi.17642
https://doi.org/10.1016/j.seizure.2022.09.019
https://doi.org/10.1016/j.seizure.2022.09.019
https://doi.org/10.7554/eLife.77772
https://doi.org/10.7554/eLife.77772
https://doi.org/10.1152/jn.2002.88.4.1743
https://doi.org/10.1152/jn.2002.88.4.1743
https://doi.org/10.1038/s41467-023-42091-y
https://doi.org/10.1038/s41467-023-42091-y
https://doi.org/10.1016/j.nbd.2023.106294
https://doi.org/10.1016/j.nbd.2023.106294
https://doi.org/10.1016/j.clinph.2019.08.026
https://doi.org/10.1016/j.clinph.2019.08.026
https://doi.org/10.1038/s41598-017-13064-1
https://doi.org/10.1038/s41598-017-13064-1
https://doi.org/10.1016/j.eplepsyres.2019.03.008
https://doi.org/10.1016/j.eplepsyres.2019.03.008
https://doi.org/10.1016/j.eplepsyres.2019.01.006
https://doi.org/10.1016/j.eplepsyres.2019.01.006
https://doi.org/10.1093/brain/awp277
https://doi.org/10.1093/brain/awp277
https://doi.org/10.1016/j.clinph.2006.12.019
https://doi.org/10.1016/j.clinph.2006.12.019

	PyHFO: lightweight deep learning-powered end-to-end high-frequency oscillations analysis application
	1. Introduction
	2. Method
	2.1. HFO detection algorithms
	2.2. HFO detector implementation details
	2.2.1. Data reading
	2.2.2. Signal filtering
	2.2.3. Multi-processing-based detection framework

	2.3. Lightweight DL-based HFO classification
	2.3.1. DL model training with data augmentation
	2.3.2. Reduction of the computational cost

	2.4. Framework evaluation
	2.4.1. Evaluation patient cohort and intracranial EEG (iEEG) recording
	2.4.2. Standard protocol approvals, registrations and patient consents
	2.4.3. HFO detector parameters
	2.4.4. HFO detector evaluation
	2.4.5. DL-based neural network evaluation
	2.4.6. Runtime analysis

	2.5. Software overview
	2.6. Data sharing and availability of the methods

	3. Results
	3.1. HFO detector evaluation
	3.2. HFO detector runtime comparison
	3.3. HFO event annotation
	3.4. Machine learning algorithm against expert labeling
	3.5. Neural network complexity comparison

	4. Discussion
	Appendix A. Details of two detection algorithms
	A.1. STE HFO detection algorithm
	A.2. Montreal Neurological Institute's HFO detection algorithm

	Appendix B. HFO detector parameters
	Appendix C. Data augmentation
	Appendix D. More statistics on detection comparison
	D.1. Relevance for clinical decisions
	D.2. Discrepancy analysis
	D.3. Run-time comparison
	D.4. Events comparison on detecting fast ripple

	Appendix E. PyHFO sub-windows
	References

