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Abstract 
In crowded and cluttered environments, infants can reduce visual 
clutter by using manual actions to bring objects closer to the eyes, 
what we refer to as hand-eye coordination. Hand-eye coordination 
is therefore hypothesized to be an important ability for controlling 
and distributing attention. Little is known about how the emerging 
ability to integrate both gaze and manual actions onto objects 
impacts how attention is distributed. Twenty-five infants 
participated in a naturalistic toy play session that included 24 toys. 
Overall, infants generated distributions of attention that were right-
skewed, reflecting coherence: a composition of selectivity of a few 
highly-frequent toys and exploration of many less-frequent toys. We 
observed that individual differences in hand-eye coordination 
impacted distributions of attention, with infants displaying low 
hand-eye coordination having dramatically less coherent 
distributions of visual attention during bouts of hand-eye 
coordination. These results suggest that hand-eye coordination is a 
critical pathway for visual attention. 

Keywords: Hand-Eye Coordination; Visual Attention; Eye-
tracking; Infancy; Play 

Introduction 
In visual environments cluttered with many objects, infants 
have choices. These choices impact what they see and for 
how long, generating the visual data used for learning. 
Learning requires the exploration, selection and stabilization 
of attention to information in the environment. Attention is 
therefore hypothesized to be a sensory-motor process 
because it includes the integration of actions across the body 
like postural stability, head movements, and manual actions. 
(Yu & Smith, 2012). For example, when an infant holds and 
looks at an object, what we refer to as hand-eye coordination, 
they create a stable, centered visual field, effectively reducing 
the visual clutter of competing objects (Bambach, Crandall, 
& Yu, 2013; Yu & Smith, 2012), providing optimal moments 
for learning to occur (Pereira, Smith, & Yu, 2014). For 
toddlers, smoothly integrating gaze and manual actions is a 
coordination problem still being solved, and rapidly 
changing.  Here we report new findings on how visual 
attention is impacted during this period of rapid change in 
hand-eye coordination.  

Recent advances in head-camera technology have started 
to uncover important spatiotemporal patterns of early visual 
experiences (Clerkin et al., 2017; Jayaraman, Fausey, & 
Smith, 2015, 2017). One key observation is that in the first 
few years of life, the frequency distributions of faces 
(Jayaraman et al., 2015) and objects (Clerkin et al., 2017) are 
extremely right-skewed: only a few faces account for a high 

proportion (~80%) of all faces in view and only a few object 
categories account for all of the object categories in view. 
What is the consequence of these natural visual statistics? 
One hypothesis is that right-skewed distributions offer a 
balance between consistency of a few high-frequent events 
with diversity of low-frequent events (Clerkin et al., 2017; 
Smith & Slone, 2018; Montag, Jones, & Smith, 2017). This 
balance between consistency and diversity, what we will call 
coherence, has been shown to offer computational benefits 
for visual object recognition (Salakhutdinov, Torralba, & 
Tenenbaum, 2011).  

In our study, because we are investigating visual attention, 
instead of observing a balance between consistency and 
diversity, we predict to observe a balance between selectivity 
and exploration. Consistent with recent findings showing 
right-skewed distributions in natural scenes, Figure 1 depicts 
what we should expect in a ranked order distribution of toy 
look proportions for 24 toys: a large proportion of looks to 
only a few toys (selectivity; green rectangle) and a small 
proportion of looks to the rest of toy set (exploration; blue 
rectangle). 

Our main hypothesis is that, during the second year, a 
developmental a period with rapid cognitive and motor 
development, visual attention is intimately linked to current 
sensory-motor abilities. The overarching idea is this: Because 
hand-eye coordination supports and organizes visual 
attention, this coordination is central to a coherent 
distribution of attention – many repeated looks to a select set 

Figure 1: Example right-skewed distribution for 24 
objects. The x-axis is rank ordered by proportion of 

frames. The top five objects (green) account for 80% of 
the total proportion. The remaining 19 objects (blue) 

account for 20% of the total proportion.  
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of objects and less frequent looks to other available toys. But 
this may be an emergent skill. Accordingly, we examined the 
relation between coordinated hand-eye actions directed to a 
single object during a period of development in which –
because sensory-motor skills are changing – we should see 
considerable individual (and typical) variation. We expect to 
observe overall distributions of visual attention to be right-
skewed, that is, a coherence between selectivity and 
exploration. In other words, when visual attention is not 
disrupted by difficulties in integrating actions by eyes and 
hands, we should expect to observe coherent distributions of 
visual attention. For infants with low hand-eye coordination, 
we expect to observe disrupted visual attention in the form of 
less selectivity and exploration during moments when they 
are in bouts of hand-eye coordination.   

Method 
Participants 
25 infant-parent dyads with infants (12 female) ranging from 
15.2 to 25.3 months (M=19.52, SD=2.42) were included in 
the final sample. 
 
Stimuli and Experimental Setup 
24 toys were used. The toys were pilot-tested to be interesting 
and engaging to infants (see Figure 2A). The toys were 
randomly spread out across the playroom floor at the 
beginning of each play session. Parents and infants both sat 
on a carpeted floor in a playroom environment. Parents were 
told to sit in any orientation with their child but were 
instructed to try to keep their child sitting on the ground as 
much as possible during the play session (see Figure 2B).  

Eye-tracker and Calibration  
Parents and infants wore head-mounted eye trackers (Positive 
Science LLC). The eye-tracker was designed for specific use 
with infants. The tracking system has been successfully used 
in both infant and adult experiments (Franchak & Adolph, 
2010; Yu & Smith, 2017). The eye-tracking system includes 
an infrared camera mounted on the head and pointed to the 
right eye of the participant that records eye images and a 
scene camera that captures and records images from the 
participant’s perspective. The visual field of the scene camera 
is 108°. Each tracking system – the infants’ and parents’ – 
recorded egocentric video and the x- and y-position of the 
right eye in the captured scene at a sampling rate of 30 Hz 
(see Figure 2B).  

For eye-tracker setup, one experimenter engaged with the 
infant with an enticing toy while the second experimenter 
affixed the eye-tracker on the parent. After the parent’s eye-
tracker was secure and the scene and eye cameras were 
properly adjusted and oriented, both experimenters and the 
parent worked together to place the headgear and eye-tracker 
on the infant. The parent and one of the experimenters played 
with the infant while the other experimenter placed the 
infant’s headgear (a small hat with Velcro stickers on the 
forehead) on the infant. The eye-tracker was then affixed to 

the headgear and the scene and eye cameras were adjusted 
and oriented appropriately. 

Once the parent’s and infant’s eye-trackers were securely 
affixed and the cameras were adjusted and oriented 
appropriately, a ~3-minute calibration phase was completed. 
For eye-tracking calibration, a large calibration board with 
colored lights and sounds was placed approximately 30cm 
away from the infant. One of the experimenters controlled the 
calibration board with a remote and displayed one of the 
lights on the board for ~10s or until a saccade and look were 
elicited by both the infant and parent before displaying 
another light. This procedure was repeated approximately 15 
times in various locations on the tabletop. The same 
procedure was used to calibrate the parent’s eye-tracker. We 
have used similar procedures in multiple previous head-
camera and head-mounted eye-tracking experiments (Pereira 
et al., 2014; Smith, Yu, & Pereira, 2011; Smith et al., 2015; 
Yu & Smith, 2017). 

 

 
Figure 2: (A) Stimuli set. (B) Experimental setup (left) 

and infant ego-centric view from eye-tracker. Cross-hair 
indicates direction of gaze. 

Instructions and Procedure 
After the calibration phase, one of the experimenters 
distributed the set of toys on the floor and left the parent and 
infant to play. The experimenters watched the interaction in 
an adjoining room and monitored the parent’s and infant’s 
eye and scene cameras for large movements from external 
sources like if the infant touched a camera or bumped a 
camera with a toy. If movements like this occurred, the 
experimenters went into the room, readjusted the cameras, 
completed a new calibration phase, and left the room so the 
parent and infant could complete the rest of the toy play 
session. Parents were asked to engage with their infants and 
toys as naturally as possible for ten minutes. 

Data Processing 
Video and head-mounted eye-tracking were used to collect 
manual actions and eye gaze, respectively. Manual actions on 
and gaze to objects by infants were recorded and coded. 
Hand-eye coordination was derived by measuring the frames 

A

B
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that included the infant holding on to and gazing towards the 
same toy. Eye-tracking software yielded scene camera 
footage with crosshairs superimposed where the eye was 
spatially located on the scene. This footage was then sampled 
at a rate of 30 frames per second. Using an in-house coding 
program, regions of interest (ROIs) were coded manually by 
coders who watched the first-person view video. Coders 
annotated when the cross hair overlapped on any portion of 
an object or face, and if so, which ROI. With this coding 
procedure, two gaze data streams containing ROIs were 
provided for each parent-infant dyad, although in the current 
paper, we only report look properties from the infant. There 
were 24 ROIs: one ROI for each of the 24 toy objects (see 
Figure 3).  
 

 
Figure 3: Visual streams of eye, hand, and hand-eye 
regions of interest (ROIs) from four infants. Color 

corresponds to a specific toy in the stimuli set. 

Results 
This section is organized into two parts. In the first part, we 
report on descriptive statistics of looking and holding 
behavior based on individual differences inside and outside 
of bouts of hand-eye coordination. In the second part, we 
investigate the distributions of visual attention using growth 
curve modeling.  

Looking and Holding Behaviors 
A median split was conducted on the proportion of time in 

hand-eye coordination to partition infants into either the 
‘low’ hand-eye coordination group or the ‘high’ hand-eye 
coordination group. There was no difference in age between 
the two groups (t[23]=.067, p=.51), and the high group 
(Min=0.27, Max=0.53, M=0.38, SD=.07) had a higher 
proportion of time in hand-eye coordination relative to the 
low group (Min=0.14, Max=0.26, M=0.20, SD=0.04, 
t(23)=7.18, p<.001.  

Overall, including looking behaviors both inside and 
outside of hand-eye coordination, the high group (Min=0.60, 
Max=0.94, M=0.76, SD=0.29) had a higher proportion of toy 
looks relative to the low group (Min=0.32, Max=0.82, 

M=0.60, SD=0.18), t(23)=2.94, p<.001. In addition, the high 
group (Min=0.59, Max=1.0, M=0.78, SD=0.11) had a higher 
proportion of toy holding relative to the low group 
(Min=0.44, Max=0.83, M=0.68, SD=0.12), t(23)=2.12, 
p=.04. Overall, the high group had a higher proportion of toy 
looking, toy holding, and by definition joint toy holding and 
toy looking.  

The high group (Min=13.23, Max=30.41, M=21.79, 
SD=5.57) and the low group (Min=9.71, Max=33.12, 
M=21.71, SD=7.61) did not differ in the frequency (per 
minute) of toy looking, t(23)=0.03, p=.97. The high group 
(Min=0.25, Max=6.50, M=12.80, SD=6.38) and the low 
group (Min=0.26, Max=10.94, M=10.54, SD=3.90) did not 
differ in the frequency (per minute) of toy holding, 
t(23)=1.06, p=.30. The high group (Min=1.14, Max=2.89, 
M=1.92, SD=0.60) and the low group (Min=1.16, Max=3.45, 
M=1.71, SD=0.60) did not differ in the duration (seconds) of 
toy looking, t(23)=0.89, p=.38. The high group (Min=7.15, 
Max=241.03, M=8.35, SD=8.95) and the low group 
(Min=4.24, Max=174.23, M=6.32, SD=6.32) did not differ in 
the frequency (per minute) of toy holding, t(23)=0.77, p=.45.  

To determine whether looking behavior was impacted by 
the overall increase in behaviors inside of hand-eye 
coordination – the main source of our group differences – we 
computed the relative proportion of toy looking (1) inside and 
(2) outside of hand-eye coordination. For the high group, 
there was no difference in the relative proportion of toy looks 
inside (Min=0.36, Max=0.70, M=0.50, SD=0.10) or outside 
(Min=0.30, Max=0.64, M=0.50, SD=0.10) of hand-eye 
coordination, t(23)=-0.16, p=.99. For the low group, the 
relative proportion of toy looks outside (Min=0.47, 
Max=0.82, M=0.64, SD=0.10) of hand-eye coordination was 
higher compared to inside (Min=0.18, Max=0.53, M=0.36, 
SD=0.10) of hand-eye coordination, t(23)=3.82, p<.001. 
Infants with low hand-eye coordination had a higher 
proportion of their total toy looking behavior outside of bouts 
of hand-eye coordination. This is a pattern that seems 
opposite to the studies (Bambach, Crandall, & Yu, 2013) 
showing holding increases and stabilizes looks to toys and 
suggests that for children still working on coordinating hands 
and eyes, doing so actually may disrupt rather than support 
visual attention to objects. Does this affect the distribution of 
toys sampled?  Do both groups of infants show the same 
degree of selectivity – over time and in the play session – 
repeatedly looking and holding the same few toys?  

Figure 4 shows ranked order histograms of toy look 
proportions inside and outside of hand-eye coordination for 
the high and low hand-eye coordination groups. The 
histograms are distinctly right-skewed which is indicative of 
visual selectivity of toys in the set. Overall, 8 toys (Min=1, 
Max=14, M=7.60, SD=3.24) account for over 80% of the total 
proportion of toy looking time. As discussed in the 
Introduction, right-skewed distributions likely reflect a 
balance between stability and exploration. 

To determine the selectivity of looking behavior across 
individual differences in hand-eye coordination and inside 
and outside of bouts of hand-eye coordination, we computed 
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the relative proportion of toy looks for the top five most 
attended to toys for each infant. Higher relative proportion 
would indicate higher selectivity. For the high group, there 
was higher selectivity inside (Min=0.26, Max=0.57, M=0.38, 
SD=0.08) of hand-eye coordination relative to outside 
(Min=0.15, Max=0.54, M=0.29, SD=0.11) of hand-eye 
coordination, t(23)=2.05, p=.05. In contrast, for the low 
group, there was higher selectivity outside (Min=0.26, 
Max=0.56, M=0.34, SD=0.08) of hand-eye coordination 
relative to inside (Min=0.17, Max=0.39, M=0.25, SD=0.08) 
of hand-eye coordination, t(23)=-2.72, p=.01. The visual 
attention of infants with high hand-eye coordination was 
more selective inside of hand-eye coordination. The visual 
attention of infants with low hand-eye coordination was less 
selective inside of hand-eye coordination, showing more 
selectivity in their visual attention when they were not in 
bouts of hand-eye coordination. These results suggest that for 
infants with still immature hand-eye coordination, joint 
looking and holding disrupts the natural distribution of looks 
to objects. While more fully developed hand-eye 
coordination may support visual attention – and balanced 
exploration and selectivity – this may be a hard-won skill. In 
the following section, we use growth curve modeling to test 
for differences in the distributions of visual attention across 
groups and inside and outside of hand-eye coordination.   

Growth Curve Analysis 
To test for differences in the distributions of toy looks 

inside and outside of bouts of hand-eye coordination across 
the two hand-eye coordination groups, we used the approach 
to mixed-effects models and growth curve analyses described 

in Mirman (2014). In growth curve analysis, the predictor 
variables are considered in terms of change over time (or 
‘growth’). We use growth curve analysis to analyze the 
ranked order cumulative proportion profiles transformed 
from the ranked order histograms.  

In the model, cumulative proportion is the outcome 
variable and the linear and quadratic terms are used to predict 
cumulative proportion. Given that the outcome variable is 
cumulative proportion, the linear term will be positive and the 
quadratic term will be negative. The linear term quantifies the 
overall cumulative proportion increment from the first ranked 
order proportion value and the last ranked order proportion 
value. The quadratic term quantifies the extent to which the 
cumulative proportion function asymptotes. For example, 
consider if ranked order histogram A’s asymptote was at 12 
toys, ranked order histogram B’s asymptote was at 8 toys, and 
ranked order histogram A had twice as much proportion for 
each toy compared to ranked order histogram B. Once 
converted into ranked order cumulative proportion, the 
coefficient for the quadratic term for histogram A would be 
more negative compared to the coefficient for histogram B. 
A higher negative coefficient for the quadratic term indicates 
a distribution of looking patterns that includes looks to more 
toys before an asymptote, suggesting (1) more selectivity but 
also (2) more exploration of toys. Because our primary 
interest is in investigating differences in the shapes of the 
visual attention distributions, testing for differences in the 
quadratic term is the most relevant polynomial term in this 
analysis.  

As suggested by Mirman et al. (2014), polynomial terms 
were generated orthogonally to allow for independent 

Figure 4: Ranked order histograms of toy look proportions inside (red) and outside (blue) of hand-eye coordination for the 
High (left) and Low (right) hand-eye coordination groups. Error bars indicate 95% confidence intervals. Inset. Growth curve 

models of ranked order toy look cumulative proportions. Solid lines represent quadratic fit estimates. Error bars indicate 
95% confidence intervals.  
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contributions of the linear and quadratic terms. Therefore, our 
models are second-order polynomial regression models. The 
goal of this analysis was to test for differences in look 
distributions inside and outside of hand-eye coordination 
bouts for the high and low hand-eye coordination groups. We 
used the lme4 library (Bates, Maechler, Bolker, & Walker, 
2016) in R to construct linear mixed effects regression 
models. The models were maximally specified as long as the 
models converged. We used random intercepts (subject ID) 
and nested the ranked order terms (linear and quadratic). The 
predictor variable was Look Type (outside or inside a bout of 
hand-eye coordination). A significant interaction between the 
Look Type variable and the linear and/or quadratic terms 
would suggest differences in look distributions inside and 
outside of hand-eye coordination. See inset of Figure 4.   

Our first model was constructed for the high hand-eye 
coordination group. A significant interaction between the 
Look Type variable and linear term suggested that there was 
a larger relative increase in look proportion from the 1st-
ranked toy to the toy at asymptote outside of hand-eye bouts 
compared to inside hand-eye bouts, b=.12, p<.001. The Look 
Type X quadratic term was not significant, suggesting that 
the selectivity and exploration of toys did not differ inside or 
outside of hand-eye bouts, b=.007, p=.38.  

Our second model was constructed for the low hand-eye 
coordination group. A significant interaction between the 
Look Type variable and linear term suggested that there was 
a larger relative increase in look proportion from the 1st-
ranked toy to the toy at asymptote outside of hand-eye bouts 
compared to inside hand-eye bouts, b=.21, p<.001. A 
significant interaction between Look Type and the quadratic 
term suggested that visual selectivity and exploration was 
highly constrained inside of hand-eye bouts relative to 
outside of hand-eye bouts, b=-0.09, p=.01.  

Overall this pattern of results suggests that as children 
develop hand-eye coordination skills, joint manual and visual 
attention to an object may initially disrupt the coherent 
pattern of consistent and exploratory attention to objects.  
This is potentially important as both the selectivity of visual 
experiences and sensory-motor development have been 
linked to visual object name learning (Yu & Smith, 2012; 
Pereira, Smith, & Yu, 2014). 

Discussion 
A large literature links sensory motor development to 

individual differences in perceptual, cognitive and motor 
development (see for review, Leonard & Hill, 2014).  One 
hypothesis is that these effects emerge in part because the 
infants and young children’s sensory-motor behaviors create 
and select the data for learning and more advanced sensory-
motor abilities create new and better opportunities for 
learning. The new contribution of this work is the 
demonstration that early (or poorly coordinated) attempts at 
joint holding and looking may actually disrupt visual 
attention leading to less optimal visual data for learning. The 
major finding that supports this conclusion is this: infants 
with low hand-eye coordination show similar looking 

behaviors outside of the context of holding as infants with 
high hand-eye coordination; however, during bouts of jointly 
holding and looking, these infants show disrupted patterns of 
selectivity and exploration in their toy play.     

Past research on joint looking and holding by toddlers has 
consistently suggested that joint looking and holding 
supports learning because it generates optimal data sets for 
learning.  But this may not be the case early in development 
or for all children. For adults, successfully acting in the world 
with many changing frames of reference – from driving a car 
(Johnson, Rothkopf, Ballard, Hayhoe, 2013), walking across 
difficult terrain (Matthis, Barton, & Fajen, 2017), and making 
a peanut butter and jelly sandwich (Rothkopf & Pelz, 2004) 
– is, although fallible, usually a seamless process. But all this 
coordination is a developmental product (Jung, Kahrs, & 
Lockman, 2017) and the rate of that development is likely to 
determine the rate of development in other domains (Piek & 
Dyck, 2004).  

There are a number of additional observations. First, there 
is high variability in hand-eye coordination during this 
developmental period. Not surprising, these individual 
differences led to markedly less overall gaze and holding 
behavior for infants with low hand-eye coordination. 
Nonetheless, infants with low hand-eye coordination looked 
more to objects outside of bouts of hand-eye coordination. 
Looking behavior for infants with high hand-eye 
coordination did not vary inside or outside bouts of hand-eye 
coordination.  

Second, overall distributions of toy looks were right-
skewed. We know that images from infant head cameras 
during mealtime events generate right-skewed frequency 
distributions of object categories suggesting that these 
statistics are perhaps the natural statistics generated from the 
interactions between the infant and their environment 
(Clerkin et al., 2017). Crucially, training sets of data that are 
generated by right-skewed distributions have been shown to 
have important computational benefits for visual object 
recognition (Salakhutdinov, Torralba, & Tenenbaum, 2011). 
The hypothesized benefit of right-skewed distributions for 
learning is motivated by the property of coherence, that is, 
beneficial learning data includes both consistency of highly-
frequent objects and diversity of less-frequent objects 
(Montag, Jones, & Smith, 2017). Overall, infants in our study 
generated coherent visual data sets in a visual environment 
that included a large set of toys competing for their attention.  

Third, and the main result, despite that overall distributions 
of infant toy looks were right-skewed, there were marked 
differences in the distributions depending on hand-eye 
coordination ability. Infants with high hand-eye coordination 
generated coherent toy look distributions inside and outside 
of hand-eye bouts. For these infants, integrating actions from 
eyes and hands did not interfere with the coherence of visual 
input. For infants with low hand-eye coordination, the 
distributions of toy looks during hand-eye bouts were less 
coherent compared to outside of hand-eye bouts, which 
approximated the canonical overall right-skewed 
distribution. For these infants, the integration of eye and hand 
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actions dramatically affected their visual attention leading to 
less selectivity and exploration.  

In the moment, infants are more likely to learn the referent 
of an object when they bring the object close to their face – 
creating an uncluttered visual field – while their caregiver 
provides a verbal utterance that includes the object referent 
(Pereira, Smith, & Yu, 2014; Yu & Smith, 2012). At longer 
timescales, effective learning likely includes a combination 
of consistency of frequent events and diversity of rarer 
events: learning the rarer events includes integrating 
information about the more frequent events (Montag, Jones, 
& Smith, 2017; Salakhutdinov, Torralba, & Tenenbaum, 
2011). We argue that this is also true for how infants generate 
visual data for learning: infants select a few objects to attend 
to for a long period of time, but still thoroughly explore their 
environment. By extension, infants still developing the skill 
of integrating actions of the eyes and hands are missing out 
on important opportunities for learning in the moment and 
this leads to less coherent distributions of visual attention. 
Future work should focus on learning outcomes from visual 
experiences that are generated by distributions of visual 
attention with varying degrees of coherence.  
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