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ABSTRACT OF THE DISSERTATION

Anomalous Higgs Yukawa Couplings from Radiative Masses and Related Phenomena

by

Sean Patrick Fraser

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2016

Dr. Ernest Ma, Chairperson

The experimentally accessible branching fractions of the 125 GeV particle discov-

ered in 2012 are consistent with the Higgs boson of the standard model (SM), but they are

not yet conclusive due to large experimental uncertainties. Of particular interest are the

inferred Yukawa couplings of the Higgs boson to a heavy quark or charged lepton. In the

SM, this is given by a tree-level expression in which the Yukawa coupling is proportional

to the fermion mass. We consider instead a radiative origin of fermion mass which occurs

in one loop through dark matter. It is shown that the effective Higgs Yukawa coupling can

have significant deviations from the SM, with potential consequences for Higgs production

and decay. The radiative model also explains the muon anomalous magnetic moment, with

predictions for rare lepton decays in parallel with a radiative model of neutrino mass based

on the inverse seesaw. Also considered are three other possible extensions of the SM, with

tree-level masses for charged fermions: A Higgs triplet model of radiative neutrino mass

with dark matter and collider phenomenology, a vector dark matter model with relic density

and direct detection analysis, and a supersymmetric model which relaxes the constraints
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on the Higgs mass and accommodates the recent 750 GeV diphoton excess.

vi



Contents

1 Introduction 1
1.1 Outline: Looking for New Physics . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fermion Masses and Mixings . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Quantum Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part I Anomalous Higgs Yukawa Couplings 15

2 Radiative Masses with Z2 Symmetry 16
2.1 Tau Lepton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Radiative Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Effective Higgs Yukawa Coupling . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Higgs Decay to γγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Muon Anomalous Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Bottom Quark and Higgs Production . . . . . . . . . . . . . . . . . . . . . . 38

3 Scotogenic Inverse Seesaw Neutrino Mass 43
3.1 Radiative Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Three Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Radiative Masses with A4 Symmetry 53
4.1 Outline of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Charged Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Radiative Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Anomalous Higgs Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Muon Anomalous Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Neutrinos and Rare Lepton Decays . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Dark Matter Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.8 Quartic Terms and the Soft-breaking of A4 . . . . . . . . . . . . . . . . . . 84
4.9 The Group A4 and its Subgroup Z3 . . . . . . . . . . . . . . . . . . . . . . 85

vii



Part II Related Phenomena Beyond the Standard Model 91

5 Higgs Triplet Scalar Extension 92
5.1 Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Collider Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Dark Matter Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Vector Dark Matter SU(2)N Gauge Extension 104
6.1 Outline of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Dark Matter Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Supersymmetric U(1)X Gauge Extension 118
7.1 Outline of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Quarks, Leptons and Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 New Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6 Diphoton Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Part III Summary 136

8 Conclusion 137

Bibliography 139

viii



List of Figures

1.1 Higgs Yukawa interaction for charged leptons. . . . . . . . . . . . . . . . . . 5
1.2 Electron mass as an infinite series with Higgs VEV. . . . . . . . . . . . . . 7
1.3 Higgs Yukawa interaction for left- and right-handed neutrinos. . . . . . . . . 9
1.4 Majorana mass terms for right-handed neutrinos. . . . . . . . . . . . . . . . 9

2.1 Radiative Higgs Yukawa interaction for tau. . . . . . . . . . . . . . . . . . . 18
2.2 Radiative tau mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Effective Higgs Yukawa coupling for tau. . . . . . . . . . . . . . . . . . . . . 27
2.4 The ratio (fτv/mτ )2 versus θ with x1 = 3, x2 = 1, µ/mN = 1. . . . . . . . . 31
2.5 Higgs decay to two photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 The ratio Γγγ/ΓSM versus θ with x1 = 3, x2 = 1, µ/mN = 1. . . . . . . . . 34
2.7 Main diagram for calculating ∆aµ. . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 ∆aµ versus x2 with x1 = x2 + 2 and various mN . . . . . . . . . . . . . . . . 38
2.9 Radiative Higgs Yukawa interaction for bottom quark. . . . . . . . . . . . . 39
2.10 Higgs production from two gluons. . . . . . . . . . . . . . . . . . . . . . . . 40
2.11 The ratio Γgg/ΓSM versus θ′ with x′1 = 3, x′2 = 1, µ′/mN = 1. . . . . . . . . 42

3.1 Radiative scotogenic neutrino mass. . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Radiative Higgs Yukawa interaction for charged leptons. . . . . . . . . . . . 59
4.2 Radiative electron mass in the A4 model. . . . . . . . . . . . . . . . . . . . 63
4.3 First contribution to hττ in the A4 model. . . . . . . . . . . . . . . . . . . . 66
4.4 Second and third contributions to hττ in the A4 model. . . . . . . . . . . . 71
4.5 The ratio (gτv/mτ )2 plotted against θL with various λx,y for the case θL = θR. 72
4.6 First and second contributions to the muon magnetic moment. . . . . . . . 73
4.7 Values of m1, m1µ and m2µ which can explain ∆aµ for the case θL = θR. . . 75
4.8 Radiative neutrino mass in the A4 model. . . . . . . . . . . . . . . . . . . . 75
4.9 One-loop diagram for ei → ejγ. . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.10 First and second box diagrams for µ→ eee in the A4 model. . . . . . . . . 79
4.11 Third and fourth box diagrams for µ→ eee in the A4 model. . . . . . . . . 79
4.12 Dark matter annihilation channels for ss to χR,I mass eigenstates. . . . . . 82
4.13 Radiative mixing of χR,I and h. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.14 Radiative x1x

∗
2 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Radiative neutrino mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 LHC production cross section of ξ++ξ−− at 13 TeV. . . . . . . . . . . . . . 98

ix



5.3 Number of e±e±µ∓µ∓2s12s∗1 events for 13 TeV at luminosity 100 fb−1. . . 101
5.4 Allowed values of λ12 plotted against ms1 from relic abundance assuming

λ11 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Dark matter annihilation of XX to ζ2ζ2
†. . . . . . . . . . . . . . . . . . . . 114

6.2 Allowed parameter values from relic abundance. . . . . . . . . . . . . . . . 115
6.3 Allowed parameter values from relic abundance and direct detection. . . . 116

7.1 Diagram for gg → S3 → γγ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Parameters that explain the 750 GeV diphoton excess. . . . . . . . . . . . 134
7.3 Diagram for gg → S3 → gg. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

x



List of Tables

1.1 Particle content in the standard model. . . . . . . . . . . . . . . . . . . . . 2
1.2 Quark masses and mixing parameters in the standard model. . . . . . . . . 4
1.3 Lepton masses and mixing parameters in the standard model. . . . . . . . . 4

2.1 Particle content in the Z2 model for tau. . . . . . . . . . . . . . . . . . . . . 17
2.2 Lagrangian terms in the Z2 model. . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Particle content in the Z2 model for bottom quark. . . . . . . . . . . . . . . 39

3.1 Particle content for radiative neutrino mass. . . . . . . . . . . . . . . . . . . 44
3.2 Lagrangian terms in the scotogenic neutrino mass model. . . . . . . . . . . 46

4.1 Particle content in the A4 model. . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Yukawa and Fermion Lagrangian terms in the A4 model. . . . . . . . . . . . 56
4.3 Scalar Lagrangian terms in the A4 model. . . . . . . . . . . . . . . . . . . . 57
4.4 Additional Scalar Lagrangian terms in the A4 model. . . . . . . . . . . . . . 81

5.1 Particle content in the Higgs triplet model. . . . . . . . . . . . . . . . . . . 94
5.2 Lagrangian terms in the Higgs triplet model. . . . . . . . . . . . . . . . . . 95
5.3 Events observed by CMS at 8 TeV with integrated luminosity 19.5 fb−1. . . 99

6.1 Particle content in the vector dark matter model. . . . . . . . . . . . . . . . 107
6.2 Lagrangian terms in the vector dark matter model. . . . . . . . . . . . . . . 109

7.1 Particle content in the supersymmetric model. . . . . . . . . . . . . . . . . 121
7.2 Superpotential terms in the supersymmetric model. . . . . . . . . . . . . . . 123

xi



Chapter 1

Introduction

1.1 Outline: Looking for New Physics

The standard model (SM) is a renormalizable theory because it is based on a local

gauge symmetry. Phenomenologically, this symmetry is

SU(3)C × SU(2)L × U(1)Y (1.1)

The particle content and real gauge fields before spontaneous electroweak symmetry break-

ing are shown in Table 1.1, which assumes a minimal scalar sector consisting of a single

Higgs doublet. No further symmetries are imposed other than the local gauge symmetry.

The SM has been extremely successful in explaining the fundamental interactions of the

observed particles and in confirming a wide range of experimental results. Even so, the

SM cannot be a complete theory because neutrino mass and dark matter are not included.

Throughout this thesis, several explanations of these will be given. All neutrino masses

considered will be Majorana. The types of dark matter considered will be scalar, fermionic,

1



Particle SU(3)C SU(2)L Y

strong force ga 8 1 0
weak isospin Wa 1 3 0
weak hypercharge B 1 1 0

Q′iL =

(
u′L
d′L

) (
c′L
s′L

) (
t′L
b′L

)
3 2 1/6

u′iR = u′R c′R t′R 3 1 2/3
d′iR = d′R s′R b′R 3 1 −1/3

L′iL =

(
ν ′eL
e′L

) (
ν ′µL
µ′L

) (
ν ′τL
τ ′L

)
1 2 −1/2

e′iR = e′R µ′R τ ′R 1 1 −1

Φ =

(
φ+

φ0

)
1 2 1/2

Table 1.1: Particle content in the standard model.

and vector. The radiative mass models that will be studied are all inspired by the original

scotogenic model [7], where the loop diagram responsible for neutrino mass has particles

from the dark sector propagating in the loop.

The recent discovery [8, 9] of the 125 GeV particle at the Large Hadron Collider

(LHC) is, on the one hand, a long-awaited confirmation of the Higgs boson in the SM. At the

same time, it is also an opportunity for new discoveries, because the current experimental

uncertainty of the measurement allows other models to be considered that are consistent

with the data. Part I of this thesis is a unified discussion consisting of Chapters 2, 3, 4.

The motivation is to reexamine the assumption previously made in radiative mass models

that the effective Higgs Yukawa interactions are unaffected. The results are new, and may

be important for the LHC era. Chapter 2 focuses on heavy quarks and leptons in a model

of radiative fermion mass through dark matter. The purpose is to demonstrate that the

2



effective Higgs Yukawa coupling can have significant and measurable deviations from the

SM, and that the new particles are within reach of the LHC. It will also be established that

the radiative contribution to the muon magnetic moment has the correct sign and magnitude

to explain the anomaly with the SM. Chapter 3 develops a new radiative implementation

of the inverse seesaw for neutrino mass. This is adapted for use in Chapter 4, which adds a

discrete flavor symmetry to encompass the entire lepton sector and incorporate real scalar

dark matter.

The motivation for Part II of this thesis is to explore other extensions of the SM

with tree-level masses for charged fermions. Chapter 5 uses a scalar Higgs triplet extension

for radiative inverse seesaw neutrino mass. Chapter 6 uses an SU(2)N gauge extension for

vector dark matter. Chapter 7 uses a U(1) gauge extension of with supersymmetry, with

an emphasis on explaining the recent preliminary LHC measurement of a diphoton excess.

This bears some relation to the diphoton Higgs decay covered in Chapter 2.

Finally, the conclusion and bibliography are given in Part III. The remainder of

this introductory chapter is a brief review of some relevant concepts and technical details.

1.2 Fermion Masses and Mixings

The measured fermion masses and mixing parameters [10] are shown in Table 1.2

and Table 1.3. Part I of this thesis fits into a larger theoretical framework that links flavor

symmetry and dark matter [11] with the long-term goal of deciphering these patterns.

In the SM, the masses and mixing derive from the Higgs Yukawa interactions for the fermions

listed in the previous Table 1.1. For quarks an additional color index is understood. The

3



quarks masses in GeV

u c t 3× 10−3 1.3 175

d s b 6× 10−3 0.1 4.3

UCKM
θ12 13◦

θ23 2◦

θ13 0.2◦

δCP 60◦

Table 1.2: Quark masses and mixing parameters in the standard model.

leptons masses in GeV

e µ τ 5× 10−4 0.1 1.77

ν1 ν2 ν3 ∼ 10−8 ∼ 10−8 ∼ 10−8

UPMNS

θ12 34◦

θ23 45◦

θ13 8◦

δCP −108◦

Table 1.3: Lepton masses and mixing parameters in the standard model.

primed fields denote fermions in an arbitrary interaction basis, as opposed to the physical

mass basis. This is a general feature that will be encountered throughout this thesis. The

particles that carry charge under the gauge group or other symmetries are not necessarily

mass eigenstates because they can mix due to interactions. In terms of the primed fields,

the Higgs Yukawa interactions are

LY ukawa = −feij L′iL Φ e′jR − fdij Q′iL Φ d′jR − fuij Q′iL Φ̃ u′jR + h.c. (1.2)

where the couplings fe, fd, fu are 3×3 complex matrices in generation space, and the dual of

the Higgs doublet is Φ̃ = iσ2Φ∗. The hermitian conjugate terms in Eq. (1.2) for the charged

leptons are shown in Fig. 1.1, with similar diagrams for the up and down type quarks.

Mass terms for fermions and gauge bosons are not explicitly present in the SM Lagrangian

because they do not respect the local gauge symmetry, but they will be generated when the

4



e′iL e′jR

φ0

Figure 1.1: Higgs Yukawa interaction for charged leptons.

electroweak part of the gauge group is spontaneously broken. The virtue of breaking a local

gauge symmetry spontaneously is that the theory remains renormalizable. This strategy

will be used throughout this thesis for other scalars besides the Higgs. In the SM, the

electroweak part of the gauge group is spontaneously broken down to the electromagetic

gauge group U(1)Q

SU(2)L × U(1)Y → U(1)Q (1.3)

where Q = T3 + Y . This occurs when the neutral component of the Higgs doublet develops

a nonzero vacuum expectation value (VEV). In the unitary gauge, this is

〈Φ〉 =

(
0

v/
√

2

)
(1.4)

which allows the three scalar degrees of freedom contained in φ+ and Im(φ0) to be gauged

away. These scalar degrees of freedom are essentially absorbed by three combinations of the

four originally real massless gauge fields W1,2,3 and B, which are mixed into the massive

vector bosons W±, Z and the massless photon A. The real part Re(φ0) contains the SM

Higgs h. The masses mh,mW ,mZ are all of order the electroweak energy scale

v/
√

2 = 174 GeV (1.5)

5



which is the only mass scale in the theory (apart from the non-perturbative QCD scale

ΛQCD ∼ 200 MeV). The real part of φ0 generates the two terms

Re(φ0) = (v + h)/
√

2 (1.6)

The massive Higgs boson h retains Yukawa interactions with the charged fermions, and the

VEV generates complex mass matrices M e,d,u = fe,d,u (v/
√

2)

LY ukawa ⊃ −e′iL M
e
ij e
′
jR − d′iL M

d
ij d
′
jR − u′iL M

u
ij u
′
jR + h.c. (1.7)

Arbitrary unitary rotations of the left-handed and right-handed fermion fields, for example

e′′iL = (U eL)ij e
′
jL and e′′iR = (U eR)ij e

′
jR, will keep the fermion kinetic terms diagonal. A

specific set of unitary rotations U e,d,uL and U e,d,uR will diagonalize the mass matrices M e,d,u

and so they will also diagonalize the coupling matrices fe,d,u. For charged leptons

diag(me,mµ,mτ ) = U eL f
e U eR

† (v/
√

2) (1.8)

and similarly for quarks. This is the familiar SM result that the fermion mass is proportional

to the Higgs Yukawa coupling in the physical mass basis. The replacement of φ0 with
〈
φ0
〉

in

Fig. 1.1 turns this three-point interaction into a two-point interaction. In the diagonal mass

basis, it is a connection between only two massless fermions in the same generation. For

example, the electron mass eigenstate has the infinite series of diagrams shown in Fig. 1.2.

This infinte series can be formally summed to give

me ee = me (eLeR + eReL) (1.9)

which is the statement that the inherently massless particles eL and eR have paired up to

6



e
=

eL eR eL eR

〈
φ0
〉 〈

φ0
〉 〈

φ0
〉

Figure 1.2: Electron mass as an infinite series with Higgs VEV.

become one massive Dirac particle e = eL + eR in the presence of the Higgs VEV. Part I

of this thesis is a fundamental modification of the Yukawa sector Eq. (1.2), and radiative

versions of Fig. 1.1 will be studied in Chapters 2 and 4. Each two-point vertex in Fig. 1.2

will be replaced by an effective two-point vertex caused by radiative loops.

The unitary rotations that diagonallize the Yukawa couplings will not, however,

diagonalize the charged current weak interactions. In the physical mass basis, the mismatch

between left-handed rotations results in nondiagonal flavor mixing

LQuarks ⊃
g√
2
W+
µ uiL γ

µ UCKM ij djL + h.c.

LLeptons ⊃
g√
2
W−µ eiL γ

µ UPMNS ij νjL + h.c. (1.10)

which defines the unitary mixing matrices

UCKM = UuL U
d
L
† ∼




1 0.2 0

−0.2 1 0

0 0 1




UPMNS = U eL U
ν
L
† ∼




√
2/3

√
1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2




(1.11)
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where the approximate structure shown corresponds to the mixing parameters given earlier

in Tables 1.2 and Table 1.3. Beyond the SM, flavor symmetry may help to understand

if there is a deeper reason for the mismatch between the left-handed field rotations which

produce UCKM and UPMNS . The following chapters will focus on the lepton sector, and the

flavor symmetries Z3 and A4 will be used in Chapters 3 and 4, respectively. In the radiative

models that will be considered, the field rotations are determined by the particle content

and the full symmetry assignments. In Chapter 3, only ν ′iL will be rotated. In Chapter 5,

only e′iL will be rotated. In Chapter 4, both e′iL and ν ′iL will be rotated.

1.3 Neutrinos

In the SM, neutrinos are massless becasue they are left-handed and do not have

interactions with any right-handed fields. Of course, this must be remedied in light of the

observed neutrino oscillations. A simple solution is to add three right-handed neutrinos NiR

with (SU(3)C , SU(2)L, Y ) = (1,1, 0), that is, NiR are singlets under the full gauge group.

The new Lagrangian terms are the usual kinetic terms for NiR and the Dirac Yukawa

interaction

LDirac = −fνij L′iL Φ̃ NjR + h.c. (1.12)

The diagram for the hermitian conjugate term is shown in Fig. 1.3. This will generate Dirac

mass terms after spontaneous symmetry breaking, but they are not the only possible mass

terms. Explicit mass terms are also allowed by the gauge symmetry using the conjugate

8



νiL NjR

φ0

Figure 1.3: Higgs Yukawa interaction for left- and right-handed neutrinos.

fields (NiR)c. These invariant Majorana mass terms are

LMajorana = −µij (NjR)c NiR − µ∗ij NiR (NjR)c (1.13)

and the corresponding Feynman diagrams are shown in Fig. 1.4. The conventional direction

of arrows illustrates that in the first term a right-handed particle goes in and a left-handed

particle goes out, and in the second term a left-handed particle goes in and a right-handed

particle goes out. Thus a pure Majorana particle constantly transforms on its own between

left- and right-handed chiralities because of its Majorana mass. If both Dirac and Majorana

mass terms are present, the general outcome will be six Majorana particles with different

masses. For illustration, consider only one generationNL andNR. The distinction between a

pure Dirac particleNDirac = NL+NR and a pure Majorana particleNMajorana = NL+(NL)c

is the existence of extra degrees of freedom from NR. As a final comment, neutrinos in the

NiR NjR NjR NiR

Figure 1.4: Majorana mass terms for right-handed neutrinos.
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SM do not have Majorana mass terms (νjL)c νiL+h.c. because these terms do not conserve

weak isopin or hypercharge. However, in other models these terms can be generated from

the VEV of a Higgs triplet, as will be done in Chapter 5 although not at tree-level. The use

of a Higgs triplet VEV to generate Majorana mass terms will also appear in Chapter 6 at

tree-level, but applied instead to new fermions niL rather than the SM νiL, and also applied

to new right-handed fermions niR.

1.4 Naturalness

Pure Dirac neutrinos require the arbitrary assumption µij = 0, but this can be

remedied by the imposition of an exactly conserved global U(1)L symmetry, namely lepton

number L = +1 for LiL, eiR, NiR. This will forbid the Majorana terms since they break

L by two units. A shortcoming is that this does not give any insight into why the Dirac

Yukawa couplings should be so much smaller for neutrinos compared to charged fermions.

Closely related to this are pseudo-Dirac neutrinos which occur when µij is small, which

could be considered natural in the ’t Hooft sense. A parameter is allowed to be small and

is considered natural in the ’t Hooft sense if taking that parameter to be small enhances a

symmetry in the Lagrangain. The Majorana terms break L by two units, but this breaking

is small when µij is small, so the global U(1)L symmetry is enhanced.

A pure Dirac particle that carries no U(1) charges can be written as the super-

position of two mass-degenerate Majorana particles. Genuine Majorana neutrinos occur

when µij is not too small and this degeneracy is removed. The well-known canonical seesaw

mechanism occurs when one or more components µij ∼M � v, where M is a new inherent

10



mass scale of the new physics responsible for the heavy Majorana neutrinos. Extremely

small neutrino masses are then explained by a very large but otherwise arbitrary mass scale

M . Light neutrino masses in the eV range can be obtained with M ∼ 109 GeV and Dirac

Higgs Yukawa couplings f ∼ 1. This mechanism is used in Chapter 7. Various other cases

µij ∼ eV, keV,MeV,GeV,TeV,& 109GeV are surveyed in Ref. [12]. These are tree-level

neutrino masses. Radiative neutrino masses will be considered in Chapters 3, 4 and 5.

For charged leptons, it could be argued that the small Yukawa couplings are natural

in the ’t Hooft sense because in the limit when they are all zero the SM Lagrangian possesses

an accidental symmetry [13] of unitary rotations. Even so, the numerical values and ordering

are unexplained. Similarly for quarks, there is an accidental symmetry of unitary rotations

in the zero mass limit. But this argument does not apply to the top quark. Its Higgs

Yukawa coupling is of order 1, which by itself is not unusual because this gives a mass of

the same order as the Higgs VEV. But then it is difficult to understand why the other

quarks are so light. The radiative mass models in this thesis respond to these questions.

1.5 Quantum Corrections

Although they are not imposed, two global U(1) symmetries exist at tree-level in

the SM Lagrangian. They are therefore accidental symmetries. There is a global U(1)B

symmetry for baryon number a global U(1)L symmetry for lepton number, where quarks

have B = +1/3 and leptons have L = +1. A global symmetry has an associated conserved

current that can be computed at the tree level, that is, at the classical level. There will

also be corrections which occur at the one-loop level or higher, that is, at the quantum
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level. At the quantum level, neither B nor L is conserved, but the combination B − L is

conserved. For this reason, the SM actually possesses only one true global symmetry, which

is U(1)B−L. So in the previous section, it is actually more precise to say that Majorana

terms are forbidden by conservation of B−L rather than by conservation of L. Even so, it

is usually not a problem if a global symmetry becomes anomalous at the quantum level [14]

But for a local symmetry, that is, a gauge symmetry, its associated current must

be conserved when the quantum corrections are included, otherwise the theory will not

be renormalizable. This involves checking triangle loop diagrams with three external gauge

bosons connected to fermions in the loop, and all the diagrams must add to zero so that there

is no gauge anomaly. That is, the theory must be anomaly-free. It can be shown that the

SM is anomaly-free, based on the its gauge symmetry and particle content. Throughout

this thesis, either the gauge symmetry or the particle content will be enlarged, and the

anomaly-free condition must be satisfied. In the simplest extensions, it is arranged so that

any additional contributions from new left- and right-handed fermions cancel. In the earlier

section 1.3, this was not an issue when adding the three right-handed neutrinos NiR because

they are gauge singlets, which means they do not have gauge interactions and therefore do

not contribute to the triangle diagrams.

Radiative mass models make use of the fact that any tree-level diagram receives

quantum corrections from higher-order loop diagrams. Consider divergences that appear

during renormalization. The original work of Symanzik [15, 16] illustrates that when a

symmetry-breaking term is added to an initially symmetric Lagrangian, no new divergences

are introduced with dimension greater than that of the symmetry-breaking term. In essence,
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a soft-breaking term leaves a remnant of the initial symmetry, whereas a hard breaking term

destroys the initial symmetry [17]. The general result is that soft symmetry-breaking terms

do not destroy the renormalizability an initially symmetric theory [18]. This applies to the

original scotogenic model of neutrino mass [7] and is also used in the following radiative

mass models of quarks and leptons in Chapters 2, 3, 4 and 5.

Radiative corrections are also responsible for the SM contributions to the muon

magnetic moment. The SM prediction is usually divided into three parts based on the

particles appearing in the loop diagrams [10]. The QED part includes photons and leptons.

The electroweak part includes the heavy W±, Z or Higgs particles. The hadronic part

includes quarks and gluons, and is the main source of theoretical uncertainties. Currently

there is a discrepancy between the theoretical prediction and the experimental measurement.

Radiative mass models can generally give contributions of the rough form

∆aµ ∼ C
m2
µ

M2
(1.14)

where M is a physical high mass scale associated with the new physics and the value of

C ∼ 1 is very model-dependent [19].

Radiative mass models can also explain very small fermion masses with much larger

Higgs Yukawa couplings compared to the SM due to the nature of the loop integrals. This is

the subject of the next chapter, which also examines the corresponding effective interaction

with the Higgs particle, which for charged leptons is feffhll. The result is that the deviation

of the effective Higgs Yukawa coupling feff from the SM expectation ml/v is not suppressed

by the usual one-loop factor of 16π2 and may be large enough to be observable. Compare
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this with the common approach of using higher-dimensional operators

− L = fllLlRφ
0

(
1 +

Φ†Φ

Λ2

)
(1.15)

where Λ2 >> v2. This implies that the mass is ml = (flv/
√

2)(1+v2/2Λ2) and the effective

Higgs coupling is feff = (fl/
√

2)(1 + 3v2/2Λ2) ' (ml/v)(1 + v2/Λ2). This approach is only

valid for v2 << Λ2, which guarantees the effect to be small. The result of the following

chapter is that both ml and feff are infinite sums in powers of v2 but each sum is finite.

Their ratio is not necessarily small because some particles in the loop could be light.
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Part I

Anomalous Higgs Yukawa

Couplings
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Chapter 2

Radiative Masses with Z2

Symmetry

2.1 Tau Lepton

This chapter is the foundation of Part I, and is based on the work previously

published in Ref. [1]. The main goal is to establish that the radiative mass mechanism can

give large, measurable predictions for the effective Higgs Yukawa coupling in the case of

heavy quarks and charged leptons, and the proper contributions for the anomalous magnetic

moment in the case of the muon. A simple modification of the SM is used to illustrate the

underlying strategy. The full symmetry group is based on that of the SM, but incorporates

two discrete Z2 symmetries

SU(3)C × SU(2)L × U(1)Y × Z2 dark × Z2 (2.1)
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The first Z2 dark is used to stabilize dark matter and is therefore assumed to be exactly

conserved. The main purpose of the second Z2 is to forbid the Higgs Yukawa coupling at

tree-level, but to permit its realization in one-loop. This is the essence of the radiative

mechanism. To complete the loop, the second Z2 symmetry will have to be softly broken by

the Dirac mass term of the new neutral fermion N = NL+NR. The particle content is shown

in Table 2.1. The particles Φ, τL are the same as in the SM but τR is (−) under the second

Z2. The tau neutrino is shown for completeness, but is not needed for this chapter. All other

SM particles have (Z2 dark, Z2) = (+,+) and are therefore not affected by the imposition

of the extra discrete symmetry. Since only the new particles have (−)dark under Z2 dark,

they comprise the dark sector of this model. After any mixing effects have been included,

the lightest neutral mass eigenstate among them is a candidate for dark matter. The new

scalars are an electroweak doublet η and charged singlet χ+. Note that each component of

any electroweak doublet must have the same assignment under Z2 dark ×Z2. The only new

Particle (SU(3)C , SU(2)L, Y ) Z2 dark Z2

Φ =

(
φ+

φ0

)
(1,2,+1/2) + +

L =

(
νL
τL

)
(1,2,+1/2) + +

τR (1,1,−1) + −
NL (1,1, 0) − −
NR (1,1, 0) − +

η =

(
η+

η0

)
(1,2,+1/2) − +

χ+ (1,1,+1) − +

Table 2.1: Particle content in the Z2 model for tau.
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fermions are the electroweak singlets NL and NR. They have no gauge interactions so they

do not contribute to the gauge anomaly, hence this model is anomaly-free.

The SM Higgs Yukawa coupling is strictly forbidden because under Z2 dark × Z2

this term reads

LL Φ̃ τR

Z2 dark = (+)(+)(+) = (+)dark

Z2 = (+)(+)(−) = (−) (2.2)

which is overall (+)dark(−) = (−) and therefore not allowed since all Lagrangian terms must

be trivial singlets under the full symmetry group. Allowed Lagrangian terms are listed in

Table 2.2. In Lfη and Ltrilinear, the dual of η is η̃. Note that a Hermitian conjugate field

or a dual field has the same Z2 assignment as the original field, but this will not be the

case for the other discrete symmetries Z3 or A4 encountered in the models considered in

Chapters 3 and 4. The effective one-loop vertex for the Higgs Yukawa interaction with

tau is shown in Fig. 2.1. The vital scalar interaction Ltrilinear = µ η̃ †Φχ− + h.c. is the

η− χ−

τL NR
τRNL

φ0

Figure 2.1: Radiative Higgs Yukawa interaction for tau.
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Terms that respect Z2

Lfη = −fη LL η̃ NR − fη NR η̃
† LL

= −fη
(
νLη

0∗ − τLη−
)
NR − fη NR

(
νLη

0 − τLη+
)

Lfχ = fχ NL χ
+τR + fχ τR χ

−NL

Ltrilinear = µ η̃ †Φχ− + µ Φ† η̃ χ+

= µ
(
η0φ+ − η+φ0

)
χ− + µ

(
η0∗φ− − η−φ0∗)χ+

Lscalars = −m2
χ(χ+χ−)− λχ(Φ†Φ)(χ+χ−)− ληχ(η†η)(χ+χ−)

L2HDM = +µ2
SM (Φ†Φ)−m2

η(η
†η)

−λSM (Φ†Φ)2 − λη(η†η)2

−λ2(Φ†Φ)(η†η)
−λ4(Φ†η)(η†Φ)
−λ5(Φ†η)2 − λ5(η†Φ)2

Terms that break Z2

LN = −mN

(
NL NR +NR NL

)

Table 2.2: Lagrangian terms in the Z2 model.
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only connection to the Higgs doublet at the top of the loop before spontaneous electroweak

symmetry breaking, and it is the primary connection to the Higgs particle after spontaneous

electroweak symmetry breaking. As already mentioned, the loop requires the soft-breaking

of Z2 which allows NL and NR to pair up and become one Dirac particle N = NL + NR

with an invariant Dirac mass. Under Z2,dark × Z2 this term reads

NL NR

Z2 dark = (−)(−) = (+)dark

Z2 = (−)(+) = (−) (2.3)

which is overall (+)dark(−) = (−) and therefore does not respect the discrete symmetries.

This soft-breaking is indicated by the cross. Before spontaneous electroweak symmetry

breaking, τL and τR are massless, and their chiralities do not change as they propagate

along their respective fermion lines.

The two scalar doublets Φ,η in this model are a special case of general two Higgs

doublet models (2HDM) with Φ1,Φ2, which have the same electroweak assignments as the

SM Higgs doublet. By considering all possible combinations of Φ1,Φ2 and their duals,

the most general scalar potential for these two doublets can be written in the customary
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form [20]

−L2HDM = m2
11(Φ†1Φ1) +m2

22(Φ†2Φ2)

+m2
12(Φ†1Φ2) + (m2

12)∗(Φ†2Φ1)

+ λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1)

+ λ5(Φ†1Φ2)2 + λ∗5(Φ†2Φ1)2

+
[
λ6(Φ†1Φ2) + λ∗6(Φ†2Φ1)

]
(Φ†1Φ1)

+
[
λ7(Φ†1Φ2) + λ∗7(Φ†2Φ1)

]
(Φ†2Φ2)

(2.4)

Without loss of generality, the coefficients m2
12 and λ5,6,7 are complex, and all other coeffi-

cients are real. In our model, Φ1 = Φ is (+,+) under Z2 dark × Z2, and Φ2 = η is (−,+).

Thus the m2
12 terms are forbidden because (Φ†1Φ2) is overall (−)dark(+) = (−). Similarly,

the λ6 and λ7 terms are forbidden because of the products in square brackets. Hence the

new scalar terms in our model are the ones listed in Table 2.1, with change of notation. In

passing, note that the elimination of terms compared to the general 2HDM now allows λ5

to be real because its phase can be absorbed into one of the complex doublets.

Actually, the model of this chapter is close to a specific version of the 2HDM, the

Inert Higgs doublet model, where the neutral component of Φ2 = η does not get a VEV. In

our case, this is because η has (−1)dark, and Z2 dark is assumed to be exactly conserved.
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2.2 Radiative Mass

The spontaneous breaking of electroweak symmetry

Φ→




0

(v + h)/
√

2


 (2.5)

generates the radiative mass for tau, as shown schematically in Fig. 2.2. The Higgs VEV

induces mixing of η and χ into the the mass eigenstates ζ1 and ζ2, which then propagate

in the loop. The Higgs mass mh receives the expected SM contributions in the usual way

from the +µ2
SM and −λSM terms in L2HDM

L2HDM = +µ2
SM (Φ†Φ)−m2

η(η
†η)

−λSM (Φ†Φ)2 − λ2(η†η)2

−λη(Φ†Φ)(η†η)

−λ4(Φ†η)(η†Φ)

−λ5(Φ†η)2 + λ5(η†Φ)2 (2.6)

For η+, its invariant mass from the (η†η) term receives additional contributions from the

ληv
2 term, but we absorb this into the m2

η parameter. The particle η0 will not be needed

∑
i = 1, 2

ζ−i

τ N τ

Figure 2.2: Radiative tau mass.
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here, but its analogue will be referred to shortly in section 2.6. It has the same invariant

mass from the (η†η) term, and receives additional contributions from the λ4v
2 term, as

well as the contributions from the λ5v
2 terms, which split the complex η0 into its real and

imaginary components. For χ+, its invariant mass receives additional contributions from

the λχv
2 term

Lscalars ⊃ −m2
χ(χ+χ−)− λχ

1

2
(v + h)2(χ+χ−) (2.7)

but we absorb this into the m2
χ parameter. The Higgs VEV also generates the important

mixing term

Ltrilinear ⊃ − µv√
2

(
η+χ− + η−χ+

)
(2.8)

We therefore have the mass-squared mixing matrix

L ⊃ −
(η+, χ+)




m2
η µv/

√
2

µv/
√

2 m2
χ






η−

χ−


 (2.9)

which is diagonalized by rotating η,χ into the mass eigenstates ζ1,2 with masses m1,2



η−

χ−


 =




cos θ − sin θ

sin θ cos θ






ζ−1

ζ−2


 (2.10)

where the new parameters m1,m2, θ are related to mη,mχ, µ by

µv√
2

= sin θ cos θ(m2
1 −m2

2) (2.11)

m2
η = cos θm2

1 + sin θm2
2 (2.12)

m2
χ = sin θm2

1 + cos θm2
2 (2.13)
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Now we need the Yukawa terms shown in the self-energy diagram Fig. 2.2. They

come from

Lfη = fη
(
τL NR η

− +NR τL η
+
)

Lfχ = fχ
(
τR NL χ

− +NL τR χ
+
)

(2.14)

The projection operators PL,R = 1
2(1 ∓ γ5) can be separated from the fields A,B using

ALBR = APRB and ARBL = APLB. Also expressing the fields η,χ in terms of the mass

eignenstates ζ1,2, we have

Lfη+fχ =
∑

i=1,2

τ [aifηPR + bifχPL]Nζ−i +N [aifηPL + bifχPR] τζ+
i (2.15)

with the shorthand notation

ζ1 ζ2

ai = c −s

bi = s c

(2.16)

and c = cos θ and s = sin θ. Let the arrows in Fig. 2.2 dictate the flow of momentum. Then

the momenta for τ,N, ζ−i are p, k, p − k respectively, and we set p to zero. Then the loop

integral for the self-energy is

−imτ = i4
∑

i=1,2

∫
d4k

(2π)4

[
numerator

(k2 −m2
i )(k

2 −m2
N )

]
(2.17)

where the factor of i4 = 1 is from the two propagators and the two vertices. and the
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numerator is

numerator = [aifηPR + bifχPL] [/k +mN ] [aifηPL + bifχPR]

= aibifηfχmN (P 2
L + P 2

R)

= aibifηfχmN (2.18)

In the first line, the term linear in k integrates to zero, and the the projectors makes

some terms vanish due to PL,R/k = /kPR,L and PLPR = PLPR = 0. In the last two lines,

P 2
L,R = PL,R and PL + PR = 1. Then using ai and bi, we have

−imτ = fηfχ

∫
d4k

(2π)4

[
sc mN

(k2 −m2
1)(k2 −m2

N )
+

−sc mN

(k2 −m2
2)(k2 −m2

N )

]

= fηfχ

∫
d4k

(2π)4

[
scmN (m2

1 −m2
2)

(k2 −m2
N )(k2 −m2

1)(k2 −m2
2)

]

= fηfχ mN (m2
1 −m2

2) sc I(m1,m2,mN ) (2.19)

The first line is the sum of two terms, each of which diverges, but their sum is finite,

as shown in the second line by putting both terms over a common denominator. The

Feynman parameters can be introduced in the usual way, and then the integral over d4k

can be performed, which gives

I(m1,m2,mN ) =

∫
d4k

(2π)4

1

(k2 −m2
N )(k2 −m2

1)(k2 −m2
2)

(2.20)

=
−i

16π2

∫ 1

0
dxdydz

δ(1− x− y − z)
xm2

1 + ym2
2 + zm2

N
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Integrating over x, y, z gives

I(m1,m2,mN ) =
−i

16π2

1

m2
1 −m2

2

[
m2

1

m2
1 −m2

N

ln
m2

1

m2
N

− m2
2

m2
2 −m2

N

ln
m2

2

m2
N

]

=
−i

16π2

1

m2
N (x1 − x2)

[H(x1)−H(x2)]

=
−i

16π2m2
N

F (x1, x2) (2.21)

where x1,2 = m2
1,2/m

2
N and

H(x) =
x

x− 1
lnx

F (x1, x2) =
1

x1 − x2

[
x1

x1 − 1
lnx1 −

x2

x2 − 1
lnx2

]

F (x, x) =
1

x− 1
− lnx

(x− 1)2
(2.22)

Note F (x1, x2) > 0. Here F (x, x) is the limit x1 → x2, and F (1, 1) → 1/2 . In terms of

F (x1, x2), the radiative mass is

−imτ = fηfχmN sin θ cos θ(m2
1 −m2

2)
−i

16π2m2
N

F (x1, x2)

mτ =
fηfχ sin θ cos θ(m2

1 −m2
2)

16π2mN
F (x1, x2) (2.23)

=
fηfχµv

16π2mN

√
2
F (x1, x2) (2.24)

The factors −i cancels on both sides, so mτ > 0. In the last line we used Eq. (2.11).

2.3 Effective Higgs Yukawa Coupling

Fig. 2.3 shows the effective one-loop Higgs Yukawa coupling for tau. Schematically,

the Higgs connects to the mass eigenstates ζi = ζ1,2 in three different ways. They come
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∑
i=1,2
j=1,2
k=1,2,3

ζ−i ζ−j
V (k)

τ N τ

h

Figure 2.3: Effective Higgs Yukawa coupling for tau.

from the three types of Higgs interactions with η and χ

Ltrilinear ⊃ − µ√
2
h
(
η+χ− + η−χ+

)

L2HDM ⊃ −ληvhη+η−

Lscalars ⊃ −λχvhχ+χ− (2.25)

In the physical mass basis, all three types of Higgs connections have the same form

L(k) ⊃ −V (k)h
∑

i,j

t
(k)
ij

(
ζ+
i ζ
−
j

)
(2.26)

where V (1,2,3) =
(
µ/
√

2, ληv, λχv
)

for the three Higgs connections. The coefficients t
(k)
ij are

combinations of s = sin θ or c = cos θ with various signs. For the primary f (1) contribution,

going to the mass basis gives

Ltrilinear ⊃ − µh√
2

[
η+χ− + η−χ+

]

= − µh√
2

[
(cζ+

1 − sζ
+
2 )(sζ−1 + cζ−2 ) + (cζ−1 − sζ

−
2 )(sζ+

1 + cζ+
2 )
]

= − µh√
2

[
2scζ+

1 ζ
−
1 − 2scζ+

2 ζ
−
2 + (c2 − s2)(ζ+

1 ζ
−
2 + ζ+

2 ζ
−
1 )
]

(2.27)
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so that

t
(1)
ij =

ζ1 ζ2

ζ1 2sc c2 − s2

ζ2 c2 − s2 −2sc

(2.28)

For the other f (2) contribution in the mass basis, we have

L2HDM ⊃ −ληvhη+η−

= −ληvh(cζ+
1 − sζ

+
2 )(cζ−1 − sζ

−
2 )

= −ληvh
[
c2ζ+

1 ζ
−
1 + s2ζ+

2 ζ
−
2 − sc(ζ

+
1 ζ
−
2 + ζ+

2 ζ
−
1

]
(2.29)

so that

t
(2)
ij =

ζ1 ζ2

ζ1 c2 −sc

ζ2 −sc s2

(2.30)

Similarly, for Lscalars ⊃ −λχvhχ+χ−, we have

t
(3)
ij =

ζ1 ζ2

ζ1 s2 sc

ζ2 sc c2

(2.31)

Let the arrows in Fig. 2.3 dictate the flow of momentum. Assuming that m2
h is small

compared to m2
N and m2

1,2 the momenta for τ,N, ζ−i , ζ
−
j are p, k, p − k, p − k respectively,

and we set p to zero. Then the loop integral for the effective Yukawa coupling is

−ifτ = i6
∑

i=1,2

∫
d4k

(2π)4

[
numerator

(k2 −m2
i )(k

2 −m2
j )(k

2 −m2
N )

]
(2.32)
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where the factor of i6 = −1 is from the three propagators and the three vertices, and the

numerator is

numerator = −V (k)t
(k)
ij [ajfηPR + bjfχPL] [/k +mN ] [aifηPL + bifχPR]

= −V (k)t
(k)
ij fηfχmN (ajbiP

2
R + bjaiP

2
L) (2.33)

which has been partially simplified as before by the projection operators. The integral over

d4k has already been done in I(ma,mb,mc) from Eq. (2.21). Note that the value of this

integral does not depend on the order of the masses ma,mb,mc. Using the fact that the

t
(k)
ij are symmetric in ij, we have for the effective Yukawa coupling

−ifτ = −i6fηfχmN

∑

i,j,k

V (k)t
(k)
ij (ajbiPR + bjaiPL)Iij

= +fηfχmN

∑

i,j,k

V (k)ai(t
(k)
ij Iij)bj (PR + PL)

= fηfχmN
−i

16π2m2
N

∑

i,j,k

V (k)ai(t
(k)
ij Fij)bj (2.34)

where in the last line the projection operators add to one. Evaluating this using the ai, bi

and t
(1)
ij for the primary Higgs Yukawa coupling gives

f (1)
τ =

fηfχ
16π2mN

µ√
2

[
2s2c2F11 + 2s2c2F22 + (c2 − s2)2F12

]
(2.35)

The factors of −i have canceled and f
(3)
τ > 0 as it should be for the primary contribu-

tion since mτ > 0. The correction due to nonzero mh is a long expression for arbitrary

mN ,m1,m2 but in the case mN = m1 = m2 it easily found to be m2
h/(12m2

N ), which shows

that it should be generally negligible.

Similar to the calculation of f
(1)
τ , the other contributions to the Higgs Yukawa
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coupling are

f (2)
τ =

fηfχ
16π2mN

(ληv) sc
[
c2F11 − s2F22 − (c2 − s2)F12

]

f (3)
τ =

fηfχ
16π2mN

(λχv) sc
[
s2F11 − c2F22 + (c2 − s2)F12

]
(2.36)

Combining all three contributions and using the radiative mass Eq. (2.24) we have

fτv

mτ
=

[
f

(1)
τ + f

(2)
τ + f

(3)
τ

]
v

mτ

= 2s2c2F11 + 2s2c2F22 + (c2 − s2)2F12

+
ληv

µ/
√

2
sc(c2F11 − s2F22 − (c2 − s2)F12)

+
λχv

µ/
√

2
sc(s2F11 − c2F22 + (c2 − s2)F12) (2.37)

The factors of 16π2 and fηfχv/mN have cancelled. To make the meaning of this expression

clear, define

F+(x1, x2) =
F (x1, x1) + F (x2, x2)

2F (x1, x2)

F−(x1, x2) =
F (x1, x1)− F (x2, x2)

2F (x1, x2)

rη,χ = λη,χ(mN/µ)2 (2.38)

where F+(x1, x2) ≥ 0 and F+(x, x) = F−(x, x) = 0. After rearrangement, we find

fτv

mτ
= 1 +

1

2
(sin 2θ)2 {2F+ + (x1 − x2) [cos 2θ(rη − rχ)F+ + (rη + rχ)F−]}

(2.39)

In Fig. 2.4 we plot (fτv/mτ )2 as a function of θ for various (rη, rχ) for x1 = 3, x2 = 1 and
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Figure 2.4: The ratio (fτv/mτ )2 versus θ with x1 = 3, x2 = 1, µ/mN = 1.

µ/mN = 1. It shows that a significant deviation from the SM is possible. This spans the

range of the relatively large uncertainties in the LHC measurements from ATLAS [21] and

CMS [22]

µ(h→ ττ)|ATLAS = 1.43+0.43
−0.37

µ(h→ ττ)|CMS = 0.91± 0.28 (2.40)

where the signal strength µ is the measured production cross section times branching frac-

tion divided by the SM expectation

µ =
(σ ×BR)exp
(σ ×BR)SM

(2.41)
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The parametrization used is explained as follows. The radiative mass formula

Eq. (2.24) must be satisfied, but the couplings cannot be too large

fηfχ
4π

=

(
mτ4π

√
2

vF (x1, x2)

)(
mN

µ

)

= (0.4)

(
mN

µ

)
(2.42)

where is the last line we have chosen x1 = 3 and x2 = 1. Thus for this choice of x1,2,

we need µ/mN & 1 so the couplings are not too large. However, µ must also satisfy the

mass-mixing constraint Eq. (2.11)

µv√
2

= sin θ cos θm2
N (x1 − x2)

mN =

(
µ

mN

) √
2v

(x1 − x2) sin 2θ
(2.43)

The four independent parameters are taken to be (µ/mN ), x1, x2 and θ. This defines mN

as a function of all four. For illustration, we have chosen to let θ vary, and have picked

µ/mN = 1, x1 = 3, x2 = 1. As a final comment, these results are minor corrections to

Ref. [1]. The above Eq. (2.35), Eq. (2.39) and Fig. 2.4 respectively correct the Ref. [1]

Eq. (6) for factors of c and s, Eq. (10) for the coefficient 2 times F+, and Fig. 3 for greater

maximum value of (fτv/mτ )2.

2.4 Higgs Decay to γγ

If this radiative model is the true description of the tau mass, then the new charged

scalars will contribute to h → γγ. The amplitude for this decay is equal to the sum of all

diagrams that have one Higgs and two photons connecting to an internal loop of any charged
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particle. In the SM, the dominant contributions to the diphoton decay rate ΓSM are from

the top quark and W boson. Here there are additional contributions from ζ1,2 as shown in

Fig. 2.5. The loop amplitudes for a fermion, gauge bosons, or scalar are well-known [23],

and adapting these results we find the total decay rate to be

Γγγ =
GFα

2m3
h

128
√

2π3

∣∣∣∣
4

3
A1/2

(
4m2

t

m2
h

)
+A1

(
4M2

W

m2
h

)
+ f1A0

(
4m2

1

m2
h

)
+ f2A0

(
4m2

2

m2
h

)∣∣∣∣
2

(2.44)

where the couplings f1,2 are

f1 =
1

4x1
(sin 2θ)2(x1 − x2)

{
1 +

1

2
(x1 − x2)[(rη + rχ) + cos 2θ(rη − rχ)]

}

f2 =
1

4x2
(sin 2θ)2(x1 − x2)

{
−1 +

1

2
(x1 − x2)[(rη + rχ)− cos 2θ(rη − rχ)]

}
(2.45)

t,W, ζ1,2
h

γ

γ

Figure 2.5: Higgs decay to two photons.
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and the loop integral functions are

A0(y) = −y[1− yf(y)] (2.46)

A1/2(y) = 2y[1 + (1− y)f(y)] (2.47)

A1(y) = −[2 + 3y + 3y(2− y)f(y)] (2.48)

f(y) = arcsin2(y−1/2) , y ≥ 1 (2.49)

The ratio Γγγ/ΓSM as a function of θ is shown in Fig. 2.6. We see that deviations of a

few percent from the SM are predicted. This is consistent with the bounds from LHC
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Figure 2.6: The ratio Γγγ/ΓSM versus θ with x1 = 3, x2 = 1, µ/mN = 1.
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measurements by ATLAS [21] and CMS [22]

µ(h→ γγ)|ATLAS = 1.17+0.27
−0.27

µ(h→ γγ)|CMS = 1.12± 0.24 (2.50)

2.5 Muon Anomalous Magnetic Moment

Consider now the case when the muon mass is radiative. The previous results

of sections 2.1 and 2.2 are easily adapted, using a different N and different fη,χ. Closely

related to this is the electromagnetic interaction shown in Fig. 2.7, which essentially connects

a photon to the charged scalar in the radiative mass diagram. This single diagram can

be used to calculate the contributions to the muon magnetic moment ∆aµ = (g − 2)/2.

However, it is important to emphasize that two other diagrams exist, where the photon

attaches instead to either the ingoing or the outgoing muon. The divergent portions of

these diagrams cancel the divergent portions of Fig. 2.7, but do not otherwise affect the

finite portion of this diagram which is responsible for the contributions to the magnetic

∑
i=1,2

ζ−i ζ−i

µ− N µ−

γ

Figure 2.7: Main diagram for calculating ∆aµ.
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moment. The simplest approach is to examine the vertex correction

ieΓµ = i6
∑

i

∫
d4k

(2π)4

ie(kµ1 + kµ2 )× numerator
(k2
N −m2

N )(k2
1 −m2

i )(k
2
2 −m2

i )

numerator = [aifηPR + bifχPL] [/kN +mN ] [aifηPL + bifχPR] (2.51)

and extract the relevant terms by expanding the numerator. After this, the Feynman

parameters can be introduced in the usual way, and then the integral over d4k can be

performed. The Gordan identity is used, since the spinor product uµ(p′) [. . . ] uµ(p) is

understood on both sides of the above equation. This is carried out for a virtual photon with

momentum qµ, in the limit q2 → 0. Following this procedure, the dominant contributions

will come from the terms and PRmNPR and PLmNPL, which correspond to µL → µR

and µR → µL respectively. We find these dominant contributions to be positive, which

is crucial to explain the the experimental measurement discussed below, and the total

dominant contribution is given by

∆aµ =
m2
µ

m2
N

[
G(x1)−G(x2)

H(x1)−H(x2)

]
(2.52)

where

G(x) =
2x lnx

(x− 1)3
− x+ 1

(x− 1)2

H(x) =
x lnx

x− 1
(2.53)

The subdominant contributions will come from the terms and PR/kNPL and PL/kNPR, which

correspond to µL → µL and µR → µR respectively. They are subdominant because /kN is
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essentially converted by the spinors into the very small masses of the external leptons. We

find the subdominant contributions are negative as expected [24] and given by

(∆aµ)′ =
−m2

µ

16π2m2
N

{
f2
η

[
cos2 θJ(x1) + sin2 θJ(x2)

]
+ f2

χ

[
sin2 θJ(x1) + cos2 θJ(x2)

]}

(2.54)

where

J(x) =
x lnx

(x− 1)4
+
x2 − 5x− 2

6(x− 1)3
(2.55)

The current discrepancy of the experimental measurement [25] versus the theoretical cal-

culation [26] is

∆aµ = aexp
µ − aSM

µ = 39.35± 5.21th ± 6.3exp × 10−10 (2.56)

In Fig. 2.8, the shaded region is the range of this discrepancy, and the dashed limits corre-

spond to the experimental and theoretical uncertainties combined in quadrature. Using the

parameterization x1 = x2 + 2, we see that values of mN ,m1,m2 in roughly the TeV range

can provide the required contributions to ∆aµ.

The parametrization used is explained as follows. We must satisfy two conditions,

the radiative mass formula Eq. (2.24)

(
fηfχ
4π

)(
µ

mN

)
=

mµ4π
√

2

vF (x1, x2)
(2.57)

and the mass-mixing constraint Eq. (2.11)

sin 2θ =

(
µ

mN

)(
v

mN

)(
2

x1 − x2

)
1√
2

(2.58)

In Fig. 2.8, we pick values of x1 − x2 = 2 and (v/mN ) . 1. Together, these will satisfy
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Figure 2.8: ∆aµ versus x2 with x1 = x2 + 2 and various mN .

the second condition by giving sin 2θ . 1/
√

2, as long as (µ/mN ) . 1. This allows the

couplings to be small for the first condition, since we have checked that the left-hand side

varies between 0.01 and 0.1 for x1 = x2 + 2 and x2 in the range of Fig. 2.8.

2.6 Bottom Quark and Higgs Production

Consider now the case when the bottom quark mass is radiative. The previous

results of sections 2.1, 2.2, 2.3 and 2.4 are easily adapted. The new particle content is given

in Table 2.3. The top quark is shown for completeness, but is not needed here. For quarks

an additional color index is understood. The Higgs VEV will induce mixing of η−1/3, χ−1/3

which also carry color. They mix into the physical particles ζ ′1,2 with angle θ′ and masses

m′1,2. All other SM particles, including muon and tau, have (Z2 dark, Z2) = (+,+) and are
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Particle (SU(3)C , SU(2)L, Y ) dark Z2 Z2

Φ =

(
φ+

φ0

)
(1,2,+1/2) + +

Q =

(
tL
bL

)
(3,2,+1/6) + +

tR (3,1,+2/3) + −
bR (3,1,−1/3) + −
NL (1,1, 0) − −
NR (1,1, 0) − +

η =

(
η+2/3

η−1/3

)
(3,2,+1/2) − +

χ−1/3 (3,1,−1/3) − +

Table 2.3: Particle content in the Z2 model for bottom quark.

therefore not affected by the imposition of the extra discrete symmetry. Similar to the

previous case, Fig. 2.9 generates both the the radiative mass for the bottom quark and its

effective Higgs Yukawa coupling when the Higgs gets a VEV. A significant deviation of the

effective Higgs Yukawa coupling is again possible, as shown in the previous Fig. 2.4. This

η−1/3 χ−1/3

bL NR bRNL

φ0

Figure 2.9: Radiative Higgs Yukawa interaction for bottom quark.

39



is consistent with the bounds from LHC measurements by ATLAS [21] and CMS [22]

µ(h→ bb)|ATLAS = 0.52+0.4
−0.4

µ(h→ bb)|CMS = 0.84± 0.44 (2.59)

The scalars η−1/3, χ−1/3 are charged, so they will affect the Higgs diphoton decay

rate as in the previous case, with an additional contribution from η+2/3. Because these

particles also carry color, they will also affect the gluon fusion rate for Higgs production

gg → h shown in Fig. 2.10. To estimate the size of this effect, we will compute the reverse

process of Higgs decay since the Higgs production cross section σgg = σ(gg → h) is directly

related to the Higgs decay rate Γgg = Γ(h→ gg) by integration over the parton distribution.

The previous loop amplitudes Eq. (2.46) for a scalar and Eq. (2.47) for a fermion can be used

by including the appropriate color factor [27]. At the parton level, the amplitude for this

process is equal to the sum of all diagrams that have one Higgs and two photons connecting

to an internal loop of any colored particle. In the SM, the dominant contributions to

η+2/3 , ζ ′1,2 , t
h

g

g

Figure 2.10: Higgs production from two gluons.
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ΓSM are from the top quark and W boson. Here there are additional contributions from

ζ ′1,2 and η+2/3. For η+2/3, we may refer to the previous reduced 2HDM Lagrangian in

Table 2.1. The electroweak doublet Φ is still a color singlet, but the electroweak doublet η

is now a color triplet. This means the λ4 and λ5 terms are absent because the contracted

indices in λ4(Φ†η)(η†Φ) and λ5(Φ†η)2 + λ5(η†Φ)2 do not not allow trivial singlets under

SU(3)C × SU(2)L. So after the Higgs gets a VEV, the mass of the colored η+2/3 is simply

given by m′η
2 = cos θ′m′1

2 + sin θ′m′2
2 from Eq. (2.12). Using r′η,χ = λ′η,χ(mN/µ

′)2 and

x′1,2,η = m′1,2,η
2/m2

N , the decay rate Γgg is given by

Γgg =
GFα

2
Sm

3
h

64
√

2π3

∣∣∣∣∣A1/2

(
4m2

t

m2
h

)
+

[
f ′1A0

(
4m′1

2

m2
h

)
+ f ′2A0

(
4m′2

2

m2
h

)
+ f ′ηA0

(
4m′η

2

m2
h

)]∣∣∣∣∣

2

f ′1 =
1

4x′1
(sin 2θ′)2(x′1 − x′2)

{
1 +

1

2
(x′1 − x′2)[(r′η + r′χ) + cos 2θ′(r′η − r′χ)]

}

f ′2 =
1

4x′2
(sin 2θ′)2(x′1 − x′2)

{
−1 +

1

2
(x′1 − x′2)[(r′η + r′χ)− cos 2θ′(r′η − r′χ)]

}

f ′η =
r′η

4x′η
(sin 2θ′)2(x′1 − x′2)2 (2.60)

The ratio Γgg/ΓSM as a function of θ′ is shown in Fig. 2.11 for x′1 = 3 and x′2 = 1 with

µ′/mN = 1 for various (r′η, r
′
χ). We see that Higgs production from gluon fusion may be

significantly affected.
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Figure 2.11: The ratio Γgg/ΓSM versus θ′ with x′1 = 3, x′2 = 1, µ′/mN = 1.

To summarize, this chapter has established that the radiative mass mechanism

can give large, measurable predictions for the effective Higgs Yukawa coupling in the case of

heavy quarks and charged leptons, and the proper contributions for the anomalous magnetic

moment in the case of the muon.
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Chapter 3

Scotogenic Inverse Seesaw

Neutrino Mass

3.1 Radiative Mass

This chapter discusses a model of neutrino mass that is a radiative implementation

of the inverse seesaw [28–30]. It is based on the work previously published in Ref. [2] and

will be adapted for use in the next chapter. For background, a concise summary of most

Majorana neutrino mass models can be understood from the Weinberg operator, which is

the unique effective dimension-five operator [31] given by

L5 =
(L̃iLΦ)(Φ̃†LjL)

Λ
+ h.c. (3.1)

where Λ is a large effective mass. This describes Majorana neutrino masses in terms of the

SM particle content with all new heavy particles integrated out. At tree-level, it was shown

in Ref. [32] that there are three possible ways to obtain the Weinberg operator, and they
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are classified by the heavy particle used. Type I uses a heavy singlet neutral Majorana

fermion. This is the canonical seesaw, which will appear in Chapter 7. Type II uses a heavy

triplet Higgs scalar. A radiative version of this type will be studied in Chapter 5. Type

III uses a heavy triplet Majorana fermion. Going beyond the level of effective operators

and specifying all particle interactions at one-loop, it was also shown in Ref. [32] that there

are three generic one-loop mechanisms that lead to the Weinberg operator. The model

discussed in this chapter is a new realization of the third such mechanism.

The full symmetry group of the model is the SM gauge group with the addition

of a discrete symmetry

SU(3)C × SU(2)L × U(1)Y × Z2 dark (3.2)

The discrete symmetry Z2 dark is assumed to be exactly conserved because its purpose is to

stabilize dark matter. The particle content is listed in Table 3.1. All the new particles are

odd under Z2 dark. There is one left-handed neutral fermion NL which is an electroweak

Particle (SU(3)C , SU(2)L, Y ) Z2 dark

LiL =

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
(1,2,−1/2) +

liR = eR µR τR (1,1,−1) +

Φ =

(
φ+

φ0

)
(1,2,+1/2) +

EL,R =

(
E0

E−

)

L,R

(1,2,−1/2) −

NL (1,1, 0) −
si = s1 s2 s3 (1,1, 0) −

Table 3.1: Particle content for radiative neutrino mass.
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singlet, so it does not contribute to the gauge anomaly. There are also two electroweak

fermion doublets EL,R. Since E is vector-like, the left- and right-handed contributions to

the gauge anomaly cancel, hence this model is anomaly-free. Although not listed, lepton

number may be defined as L = +1 for EL,R, NL and the SM leptons. There are also three

real scalars s1,2,3 which are electroweak singlets.

The allowed Lagrangian terms are listed in Table 3.2 before spontaneous symmetry

breaking. The SM charged fermions have the usual Higgs Yukawa interactions and will

obtain masses as in the SM after electroweak symmetry breaking. The conservation of lepton

number allows the hard Yukawa terms in LD but forbids the similar hard Yukawa terms

EL Φ̃ (NL)c + h.c.. For the fermions EL,R the general mass terms mAELER and mBEREL

are allowed, but adding their hermitian conjugates simply leads to mE = (mA+mB). Since

the model does not include any right-handed fermion singlets, NL only has Majorana mass

terms, which softly break lepton number and so these terms may be naturally small. This

soft-breaking of the lepton number symmetry allows completion of the loop as shown in

Fig. 3.1 for a single neutrino νL and a single scalar mass eigenstate s. In general, the

original states si and sj listed in the Lagrangian terms will mix after electroweak symmetry

breaking due to LΦ,s. Note that EL is not needed to complete the loop, but it is needed

to provide a large invariant mass mE for the inverse seesaw mechanism. It is also used to

cancel the gauge anomaly from ER.

After spontaneous electroweak symmetry breaking, the Higgs VEV mixes ER and

NL. Together with the Majorana terms for NL, the complete fermion mixing matrix is
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LHiggs = +µ2
SMΦ†Φ− 1

2λSM (Φ†Φ)2

LLeptons = −fSM,ij LiL Φ̃† ljR + h.c.

Ls = −m2
ijsisj + quartic terms

LΦ,s = −λij(Φ†Φ)sisj

LE = −mEEE = −mE

(
ELER + EREL

)

LN = −1
2mN

(
NL(NL)c + (NL)cNL

)

LD = −fD ER Φ̃ NL − fD NL Φ̃† ER

= −fD
(
E0
Rφ

0∗ − φ−E−R
)
NL − fD NL

(
φ0E0

R − φ+E−R
)

Lf = fi LiL ER si + fi ER LiL si

= fi
(
νiLE

0
R + eiLE

−
R

)
si + fi

(
E0
RνiL − E

−
ReiL

)
si

Table 3.2: Lagrangian terms in the scotogenic neutrino mass model.
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given by

LN+E+D ⊃ −

(
(E0

R)c, E0
L, NL

)



0 mE fDv/
√

2

mE 0 0

fDv/
√

2 0 mN







E0
R

(E0
L)c

(NL)c




+ h.c.

(3.3)

where the identities E0
LE

0
R = (E0

R)c(E0
L)c and NLE

0
R = (E0

R)c(NL)c have been used. Let

mD = fDv/
√

2. Assuming that mN is much less than mD,mE , the mass eigenvalues of the

mixing matrix are

m1 =
m2
EmN

m2
E +m2

D

m2 =
√
m2
E +m2

D +
m2
DmN

2(m2
E +m2

D)

m3 = −
√
m2
E +m2

D +
m2
DmN

2(m2
E +m2

D)
(3.4)

Taking the limit when mN → 0 shows that m2 = −m3. This indicates that E0
R pairs

up with E0
L cos θ + NL sin θ to form one Dirac fermion with a mass of

√
m2
E +m2

D, where

sin θ = mD/
√
m2
E +m2

D. In this limit, the self-energy is easily computed from Fig. 3.1 by

writing out the fermion sequence of one Dirac propagator, a mass insertion proportional to

E0 E0

NL NL

νL νLs

φ0 φ0

Figure 3.1: Radiative scotogenic neutrino mass.
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mN denoted by the cross, and another Dirac propagator. Including the scalar propagator

and integrating over the loop momentum gives the result

mν =
f2m2

DmN

16π2(m2
E +m2

D −m2
s)

[
1−

m2
s ln((m2

E +m2
D)/m2

s)

(m2
E +m2

D −m2
s)

]

=
f2

16π2

m2
DmN

(m2
E +m2

D)
F (x) (3.5)

where

x = m2
s/(m

2
E +m2

D)

F (x) =
1

1− x

[
1 +

x lnx

1− x

]
(3.6)

Note F (0) = 1 and F (x) → 0 as x → ∞. The second expression for mν is extremely

suggestive of the inverse seesaw relationship. In the denominator, when mD can be neglected

compared to mE , the ratio

m2
DmN

m2
E

(3.7)

is exactly the well-known expression for the inverse seesaw neutrino mass, which is small

because of the combination of a small Majorna mass mN and a small ratio of the Dirac

mass to the invariant mass (mD/mE)2.

3.2 Three Generations

With three scalar mass eigenstates s1,2,3, three generations of neutrino masses can

be obtained. A realistic model must also obtain the neutrino mixing matrix UPMNS . To

this end, a discrete flavor symmetry may be used, for example the Abelian group Z3. This
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will restrict the Lagrangian terms listed previously in Table 3.2. Under Z3, let the particle

assignments be given by

Φ, NL, EL,R ∼ 1

liR ∼ 1,1′,1′′

LiL ∼ 1,1′,1′′

s1 ∼ 1

(s2 + is3)/
√

2 ∼ 1′

(s2 − is3)/
√

2 ∼ 1′′ (3.8)

where s1,2,3 denote the mass eigenstates determined by the allowed scalar Lagrangian terms.

The three cubic roots of unity are essentially the three group elements of Z3 described by

the notation of 1,1′,1′′. The Z3 symmetry restricts the scalar mass terms to be given

by Ls ⊃ −ms
2s2

1 − m′s
2(s2

2 + s2
3). It also restricts the quartic couplings to be given by

LΦ,s = −(Φ†Φ)
(
λs2

1 + λ′(s2
2 + s2

3)
)

which generates mass terms after electroweak symmetry

breaking, but these can be absorbed into the mass eigenvalues ms and m′s,m
′
s for the mass

eigenstates s1 and s2, s3 respectively. Using a shorthand notation, the scalar interaction

states defined by the Z2 assignments above are Uijsj where

U =




1 0 0

0 1/
√

2 i/
√

2

0 1/
√

2 −i/
√

2




(3.9)

The Z3 symmetry restricts the SM charged lepton Higgs Yukawa terms to be

diagonal LLeptons = −fSM,ii LiL Φ̃† liR + h.c. with i = e, µ, τ so the tree-level charged
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fermion mass matrix will be diagonal after electroweak symmetry breaking. This means the

neutrino mixing matrix is given by

UPMNS = U lLU
ν
L = UνL (3.10)

and it remains to determine UνL.

The radiative neutrino mass matrix Mν in the Z3 basis is

(νeL, νµL, ντL)
Mν




(νeL)c

(νµL)c

(ντL)c




+ h.c. (3.11)

where each entry of the 3× 3 matrix involves a loop integral of the same form as Eq. (3.5).

The matrix Mν corresponds to (νiL)c → νjL and the hermitian conjugate term with the

matrix M†ν corresponds to νiL → (νjL)c.

The couplings fi between the Z3 interaction states νiL and Uijsj form a diagonal

matrix. Using a shorthand notation where the matrix f = diag(fe, fµ, fτ ) and the row

vector νL = (νeL, νµL, ντL) and the column vector s = (s1, s2, s3)T , the allowed Yukawa

terms for the calculation of the radiative neutrino mass loop diagrams are

Lf ⊃ νL f Us E
0
R + h.c.

= (E0
R)c sTUT f (νL)c + h.c. (3.12)

where in the last line νLE
0
R = (E0

R)c(νL)c and fT = f were used. Then reading off the
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matrices from this expression gives

Mν = f U




I(ms) 0 0

0 I(m′s) 0

0 0 I(m′s)



UT f

=




f2
e I(ms) 0 0

0 0 fµfτI(m′s)

0 fµfτI(m′s) 0




(3.13)

where the loop integral I(ms) is given by Eq. (3.5) with f2 removed.

This Mν is not realistic, but it can be made realistic. Let Z3 be broken softly by

arbitrary but suitable Lagrangian terms (M2)ijsisj so that the new mass eigenvalues are

ms1 ,ms2 ,ms3 corresponding to the new mass eigenstates s′1,2,3 given by s′i = Oijsj where

O is an orthogonal matrix. This gives

Mν = f U OT




I(ms1) 0 0

0 I(ms2) 0

0 0 I(ms3)



O UT f (3.14)

Since f is diagonal, this identifies UνL
† = U OT , which determines UPMNS . The couplings

fe, fµ, fτ may be taken to be real by absorbing their phases into the arbitrary relative phases

between νeL, νµL, ντL and E0
R. Consider the case fµ = fτ , which results in the interesting
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pattern

Mν =




A C C∗

C D∗ B

C∗ B D




(3.15)

where A,B are real but C,D remain complex. This pattern is protected by a symmetry

e → e and µ ↔ τ with CP conjugation [33–35]. This means that the neutrino mixing

matrix UPMNS will have maximal mixing of θ23 = π/4 and maximal CP violation of

exp(−iδCP ) = ±i while θ13 may be nonzero and arbitrary.

For charged leptons, there are corresponding radiative contributions to the muon

anomalous magnetic moment ∆aµ and rare decays such as µ→ eγ. The values fe,µ,τ ∼ 0.1,

mN ∼ 10 MeV, mD ∼ 10 GeV, mE ∼ 1 TeV, ms1,2,3 . mE give negligible contributions

to ∆aµ and satisfy the experimental bound of µ → eγ. They also give realistic neutrino

masses mν ∼ 0.1 eV.

To summarize, this chapter has examined a new model of radiative neutrino mass

based on the inverse seesaw that accommodates dark matter. In the next chapter, the model

will be slightly modified by enlarging both the particle content and the discrete symmetry.
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Chapter 4

Radiative Masses with A4

Symmetry

4.1 Outline of the Model

This chapter discusses a comprehensive radiative model for the entire lepton sector,

and is based on the work previously published in Ref. [3]. The full symmetry group is the

based on the SM gauge group, but incorporates two discrete symmetries

SU(3)C × SU(2)L × U(1)Y × Z2 dark ×A4 (4.1)

The discrete symmetry Z2 dark is used to stabilize dark matter and is therefore assumed to

be exactly conserved. The main purpose of the discrete flavor symmetry A4 is to forbid the

Higgs Yukawa coupling to charged fermions at tree-level, but to permit its realization in

one-loop. To obtain a realistic neutrino mixing matrix U ≡ UPMNS = U lL U
ν
L
† the method

of Ref [36] will be used, which is motivated by real scalar dark matter and is partially
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based on the model in the previous chapter for radiative inverse seesaw neutrino mass.

The rotation UνL will be an orthogonal matrix that will come from an orthogonal rotation

O required for non-degenerate neutrino masses. The rotation U lL will come from the soft

breaking of A4 required for the existence of charged lepton radiative masses. The rotation

U lL is based on the unitary matrix

Uω =




1 1 1

1 ω ω2

1 ω2 ω




(4.2)

where ω = exp(2πi/3) is the cubic root of 1. Although Uω is familiar from the group A4,

it is mostly used here as a bridge between the charged lepton and neutrino sectors. It also

accommodates Z3 lepton triality [37] because the use of Uω for the soft-breaking described

in the next section breaks A4 to its subgroup Z3.

Details of the group muliplication rules for A4 are given at the end of the chapter.

In brief, the non-Abelian discrete symmetry A4 allows an irreducible triplet representation

3 and three inequivalent one-dimensional representations 1,1′,1′′, with the basic multipli-

cation rule

3× 3 = 1 + 1′ + 1′′ + 3 + 3 (4.3)

This makes A4 ideally suited as a flavor symmetry for three generations. The particle con-

tent of the model is shown in Table 4.1. All new particles belong to the dark sector. The

particles NL,R have no gauge interactions so they do not contribute to the gauge anomaly.

The fermions E0
L,R, E−L,R form vector-like electroweak doublets, so their contributions to

the gauge anomaly cancel. Hence this model is anomaly-free. Radiative masses for charged
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Particle (SU(3)C , SU(2)L, Y ) Z2 dark A4

LiL =

(
νeL
liL

)
(1,2,−1/2) + 3

liR (1,1,−1) + 1,1′,1′′

Φ =

(
φ+

φ0

)
(1,2,+1/2) + 1

EL,R =

(
E0

E−

)

L,R

(1,2,−1/2) − 1

NL,R (1,1, 0) − 1
xi = x−i (1,1,−1) − 3
yi = y−i (1,1,−1) − 1,1′,1′′

si (1,1, 0) − 3

Table 4.1: Particle content in the A4 model.

lepton masses use the electrically charged scalars x1,2,3 and y1,2,3. Radiative masses for neu-

trinos use the real scalars s1,2,3 the lightest combination of which is dark matter. Although

not listed, lepton number may be defined as L = +1 for E,N and the SM leptons, and

L = +2 for xi, yi. All other SM particles have (Z2 dark, A4) = (+,1) and are therefore not

affected by the imposition of the extra discrete symmetry.

The allowed Lagrangian terms before electroweak symmetry breaking are listed

in Table 4.2 for the Yukawa and pure fermion terms, and in Table 4.3 for the pure scalar

terms. The form of the scalar mass terms for xi, yi, si follow from the A4 symmetry.

For the new fermions the general mass terms mAELER and mBEREL are allowed, but

adding their hermitian conjugates simply leads to mE = (mA +mB), and similarly for the

singlets NL,R and mN . For the hard Yukawa terms in LD, there are similar terms allowed

under A4 with NR replaced by (NL)c and fD replaced by a different coupling, but these
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Terms that respect A4

LE = −mE

(
E0
LE

0
R + E−LE

−
R + E0

RE
0
L + E−RE

−
L

)

LN = −mN

(
NLNR +NRNL

)
− 1

2mL

(
NL(NL)c + (NL)cNL

)

−1
2mR

(
NR(NR)c + (NR)cNR

)

LD = −fD ER Φ̃ NL − fD NL Φ̃† ER

= −fD
(
E0
Rφ

0∗ − φ−E−R
)
NL − fD NL

(
φ0E0

R − φ+E−R
)

LF = −fF EL Φ̃ NR − fF NR Φ̃† EL

= −fF
(
E0
Lφ

0∗ − φ−E−L
)
NR − fF NR

(
φ0E0

L − φ+E−L
)

Lf ′ = f ′ LiL (̃EL) xi + f ′ (̃EL) LiL x
∗
i

= f ′
(
νiL(E−L )c − eiL(E0

L)c
)
xi + f ′

(
(E−L )cνiL − (E0

L)ceiL

)
x∗i

Lfl = −fi liR (NR)cyi − fi (NR)c liRy
∗
i

Lf = f LiL ER si + f ER LiL si

= f
(
νiLE

0
R + eiLE

−
R

)
si + f

(
E0
RνiL + E−ReiL

)
si

Table 4.2: Yukawa and Fermion Lagrangian terms in the A4 model.
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Terms that respect A4

LHiggs = +µ2
SMΦ†Φ− 1

2λSM (Φ†Φ)2

Ls = −1
2m

2
s

(
s2

1 + s2
2 + s2

3

)
− λ1

(
s2

1 + s2
2 + s2

3

)2 − λ
(
s2

1 + s2
2 + s2

3

)
(Φ†Φ)

Lx = −m2
x (x∗1x1 + x∗2x2 + x∗3x3) − λ3 (x∗1x1 + x∗2x2 + x∗3x3)2

−λx (x∗1x1 + x∗2x2 + x∗3x3) (Φ†Φ)

Ly = −m2
y1y
∗
1y1 − λ5 (y∗1y1)2 − λ8 (y∗1y1) (Φ†Φ)

−m2
y2y
∗
2y2 − λ6 (y∗2y2)2 − λ9 (y∗2y2) (Φ†Φ)

−m2
y3y
∗
3y3 − λ7 (y∗3y3)2 − λy (y∗3y3) (Φ†Φ)

Lsx = −λ11 (x∗1s1 + x∗2s2 + x∗3s3) (x1s1 + x2s2 + x3s3)
−λ12 (x∗1x1 + x∗2x2 + x∗3x3)

(
s2

1 + s2
2 + s2

3

)

Lsy = −λ13 y
∗
1y1

(
s2

1 + s2
2 + s2

3

)
−
[
λ16 y

∗
1y2

(
s2

1 + ωs2
2 + ω2s2

3

)
+ h.c.

]

−λ14 y
∗
2y2

(
s2

1 + s2
2 + s2

3

)
−
[
λ17 y

∗
2y3

(
s2

1 + ωs2
2 + ω2s2

3

)
+ h.c.

]

−λ15 y
∗
3y3

(
s2

1 + s2
2 + s2

3

)
−
[
λ18 y

∗
1y3

(
s2

1 + ω2s2
2 + ωs2

3

)
+ h.c.

]

Lsxy = −λ19 y1

(
x∗1s

2
1 + x∗2s

2
2 + x∗3s

2
3

)
+ h.c.

−λ20 y2

(
x∗1s

2
1 + ωx∗2s

2
2 + ω2x∗3s

2
3

)
+ h.c.

−λ21 y3

(
x∗1s

2
1 + ω2x∗2s

2
2 + ωx∗3s

2
3

)
+ h.c.

Lxy = Quartic terms x∗ixjy
∗
kyl and x∗ix

∗
jykyl

Terms that break A4

Lxy = −µ2
i yi(Uω)ijx

∗
j + h.c. where µ2

i = µ2
e, µ

2
µ, µ

2
τ

Lss = −sim2
ijsj + h.c.

Table 4.3: Scalar Lagrangian terms in the A4 model.
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are not included because they break lepton number. Similar comments apply for LF and

the use of NL instead of (NR)c. The soft breaking of lepton number by the Majorana mass

terms NL(NL)c, NR(NR)c is needed for neutrino mass in section 4.6, but these terms can

be naturally small because their absence enhances the lepton number symmetry. So in the

following sections that deal with charged leptons we will neglect the Majorana mass terms.

Also, when writing out the most general Lagrangian, there are additional terms that are

similar to those listed in LY ukawa,fD with a different coupling, −f ′D (NL)c Φ†ẼR + h.c., but

adding these simply gives (−fD + f ′D)ER Φ̃NL + h.c, so the coefficient is redefined as −fD.

Similar comments apply for LF and Lf ′ .

As mentioned earlier, there is soft-breaking of the A4 symmetry, and this comes

from the scalar terms yix
∗
j and sisj . Most of the other scalar terms listed are not needed

in what follows, although at the end of the chapter there are some technical remarks about

the quartic terms as they relate to the soft symmetry-breaking terms.

4.2 Charged Leptons

Every possible SM Yukawa term Φ0LiLljR is forbidden by the A4 symmetry. This

follows from the group multiplication rules given at the end of the chapter. The Higgs

Φ0 ∼ 1 is trivial, and the multiplication of LiL ∼ 3 and ljR ∼ 1,1′,1′′ yields another 3, so

the total combination is a 3. Therefore these terms are forbidden since they are not a 1

under A4. All x∗i yj terms are likewise forbidden, since x∗i ∼ 3 and yj ∼ 1,1′,1′′. For charged

leptons, the one-loop Higgs Yukawa interaction is shown in Fig. 4.1. Connecting xi with y∗i

requires the breaking of A4. This can be done explicitly or it can be done spontaneously
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E0 N

lL x lRy

φ0

Figure 4.1: Radiative Higgs Yukawa interaction for charged leptons.

using the VEV of another A4 scalar. We choose explicit breaking terms because other A4

scalars would introduce extra contributions to the effective Higgs Yukawa coupling and we

want to highlight the SM deviations caused by the underlying radiative mechanism. The

soft-breaking indicated by the cross in the figure is assumed to be

Lxy = −µ2
i yi(Uω)ijx

∗
j + h.c. (4.4)

which as mentioned earlier is chosen for the method of obtaining the neutrino mixing matrix.

These terms can be interpreted as a rotation from xi to zi, that is

z∗i = (Uω)ijx
∗
j

xi = (Uω)ijzj (4.5)
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where in the last line the property Uω = UTω has been used. This is a convenient rotation

because going to the basis of zi and yi will make the scalar mixing matrix block-diagonal

− Lxy =

(z∗1 , y
∗
1, z
∗
2 , y
∗
2, z
∗
3 , y
∗
3)




m2
x µ2

e 0 0 0 0

µ2
e m2

y1 0 0 0 0

0 0 m2
x µ2

µ 0 0

0 0 µ2
µ m2

y2 0 0

0 0 0 0 m2
x µ2

τ

0 0 0 0 µ2
τ m2

y3







z1

y1

z2

y2

z3

y3




(4.6)

For example, the electron block has mass eigenstates ζ1e, ζ2e with masses m1e,m2e and

mixing angle θe



z−1

y−1


 =




cos θe − sin θe

sin θe cos θe






ζ−1e

ζ−2e


 (4.7)

where the new parameters m1e,m2e, θe are related to the old parameters mη,mχ, µe by

µ2
e = sin θe cos θe(m

2
1e −m2

1e) (4.8)

m2
η = cos θem

2
1e + sin θem

2
1e (4.9)

m2
χ = sin θem

2
1e + cos θem

2
1e (4.10)

and similarly for the blocks corresponding to µ and τ .

4.3 Radiative Mass

The one-loop Higgs Yukawa interactions in the previous Fig. 4.1 generates radia-

tive masses for all three charged leptons when the electroweak symmetry is spontaneously
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broken. The Higgs VEV induces the mixing of N and E0, which comes from the diagonal

mass terms LN , LE and the off-diagonal fD, fF Yukawa terms LD, LF . The mixing matrix

LN+E+D+F ⊃ −

(
NL, E0

L

)


mN fDv/
√

2

fF v/
√

2 mE






NR

E0
R


 + h.c. (4.11)

is diagonalized by a rotation of the left-handed fields NL, E
0
L and a separate rotation of

the right-handed fields NR, E
0
R into the two physical Dirac particles n1 = n1L + n1R and

n2 = n2L + n2R with mass eigenvalues m1 and m2. For the left-handed fields



NL

E0
L


 =




cos θL − sin θL

sin θL cos θL






n1L

n2L


 (4.12)

and for the right-handed fields



NR

E0
R


 =




cos θR − sin θR

sin θR cos θR






n1R

n2R


 (4.13)

The four new parametersm1,m2, θL, θR are related to the four old parametersmN ,mE , fD, fF

by the four equations

mN = m1 cos θL cos θR +m2 sin θL sin θR

mE = m2 cos θL cos θR +m1 sin θL sin θR

fDv/
√

2 = m1 cos θL sin θR −m2 cos θR sin θL

fF v/
√

2 = m1 cos θR sin θL −m2 cos θL sin θR (4.14)

In the case when θL = θR the last two lines above are the same and give fD = fF , and

so there are only three equations. The three new parameters m1,m2, θL are related to the
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three old parameters mN ,mE , fD by the three equations

mN = m1 cos2 θL +m2 sin2 θL

mE = m2 cos2 θL +m1 sin2 θL

fDv/
√

2 = (m1 −m2) cos θL sin θL (4.15)

The previous rotation from xi to zi affects the other f ′ Yukawa interactions of the

left-handed charged leptons

Lf ′ ⊃ f ′
(
liL(E0

L)cxi + (E0
L)cliLx

∗
i

)

= f ′
(
ejL(E0

L)czj + (E0
L)cejLz

∗
j

)
(4.16)

which identifies the linear combinations of the A4 basis states liL

ejL = liL(Uω)ij

ejL = liL(U †ω)ij = (U †ω)jiliL (4.17)

that diagonalize the radiative mass matrix

(eL, µL, τL)




me 0 0

0 mµ 0

0 0 mτ







eR

µR

τR




(4.18)

so that the physical Dirac field of charged lepton ei is ei = eiL + eiR. The right-handed

charged leptons have the Yukawa terms

Lfl = fi liR (NR)cyi + fi (NR)c liRy
∗
i (4.19)

and since yi is not rotated, the A4 basis states liR already correspond to the mass-diagonal
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states eiR.

The calculation of the electron mass is shown schematically in Fig. 4.2. It is

similar to the calculation in Chapter 2, and as before the projection operators may be

separated from the fields. Because the conjugate fields nc propagate in the loop, we use

(nL)c = (nc)R = PR(nc), (nR)c = (nc)L = PL(nc). This allows contractions to made

between nci and nci to give propagators. Expressing the fields E0, N in terms of the mass

eigenstates n1, n2 and the fields z1, y1 in terms of the mass eigenstates ζ1e, ζ2e we have

Lf ′+fl =
∑

i,k

e
[
aikf

′PR + bikfePL
]
nciζ
−
k + nci

[
aikf

′PL + bikfePR
]
eζ+
k (4.20)

∑
i=1,2
j=1,2

(nc)j

e ζ−i
e

Figure 4.2: Radiative electron mass in the A4 model.
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with the shorthand notation

aik =

ζ1 ζ2

nc1 sLc −sLs

nc2 cLc −cLs

bik =

ζ1 ζ2

nc1 cRs cRc

nc2 −sRs −sRc

(4.21)

where c = cos θe, s = sin θe, cL = cos θL, sL = sin θL, cR = cos θR, sR = sin θR. Let

the arrows in Fig. 4.2 dictate the flow of momentum. Then the momenta for e, nci , ζ
−
k are

p, k, p− k respectively, and we set p to zero. Then the loop integral for the self-energy is

−ime = i4
∑

i,k

∫
d4k

(2π)4

[
numerator

(k2 −m2
ke)(k

2 −m2
i )

]
(4.22)

where the factor of i4 = 1 is from the two propagators and the two vertices, and the

numerator is

numerator =
[
aikf

′PR + bikfePL
]

[/k +mi]
[
aikf

′PL + bikfePR
]

= f ′feaikbikmi(P
2
L + P 2

R)

= f ′feaikbikmi (4.23)

which has been simplified as before, since the term linear in k will integrate to zero, and
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the projectors make some terms vanish. Then using aik and bik, we have

−ime = f ′fe

∫
d4k

(2π)4




(sLc)(cRs)m1

(k2 −m2
1)(k2 −m2

1e)
+

(−sLs)(cRc)m1

(k2 −m2
1)(k2 −m2

2e)

(cLc)(−sRs)m2

(k2 −m2
2)(k2 −m2

1e)
+

(−cLs)(−sRc)m2

(k2 −m2
2)(k2 −m2

2e)




= f ′fe

∫
d4k

(2π)4




sc sLcRm1 (m2
1e −m2

2e)

(k2 −m2
1)(k2 −m2

1e)(k
2 −m2

2e)

−sc cLsRm2 (m2
1e −m2

2e)

(k2 −m2
2)(k2 −m2

1e)(k
2 −m2

2e)




(4.24)

In the first equation, each term diverges, but the sum is finite, as shown in the second

equation by putting terms over common denominators. Using the integrals from Chapter 2,

the radiative mass is

−ime = f ′fe
−i

16π2
sc [sLcRm1 [H(x1e,1)−H(x2e,1)]− cLsRm2 [H(x1e,2)−H(x2e,2)]]

= f ′fe
−i

16π2
sc




sLcRm1 [H(x1e,1)−H(x2e,1)]

−cLsRm2 [H(x1e,2)−H(x2e,2)]


 (4.25)

where the notation xc,d denotes the scalar-to-fermion ratios of mass-squared xie,1 = m2
ie/m

2
1

and xie,2 = m2
ie/m

2
2.
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4.4 Anomalous Higgs Yukawa Couplings

Consider now the heaviest charged lepton tau. There are three contributions to

the effective hττ coupling

gτ = g(1)
τ + g(2)

τ + g(3)
τ (4.26)

First we will calculate the primary contribution g
(1)
τ shown in Fig. 4.3. There are two Higgs

connections at the top which come from the fD and fF Yukawa terms in LD and LF

LD ⊃ −fD
h√
2

[
E0
RNL +NLE

0
R

]

LF ⊃ −fF
h√
2

[
E0
LNR +NRE

0
L

]
(4.27)

We express E0
L,R, NL,R in terms of the mass eigenstates (n1)L,R, (n2)L,R and then use

(nL)c = (nc)R = PR(nc), (nR)c = (nc)L = PL(nc) to allow contractions to made between

∑
i=1,2
j=1,2
k=1,2

(nc)i (nc)j

τ ζk τ

h

Figure 4.3: First contribution to hττ in the A4 model.
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nci and nci to give propagators. This gives

LD+F ⊃ −hA nc1n
c
1

−hB nc2n
c
2

−hnc1 [CPL +DPR ]nc2

−hnc2 [DPL + CPR ]nc1 (4.28)

where

A = ( fDcLsR + fF sLcR) /
√

2

B = (−fDsLcR − fF cLsR) /
√

2

C = ( fDcLcR − fF sLsR) /
√

2

D = (−fDsLsR + fF cLcR) /
√

2 (4.29)

Let the arrows in Fig. 4.3 dictate the flow of momentum. Assuming that m2
h is small

compared to m2
1,2 and m2

τ1,2, the momenta for τ, nci , n
c
j , ζ
−
k are p, k, k, p−k respectively, and

we set p to zero. Then the loop integral for the primary effective Yukawa coupling is

−ig(1)
τ = i6

∑

i,j,k

∫
d4k

(2π)4

[
numerator

(k2 −m2
i )(k

2 −m2
j )(k

2 −m2
τk)

]
(4.30)

where the factor of i6 = −1 is from the three propagators and the three vertices. For the

numerator, consider the four cases numeratorji corresponding to ncjn
c
i . For the two cases
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when i = j we have

numerator11 =
[
a1kf

′PR + b1kfτPL
]

[/k +m1] [−A] [/k +m1]
[
a1kf

′PL + b1kfτPR
]

numerator22 =
[
a2kf

′PR + b2kfτPL
]

[/k +m2] [−B] [/k +m2]
[
a2kf

′PL + b2kfτPR
]

(4.31)

The terms linear in k integrate to zero and the projection operators each of these simplifies

numerator11 = −f ′fτA a1kb1k
[
m2

1 + k2
]

numerator22 = −f ′fτB a2kb2k
[
m2

2 + k2
]

(4.32)

For the two cases when i 6= j we have

numerator21 =
[
a2kf

′PR + b2kfτPL
]

[/k +m2] [−DPL − CPR ] [/k +m1]
[
a1kf

′PL + b1kfτPR
]

numerator12 =
[
a1kf

′PR + b1kfτPL
]

[/k +m1] [−CPL −DPR ] [/k +m2]
[
a2kf

′PL + b2kfτPR
]

(4.33)

Together, these two equations combine to give

numerator21+21 = −f ′fτm1m2




[a2kb1kCPR + b2ka1kDPL]

+ [a1kb2kDPR + b1ka2kCPL]




−f ′fτ k2




[a2kb1kDPR + b2ka1kCPL]

+ [a1kb2kCPR + b1ka2kDPL]




= −f ′fτm1m2 [a2kb1kC + b2ka1kD]

−f ′fτ k2 [a2kb1kD + b2ka1kC] (4.34)
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Then using aik and bik, we have

−ig(1)
τ = +f ′fτ

∫
d4k

(2π)4




sLcR scA (m2
1 + k2)

(k2 −m2
1)2(k2 −m2

1τ )
− sLcR scA (m2

1 + k2)

(k2 −m2
1)2(k2 −m2

2τ )

− cLsR scB (m2
2 + k2)

(k2 −m2
2)2(k2 −m2

1τ )
+

cLsR scB (m2
2 + k2)

(k2 −m2
2)2(k2 −m2

2τ )

+
(cLcR scC − sLsR scD)(m1m2)

(k2 −m2
1)(k2 −m2

2)(k2 −m2
1τ )

−(cLcR scC − sLsR scD)(m1m2)

(k2 −m2
1)(k2 −m2

2)(k2 −m2
2τ )

+
(cLcR scD − sLsR scC)(k2)

(k2 −m2
1)(k2 −m2

2)(k2 −m2
1τ )

− (cLcR scD − sLsR scC)(k2)

(k2 −m2
1)(k2 −m2

2)(k2 −m2
2τ )




(4.35)

The integrals involving mimj are finite, and the integral has already been done. The inte-

grals involving k2 diverge, but can be put over a common denominator with a neighbouring

term to give a finite result. So this reduces to

−ig(1)
τ = +f ′fτsc




sLcRAm
2
1(I1,1,1τ − I1,1,2τ )

−cLsRBm2
2(I2,2,1τ − I2,2,2τ )

+(cLcR C − sLsRD)m1m2(I1,2,1τ − I1,2,2τ )

+sLcRA (m2
1τ −m2

2τ )K1,1,1τ,2τ

−cLsRB (m2
1τ −m2

2τ )K2,2,1τ,2τ

+(cLcRD − sLsR C)(m2
1τ −m2

2τ )K1,2,1τ,2τ




(4.36)
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where

Ia,b,c = I(ma,mb,mc)

=
−i

16π2

[
m2
a ln(m2

a/M
2)

(m2
a −m2

b)(m
2
a −m2

c)
+

m2
b ln(m2

b/M
2)

(m2
b −m2

a)(m
2
b −m2

c)
+

m2
c ln(m2

c/M
2)

(m2
c −m2

a)(m
2
c −m2

b)

]

Ka,b,c,d = K(ma,mb,mc,md)

=

∫
d4k

(2π)4

k2

(k2 −m2
a)(k

2 −m2
b)(k

2 −m2
c)(k

2 −m2
d)

=
−i

16π2




m4
a ln(m2

a/M
2)

(m2
a −m2

b)(m
2
a −m2

c)(m
2
a −m2

d)

+
m4
b ln(m2

b/M
2)

(m2
b −m2

a)(m
2
b −m2

c)(m
2
b −m2

d)

+
m4
c ln(m2

c/M
2)

(m2
c −m2

a)(m
2
c −m2

b)(m
2
c −m2

d)

+
m4
d ln(m2

d/M
2)

(m2
d −m2

a)(m
2
d −m2

b)(m
2
d −m2

c)




(4.37)

The factors of −i cancel and g
(1)
τ is real. Here the mass scale M is arbitrary. It appears

if we choose to put the loop integrals into dimensionless form before doing the momentum

integration. For convenience we choose M = m1 as described at the end of this section.

The second and third contributions g
(2)
τ and g

(3)
τ to the effective Higgs Yukawa
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coupling come from the scalar interactions

Lx ⊃ −(λxv)h (x∗1x1 + x∗2x2 + x∗3x3)

Ly ⊃ −(λyv)h (y∗3y3) (4.38)

respectively. Putting this in terms of the mass eigenstates ζi = ζ1,2 gives the diagrams shown

schematically in Fig. 4.4 Looking back to Chapter 2, this is the same type of diagram as

Fig. 2.3 so the integrals have been done and it is straightforward to adapt those results, so

the expressions for g
(2)
τ and g

(3)
τ are not written here for brevity.

Adding all three contributions, the effective Higgs Yukawa coupling will deviate

from the SM prediction when

gτv

mτ
=

[g
(1)
τ + g

(2)
τ + g

(3)
τ ]v

mτ
(4.39)

deviates from unity. To simplify the analysis, we focus on θL = θR, in which case fD = fF .

We use the relation fDv/
√

2 = sLcL(m1−m2) = sLcLm1(1−m2/m1) from fermion mixing

Eq. (4.15) to define m1 as a function of θL for a constant ratio m2/m1 = 2.2 and coupling

fD/
√

4π = −0.19. In this parameterization, the combination sLcLm1 remains constant,

∑
i=1,2
j=1,2
k=1,2
r=2,3

(nc)i

V (r)

τ ζj τζk

h

Figure 4.4: Second and third contributions to hττ in the A4 model.

71



and also appears in the radiative mass formula for each charged lepton. In addition, we use

the value f ′/
√

4π = −0.6. For the scalars in the tau sector, we choose fixed mass ratios

m1τ/m1 = 5.7 and m2τ/m1 = 1.1. To satisfy the mass formula, we verify that the product

fτ sin 2θτ is not too large. We have checked that the values used here also allow solutions

for the muon and electron radiative masses. In Fig. 4.5 we plot the ratio (gτv/mτ )2 from

Eq. (4.39) as a function of θL, using the values fτ/
√

4π = −0.54, θτ = 0.8 for the λx,y

curves. We see that a significant deviation from the SM prediction is possible. This is

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20
200.276. 276.632. 632.

2ΘL�Π

Hg Τ
v�m

Τ
L2

m1 HGeVL

Λx=Λy=0

Λx�4Π = -0.02

Λy�4Π = +0.02

Figure 4.5: The ratio (gτv/mτ )2 plotted against θL with various λx,y for the case θL = θR.
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consistent with the bounds from LHC measurements by ATLAS [21] and CMS [22]

µ(h→ ττ)|ATLAS = 1.43+0.43
−0.37

µ(h→ ττ)|CMS = 0.91± 0.28 (4.40)

Note that in this model, lepton flavor is not violated by the effective Higgs Yukawa

couplings. A recent preliminary measurement [38] of the branching fraction BR(h→ τµ) ∼

0.01 is only at the 2 sigma level, but if it is confirmed by future experiments this model will

need to be adjusted.

4.5 Muon Anomalous Magnetic Moment

Turning now to the muon, there are three contributions to the anomalous magnetic

moment. The electromagnetic interaction shown in Fig. 4.6 has the same structure as

Fig. 2.7 from Chapter 2, and those results are easily adapted. Similar to the previous

model, the dominant contribution is

∆aµ =
m2
µ

m1m2

{
sLcRm2[G(x1µ,1)−G(x2µ,1)] + sRcLm1[G(x2µ,2)−G(x1µ,2)]

sLcRm1[H(x1µ,1)−H(x2µ,1)] + sRcLm2[H(x2µ,2)−H(x1µ,2)]

}
(4.41)

∑
i=1,2
j=1,2

(nc)i

µ ζj µζj

γ

Figure 4.6: First and second contributions to the muon magnetic moment.
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where xiµ,j = (miµ/mj)
2 and

G(x) =
2x lnx

(x− 1)3
− x+ 1

(x− 1)2
(4.42)

The second, subdominant contribution is negative as expected

(∆aµ)′ = −
−m2

µ

32π2




f ′2
[
s2L
m2

1

(
c2
µJ(x1µ,1) + s2

µJ(x2µ,1)

)
+

c2L
m2

2

(
c2
µJ(x1µ,2) + s2

µJ(x2µ,2)

)]

+f2
µ

[
c2R
m2

1

(
s2
µJ(x1µ,1) + c2

µJ(x2µ,1)

)
+

s2R
m2

2

(
s2
µJ(x1µ,2) + c2

µJ(x2µ,2)

)]




where

J(x) =
x lnx

(x− 1)4
+
x2 − 5x− 2

6(x− 1)3
. (4.43)

The third contribution from exchange of s1,2,3 is also subdominant, and it will be discussed

in the next section.

In the simplifying case we are considering, Eq. 4.41 is independent of θL = θR. In

Fig. 4.7 we plot m1µ against m1 for various ratios m2µ/m1µ in order to show the values of m1

andm1,2µ which can account for the discrepancy between the experimental measurement [25]

and the SM prediction [26]

∆aµ = 39.35± 5.21th ± 6.3exp × 10−10 (4.44)

We have combined the experimental and theoretical uncertainties in quadrature, which

corresponds to the curved limits of the shaded regions. The lower limit of 200 GeV for m1

corresponds to θL = π/4.

74



200 205 210 215 220 225

600

800

1000

1200

m1 HGeVL

m
1

Μ
HGe

V
L

m2 Μ�m1 Μ = 1.1

m2 Μ�m1 Μ = 1.4

m2 Μ�m1 Μ = 2.2

Figure 4.7: Values of m1, m1µ and m2µ which can explain ∆aµ for the case θL = θR.

4.6 Neutrinos and Rare Lepton Decays

The radiative neutrino mass diagram comes from the four-point diagram shown in

Fig. 4.8. It is almost the same as Fig. 3.1 from the previous Chapter, except that here NR is

also present. The cross indicates the breaking of lepton number by the Majorana mass terms

E0 E0

N N

νL νLs

φ0 φ0

Figure 4.8: Radiative neutrino mass in the A4 model.
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for NR and NL. All interactions in this diagram respect the A4 symmetry. Furthermore,

if A4 were unbroken, then s1,2,3 have the same mass from Ls ⊃ −1
2m

2
s

(
s2

1 + s2
2 + s2

3

)
. The

A4 symmetry is also responsible for the one-to-one correspondence between νiL and si

from Lf = f LiL ER si. But as mentioned at the beginning of this chapter, the terms

Lss = −sim2
ijsj arbitrarily break A4 so that a realistic neutrino mixing matrix can be

obtained and also allows nonzero neutrino mass differences. Let the physical mass states be

s′i = Oijsj . Because the orthogonal matrix O is arbitrary due to the arbitrary mass matrix

m2
ij , it does not preserve the Z3 lepton triality which exists in the charged lepton sector.

Because Lf is written with A4 basis states, the interaction νiL E
0
R si corresponds

to νiL
(
OT
)
ij
s′j where s′j are mass eigenstates with masses msi . This identifies ν ′iL = OijνjL

as the physical neutrino mass states. Together with the charged lepton rotation mentioned

earlier eiL = (U †ω)ijljL, the neutrino mixing matrix is U = U †ωOT .

Corresponding to Fig. 4.8 for neutrinos is Fig. 4.9 for charged leptons. It describes

contributions to the muon magnetic moment as well as the rare process µ→ eγ. For charged

leptons, because Lf is written with A4 basis states, the interaction liL E
−
R si corresponds

∑
k=1,2,3

E− E−

ei sk ej

γ

Figure 4.9: One-loop diagram for ei → ejγ.
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to eiL(U †ω)ij E
−
R

(
OT
)
jk
s′k where s′k are mass eigenstates. The resulting combination of

U †ωOT is the neutrino mixing matrix U as explained above, so the vertex factors for diagrams

involving mass eigenstates are determined by the known values of U .

One such diagram is µ→ µγ with a virtual photon, which is the third contribution

to ∆aµ mentioned in the previous section, and this contribution is

(∆aµ)′′ = −
3∑

i=1

f2|Uµi|2m2
µ

16π2m2
E

Gγ(xi), (4.45)

where xi = m2
si/m

2
E and

Gγ(x) =
2x3 + 3x2 − 6x2 lnx− 6x+ 1

6(x− 1)4
<

1

6
. (4.46)

Due to our parameterization for the fermion mixing of N and E0, the mass of E− has a

lower limit of mE ' 300 GeV. Hence (∆aµ)′′ is less than 10−10f2, which for f < 1 is below

the present experimental sensitivity of 10−9 and thus can be neglected.

This diagram also applies to the rare decay µ→ eγ, which has the amplitude

Aµe =
ef2mµ

32π2m2
E

∑

i

U∗eiUµiGγ(xi), (4.47)

For small xi and x1 ' x2

|
∑

i

U∗eiUµiGγ(xi)| =
s13c13

3
√

2
|x3 − x2| (4.48)

where s13 = sin θ13, c13 = cos θ13, and we have taken sin θ23 = 1/
√

2. This gives the

branching fraction

B =
αs2

13c
2
13

384π

(
f2|x3 − x2|
GFm2

E

)2

(4.49)

The lower limit mentioned earlier of mE ' 300 GeV is numerically equivalent to GFm
2
E ' 1.
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Let f = 0.2, |x3 − x2| ' 0.05, then B = 5.6 × 10−13, which is just below the experimental

constraint [39] given by 5.7× 10−13.

This diagram also applies to another possible rare decay is µ− → e−e+e−, which

has one set of contributions from the processes µ− → e−(γ, Z) → e−e+e−. The process

with a virtual photon is obtained by adding γ → e+e−, and the amplitude for this process

is

iMγ =
−ie2f2

32π2m2
E

3∑

i=1

U∗eiUµiū(p1)

[
Ge(xi)

(
γα −

qα/q

q2

)
PL − imµGγ(xi)

σαβqβ
q2

PR

]

×uµ(p)ū(p2)γαv(p3)

−(p1 ↔ p2) (4.50)

where the spinors indicate the particles and their momenta, q = p− p1, and

Ge(x) =
7− 36x+ 45x2 − 16x3 + 6x2(2x− 3) lnx

18(x− 1)4
. (4.51)

The amplitude for the process with a virtual Z boson has a similar form because EL,R is

vector-like, but it is further suppressed by m2
Z .

With the same specific parameters already chosen, we find that the dominant set of

contributions to µ− → e−e+e− comes from the box diagrams given in Fig. 4.10 and Fig. 4.11.

In these diagrams, the muon has momentum p, and the outgoing electron connected to it

by the fermion line has momentum p1. The other outgoing electron has momentum p2 and

the outgoing positron has momentum p3. In the limit of zero external lepton masses, all

diagrams have the same loop momentum integrals. We calculate the total amplitude from
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Figure 4.10: First and second box diagrams for µ→ eee in the A4 model.
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Figure 4.11: Third and fourth box diagrams for µ→ eee in the A4 model.

s

E

E

s

µ e

e

e

all the box diagrams to be

iMB =
if4[ū(p1)γαPLuµ(p)ū(p2)γαPLv(p3)− (p1 ↔ p2)]

64π2m2
E

3∑

i,j=1

UµiU
∗
ej [UeiU

∗
ej − UejU∗ei]Bij

(4.52)

where

Bij =
B(xi)−B(xj)

xi − xj
i 6= j, Bii =

x2
i − 2xi lnxi − 1

(xi − 1)3
, B(x) =

x2 lnx

(x− 1)2
− 1

x− 1
(4.53)

There are four different ways to make field contractions, and so there are four basic diagrams.

The first and second diagrams shown in Fig. 4.10 have the same relative sign. They differ

in the reversal of the fermion line with one electron and one positron. Similarly, the third

and fourth diagrams shown in Fig. 4.11 have the same relative sign. However, there is a

relative sign between the diagrams in Fig. 4.10 and Fig. 4.11. This is the sign that appears
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inside the summation symbol in MB. In addition, there are copies of all diagrams with a

relative sign due to fermion statistics. This is the reason for the p1 ↔ p2 in MB and Mγ .

Since the box diagram contribution is dominant, the µ → eee branching fraction

is

B′ =
f8

2(8π)4m4
EG

2
F

∣∣∣∣
3∑

i,j=1

UµiU
∗
ej [UeiU

∗
ej − UejU∗ei]Bij

∣∣∣∣
2

(4.54)

For small xi we have

B′ =
f8

2(8π)4m4
EG

2
F

sin2(4θ13)

8
(4.55)

Using GFm
2
E ' 1, f = 0.2 we have B′ = 1.35 × 10−13 which is comfortably below the

bound [40] of 1.0× 10−12.

4.7 Dark Matter Properties

The real scalar dark matter particle in this model is taken to be s, which is the

lightest mass eigenstate of s1,2,3 in the physical basis. The only direct connections of s

with SM particles is through the Higgs and the left-handed charged leptons. If the Yukawa

coupling f to leptons is small, then the coupling λ in the λvhs2 interaction with the Higgs

will determine both the dark matter relic density and the elastic cross section off nuclei.

This places a strong constraint on the mass of s to be in a small region near ms < mh/2

according a recent study [41]. This difficulty was solved in Ref. [42] by the radiative mixing

between the Higgs and another scalar. The strategy is to increase the channels for dark

matter annihilation without affecting the scattering off nuclei through h exchange. We
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therefore augment the particle content of our model with a complex electroweak singlet χ

with (SU(3)C , SU(2)L, Y ;Z2 dark, A4) = (1,1, 0; +,1′). The additional Lagrangian terms

are listed in Table 4.4. Since χ, y2 ∼ 1′ under A4, the new interactions are analogous

to those of y2 listed in the previous Table 4.3 but with fewer allowed terms since χ has

(+)dark and y2 has (−)dark. Also, new cubic terms Lcubic are allowed, which are needed for

the dark matter annihilation channels shown in Fig. 4.12. as well as the radiative mixing

shown in Fig. 4.13. The soft-breaking of A4 involving χ is assumed to occur only through

the dimension-two terms Lbreaking = µ2χ2 + (µ∗)2(χ∗)2, which split χ into its real and

imaginary components χR and χI .

In the physical mass basis, let the masses of χR,I be denoted by mR,I . For illus-

tration, we assume mR < ms < mI , and take the χIχ
2
R coupling to be zero, so that the

Terms that respect A4

Lχ = −m2
χχ
∗χ − λ′6 (χ∗χ)2 − λ′9 (χ∗χ) (Φ†Φ)

Lsχ = −λ′13 χ
∗χ
(
s2

1 + s2
2 + s2

3

)

Lxχ = Quartic terms x∗ixjχ
∗χ and x∗ix

∗
jχχ

Lyχ = Quartic terms y∗i yjχ
∗χ and y∗i y

∗
jχχ

Lcubic = µχχ
3 + µ∗χ(χ∗)3 + µs

(
s2

1 + ωs2
2 + ω2s2

3

)
χ+ µ∗s

(
s2

1 + ω2s2
2 + ωs2

3

)
χ∗

Terms that break A4

Lbreaking = µ2χ2 + (µ∗)2(χ∗)2

Table 4.4: Additional Scalar Lagrangian terms in the A4 model.
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Figure 4.12: Dark matter annihilation channels for ss to χR,I mass eigenstates.
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χR,I , s1,2,3

h

χR,I , s1,2,3

Figure 4.13: Radiative mixing of χR,I and h.

dark matter annihilations ss→ χRχR are controlled by the interaction terms

− Lint =
λ′

4
s2χ2

R +
g

2
s2χR +

g′

3!
χ3
R (4.56)

As a result, the annihilation cross section times relative velocity is given by

σ × vrel =

√
1− (mR/ms)2

64πm2
s

(
λ′ +

g′g

4m2
s −m2

R

− g2

2m2
s −m2

R

)2

(4.57)

Since s is a real scalar, we use [43] the value σ × vrel = 2.2 ×10−26cm3s−1 and with
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ms = 200 GeV and mR = 150 GeV, we find

λ′ + 0.073

( √
g′g

100 GeV

)2

− 0.174
( g

100 GeV

)2
= 0.1514 (4.58)

Recall that χR mixes radiatively with h, so that the dark matter annihilation to SM particles

is achieved from ss→ χRχR → h→ SM .

As mentioned earlier, the spin-independent elastic cross section proceeds through

the interaction λvhs2 and h exchange with nuclei. The cross section is

σSI =
λ2f2

Nµ
2m2

N

πm4
hm

2
s

(4.59)

where µ = mNms/(mN + ms) is the DM-nucleon reduced mass, mN = (mp + mn)/2 =

938.95 MeV is the nucleon mass, and fN = 0.3 is the Higgs-nucleon coupling factor [44].

The LUX bound [45] for ms = 200 GeV is σ ≈ 1.5 zb , which implies

λ < 3.3× 10−4 (4.60)

The next two sections are supplementary to the main results already discussed.

To summarize this chapter, we have reaffirmed the important idea that the effective Higgs

Yukawa couplings to SM charged fermions can have measurable effects which may point to

new physics across the entire lepton sector.
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4.8 Quartic Terms and the Soft-breaking of A4

There is a subtle issue concerning the scalar Lagrangian terms that has tacitly

been postponed in the previous sections. Table 4.3 includes the dimension-four terms that

respect A4

Lsx ⊃ −λ11 (x∗1s1 + x∗2s2 + x∗3s3) (x1s1 + x2s2 + x3s3) (4.61)

as well as the dimension-two terms that arbitrarily break A4

Lss ⊃ −sim2
ijsj (4.62)

Together, these will induce the dimension-two term shown in Fig. 4.14, which is a logarithmic

divergence. This is a radiative correction to the tree-level term x1x
∗
2 which by construction

is not present due to the method used to derive the neutrino mixing matrix U . This method

assumes that there are only two sources of soft-breaking of A4. The first source comes from

the sisj terms above for neutrino mass, and the second source comes from the yix
∗
j terms

for charged lepton mass

Lxy ⊃ −µ2
i yi(Uω)ijx

∗
j (4.63)

s1s1

x1 x2

Figure 4.14: Radiative x1x
∗
2 term.
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A consistent treatment requires that the tree-level term for x1x
∗
2 be present so that the

one-loop divergence can be absorbed in the context of renormalization. This compromises

the validity of deriving U from the soft-breaking matrices Uω and O.

This is an aspect of the technical difficulty inherent in A4 models. In the original

works, the most general Higgs potential allowed by A4 alone makes it difficult to align three

different scalar VEVs in different directions [46]. In some cases [47] it is expected that more

elaborate frameworks, such as extra dimensions or supersymmetry, are needed to solve this

so-called sequestering problem.

In our model, if the quartic couplings are small, then the problem is mitigated, with

the understanding that the analysis of the previous sections is valid only in the energy range

where the couplings have negligible flow under the renormalization group. In a similar model

with a comparable particle content, the A4 obstacle has just recently been overcome [48],

where essentially an enlarged symmetry group is used to forbid the troublesome quartic

term.

4.9 The Group A4 and its Subgroup Z3

The non-Abelian discrete symmetry A4 is the symmetry of the tetrahedron. It

has 12 elements and is the smallest group which admits an irreducible 3 representation. It

also has three one-dimensional representations 1,1′,1′′. The group A4 has two generating

elements S and T . For the singlets 1,1′,1′′, S and T are given by S = 1, 1, 1 and T =

1, ω, ω2 respectively. Here ω = exp(2πi/3) is the cubic root of 1, and satisfies ω2 = ω∗ and

1 + ω + ω2 = 0. For a triplet 3, a convenient representation of S and T due to Ma and
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Rajasekaran [49] is

S =




1 0 0

0 −1 0

0 0 −1




, T =




0 1 0

0 0 1

1 0 0




(4.64)

The basic multiplication rule given earlier

3× 3 = 1 + 1′ + 1′′ + 3 + 3

has the explicit multiplication of two triplets (a1, a2, a3) ∼ 3 and (b1, b2, b3) ∼ 3 as follows

a1b1 + a2b2 + a3b3 ∼ 1

a1b1 + ω2a2b2 + ωa3b3 ∼ 1′

a1b1 + ωa2b2 + ω2a3b3 ∼ 1′′

( a2b3 , a3b1 , a1b2 ) ∼ 3

( a3b2 , a1b3 , a2b1 ) ∼ 3 (4.65)

Instead of the two 3’s given above, it is often useful to employ the symmetric and antisym-

metric combinations

( a2b3 + a3b2 , a3b1 + a1b3 , a1b2 + a2b1 ) ∼ 3symmetric

( a2b3 − a3b2 , −a3b1 + a1b3 , a1b2 − a2b1 ) ∼ 3anitsymmetric (4.66)
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Other multiplication rules [50]. For the multiplication of one singlet a and one triplet

(b1, b2, b3) we have

1× 3 ∼ 3 a ( b1 , b2 , b3 ) ∼ 3

1′ × 3 ∼ 3 a ( b1 , ωb2 , ω
2b3 ) ∼ 3

1′′ × 3 ∼ 3 a ( b1 , ω
2b2 , ωb3 ) ∼ 3

(4.67)

The multiplication of two singlets a and b is just ab for the trivial combinations

1× 1 ∼ 1 a b ∼ 1

1× 1′ ∼ 1′ a b ∼ 1′

1× 1′′ ∼ 1′′ a b ∼ 1′′

(4.68)

as well as for the nontrivial combinations

1′ × 1′′ ∼ 1 a b ∼ 1

1′′ × 1′′ ∼ 1′ a b ∼ 1′

1′ × 1′ ∼ 1′′ a b ∼ 1′′

(4.69)

The generators S and T only acts on the states l1,2,3 in the A4 basis. The subgroup Z3 of

A4 is generated solely by the action of the T generator [51]. As a first example, consider the

mass eigenstates of charged leptons. The right-handed projections of the mass eigenstates

are eiR = liR, which transform as singlets 1,1′,1′′ so under the action of T they transform

as

eR → eR

µR → ω µR

τR → ω2 τR (4.70)

87



as described at the beginning of this section. For the A4 triplet of left-handed charged

leptons in the A4 basis, the action of T is

T




l1L

l2L

l3L




=




0 1 0

0 0 1

1 0 0







l1L

l2L

l3L




=




l2L

l3L

l1L




(4.71)

which is simply the permutation l1L → l2L, l2L → l3L, l3L → l1L. The left-handed projec-

tions of the mass eigenstates are eiL = (U †ω)ij ljL, so we have

eL = l1L + l2L + l3L

µL = l1L + ω2 l2L + ω l3L

τL = l1L + ω l2L + ω2 l3L (4.72)

and under the action of T on l1,2,3 this becomes

eL → l2L + l3L + l1L = eL

µL → l2L + ω2 l3L + ω l1L = ω
[
l1L + ω2 l2L + ω l3L

]
= ω µL

τL → l2L + ω l3L + ω2 l1L = ω2
[
l1L + ω l2L + ω2 l3L

]
= ω2 τL (4.73)

Thus the left- and right-handed fields transform the same way, which must be true for the

mass eigenstates to obey the Z3 lepton triality. In this model, the assignment is e, µ, τ ∼

1, ω, ω2.

As second example, consider the scalars. The fields yi transform as singlets 1,1′,1′′
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so under the action of T they transform as

y1 → y1

y2 → ω y2

y3 → ω2 y3 (4.74)

as described at the beginning of this section. For the A4 triplet x∗i in the A4 basis, the

action of T is

T




x∗1

x∗2

x∗3




=




0 1 0

0 0 1

1 0 0







x∗1

x∗2

x∗3




=




x∗2

x∗3

x∗1




(4.75)

which is simply the permutation x∗1 → x∗2, x
∗
2 → x∗3, x

∗
3 → x∗1. The rotated states z∗i are

z∗i = (Uω)ij x
∗
j so we have

z∗1 = x∗1 + x∗2 + x∗3

z∗2 = x∗1 + ω x∗2 + ω2 x∗3

z∗3 = x∗1 + ω2 x∗2 + ω x∗3 (4.76)

and under the action of T on x∗1,2,3 this becomes

z∗1 → x∗2 + x∗3 + x∗1 = z∗1

z∗2 → x∗2 + ω x∗3 + ω2 x∗1 = ω2
[
x∗1 + ω2 x∗2 + ω x∗3

]
= ω2 z∗2

z∗3 → x∗2 + ω2 x∗3 + ω x∗1 = ω
[
x∗1 + ω x∗2 + ω2 x∗3

]
= ω z∗3 (4.77)
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So under the action of T the soft terms that break A4 to Z3 transform as

µ2
e : y1z

∗
1 → y1z

∗
1

µ2
µ : y2z

∗
2 → ω y2 ω

2 z∗2 = y2z
∗
2

µ2
τ : y3z

∗
3 → ω2 y3 ω z

∗
3 = y3z

∗
3 (4.78)

so these Lagrangian terms are invariant under Z3 lepton triality.
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Part II

Related Phenomena Beyond the

Standard Model
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Chapter 5

Higgs Triplet Scalar Extension

5.1 Neutrino Mass

This chapter considers the phenomenology of a particular type of Higgs triplet

model. The motivation is to obtain the radiative Majorana neutrino mass shown in Fig. 5.1,

For simplicity, it shows only a single neutrino νL and a single scalar mass eigenstate s. The

emphasis will be on an interesting collider signature, and also on dark matter constraints

from relic density. The constraints from direct detection are accommodated in a simple

way and so a comprehensive analysis is not needed. This chapter is based on the work

previously published in Ref. [4].

The full symmetry group is the based on the SM gauge group

SU(3)C × SU(2)L × U(1)Y (5.1)

but also incorporates a discrete symmetry which is assumed to be exactly conserved since
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N N

νL νLs s

ξ0

Figure 5.1: Radiative neutrino mass.

its purpose is to stabilize dark matter. This dark Z2 symmetry (dark parity) functions in

the same way as Z2 dark used in the previous chapters, but here it is actually derivable from

the concept of lepton parity [52] according to

Z2 dark = (−1)L+2j (5.2)

where L is lepton number and j is particle spin. Lepton number corresponds to a global

U(1)L symmetry, which in this model is the symmetry used to to forbid the Higgs triplet

coupling to neutrinos at tree-level but to permit its realization in one-loop. The particle

content is shown in Table 5.1. The Higgs triplet consists of the complex scalars ξ++, ξ+, ξ0

which are arranged for convenience into a 2 × 2 matrix. The dark sector includes new

fermions NL,R and E−L,R arranged in electroweak doublets, which are vector-like so the

model is anomaly-free. The dark sector also includes three complex scalars si which are

electroweak singlets and carry lepton number. The lightest physical si is taken to be the

dark matter candidate in this model.

The allowed Lagrangian terms are listed in Table 5.2 before spontaneous symmetry

breaking. Conservation of lepton number is imposed on all hard terms. The SM charged
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Particle (SU(3)C , SU(2)L, Y ) Z2 dark L

LiL =

(
νiL
liL

)
(1,2,+1/2) + 1

liR (1,1,−1) + 1

Φ =

(
φ+

φ0

)
(1,2,+1/2) + 0

ψL,R =

(
NL,R

E−L,R

)
(1,2,+1/2) − 0

ξ =

(
ξ+/
√

2 ξ++

ξ0 −ξ+/
√

2

)
(1,3,+1) + 0

si (1,1,−1) − 1

Table 5.1: Particle content in the Higgs triplet model.

fermions have the usual Higgs Yukawa interactions and will obtain masses as in the SM

after electroweak symmetry breaking. The conservation of lepton number forbids the hard

Yukawa term νiL ξ (νiL)c which would otherwise be allowed. This term would have produced

a Type II tree-level Majorana neutrino mass from the interaction (νiL)c ξ0 νjL when ξ0 gets

a VEV. As mentioned at the beginning of Chapter 3, this effective term must still be realized

at one-loop in order to obtain the Weinberg operator. As shown in Fig. 5.1, the connection

with ξ0 at the top of the loop is achieved with the help of the new fermions NL,R. The

soft-breaking of lepton number comes from the following scalar terms which in general split

the complex si into their real and imaginary components

Lbreaking =
1

2
(∆m2

s)ijsisj + h.c. (5.3)

This is indicated by the cross in the figure and allows completion of the loop.
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Terms that respect U(1)L

LLeptons = −fSM,ij LiL Φ̃† ljR + h.c.

Lψ = −mEψψ = −mE

(
ELER +NLNR + h.c.

)

Lfs = ψR LiL (fs)ij s
∗
j + h.c.

Lψ,ξ = fLψ̃L ξ ψL + h.c.

+fRψ̃R ξ ψR + h.c.

−LΦ,ξ = m2Φ†Φ +M2Tr(ξ†ξ) + 1
2λ1(Φ†Φ)2

+1
2λ2[Tr(ξ†ξ)]2 + 1

2λ3Tr[(ξ
†ξ)2]

+λ4(Φ†Φ)Tr(ξ†ξ) + 1
2λ5Φ†ξξ†Φ

+µ(Φ†ξΦ̃) + h.c.

−LΦ,s = m2
ijs
∗
i sj + λij(Φ

†Φ)s∗i sj + λabcds
∗
as
∗
bscsd + h.c.

−Lξ,s = λijTr(ξξ
†)s∗i sj + h.c.

Terms that break U(1)L

−Lbreaking = 1
2(∆m2

s)ijsisj + h.c.

Table 5.2: Lagrangian terms in the Higgs triplet model.

After electroweak symmetry breaking, the mass-squared matrix (M2
s)ij spanning

s∗i sj is given by

(M2
s)ij = m2

ij + λijv
2 (5.4)

where the effects of Lbreaking have been neglected for the moment since they are small. In

general, there are the allowed Yukawa interactions

Lfs = ψR LiL (fs)ij s
∗
j + h.c.

=
(
NR νiL + E−R liL

)
(fs)ij s

∗
j + h.c. (5.5)
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We can rotate the sj into the physical basis s′j so that the general scalar mass terms

(M2
s)ijs

∗
i sj become diagonal in the physical basis (M′2s)ij s′i

∗ s′j . The new primed coupling

matrix is (fs)
′
ij . We assume that the primed coupling matrix is diagonal (fs)

′
ij = f ′sδij . We

also assume that the neutrino states νiL are mass eigenstates, which means that rotating

charged lepton states liL with the neutrino mixing matrix UPMNS will give the physical

states eiL, µiL, τiL.

The first term in parentheses in the second line of the preceding equation is the

neutrino Yukawa term in Fig. 5.1. The other allowed Yukawa terms at the top of the figure

come from the Higgs triplet

Lψ,ξ ⊃ fLψ̃L ξ ψL + h.c.

= fL

(
(EL)c,−(NL)c

)

ξ+/
√

2 ξ++

ξ0 −ξ+/
√

2






NL

EL


 + h.c.

= fL




(EL)c (ξ+/
√

2) NL + (EL)c ξ++ EL

−(NL)c ξ0NL + (NL)c (ξ+/
√

2) EL


 + h.c. (5.6)

where ψ̃L is the dual of ψL and similarly for the fR terms. The top of the radiative loop

involves the (NL)c ξ0NL and (NR)c ξ0NR terms.

Evaluating the radiative mass involves minimizing the scalar potential after elec-

troweak symmetry breaking. The VEV of φ0 induces a VEV for ξ0 from the µ(Φ†ξΦ̃)

term in LΦ,ξ. For the self-energy calculation, there are two sequences of propagators. The

sequence along the fermion line is a propagator for N , followed by a mass insertion propor-

tional to
〈
ξ0
〉
, followed by another propagator for N . The sequence along the scalar line is
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a propagator for s, followed by a mass insertion proportional to ∆m2
s, followed by another

propagator for s. We can obtain very reasonable neutrino masses of order 0.1 eV using the

values

〈
ξ0
〉
∼ 0.1 GeV

m2
s/m

2
E ∼ 0.1

fR ∼ 0.1

fL ∼ 0.1

∆m2
s/m

2
s ∼ 0.1

fs ∼ 0.01

For the rest of this chapter, we will treat s1,2,3 as complex scalars since the effects of Lbreaking

are small.

5.2 Collider Signature

In this model, the VEV of ξ0 is not too small. However, the effective coupling of ξ

to leptons is very small, which is different from the tree-level Type II seesaw model, where

the decay of ξ++ to same-sign dileptons is expected to be dominant. Here, the ξ++ term in

Lψ,ξ written out in the previous section is responsible for the decay ξ++ → E+E+ which

is possible when m(ξ++) > 2mE . In Fig. 5.2 we plot the LHC production cross section for
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Figure 5.2: LHC production cross section of ξ++ξ−− at 13 TeV.

ξ++ξ−− for 13 TeV. The subsequent decays after ξ++ξ−− production are

ξ++ → E+E+ → (l+s)(l+s)

ξ−− → E−E− → (l−s∗)(l−s∗) (5.7)

where the second set of decays follows from the terms in Lfs as written out in the previous

section

E+ → l+s

E− → l−s∗ (5.8)

This yields the interesting collider signature of a final state of four charged leptons la
+lb

+lc
−ld
−

and missing energy due to sss∗s∗. We assume that ξ+ and ξ0 are heavier than ξ++ so that

we can focus only on the decay products of ξ++ and ξ−−. We also assume that the lightest

s is s1, which is the dark matter candidate discussed in the next section.
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Recent LHC searches for multilepton signatures at 8 TeV by CMS and ATLAS are

consistent with SM expectations, and are potential restrictions on our model. In particular,

the CMS study includes rare SM events such as e+e+µ−µ− and e+e+µ−. Due to the

absence of opposite-sign, same-flavor (OSSF) l+l− pairs, both events are classified as OSSF0

where lepton l refers to electron, muon, or hadronically decaying tau. Leptonic tau decays

contribute to the electron and muon counts, and this determines the OSSFn category.

Details from CMS are shown in Table 5.2 for ≥ 3 leptons and Nτhad = 0.

The CMS study estimates a negligible SM background for SR1-SR3, and in our

simulation we use the same selection criteria. We impose the cuts on transverse momentum

pT > 10 GeV and psuedorapidity |η| < 2.4 for each charged lepton, with at least one lepton

pT > 20 GeV. In order to be isolated, each lepton with pT must satisfy
∑

i pT i < 0.15pT ,

where the sum is over all objects within a cone of radius ∆R = 0.3 around the lepton

direction. We implement our model with FeynRules 2.0. Using the CTEQ6L1 parton

distribution functions, we generate events using MadGraph5, which includes the Pythia

Selected CMS results OSSF0 Nτhad = 0 , Nb = 0

signal regions HT > 200 GeV HT < 200 GeV

≥ 4 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR1 (100,∞) 0 0.01+0.03
−0.01 0 0.11+0.08

−0.08

SR2 (50, 100) 0 0.00+0.02
−0.00 0 0.01+0.03

−0.01

SR3 (0, 50) 0 0.00+0.02
−0.00 0 0.01+0.02

−0.01

3 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR4 (100,∞) 5 3.7± 1.6 7 11.0± 4.9

SR5 (50, 100) 3 3.5± 1.4 35 38± 15

SR6 (0, 50) 4 2.1± 0.8 53 51± 11

Table 5.3: Events observed by CMS at 8 TeV with integrated luminosity 19.5 fb−1.
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package for hadronization and showering. MadAnalysis is then used with the Delphes card

designed for CMS detector simulation. Generated events intially have 4 leptons. About half

are detected as 3 lepton events, but the constraints from signal regions SR4-SR6 are less

restrictive than SR1-SR3. The number of detected events in the OSSF0 ≥ 4 lepton category

is almost the same as e±e±µ∓µ∓2s12s∗1 with very few additional leptons from showering or

initial/final state radiation.

To examine the production of e±e±µ∓µ∓ we take the mass of s1 to be 130 GeV,

which allows s1 to be dark matter as discussed in the next section. We use the values

fR = fL = 0.1 and fs = 0.01, although the results are not sensitive to the exact values

due to on-shell production and decay. The effects due to the VEV
〈
ξ0
〉
∼ 0.1 GeV may be

neglected.

For our model, we scan the mass range of ξ++ and E+. In Fig. 5.3 we plot contours

showing the expected number of detected events in the OSSF0 ≥ 4 lepton category for

13 TeV at luminosity 100 fb−1 assuming a negligible background as for the 8 TeV case.

Although the branching fractions of E+ to τ+s1 or µ+s1 are comparable, we find that most

of the contributions from τ± decay to e± or µ± in the ≥ 4 lepton final state are not detected.

A similar analysis performed for 8 TeV at 19.5 fb−1 has a maximum number of detected

events of 0.4 in the plot analogous to Fig. 5.3, which corresponds to a small estimated

exclusion at the 15% confidence level.
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Figure 5.3: Number of e±e±µ∓µ∓2s12s∗1 events for 13 TeV at luminosity 100 fb−1.

5.3 Dark Matter Properties

The complex scalar dark matter particle in this model is taken to be s1, which is

the lightest mass eigenstate of s1,2,3 in the physical basis. Even though s1 is approximately

complex, the comments about real scalar dark matter from Chapter 4 apply here as well.

There are only two direct connections of s1 with SM particles, namely, the connection with

the Higgs, and the connection with the left-handed charged leptons. The latter will be small

since the Yukawa coupling to leptons is small. In this case, the coupling λ in the λvhs2

interaction with the Higgs will determine both the dark matter relic density and the elastic

cross section off nuclei. This places a strong constraint on the mass of s to be in a small

region near ms < mh/2 according a recent study [41].

In this model, we can make use of s2,3. After electroweak symmetry breaking, the
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mass-squared matrix (M2
s)ij spanning s∗i sj is the same expression given earlier

(M2
s)ij = m2

ij + λijv
2 (5.9)

Upon diagonalizing M2
s, the coupling matrix λij will not be diagonal in general. In the

physical basis, s1 will interact with s2 through h. This allows the annihilation of s1s
∗
1 to hh

through s2 exchange, and contributes to the dark matter relic density without affecting the

s1 scattering cross section off nuclei through h. This mechanism restores s1 as a dark-matter

candidate for ms > mh.

To demonstrate the scale of the values involved, we consider the simplifying case

when ms2 = ms3 and λ12 = λ13. The additional choice m2
s2,3 = m2

s1 + m2
h ensures that

s2,3 are heavier than s1, and is convenient because then the relic abundance requirement

no longer depends explicitly on m2
s2,3 . Taking into account that s1 is a complex scalar, we

use [43] the value σ × vrel = 4.4 ×10−26cm3s−1 and in Fig. 5.4 we plot the allowed values

for λ12 and ms1 taking λ11 = 0 for simplicity to satisfy the LUX data.
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Figure 5.4: Allowed values of λ12 plotted against ms1 from relic abundance assuming
λ11 = 0.

To summarize, this chapter has examined a radiative Higgs triplet model for neu-

trino mass. It has an interesting verifiable collider signature that also includes the missing

energy signature of dark mater.
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Chapter 6

Vector Dark Matter SU(2)N Gauge

Extension

6.1 Outline of the Model

Vector dark matter is somewhat unique compared to fermion or scalar dark matter.

Introducing a new massive vector particle requires a Lorentz covariant description of its

spin degrees of freedom. This essentially promotes the vector particle to the status of a

gauge field, and the mass of the vector boson is generated when the gauge symmetry is

spontaneously broken. This is analogous to the SM, where the massive vector gauge bosons

W± and Z obtain masses after spontaneous breaking of the electroweak gauge symmetry.

This chapter is based on the work previously published in Ref. [5]. Similar to the earlier

versions [53, 54] of the model, there is an extra global symmetry U(1)S′ , but here it used

to define a conserved dark charge S. Another difference is that in this model, all the SM
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fermions are singlets under the extra gauge symmetry SU(2)N . This extension of the SM

is similar to other works [55, 56] which use an extra U(1) gauge symmetry to obtain vector

dark matter and an extra Z2 discrete symmetry to stabilize it. Other possibilities for vector

dark matter include considerations of the Littlest Higgs [57] or extra dimensions [58].

The full symmetry group of our model before spontaneous symmetry breaking is

SU(3)C × SU(2)L × U(1)Y × SU(2)N × U(1)S′ (6.1)

The first factor is the extra local SU(2)N gauge symmetry, whose new gauge bosons will

be the source of vector dark matter. As in the SM, when the Q = 0 component of Φ gets a

VEV and spontaneously breaks the local electroweak symmetry SU(2)L × U(1)Y down to

the local U(1)Q, the electric charge Q of all particles remains exactly conserved

Q = T3 + Y (6.2)

In this model there is a somewhat similar construction, except that U(1)S is a global

symmetry rather than a local symmetry. Some of the new particles carry charge global S

defined by

S = T3N + S′ (6.3)

which will also remain exactly conserved when the S = 0 components of the new scalars

χ, ζ,∆ get VEVs and spontaneously break the SU(2)N symmetry. In this model, particles

with charge S 6= 0 belong to the dark sector, and the lightest mass eigenstate with Q = 0

is expected to be the dark matter candidate. Here T3N and S′ are analogous to T3 and

hypercharge Y respectively in the SM. In this model, the imposed U(1)S′ is global symmetry

without any corresponding gauge field. This global U(1)S′ is the second extra factor in the
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full symmetry group. It is chosen in such a way that S is exactly conserved after SU(2)N

and the electroweak symmetry have both been completely broken, as described above. Note

this means the new scalars that get VEVs must have both S = 0 and Q = 0.

The particle content is listed in Table 6.1. Also listed are the charges S′ and S

corresponding to U(1)S′ and U(1)S . Before the spontaneous symmetry breaking of SU(2)N ,

there are three real gauge fields X1, X2, X3 but only the complex combinations X,X of

X1, X2 carry S charge. Under SU(2)N , all SM particles are neutral gauge singlets with

T3N = 0 and S′ = 0. In contrast, all new particles carry SU(2)N gauge charges T3N 6= 0

and S′ 6= 0. There is one complex doublet χ and one complex triplet ∆. There is also one

complex bidoublet ζ, which transforms vertically under SU(2)L × U(1)Y and horizontally

under SU(2)N . The new fermions come in three generations n, n′, n′′. Each of these is

a vector-like doublet under SU(2)N so their contributions to the SU(2)N gauge anomaly

cancel, hence this model is anomaly-free. Although not listed, lepton number may be defined

as L = +1 for n, n′, n′′ and the SM leptons, and L = −2 for the triplet particles ∆.

The notation for the VEVs and their approximate hierarchy is

〈χ2〉 = u2 ∼ TeV

〈φ0〉 = v1 ∼ 100 GeV

〈ζ0
2 〉 = v2 ∼ GeV

〈∆3〉 = u3 ∼ keV,MeV (6.4)

This means that SU(2)N is mostly broken by the largest VEV of 〈χ2〉 = u2. Note this is

slightly higher than the scale of electroweak symmetry breaking. The electroweak symmetry
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Particle (SU(3)C , SU(2)L, Y ) SU(2)N S′ S

LiL =

(
νiL
liL

)
(1,2,−1/2) 1 0 0

liR (1,1,−1) 1 0 0

Φ =

(
φ+

φ0

)
(1,2,+1/2) 1 0 0




X = (X1 − iX2)/
√

2

X = (X1 + iX2)/
√

2
X3


 (1,1, 0) 3 0




+1
−1
0




ζ =

(
ζ0

1 ζ0
2

ζ−1 ζ−2

)
(1,2,−1/2) 2 −1/2

(
−1 0
−1 0

)

χ =

(
χ1

χ2

)
(1,1, 0) 2 +1/2

(
+1

0

)

nL,R =

(
n1

n2

)

L,R

(1,1, 0) 2 +1/2

(
+1

0

)

n′L,R =

(
n′1
n′2

)

L,R

(1,1, 0) 2 +1/2

(
+1

0

)

n′′L,R =

(
n′′1
n′′2

)

L,R

(1,1, 0) 2 +1/2

(
+1

0

)

∆ =

(
∆2/
√

2 ∆3

∆1 −∆2/
√

2

)
(1,1, 0) 3 −1

(
−1 0
−2 −1

)

Table 6.1: Particle content in the vector dark matter model.
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is mostly broken by 〈φ0〉 = v1. This is close to the SM value, and is part of the reason why

the SM Higgs will be approximately Re(φ0) with a small admixture of the other new scalars.

This small mixing is also partly due to the small value of 〈ζ0
2 〉 = v2 relative to v1. The VEV

of ζ0
2 breaks both the electroweak and SU(2)N symmetries because ζ is a bidoublet. In this

model, the bidoublet is an important link between the SM and the dark sector. Without

it, the only link would be the Higgs portal from other scalar interactions [59, 60]. The

bidoublet is also important for neutrino mass, in combination with the smallest VEV of

〈∆3〉 = u3, which is needed to implement the inverse seesaw mechanism [28–30].

The allowed Lagrangian terms before spontaneous symmetry breaking are listed

in Table 6.2, where the duals of the fields are

Φ̃ =

(
φ0∗

−φ−

)

χ̃ =

(
χ∗2
−χ∗1

)

ζ̃ =




ζ+
2 −ζ+

1

−ζ0∗
2 ζ0∗

1




ñL =

(
(n2L)c

−(n1L)c

)
(6.5)

and similarly for ñR, ñ′L,R and ñ′′L,R. The Lagrangian is written in terms of ∆ but not

its dual ∆̃ because using ∆̃ does not give any additional independent terms. Note that

because n, n′, n′′ are not gauge singlets under SU(2)N , explicit Majorana mass terms such as

niL(njL)c or niR(njR)c are forbidden for all combinations of ni, n′i, n
′′
i and (nj)

c, (n′j)
c, (n′′j )

c.
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Fermion and Yukawa Terms

−Ln = Mab n
a
L n

b
R + h.c. where na,b = n, n′, n′′

−Lζ = fi LiL ζ nR + f ′i LiL ζ n
′
R + f ′′i LiL ζ n

′′
R + h.c.

= fi
[
νiL

(
ζ0

1 n1R + ζ0
2 n2R

)
+ eiL

(
ζ−1 n1R + ζ−2 n2R

)]

+f ′i
[
νiL

(
ζ0

1 n
′
1R + ζ0

2 n
′
2R

)
+ eiL

(
ζ−1 n′1R + ζ−2 n′2R

)]

+f ′′i
[
νiL

(
ζ0

1 n
′′
1R + ζ0

2 n
′′
2R

)
+ eiL

(
ζ−1 n′′1R + ζ−2 n′′2R

)]
+ h.c.

−L∆,L = fabL ñaL ∆ nbL + h.c.

= fabL

[
(na2L)c

(
∆2√

2
nb1L + ∆3n

b
2L

)
− (na1L)c

(
∆1n

b
1L −

∆2√
2
nb2L

)]
+ h.c.

−L∆,R = fabR ñaR ∆ nbR + h.c.

= fabR

[
(na2R)c

(
∆2√

2
nb1R + ∆3n

b
2R

)
− (na1R)c

(
∆1n

b
1R −

∆2√
2
nb2R

)]
+ h.c.

Scalar Terms

−Lscalars = µ2
ζ Tr(ζ

†ζ) + µ2
Φ Φ†Φ + µ2

χ χχ
† + µ2

∆ Tr(∆†∆)

+(µ1Φ̃†ζχ+ µ2χ̃
†∆χ+ h.c.)

+1
2λ1[Tr(ζ†ζ)]2 + 1

2λ2(Φ†Φ)2

+1
2λ3Tr(ζ

†ζζ†ζ) + 1
2λ4(χ†χ)2 + 1

2λ5[Tr(∆†∆)]2

+1
4λ6 Tr(∆

†∆−∆∆†)2 + f1χ
†ζ̃† ζ̃χ

+f2χ
†ζ†ζχ+ f3Φ†ζζ†Φ + f4Φ†ζ̃ ζ̃†Φ

+f5(Φ†Φ)(χ†χ) + f6(χ†χ) Tr(∆†∆)
+f7χ

†(∆∆† −∆†∆)χ+ f8(Φ†Φ) Tr(∆†∆)
+f9 Tr(ζ

†ζ) Tr(∆†∆) + f10 Tr[ζ(∆†∆−∆∆†)ζ†]

Table 6.2: Lagrangian terms in the vector dark matter model.
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6.2 Spontaneous Symmetry Breaking

First consider first the gauge bosons. Their masses are affected by all four of the

scalar VEVs. The masses of W± and X,X are

m2
W =

1

2
g2

2(v2
1 + v2

2)

m2
X =

1

2
g2
N [u2

2 + v2
2 + 2u2

3] (6.6)

where g2 and gN are the gauge couplings. The mass of W is mostly due to v1 =
〈
φ0
〉

and

the mass of X is mostly due to u2 = 〈χ2〉. The mass matrix that mixes the interaction

state gauge bosons Z and X3 = Z ′ is

m2
Z,Z′ =

1

2




(g2
1 + g2

2)(v2
1 + v2

2) −gN
√

(g2
1 + g2

2)v2
2

−gN
√

(g2
1 + g2

2)v2
2 g2

N (u2
2 + v2

2 + 4u2
3)


 (6.7)

which determines the physical mass eigenstate gauge bosons. Unlike other Z ′ models, this

Z ′ does not couple directly to SM particles, so it will not be easy to detect at the LHC.

Next consider the SM fermions. As in the SM, Dirac mass terms for the charged

SM fermions come from the larger Higgs VEV v1 =
〈
φ0
〉
. For neutrinos, Dirac mass terms

come from the modest VEV v2 =
〈
ζ0

2

〉
and small Majorana mass terms come from the

smallest VEV u3 = 〈∆3〉. The relevant Lagrangian terms are

− L ⊃
(
νeL , (n2R)c , . . .

)
(Mνn)




(νeL)c

n2R

...




(6.8)

where the neutrino mass matrix Mνn has the schematic form
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(νeL)c n2R (n2L)c (νµL)c n′2R (n′2L)c (ντL)c n′′2R (n′′2L)c

νeL 0 fev2 0 0 f ′ev2 0 0 f ′′e v2 0

(n2R)c fev2 f11
R u3 M11 f ′ev2 f12

R u3 M12 f ′′e v2 f13
R u3 M13

n2L 0 M11 f11
L u3 0 M12 f12

L u3 0 M13 f13
L u3

νµL 0 fµv2 0 0 f ′µv2 0 0 f ′′µv2 0

(n′2R)c fµv2 f12
R u3 M12 f ′µv2 f22

R u3 M22 f ′′µv2 f23
R u3 M23

n′2L 0 M12 f12
L u3 0 M22 f22

L u3 0 M23 f23
L u3

ντL 0 fτv2 0 0 f ′τv2 0 0 f ′′τ v2 0

(n′′2R)c fτv2 f13
R u3 M13 f ′τv2 f23

R u3 M23 f ′′τ v2 f33
R u3 M33

n′′2L 0 M13 f13
L u3 0 M23 f23

L u3 0 M33 f33
L u3

(6.9)

The VEV u3 = 〈∆3〉 is naturally small because it breaks lepton number L to (−1)L. The

couplings fabL,R are not naturally small, but the end result is that the products fabL,Ru3 are

small Majorana masses.

The simplest case occurs when the following parameters can be neglected compared
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to other terms

( f ′e , f
′′
e ) v2 ∼ 0

( fµ , f
′′
µ ) v2 ∼ 0

( fτ , f
′
τ ) v2 ∼ 0

( f12
L , f13

L , f23
L ) u3 ∼ 0

( f12
R , f13

R , f23
R ) u3 ∼ 0

M12 , M13 , M23 ∼ 0 (6.10)

so that the 9×9 neutrino mass matrix is block diagonal, and each block takes the well-known

form of the inverse seesaw. For the electron block

Mνn|e =




0 fev2 0

fev2 f11
R u3 M11

0 M11 f11
L u3




(6.11)

When f11
L u3 and f11

R u3 are much less than M11, this gives the inverse seesaw neutrino mass

mν1 '
(fev2)2(f11

L u3)

M2
11

(6.12)

where the small neutrino mass results from the combination of the small Majorna mass

f11
L u3 and the small ratio of the Dirac mass to the invariant mass (fev2/M11)2.

Consider now the scalar particles. Minimizing the scalar potential and taking into
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account the hierarchy of the VEVs mentioned earlier, we find the VEVs to be given by

u2
2 '

−µ2
χ

λ4

v2
1 '

−µ2
Φ − f5u

2
2

λ2

v2 ' −µ1v1u2

µ2
ζ + f2u2

2

u2
3 ' −µ2u

2
2

µ2
∆ + (f6 − f7)u2

2

(6.13)

and the physical masses of the scalars to be given by

m2(
√

2Re χ2) ' 2λ4u
2
2

m2(
√

2Re φ0) ' 2λ2v
2
1

m2(ζ0
2 ) ' µ2

ζ + f2u
2
2 + f4v

2
1

m2(ζ−2 ) ' µ2
ζ + f2u

2
2 + f3v

2
1

m2(ζ0
1 ) ' µ2

ζ + f1u
2
2 + f4v

2
1

m2(ζ−1 ) ' µ2
ζ + f1u

2
2 + f3v

2
1

m2(∆1) ' µ2
∆ + (f6 + f7)u2

2 + f8v
2
1

m2(∆3) ' µ2
∆ + (f6 − f7)u2

2 + f8v
2
1

m2(∆2) ' µ2
∆ + f6u

2
2 + f8v

2
1 (6.14)

where the names of the physical particles reflect the dominant component of the scalar

mixtures. The five scalar components Reχ1, Imχ1, Reφ+, Imφ+, Imφ0 are not listed

because they are absorbed to become the five longitudinal components of the massive gauge

bosons W±, X, X and the physical gauge boson mixtures of Z, Z ′.
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6.3 Dark Matter Properties

The particles with dark charge S 6= 0 are the fermions n1, n
′
1, n
′′
1, the scalars

∆1,∆2, ζ1, and the gauge bosons X,X. Of these, we assume X,X are the lightest, which

means they are stable. In this way, we obtain vector dark matter. The new particles with no

dark charge S = 0 are the fermions n2, n
′
2, n
′′
2, the scalars ∆3, ζ2, Reχ2, and the interaction

gauge boson X3 = Z ′. Of these, we assume for illustration that ζ0
2 and ζ−2 are lighter than

X so that the dark matter annihilations XX → ζ0
2ζ

0∗
2 and XX → ζ+

2 ζ
−
2 are kinematically

allowed and other annihilations are kinematically forbidden. Note that in this model, dark

matter does not annihilate directly to SM particles. Subsequent decays such as ζ2ζ
†
2 → l−l+

maintain thermal equilibrium with SM particles.

Using the diagrams for the dark matter annihilation shown in Fig. 6.1, we calculate

the annihilation cross section times relative velocity to be

σ × vrel =
g4
N

576πm2
X

√
1−

m2
ζ2

m2
X


2 +

[
1 +

4(m2
X −m2

ζ2
)

m2
ζ1

+m2
X −m2

ζ2

]2

 (6.15)

We use [43] the value σ × vrel = 4.4 ×10−26cm3s−1 which takes into account that X is

X

X

ζ†2

ζ2

ζ1

X

X

ζ†2

ζ2

Figure 6.1: Dark matter annihilation of XX to ζ2ζ2
†.
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a complex vector field, and in Fig. 6.2 we plot the allowed values of mX/g
2
N versus the

parameter r = m2
ζ2
/m2

X .
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200
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=2mX
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Figure 6.2: Allowed parameter values from relic abundance.

In this model, there is a chance of detecting X from its scattering off nuclei due

to h exchange, where h is the 125 GeV particle resulting from a linear combination of

√
2Reφ0,

√
2Reζ0

2 and
√

2Reχ2. The hXX interaction is due primarily to the mixing of φ0

and χ2, and is approximately (g2
Nv1/

√
2)(f5/λ4). The Higgs interaction with quarks hqq

has coupling strength given by (mq/
√

2v1). The spin-independent elastic cross section for

scattering off a nucleus of Z protons and A−Z neutrons normalized to one nucleon is given

by [61]

σSI =
1

π

(
mN

mX +AmN

)2 ∣∣∣∣
Zfp + (A− Z)fn

A

∣∣∣∣
2

(6.16)
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where we find

fp
mp

= −0.075

[
g2
N (f5/λ4)

4m2
φ

]
− 0.925(3.51)

[
g2
N (f5/λ4)

54m2
φ

]

fn
mn

= −0.078

[
g2
N (f5/λ4)

4m2
φ

]
− 0.922(3.51)

[
g2
N (f5/λ4)

54m2
φ

]
(6.17)

with mφ = 125 GeV. In Fig. 6.3 we plot maximum allowed value of g2
N (f5/λ4) as a function

of mX using the LUX data [62]
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r = 0.8 r = 0.2

Figure 6.3: Allowed parameter values from relic abundance and direct detection.

Although not considered here, this model includes the interesting possibility that

one of the ∆ particles is stable, allowing ∆ to become a significant additional component [63]

of dark matter. Consider the interactions based on the Lagrangian terms, neglecting the

mixing between scalars. From L∆,L and L∆,R there are possible decays ∆ → nanb. In

116



general these decays are not suppressed by the couplings fabL,R, but they can be kinematically

forbidden by the large invariant masses Mab of nanb. This is consistent with the inverse

seesaw mechanism for neutrino masses outlined in the previous section. There are also

possible decays from Lscalars, but we assume these are also kinematically forbidden. The

remaining possible decays come from gauge interactions. For example, the Lagrangian

term ∆3∆∗1XX describes the decay ∆3 → ∆1XX. Thus ∆3 is kinematically stable if we

have m(∆3) < 2mX + m(∆1). Similarly, the Lagrangian term ∆1∆∗3XX describes the

decay ∆1 → ∆3XX and ∆1 is kinematically stable if m(∆1) < 2mX + m(∆3). Note this

stability of ∆ arises from kinematics rather than from any additional modification of the

dark symmetry. One indication of this can be seen by comparing the dark charges of the

stable particle. In the first case ∆1 carries dark charge S = −2, whereas in the second case

∆3 does not carry any dark charge S = 0.

To summarize, this chapter has examined a realistic model of vector dark matter

that includes tree-level neutrino masses based on the inverse seesaw. The 125 GeV particle

is an electroweak scalar that mixes only slightly with its scalar counterpart in the dark

sector.
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Chapter 7

Supersymmetric U(1)X Gauge

Extension

7.1 Outline of the Model

The original motivation for the analysis of this chapter was the suggestion of a 750

GeV diphoton excess based on preliminary LHC measurements [64, 65]. The importance of

this event was the hope that it was the first solid glimpse into physics beyond the SM. Since

that time many papers have appeared in response to this issue. Very recent updates [66,

67] report that the intial LHC results were most likely due to statistical fluctuations, which

was of course also widely suspected from the begining. Nonetheless, the diphoton analysis

for the model considered in this chapter may still be valuable should a similar phenomenon

reappear as the LHC run continues. Independent of this aspect, another important outcome

of this chapter is the relaxation of the standard supersymmetric constraints on the Higgs
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boson mass of 125 GeV. This chapter is based on the work previously published in Ref. [6],

where further details may be found that are not included here.

The LHC diphoton data do not show any significant excesses in the dijet, massive

diboson or tt channels. This strongly suggests that for an explanation due to a resonance,

the new particle is neutral under the SM gauge group and has spin 0 or spin 2, with

suppressed decays into massive electroweak gauge bosons and SM fermions [68]. For the

model outlined in this chapter, this precisely describes the complex scalars S1,2,3 and their

interactions with the new vectorlike fermions U,D which are colored singlets. These particles

are essential ingredients in this model for a unique pattern of anomaly cancellation, and

were not invented after the fact to explain the diphoton excess.

For background, recall that the SM is an excellent reference model even though it

treats neutrinos as massless. Similarly, the well-known minimal supersymmetric standard

model (MSSM) is a popular reference model even though it treats neutrinos as massless.

The main appeal of supersymmetric models is their ability to greatly alleviate the hierarchy

problem, which is the question of why scalar masses near the electroweak scale should

remain small when they receive large radiative corrections from a higher mass scale. In

the SM by itself, there is no hierarchy problem because there is no hierarchy, that is, the

electroweak scale in the only mass scale the theory. The problem arises when the SM is

embedded into any broader framework that introduces a higher mass scale, for example,

implementing the canonical or inverse seesaw mechanism for neutrinos introduces a large

fermion invariant mass. The most realistic models consider the very high Planck scale,

which introduces enormous radiative corrections. In spite of the advantage offered by the
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MSSM and other supersymmetric models, there is one shortcoming, which is the µ problem.

This is the question of why the dimensionful µ coupling in the Higgs sector should be so

close the mass scale of soft supersymmetry breaking. On general grounds, these scales are

expected to have very different physical origins, and yet for the correct phenomenology they

must both be close to the electroweak scale.

The particular model which is the subject of this chapter stems from the original

proposal [69] which is a U(1) gauge extension of the SM with supersymmetry. It includes

neutrino masses and explains the µ problem. A specific version of it [70, 71] is the basis of

this chapter. Before spontaneous breaking of the gauge symmetry, the gauge group part of

the full symmetry group is

SU(3)C × SU(2)L × U(1)Y × U(1)X (7.1)

which shows the U(1)X gauge extension of the SM. The remaining part of the full symme-

try group involves the supersymmetric transformations between the bosonic and fermionic

fields. Details may be found in Ref. [72], which is also a good source for other aspects that

are only briefly covered below.

The particle content of the model is listed in Table 7.1 and grouped by particle

type. Listed first are the SM gauge bosons and the new U(1)X gauge boson, the SM quarks,

the SM leptons and new fermions N for neutrino masses, the two scalar Higgs doublets and

new scalars S, and the new exotic fermions U and D. The R parity familiar from the MSSM

is defined by R = (−1)2j+3B+L where j is particle spin. The corresponding superpartners

and values of R parity are indicated with a tilde. As in the MSSM, R parity is also conserved
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R Particle copies P̃article R̃ B L SU(3)C SU(2)L Y X

+ ga 1 g̃a − 0 0 8 1 0 0

+ Wa 1 W̃a − 0 0 1 3 0 0

+ B 1 B̃ − 0 0 1 1 0 0

+ BX 1 B̃X − 0 0 1 1 0 0

+ Q =

(
u

d

)
3 Q̃i =

(
ũL

d̃L

)
− 1/3 0 3 2 1/6 0

+ uc 3 ũ∗R − −1/3 0 3∗ 1 −2/3 1/2

+ dc 3 d̃∗R − −1/3 0 3∗ 1 1/3 1/2

+ L =

(
ν

e

)
3 L̃i =

(
ν̃L
ẽL

)
− 0 1 1 2 −1/2 1/3

+ ec 3 ẽ∗R − 0 −1 1 1 1 1/6

+ N c 3 Ñ∗R − 0 −1 1 1 0 1/6

+ φ1 =

(
φ0

1

φ−1

)
1 φ̃1 =

(
φ̃0

1

φ̃−1

)
− 0 0 1 2 −1/2 −1/2

+ φ2 =

(
φ+

2

φ0
2

)
1 φ̃2 =

(
φ̃+

2

φ̃0
2

)
− 0 0 1 2 1/2 −1/2

+ S1 3 S̃1 − 0 0 1 1 0 −1/3

+ S2 3 S̃2 − 0 0 1 1 0 −2/3

+ S3 2 S̃3 − 0 0 1 1 0 1

− U 2 ŨL + 1/3 1 3 1 2/3 −2/3

− D 1 D̃L + 1/3 1 3 1 −1/3 −2/3

− U c 2 Ũ∗R + −1/3 −1 3∗ 1 −2/3 −1/3

− Dc 1 D̃∗R + −1/3 −1 3∗ 1 1/3 −1/3

Table 7.1: Particle content in the supersymmetric model.

in this model. It serves the same function as the discrete Z2 dark symmetry in the previous

chapters, and the lightest neutral mass eigenstate with odd R parity is the dark matter

candidate. The number of copies (generations) is indicated separately. Except for the
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vector gauge bosons and their Majorana superpartners, generation indices are suppressed.

For the particles with SU(3)C ∼ 3,3∗ an additional color index is understood. The notation

used for left- and right-handed fermion fields differs from the previous chapters, and follows

the standard convention where all fermion fields are left-handed. For example e is a left-

handed electron and ec is a right-handed positron. Their superpartners are the two complex

scalar electrons eL and e∗R, respectively. It is highly non-trivial to show that in this model,

all gauge anomalies cancel.

The supersymmetric Lagrangian terms can be obtained in a lengthy but relatively

straightforward way. Alternatively, the formalism of superfields can be used, where the tilde

is not written and the context determines whether the tilde is implied or not. For example,

the superfield e stands for either e or ẽL and ec stands for either ec or ẽ∗R depending on the

calculation involved. The auxiliary device used to obtain the Lagrangian terms involves the

concept of the superpotential. The allowed superpotential terms for this model are listed

in Table 7.2, which will be referred to throughout this chapter. The terms affected by the

VEVs produce masses for fermions and mass mixings for scalars, as well as interactions.

The terms without VEVs produce interactions including decays of the scalar leptoquarks

Ũ and D̃.

There is currently no direct evidence for the existence of the superpartners, which

would have the same mass as the known particles if supersymmetry were exact. Therefore

at the low energy scales available in experiments, a valid description must incorporate

some kind of supersymmetry breaking. The spontaneous breaking of supersymmetry at

some high energy scale is usually considered ideal, but for phenomenological purposes it is
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Superfields scalar VEV Particle P̃article

Qucφ2

〈
φ0

2

〉
uuc Dirac masses ũLũ

∗
R scalar

Qdcφ1

〈
φ0

1

〉
ddc Dirac masses d̃Ld̃

∗
R scalar

Lecφ1

〈
φ0

1

〉
eec Dirac masses ẽLẽ

∗
R scalar

LN cφ2

〈
φ0

2

〉
νN c Dirac masses ν̃LÑ

∗
R scalar

S3UU
c 〈S3〉 UU c Dirac masses ŨLŨ

∗
R scalar

S3DD
c 〈S3〉 DDc Dirac masses D̃LD̃

∗
R scalar

N cN cS1 〈S1〉 N cN c Majorana masses Ñ∗RÑ
∗
R scalar Re, Im

S1S2S3 〈S1〉 , 〈S2〉 , 〈S3〉 SiSj scalar Re, Im S̃iS̃j Majorana masses

S3φ1φ2 〈S3〉 ,
〈
φ0

1

〉
,
〈
φ0

2

〉
φ1φ2 , S3φi scalar φ̃iφ̃j fermion masses

ucN cU 0 νu←− Ũ

ucecD 0 eu←− D̃

dcN cD 0 νd←− D̃

QLDc 0 eu, νd←− D̃

Table 7.2: Superpotential terms in the supersymmetric model.

customary to parametrize our ignorance of how supersymmetry breaking occurs by including

explicit soft breaking terms in the Lagrangian. These soft-breaking terms include tree-level

mass terms for the scalar particles and the fermionic gauginos (the superpartners of the

gauge bosons). Consistency then requires that corresponding terms should appear in the

superpotential. For this model, the superpotential only contains terms that are trilinear in

the superfields. Note that in the MSSM, the bilinear superpotential term φ1φ2 is allowed

by gauge invariance [73], but here it is forbidden by the U(1)X gauge charges. So in this

model all masses originate from soft supersymmetry breaking. This explains why the VEVs

responsible for the spontaneous symmetry breaking scales of SU(2) × U(1)Y and U(1)X
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are not far from the breaking scale of supersymmetry. In this model, there are five scalar

VEVs, two from the Higgses φ0
1,2 and three from the first copies of S1,2,3

v1 =
〈
φ0

1

〉

v2 =
〈
φ0

2

〉

u1 = 〈S1〉

u2 = 〈S2〉

u3 = 〈S3〉 (7.2)

7.2 Quarks, Leptons and Neutrinos

It is clear from the terms in the superpotential that the SM quarks and leptons

receive Dirac masses from the VEVs v1,2 as in the MSSM. It is also clear that the neutrino

mass matrix for each generation is of the form

LνN = −
(ν,N c)




0 mD

mD mN






νc

N


 + h.c. (7.3)

where mD comes from v2 and mN comes from u1. This is the canonical seesaw, where a

small neutrino mass results from a small Dirac mass mD compared to a large Majorana

mass mN .

7.3 Gauge Bosons

When the three VEVs 〈S1,2,3〉 become nonzero, they give the new ZX gauge boson

mass. When the two VEVs
〈
φ0

1,2

〉
become nonzero, they give the Z gauge boson mass, and
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give further contributions to ZX mass, and also produce off-diagonal terms in the mass-

squared matrix that mixes Z and ZX . The mass-squared matrix determines the physical

vector particles. Precision electroweak measurements require Z and ZX mixing to be very

small [74], which in this model translates to

v1 ' v2

= (174 GeV)/
√

2 = 123 GeV (7.4)

which will be assumed in the following. As will be mentioned shortly, in the MSSM this

corresponds to the parameter choice tanβ ≡ v2/v1 ' 1.

There are also experimental limits on the decays ZX → l−l+. To check these,

we use the following mass estimates. We take the SM quarks and leptons to be massless,

we take all the scalar quarks to have mass 800 GeV, and we take all the scalar leptons to

have mass 500 GeV. We take the exotic U,D fermions to have masses 400 GeV so they

can explain the diphoton excess, which will be discussed in the last section. We take one

of the pseudo-Dirac fermions coming from a linear combination of S̃1 and S̃2 to have mass

200 GeV so it can be the dark matter candidate, as will be discussed. Finally, we take the

U(1)X coupling to be gX ∼ 0.5. This gives [6] a lower bound of mZX ∼ 3 TeV.

7.4 Scalars

As mentioned earlier, all scalar particles obtain explicit mass terms due to soft

symmetry breaking. Along with the VEVs of spontaneous symmetry breaking, these de-

termine the physical masses after mixing has been taken into account. Consider the scalar
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quarks and scalar leptons. The approximate range of their physical masses has been quoted

above. Consider the exotic scalars ŨL,R and D̃L,R. They are leptoquarks and decay into

ordinary quarks and leptons based on the form of the superpotential terms. Consider the

neutral S scalars that do not have any VEV. The second and third copies of S1,2 are as-

sumed to be heavy enough so they have not yet been discovered. The second copy of S3 will

be the key ingredient to explain the diphoton excess, to be discussed in the next section.

The remaining scalars are examined below. We calculate or estimate the physical

particles to be given by approximate linear combinations of the interaction states listed in

the particle content Table 7.1. In the following tabular equations, the first entry is the

numerical mass or a description. Coefficients are not normalized, and null coefficients are

indicated by 0 or left blank. Very small coefficients are indicated by a dot. Coefficients that

are generically nonzero are denoted by x.

The two charged Higgs scalars give one Goldstone and one physical charged Higgs.

For the neutral scalars, the real components will in general mix, but we require that the

Re(φ0
1,2) sector be isolated from the Re(S1,2,3) sector, which requires

u1 =
√

2u2 (7.5)

This gives the two physical real scalar Higgses h,H where h is to be identified with the
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125 GeV particle, and three other physical real scalars

φ+
1 φ+

2 Re(φ0
1) Re(φ0

2) Re(S1) Re(S2) Re(S3)

Goldstone G+ 1 1

scalar H+ −1 1

125 GeV h 1 1 . . .

heavy H −1 1 . . .

scalar . . x x x

scalar . . x x x

scalar . . x x x

(7.6)

The case when there is small mixing, indicated by the dots, will be referred to later in

regards to the direct detection of dark matter.

For the neutral scalars, the five imaginary components give three pseudoscalars

and two Goldstones

Im(φ0
1) Im(φ0

2) Im(S1) Im(S2) Im(S3)

pseudoscalar A −1 1 0 0 0

pseudoscalar A12 0 0 2 −
√

2 0

pseudoscalar AS 0 0 u3 u3

√
2 u2

√
2

Goldstone G0
Z 1 1 0 0 0

Goldstone G0
ZX

v1/2 −v1/2 −u2

√
2/3 −u22/3 u3

(7.7)

which assumes v1 ' v2 is much less than u2,3. Note that A is familiar from the MSSM, but
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this model has the additional pseudoscalars A12 and AS . It is worth mentioning that to

correctly achieve only two zero mass eigenvalues for the Goldstone modes it is necessary to

include a non-standard but otherwise technically allowed trilnear Lagrangian term of the

form given by Eq. (5.2) in Ref. [72].

Based on the physical states above, the physical Higgs mass in this model is

m2
h ' (g2

X + 2f2 + λ2)
〈
φ0

1

〉2
(7.8)

We see that mh = 125 GeV is determined from three parameters. First, the parameter

gX = 0.5 is the gauge coupling as mentioned earlier. Second, the parameter λ2 is the well-

known one-loop correction from the top quark and the associated physical scalar quarks t̃1

and t̃2

λ2 =
6G2

Fm
4
t

π2
ln

(
mt̃1

mt̃2

m2
t

)
(7.9)

Third, the parameter f is the Yukawa coupling of the fS3φ1φ2 term in the superpotential.

Note that the VEV u3 = 〈S3〉 generates the µ term

µ = f 〈S3〉 (7.10)

whereas in the MSSM µ is just an explicit coupling with dimension of mass.

Taking mt̃1,2
' 1 TeV and mh = 125 GeV determines f ' 0.5. Thus the three

parameters gX , λ2, f can easily be chosen in this model to give mh = 125 GeV. This is

the relaxation of the supersymmetric constraint on the Higgs mass. That is, the MSSM

requires a large value of tanβ and must also achieve mh = 125 GeV, and satisfying both

of these conditions simultaneously is difficult in the MSSM. Note that the values chosen
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for the three parameters gX , λ2, f are consistent with the earlier constraint mZX ∼ 3 TeV.

For example, taking 〈S3〉 = 2 TeV and 〈S2〉 = 4 TeV gives mZX ∼ 3 TeV directly from the

Z,ZX mass matrix.

The approximate mass range quoted earlier for the scalar leptons includes the

scalar neutrinos, but here we make some additional comments. The scalar neutrinos are

the only neutral scalars in this model that have odd R parity, so in principle they are

scalar dark matter candidates. In the MSSM, scalar neutrinos cannot escape dark matter

direct detection bounds due to Z exchange with nucleons. One popular way to avoid this

is to introduce mass splitting between the real and imaginary components of the complex

scalar neutrino[75]. This is what happens in this model due to lepton number violating

terms, which are analogous to the Majorana mass terms NN c of the fermionic superpart-

ners. Here the complex scalars have corresponding mass terms ÑRÑR, which combine with

the ν̃LÑ
∗
R terms to determine the physical states of real scalars as linear combinations of

Re(ν̃L), Im(ν̃L), Re(ÑR), Im(ÑR). However, as already mentioned, we assume the scalar

mass eigenvalues are greater than the mass 200 GeV of the lightest pseudo-Dirac dark

matter candidate to be discussed in the next section.

7.5 New Fermions

Consider first the charged fermions. It is clear from the terms in the superpotential

that the exotic fermions U and D receive Dirac masses from the VEV u3. The masses

quoted earlier of 400 GeV are in the correct range to explain the diphoton excess, as will

be discussed. On the other hand, the mixing of the charged gauginos (winos) and charged
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higgsinos

W̃+, φ̃+
1 , φ̃

+
2 (7.11)

come from gauge interactions rather than the superpotential. Although they are charged,

they do not contribute to the diphoton excess because they do not couple to the S3 scalar

as discussed in the next section. Similarly, even though the gluinos are colored, they do not

couple to the S3 scalar, so they will not contribute to its production from SM gluons at the

LHC.

The remaining fermions are neutral and have odd R parity, so they are potential

dark matter candidates. Consider first the Majorana fermions S̃ whose scalar counterparts

do not have VEVs. These are the third copies S̃1,2 and the second copies S̃1,2,3. As

mentioned earlier a specific linear combination of them will be the dark matter candidate.

As outlined in Ref. [6], the form of the mass matrix allows us to redefine the interaction

states as new linear combinations such that the physical states are

S̃1 S̃2 S̃1 S̃2 S̃3

200 GeV S̃ 1 1 . . .

& 200 GeV S̃pD 1 −1 . . .

heavy S̃TeV . . x x x

heavy S̃′TeV . . x x x

heavy S̃′′TeV . . x x x

(7.12)

where the lightest S̃ is the dark matter candidate, S̃pD is its pseudo-Dirac companion, and
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the other heavy Majorana fermions are in the TeV range. The value of 200 GeV is chosen

in order to accommodate the invisible width of the diphoton resonance, as discussed in the

next section.

Since S̃ is Majorana, there is no chance of direct detection from elastic scattering

off nuclei through the ZX interaction. For a spin-independent cross-section, the only hope

for direct detection is from h exchange. As listed previously in the scalar sector, we have

taken h to be approximately given by a linear combination of φ0
1,2. It is clear from the

superpotential that the desired S̃S̃h interaction must come from the S1S2S3 term, that

is, from S̃iS̃jSk where Sk are the S scalars that have VEV. This means that the previous

requirement that the Re(φ0
1,2) sector be isolated from the Re(S1,2,3) sector must be relaxed

to give h a nonzero Sk component. Details of this are given in Ref. [6], along with analysis

of direct detection and relic abundance similar to that already provided for the vector dark

matter model in the previous Chapter 6.

Finally, consider the Majorana fermions S̃ whose scalar counterparts do have

VEVs. They mix with the fermionic partner of the U(1)X gauge boson

B̃X , S̃3, S̃2, S̃1 (7.13)

and these will mix with the neutral gauginos (bino, wino) and neutral higgsinos

B̃, W̃3, φ̃
0
1, φ̃

0
2 (7.14)

but again we take these mass eigenvalues to be heavier than 200 GeV.
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7.6 Diphoton Excess

Fig. 7.1 shows the diagram for the loop contributions to explain the 750 GeV

diphoton excess based on the parton level process gg → S3 → γγ. To emphasize the

structure, the particle labels show interaction states rather than physical states. The scalar

superpartners ŨL,R and D̃L,R will also contribute in the loop diagrams, but will not be

the focus here because the enhancement of the diphoton signal due to fermions is generally

stronger[76]. The reason for using S3 is clear from the superpotential terms S3UU
c and

S3DD
c, that is, S3 is the only S particle that connects to colored fermions for its production.

The extra photonic loop connection to the charged Higgsinos from S3φ1φ2 is a bonus of the

model. The physical scalar or pseudoscalar that propagates could come from one of the

neutral S scalars that do not have any VEV, which are the second and third copies of S1,2

and the second copy of S3. Or it could come from the second copy of S3. We choose the

pseudoscalar version of the second copy of S3, with physical state χ. One reason for this

choice is that a pseudoscalar will not mix with the SM Higgs. Another reason is that this

U,D
S3

U,D, φ̃+

g

g

γ

γ

Figure 7.1: Diagram for gg → S3 → γγ.
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allows the physical couplings fφ, fU , fD for the physical terms χφ̃1φ̃2, χUU
c, χDDc to be

independent of these fermion masses. The diphoton cross section for the LHC at 13 TeV is

given by [77]

σ(pp→ χ→ γγ) = (100 pb)× (λg TeV)2 ×BR(χ→ γγ)

λg =
αs
πmχ

∑

Q

fQFQ(m2
Q/m

2
χ)

F (x) = 2
√
x

[
arctan

(
1√

4x− 1

)]2

(7.15)

where Q = U,D and the loop function F (x) has the same origin as the digluon and diphoton

loop functions for the Higgs decays covered in Chapter 2. For the diphoton subprocess

BR(χ→ γγ) =
Γ(χ→ γγ)

Γχ

Γ(χ→ γγ) =
λ2
γ

64π
m3
χ

λγ =
2α

πmχ

∑

ψ

NψQ
2
ψFψ(m2

ψ/m
2
χ) (7.16)

where ψ = U,D, φ̃+. We assume the total width of χ is dominated by its decay to dark

matter S̃ , which as described in the previous section is the lightest pseudo-Dirac fermion

coming from a linear combination of S̃1 and S̃2

Γ(χ→ S̃1S̃2) =
f2
S

8π

√
m2
χ −m2

S (7.17)

where fS is the χS̃1S̃2 coupling. Here mχ = 750 GeV for the resonance explanation of

the diphoton excess. If fS = 1.2, then Γχ = 36 GeV. If fS = 0, then then Γχ . 1 GeV

is dominated by χ decay to two gluons. Using the measured value of the cross section

σ(pp→ χ→ γγ) = 6.2±1 fb for the diphoton resonance[77], In Fig. 7.2 we plot the allowed
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Figure 7.2: Parameters that explain the 750 GeV diphoton excess.

parameters for these two cases. There is also the probability for χ to decay back into two

gluons as shown in Fig. 7.3, so we also plot the most stringent dijet exclusion upper limit

of 2 pb from the 8 TeV data. Including important higher-order corrections [78] moves the

U,D
S3

U,D

g

g

g

g

Figure 7.3: Diagram for gg → S3 → gg.
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dijet exclusion lines toward the allowed regions for the correct cross section but does not

compromise this analysis.

To summarize, this chapter has examined a supersymmetric U(1)X gauge extension

of the SM, with an emphasis on explaining the recent LHC diphoton excess and relaxing

the supersymmetric constraint on the Higgs mass.
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Part III

Summary
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Chapter 8

Conclusion

We have mentioned in Chapter 1 that the SM can accommodate small fermion

masses but cannot fully explain or predict them. The radiative models studied in this

thesis have taken steps to address this.

In Part I, experimental verification of the Z2 and A4 radiative models studied in

Chapters 2 and 4 is expected to come from the heavy fermions due to significant deviations

from the SM in the Yukawa sector. This is not the case for leptons, which are all light

compared to the electroweak scale, but experimental verification could come from the muon

anomalous magnetic moment contributions provided by these models. The very light neu-

trino masses in Chapter 3 and Chapter 4 are Majorana, so neutrinoless double beta decay

is one option for confirmation of these models. There is also the possibility that the new

particles could be detected or inferred from other experimental signatures.

Experimental signatures were also important in Part II. An interesting collider

signature from new particles was the main result in the Higgs triplet model for radiative
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inverse seesaw neutrino mass from Chapter 5. It has a good discovery potential at the LHC.

The tentative measurement of the 750 GeV diphoton excess was analyzed based on the new

particles from a supersymmetric model in Chapter 7. And for the vector dark matter model

in Chapter 6 there is a small cross section to be detected in underground experiments.

Most of the models considered took dark matter to be scalar, as in Chapters 3, 4, 5.

Fermionic (Majorana) dark matter was considered in the last Chapter 7, but either fermionic

(non-Majorana) or scalar dark matter could have been considered in Chapter 2.
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