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Abstract 
Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create 
comfortable, healthy and safe indoor environments. In the control loop, the technical feature 
of the human demand-oriented supply can help operate  HVAC systems effectively. Among 
many technical options, real time monitoring based on feedback signals from end users has 



been frequently reported as a critical technology to confirm optimizing building performance. 
Recent studies incorporate human thermal physiology signals and thermal 
comfort/discomfort status as real-time feedback signals. A series of human subject 
experiments used to be conducted by primarily adopting subjective questionnaire surveys in a 
lab-setting study, which is limited in the application for reality. However, with the help of 
advanced technologies, physiological signals have been read, measured and processed by 
using multiple technical formats, such as wearable sensors, but they mostly require physical 
contacts to the skins in spite of the small physical dimension and compatibility to other 
wearable accessories, such as glasses, intelligent bracelet, etc. Most recently, a low cost small 
infrared camera has been adopted  to monitor human facial images, which could detect facial 
skin temperature and blood perfusion in a non-contact way. Also, according to  latest pilot 
studies, a conventional digital camera can generate infrared images with the help of new 
methods, such as the Euler video magnification technology. Human thermal 
comfort/discomfort poses can also be detected by video methods without contacting human 
bodies and be analyzed by the skeleton keypoints model. In this review, the summary of the 
new sensing technologies were given, and these cons and pros were discussed  and extended 
applications for demand-oriented ventilation and animal monitoring were also reviewed as 
potential development and applications. 
 
Keywords: non-invasive (non-contact) measurements; thermal physiology signals; thermal 
comfort/discomfort poses; Euler video magnification; skeleton keypoints 
 
1. Introduction 

Building energy supply and indoor environmental conditioning should be performed in 
demand base and intelligent manner. Nowadays, building centered design was changed to 
human centered design. Terminology, such as human building integration, was frequently 
mentioned. Traditional methods of controlling thermal environments rely on research 
performed on subjects in controlled, often unrealistic, environments. The temperature settings 
are the building operator’s best guess of conditions that will lead to the highest degree of 
thermal comfort (subject to the limitations of equipment and budget). The selected conditions 
are derived from a long history of thermal comfort measurements (and then adjusted to 
accommodate the complaints and requests of the occupants). 

Traditional sensor based environmental parameters’ measurements were not accurate 
enough because sensors are normally located in one location and indoor environmental 
parameters are spatially non-uniform. Questionnaire survey based method interrupts 
occupants frequently, although it can obtain occupants' feedback to surrounding thermal 
environments directly. With the development of image/video processing technologies, more 
non-contact image/video sensing methods were used. Traditional invasive measurements are 
reviewed in section 3. Semi and mini invasive measurements are reviewed in section 4. Non-
invasive measurements, including infrared camera technology, Euler video magnification 
technology; skeleton keypoints technology, are reviewed in section 5. Extension applications 
of infrared camera technology for animals and skeleton keypoints technology for demand 
oriented ventilation are discussed. Major achievements and future development are presented 
at the end of this review. Main contents are summarized in Table 1. 

Before the review content, the tiny difference between non-invasive and non-contact 
should be clarified. A medical procedure is defined as non-invasive when no break in the skin 



is created and there is no contact with the mucosa, or skin break, or internal body cavity 
beyond a natural or artificial body orifice. For centuries, physicians have employed many 
simple non-invasive methods based on physical parameters in order to assess body function 
in health and disease (physical examination and inspection), such as pulse-taking, 
the auscultation of heart sounds and lung sounds (using the stethoscope), temperature 
examination (using thermometers), respiratory examination, peripheral vascular 
examination, oral examination, abdominal examination, external percussion 
and palpation, blood pressure measurement (using the sphygmomanometer), change in body 
volumes (using plethysmograph), audiometry, eye examination, and many others (Wikipedia, 
2020). Based on above-mentioned definition, the term “non-contact” is more precise although 
the term “non-invasive” was more commonly used in the literature.  

2. Traditional invasive measurements  

Traditional invasive measurements include surveys, physiological measurements and 
environmental measurements. A survey, typically in the form of questionnaire, is the most 
direct method because it extract occupants’ state of mind to thermal environments. Surveys 
are invasive because they require the occupants to cease their normal activities and fill out the 
surveys or respond to electronic inquiries.  Paper-based surveys are mainly used for lab tests 
and are not feasible in real built environments where both the thermal conditions and the 
occupants may be constantly changing. Computer based electronic questionnaires (Zagreus et 
al., 2004) and cell phone based apps can be used but need continuous and frequent user 
feedback (Sanguinetti et al., 2017). Measurement results of environmental parameters are not 
direct feedback or physiological signals from human occupants. Correlation between 
environmental parameters and occupant feedback can be created by supervised learning 
methods, which is used for thermal comfort assessment in the absence of occupant feedback. 
Location difference between environmental sensors and occupants, non-uniform distribution 
of air temperature, speed and solar radiation, are main challenges (Ghahramni et al., 2015; 
Ghahramni et al., 2016). 

Physiological measurement can be correlated with thermal comfort/discomfort 
(Huizenga et al., 2004; Takada et al., 2013; Choi et al., 2017). Invasive (contact) methods, for 
measuring skin temperature, skin blood flow, core temperature, heart rate, heart rate 
variability, electroencephalograph (EEG) and so forth, are commonly used. Measuring errors 
are caused by angle and position of device, movement and limb fat content of occupant (Chen 
et al., 2015). Foreign body sensation is the main obstacle for practical measurements.  

3. Semi and mini-invasive measurements 

Instead of traditional invasive methods with body contact physically, semi and mini 
invasive methods were presented by integrating sensors to human wore accessories. Four 
infrared sensors were integrated to eyeglasses to extract skin temperature from the front face, 
cheekbone, nose and ear for thermal comfort assessment and thermal regulation performance 
analysis (Ghahramni et al., 2016). Based on the results, a hidden Markov model based 
learning method was developed (Ghahramni et al., 2018).  

Wrist-type wearable devices, such as smart bracelet, can be used to measure wrist skin 
temperature (Empatica, 2019; Microsoft, 2019). Skin temperatures from three different wrist 
parts were monitored for sedentary occupants under different room temperatures, together 



with fingertip skin temperature measurements (Sim et al., 2016). Accordingly, a thermal 
comfort estimation model was developed. A wristband was used to record 
photoplethysmogram (PPG) signals, from which Inter-beat interval (IBI) signals were 
extracted and sent to a smart phone for pulse rate variability (PRV) calculation and real time 
thermal comfort prediction (Nkurikiyeyezu and Lopez, 2018). The wristband was also used to 
dynamically correct offset errors for thermal images captured by smartphone thermal cameras 
(Yoshikawa et al., 2019). Measuring results of skin temperature and heart rate (HR)/heart rate 
variability (HRV) from smartwatch were used to develop thermal sensation estimation 
models (Li et al., 2018; Li et al., 2019). They were also compared with results from 
professional measuring devices (Kobiela et al., 2019).   

4. Non-invasive measurements 

Traditional invasive measurements, including a questionnaire survey, monitoring of 
environmental parameters and human physiological parameters were widely used and 
integrated with Internet of Things (IoT), Artificial Intelligence (AI) and machine learning. 
Minimized measuring sensors are more user-friendly to be accepted. Sensors were also 
integrated into human wore accessories, such as glasses, watches, to avoid foreign body 
sensation. 

Video and image methods were tried to achieve non-contact measurements. Three 
research directions were developed, including miniaturization and low-cost of infrared 
camera technology, Euler video magnification technology-aided normal camera for 
monitoring human thermal physiology signals, skeleton keypoints model aided normal 
camera for monitoring thermal comfort/discomfort poses. 

4.1 Infrared camera technology 

Before being used for thermal comfort assessment, videos and images captured by 
infrared camera were widely used for emotion and expression recognition (Puri et al., 2005; 
Trujillo et al., 2005; Salazar-López et al., 2015; Basu et al., 2015), medical detection 
(Bouzida et al., 2009; Cho and Yoon, 2014; Pauk et al., 2019), face recognition and 
landmarking  (Çeliktutan et al., 2013; Farokhi et al., 2016; Bayram and Bolat, 2018; Kumar 
and Garg, 2019), lie detection (Pavlidis and Levine, 2002; Zhu et al., 2007; Ioannou et al., 
2014), and so forth. 

Infrared camera was widely used for collecting and analyzing infrared images of nude 
skin such as facial, hand skin (Bouzida et al., 2009; Burzo et al., 2014; Ranjan and Scott; 
2016; Burzo et al., 2017; Pavlin et al., 2017; Wang et al., 2017; Li et al., 2018; Metzmacher 
et al., 2018), which could be used to control HVAC systems in energy efficient manner 
without influencing thermal comfort (Ranjan and Scott, 2016). Facial skin temperature was 
obtained by far-infrared imaging (7-14 μm). Other parameters, including skin potential, skin 
resistance, hand skin temperature, respiratory frequency and cardiac frequency can also be 
obtained and analyzed (Oliveira et al., 2007). Recently, low cost and miniaturized models are 
commercially available, such as smartphone based thermal camera (FLIR, 2019). Compared 
to high-end models, the accuracy of low cost thermal camera is insufficient because of 
uncooled infrared detectors. A dynamic offset correction method was proposed (Yoshikawa 
et al., 2019). Infrared camera technology was also compared with traditional invasive 
measurements of ambient air temperature and semi invasive measurements of wrist-type 



wearable devices (Aryal and Becerik-Gerber, 2019). Accuracy tradeoffs among them were 
analyzed. To solve the issue of occupants’ relative movements to thermal camera, one new 
approach was proposed to extract skin temperature by locating specific face regions in 
thermal images which combined data from RGB images with thermal images and leveraged 
facial landmark detection in RGB images (Aryal and Becerik-Gerber, 2019). Combination of 
different algorithms, including face detection, landmark detection, face frontalization and 
analysis, was tried to analyze infrared face images (Kopaczka et al., 2019). Infrared camera 
was also used for collecting and analyzing infrared images of athletes during outdoor running 
and indoor treadmill running (Tanda, 2016). 

Three sensors, including a thermographic camera, a depth sensor and a color camera, 
were integrated into one sensing platform named RGB-DT (RedGreenBlue-
DepthTemperature) to extract skin and clothing temperature for thermal comfort assessment 
(Cosma and Simha, 2018). The sensing platform followed three principles, which are low 
cost (USD 300), small form-factor device and real-time capabilities. Based on the methods, 
machine learning method was used to do prediction and analysis (Cosma and Simha, 2019). 
Infrared thermal camera network, composed by low-cost thermal cameras and RGB-D 
sensors (Kinect), was tried to overcome influences of occupants’ postures and movements (Li 
et al., 2019). 

4.2 Euler video magnification technology-aided normal camera 

A microscope-like visual motion magnification technique was presented, which 
combined the measured visual motion with pixels modified from a sequence of video images 
using the Lagrangian method to view the forms and characteristics of magnified motion in a 
video (Liu et al., 2005). Euler video, a technology that enlarges frames in a video to show 
subtle movements and color changes invisible to the naked eyes, was officially proposed (Wu 
et al., 2012). Unlike the Lagrangian method, Euler processing does not actually track motion, 
but rather relies on video pyramids and temporal processing that produce magnification. The 
basic method is to consider the time series of color values at any given pixel and amplify the 
changes in a given time band of interest. 

Euler video magnification can be used for structural detection, judging whether the 
sound is vocal by enlarging the laryngeal node, detecting slight changes in heart rate, pulse, 
human skin color, and blood flow (Video magnification, 2012). Subsequently, two research 
groups at Umeå University in Sweden and Virginia Tech University in the United States 
applied Euler video magnification for human skin temperature measurements which can 
reflect thermal comfort status and send feedback signals for controlling HVAC systems. 

Based on subtle changes in blood vessels and skin colors, the relationship between skin 
color saturation and skin temperature is established (Cheng et al., 2017). A non-contact 
human skin temperature measurement technology that can be used as feedback signals for 
HVAC systems is proposed. The color of human skin changes slightly with the expansion or 
contraction of blood vessels, especially under local thermal stimulation such as using a hand 
warmer. Although the changes are invisible to naked eyes, images captured by a common 
camera can be enlarged to analyze temperature changes. High blood vessel density on hand 
back is usually not covered by clothes. Skin of young female subjects is relatively delicate 
without skin wrinkles and sensitive to thermal stimulation. Therefore, east Asian women 
were chosen and their hands were stimulated in warm water at 45 °C for 10 minutes. After 



that, video wad recorded and analyzed by magnification to obtain hand back skin color 
saturation. Meanwhile, hand back skin temperature was also measured. The relationship 
between skin color saturation and skin temperature was established for the purpose of 
measuring skin temperature in non-contact way. 

Euler video magnification technology can accurately analyze skin color saturation. 
When skin temperature rises, pores expand and skin becomes red. According to the 
Saturation-Temperature (ST) model, skin color saturation may have a linear relationship with 
skin temperature. Red, green and blue (RGB) signals of skin colors were extracted and 
magnified. Independent component analysis (ICA) was used in video post-processing to 
remove noise and separate heart pulses for achieving automatic measurements of heart pulses. 
Through vital sign camera algorithm, the rate of skin color change was enlarged to achieve 
accurate measurement of non-contact pulse and breathing frequency. Using the partly 
personalized ST model for non-contact measurement of the skin temperature of young 
women from East Asia, the median value of absolute error changed from 1.32 °C to 0.61 °C. 
The results demonstrated that the skin temperature signal can be obtained by using a common 
camera combined with video amplification technology to achieve non-contact measurements 
of human temperature. The NIDL algorithm was proposed and cross-validation was 
performed using NIDL, NIPST and iButton sensors, which further evaluated the feasibility of 
using Euler video magnification technology (Cheng et al., 2019). A non-contact skin 
temperature measurement method based on skin sensitivity index (SSI) was proposed, and 
deep learning network training was performed on skin images using big data (Cheng et al., 
2019). 

Euler video magnification technology was developed from non-contact measuring skin 
temperature under strong stimulation by water to weak stimulation by room air. A thermal 
comfort evaluation scheme using off-the-shelf commercial cameras (i.e., Logitech HD Pro 
Webcam C920) and RGB video image technology was proposed (Jazizadeh and Jung, 2018). 
Under experimental conditions, two different thermal conditions are stimulated to the user 
sitting in the working environment in front of the computer (high temperature 30 °C and low 
temperature 20 °C. The connected camera can continuously capture images of head and facial 
skin to detect bleeding subtle changes in flow, inferring the regulation mechanism of human 
body temperature and thermal comfort. The camera on the mobile computer can be used to 
easily capture human skin. The technology parts such as face detection, skin pixels isolation, 
image magnification and detection index calculation can extract human body thermal comfort 
information contained in the video. In recognition process, it is necessary to eliminate the 
influence of irrelevant areas such as facial eyebrows and beard. It is also necessary to 
consider the possible interference of different lighting on the performance of the method (the 
original image should be subtracted from the enlarged image to consider the variable original 
color intensity) and eliminate the brightness channel to reduce the impact of various lighting. 
The feasibility evaluation of this scheme was carried out. 21 participants were stimulated 
under different ambient temperatures of low temperature (20 °C) and high temperature 
(30 °C). Of the 18 statistically significant cases, a total of 16 cases were observed using the 
optimal method combination, with a success rate of 89%. The results showed that it is 
feasible to use human body temperature regulation mechanism (blood perfusion change) and 
Euler video amplification algorithm to infer thermal comfort state through RGB video images 
under different ambient temperatures. Building occupants (especially office/administration 
buildings) can use this non-invasive platform to interact with personal computers using 
commonly connected video devices, which is not only expected to achieve non-invasive, real-



time, personalized thermal comfort measurement, but also provide feedback signals for 
energy management. However, the above experiments require the subjects to remain still 
while recording to minimize changes in light and movement, which is unavoidable in 
practical applications. Subsequently, a framework for extracting subtle changes in 
photoplethysmography (PPG) signals using facial RGB video images recorded from a 
distance was proposed (Jung and Jazizadeh, 2018). After separating the region of interest 
(cheek), the combination of independent component analysis and least mean squares (LMS) 
adaptive filtering algorithms is integrated into a framework, and the effects of unwanted and 
in-band artifacts can be eliminated while retaining the amplitude information of the PPG 
signal. In addition, the feasibility of using the Doppler radar sensing (DRS) system to express 
passenger thermal comfort with changes in breathing intensity has also been studied (Jung 
and Jazizadeh, 2017). 

4.3 Skeleton keypoints model aided normal camera 

Human pose estimation was explored for many years (Andriluka et al., 2009) and it was 
widely used in different fields, such as video games, robotics (Vemulapalli et al., 2014) and 
medical science (Galna et al., 2014). Body parts, such as torso, limb, face and finger were 
captured (Joo et al., 2018). A generic convolution neural network can be applied to the 
human pose estimation. (Toshev et al., 2014). To capture human poses more accurately, 
skeleton keypoints were also proposed (Munaro et al., 2014; Cao et al., 2017; Ghidoniand 
and Munaro, 2017). The skeletal node model has good dynamic capture, remote location of 
personnel information, wide application range, and strong system adaptability. The task of 
pose estimation was completed by convolutional pose machines through learning image 
features and image-dependent spatial models (Wei et al., 2016). An open source software 
which named Openpose was also released, which can be applied to real-time single or 
multiple human pose estimation (Openpose, 2016). In addition to Euler video magnification 
technology, skeleton keypoints model can also assist normal camera to assess human thermal 
comfort in non-contact way. Thermal comfort can not only be reflected in specific 
physiological parameters but also be expressed in human poses. 

Kinect for detecting thermal comfort/discomfort related postures was proposed (Meier et 
al., 2017). Four types of postures were defined, and the logical relationship between posture 
and thermal discomfort was established. Database of "heat discomfort postures" needs to be 
established. In addition, Kinect was also applied to detect metabolic rates by adopting image 
classifications using the deep learning algorithm (Na et al., 2019). However, practical 
application of Kinect is not scalable and economical. As a special device generally used for 
computer games, Kinect is protected by patents. As a solution, open source platform 
(Openpose) can be used to generate coordinates of human skeleton keypoints. Twelve 
thermal discomfort poses was defined, including: "sweat", "hand fan wind", "shake T-shirt", 
"scratch", "roll up sleeves", "walk", "shake" "shoulders", "crossed arms", "crossed legs", 
"necks with both hands", "warm hands with breath" and "stomp" (Yang et al., 2019). The 
poses were compared with questionnaire survey results. Compared with infrared camera 
mentioned earlier, the initial investment is reduced and no additional costs are required. 
Mobile phone or computer camera can be used for data collection. 

Unlike Euler video magnification technology, which is now targeted at stationary people, 
the skeletal keypoints model can also pick up and identify human skeleton keypoints with 
high accuracy when human body moves. The technology can also have the feasibility of 



remote measurements (Yang et al., 2019). However, the wrong judgement of human 
comfort/discomfort may be occurred based on the poses. Cross-validation of the same poses 
from different occupants is necessary.  

5. Discussion 
 
5.1  Non-invasive measurements for animals 
 

Infrared imaging technology was also used to identify thermal state of animals, which is 
a common measuring method in veterinary medicine, biology and other related fields. 
Surface temperature of animals can be easily detected to analyze and justify physiological 
responses of various animals. 

Application of wireless remote sensing technology to monitor surface temperature of 
animals was firstly proposed (Bligh and Heal, 1974). Following studies demonstrated that 
animal body temperature can be used as an important reference value for judging health 
status, diagnosing diseases, breeding, and so forth (Zhang et al., 2019). Compared with non-
contact measurements, traditional contact, implant and wireless sensor network temperature 
measurement methods caused uncontrollable and irreversible effects on normal activities and 
physical health of animals (Godyn and Herbu, 2017). Body temperature of different livestock 
and poultry were measured by non-invasive infrared imaging methods. Infrared temperature 
measurement technology is the main means of measuring pig body surface temperature with 
its advantages of non-contact, long distance and real-time (Zhang et al., 2019). Temperatures 
of horse's  armpit, croup, breast and groin were collected by infrared images and analyzed by 
machine learning to predict horse thermal comfort (Maia et al., 2012). Non-contact infrared 
measurements were also used to diagnose lame horses and evaluate the degree of 
inflammation for proposing the best treatment plan (Yanmaz et al., 2007). In biological 
science community, it is also possible to obtain some thermal information of animals by non-
invasive methods which are beneficial to the observation and understanding of thermal 
regulation process of different types of animals (Tattersall and Cadena, 2010). Measuring 
results by infrared thermal imaging technology, combined with individual animal behavior 
and physiological measurements, can reveal animal thermal adaptation. 

Different from human beings, animals can not actively and accurately express their 
minds to surrounding environments. Sensor based contact measurement may cause animals 
stressed. Non-contact measurements of animal body surface temperature are necessary. 

5.2  Non-invasive measurements for demand oriented ventilation 

Skeleton keypoints model, as one of the video/image based non-contact methods, was 
used not only to recognize occupants’ thermal comfort/discomfort poses but also to 
positioning indoor occupants and estimate poses. Video/image based non-contact methods 
overcome the limitations of traditional occupants counting and positioning methods such as 
temperature and CO2 sensor based method, passive infrared ray (PIR) sensor based method, 
radio frequency identification (RFID) based method, bluetooth low energy (BLE) based 
method, and so forth. 

Zonal occupant counting can be obtained accurately by video/image based non-contact 
occupant positioning (Walmsley-Eyre, 2017). Recognition algorithm, based on convolutional 



neural network, can achieve a detection rate of 95.2% for human head-shoulder targets (Zou 
et al., 2017). Multiple vision sensors, aided by Bayesian algorithm data fusion, can improve 
sensing accuracy (Liu et al., 2013). Above mentioned studies were mainly focused on 
occupants’ positioning, without obtaining human poses which reflected operating modes of 
multi-functional rooms. Skeleton keypoints model was developed for occupants’ positioning 
and pose recognition. The method can be used for detecting operating modes of multi-
functional rooms (classroom/conference room) and controlling demand based ventilation 
system (Wang et al., 2019). Image collection, extraction, 3D reconstruction and data fusion 
can be finished in 1.5 s for achieving real time human positioning and pose recognition.  

 The speed of image/video data collection, extraction, analysis and signal transmission is 
faster than operation speed of mechanical devices (damper, valve, VSD fan, etc.) in demand 
based HVAC systems. Mismatch or even wrong adjustment may happened, which impeded 
the practical applications of demand based HVAC technologies and image/video based non-
contact sensing technologies. Performance improvement of corresponding mechanical 
devices is necessary. New technologies were tried, such as energy efficient fans working 
together with less intensified air conditioning system. Room temperature setpoint is 
unchanged, which avoids the limitation of slow adjustment speed of air conditioning system. 
Quick adjustment of energy efficient fan speed can be achieved, which is match to the speed 
of image/video based non-contact sensing technologies. Room size, room irregular shape, 
mutual blockage among occupants are also influential factors for the image/video based non-
contact sensing technologies. 

6. Conclusions 
 

Rapid developments of new technologies in computer vision, image/video processing, 
infrared imaging fields promote measuring and sensing methods from contact manner to non-
contact manner. Main achievements and future directions are summarized as follows. 

1. Low cost and miniaturized thermal camera, with uncooled infrared detectors, was 
integrated into smartphone. Cooled infrared detectors can be further miniaturized in the 
future. More intelligent correction method will be developed to improve accuracy of thermal 
image.  

2. Euler video magnification technology was used to test skin temperature variation 
from weak thermal stimulus to strong thermal stimulus. Image/video processing technologies 
were improved to isolate unwanted skin regions, improve accuracy and avoid influences from 
human movements. 

3. Skeleton keypoints model was applied to test human thermal discomfort/comfort 
poses, a library of which was established. Cross validation methods should be developed to 
test whether poses in the library are really correlated to certain thermal discomfort. More 
occupants with one same thermal discomfort pose and one occupant with more thermal 
discomfort poses can validate the correction. The technology can also be used for sending 
feedback signals to control demand based ventilation. 

Overall, this review paper has a large potential to suggest future study directions with 
consideration of the current research outcomes and their technical merits and limitations. It 
also confirms the research parameters to investigate further in the Building Technology 
domain. However, Due to restricted access to the detailed data of individual case studies 
selected in this review, comprehensive assessment was not be able to conduct, especially on 



detailed technical features, such as sensing frequency, generated signal noise and filtration 
strategies, potential compatibility to existing building systems, etc. Therefore, additional 
review research should be conducted to investigate specified computational and sensing 
processes, and effective data acquisition methods, as well as thermal perception estimation 
per individual and general occupants.



Table 1. Contact, semi-contact and non-contact measurements. 

Cases Methods Main Contributions Limitations Selected References 

 

Traditional invasive measurements 
1. Questionnaire survey, environmental parameter 

measurement and physiological parameter measurement 

were used to evaluate human thermal comfort. 

1. Continuous and frequent feedback is 

needed for questionnaire survey. 

2. Environmental parameters are not direct 

feedback or physiological signals from 

human occupants. 

3. Foreign body sensation is the main 

obstacle for physiological parameter 

measurement.   

Huizenga et al., 2004 

Zagreus et al., 2004 

Takada et al., 2013 

Chen et al., 2015 

Ghahramni et al., 2015 

Ghahramni et al., 2016 

 

 

 

Semi and mini-invasive measurements 

1. Integrating infrared sensor to glasses to measure human 

physiological parameters, a semi-invasive human thermal 

comfort measurement scheme was proposed. 

2. Wrist-type wearable devices, such as smart bracelet, can 

be used to measure wrist skin temperature, pulse rate 

variability, etc. 

1.Not all people wear glasses and wrist-type 

wearable devices.  

2.The sense of foreign body is weakened but 

not eliminated. 

3. The allowed ambient thermal ranges are 

limited for accurate sensing. 

Ghahramni et al., 2016 

Sim et al., 2016 

Ghahramni et al., 2018 

Nkurikiyeyezu and Lopez, 

2018 

Choi et al, 2019 

Li et al., 2019 

 
Non-invasive measurements (infrared 

camera technology) 

Infrared images of bare skin (such as face skin and hand 

skin) were collected and analyzed by infrared camera and 

used to evaluate human body thermal comfort. 

Infrared cameras are usually high cost and big 

size. 

Oliveira et al., 2007 

Bouzida et al., 2009 

Burzo et al., 2014;  

Ranjan and Scott; 2016  

Burzo et al., 2017 

Pavlin et al., 2017  

Wang et al., 2017  

Li et al., 2018  

Metzmacher et al., 2018 

Yoshikawa et al., 2019 



 

Non-invasive measurements (cross-

validation of infrared camera, RGB camera 

and wearable devices) 

The reliability of semi-contact and non-contact measurement 

of human thermal comfort was cross validated. 
 

Cosma and Simha, 2018 

Aryal and Becerik-

Gerber，2019 

Cosma and Simha, 2019 

Li et al., 2019 

 Euler video magnification 

1. Euler video magnification, a technology that enlarges 

frames in a video to show subtle movements and color 

changes that are invisible to the naked eyes, was officially 

proposed. 

2. Euler video magnification can be used for structural 

detection, judging whether the sound is vocal by enlarging 

the laryngeal node, detecting slight changes in heart rate, 

pulse, human skin color, and blood flow. 

 
Liu et al., 2005                                    

Wu et al., 2012 

 

Non-invasive measurements 

(ordinary camera combined with Euler 

video magnification) 

1. Euler video magnification was firstly used to monitor 

human thermal comfort and control HVAC system.     

2. A preliminary experiment of non-contact measurement 

was carried out under the condition of weak stimulation of 

human hand in 45 °C warm water.                       

3. The skin image was trained by using big data and the 

NIDL algorithm.            

4. The skin sensitive index, which is an index to evaluate the 

non-contact measurement scheme, was proposed 

1.The subjects are only Asian women, and the 

experiment needs to be further verified.  

2.The experiment was only performed under 

strong stimulation conditions 

Cheng et al., 2017     

Cheng et al., 2019                                



 

Non-invasive measurements 

(ordinary camera combined with Euler 

video magnification) 

1. Human body is weakly stimulated at different ambient 

temperatures (high temperature 30 °C low temperature 

20 °C), and facial images are extracted for analysis. A 

thermal comfort evaluation scheme was proposed, which 

combines commercial camera and RGB video image 

technology.  

2. The video post-processing technology was explored to 

eliminate the influence of interference areas and artifacts.    

 

1. The influence of human movement and 

background light is unavoidable. 

Jung and Jazizadeh, 2017 

Jazizadeh and Jung, 2018 

Jung and Jazizadeh, 2018                    

 Skeleton keypoints model 

1. Dynamic poses can be captured in real time.  

2. Multi-person and single-person pose estimation based on 

deep learning was proposed. 

3. It was widely used in different fields, such as video 

games, robotics, medical science, etc. 

 

Munaro et al., 2014 

Cao et al., 2017; 

Ghidoniand and Munaro, 

2017 

 

Non-invasive measurements method 

(Skeleton keypoints mode) 

 

1. The twelve poses of thermal discomfort was defined.  

2. An algorithm was proposed to associate thermal 

uncomfortable poses with thermal uncomfortable feeling.  

 

1. In a short time, the number of frames 

available for pose determination is 

insufficient, which causes a misjudgment at 

the first one to two seconds of pose 

switching. 

Yang et al., 2019 

 

1. Four thermal discomfort related poses were defined.  

2. Library of thermal discomfort poses was established. 

 

The Kinect is protected by many patents and 

its application scope is limited. 
Meier et al., 2019 



 

 

Application of non-invasive measurements 

for animals 

 

1. The method has no stress on animals and is consistent 

with the concept of welfare agriculture and provides less 

labor. 

2. This method can improve temperature measurement 

efficiency. 

3. Infrared temperature measurement can be monitored in 

real time and remotely. 

1. Measurement technology and data 

processing technology need to be optimized. 
Zhang et al., 2019 

 

1. Dynamic posture can be captured in real time.  

2. Multi-objects pose estimation based on deep learning was 

proposed. 

1. Measurement technology and data 

processing technology need to be optimized. 

Yanmaz et al., 2007 

Tattersall et al., 2010 

Maia et al., 2012 

 

 
Application of non-invasive measurements 

in demand oriented ventilation 

1. A new image based indoor personnel positioning and pose 

recognition system was set up. 

2. The method can be used for detecting operating modes of 

multi-functional rooms (classroom/conference room) and 

controlling demand oriented ventilation systems.  

1. 3D reconstruction accuracy need to be 

improved. 
Wang et al., 2019 
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