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Non-parametric estimation of the individual’s utility map

Takao Noguchi (t.noguchi@warwick.ac.uk)
Adam Sanborn (a.n.sanborn@warwick.ac.uk)

Neil Stewart (neil.stewart@warwick.ac.uk)
Department of Psychology, University of Warwick

Abstract

Models of risky choice have attracted much attention in
behavioural economics. Previous research has repeatedly
demonstrated that individuals’ choices are not well explained
by expected utility theory, and a number of alternative mod-
els have been examined using carefully selected sets of choice
alternatives. The model performance however, can depend on
which choice alternatives are being tested. Here we develop
a non-parametric method for estimating the utility map over
the wide range of choice alternatives. The estimated maps are
compared against the three of the most well-known models
of risky choice: expected utility theory, cumulative prospect
theory, and the transfer of attention exchange model. Model
comparison indicates that cumulative prospect theory provides
a better prediction of individuals’ choices, but the estimated
maps show that the overall shape of utility map is different
from what the model predicts.

Keywords: decision making; risky choice; utility; MCMC
with People; expected utility; cumulative prospect theory;
transfer of attention exchange

Background

Understanding how people trade off risk and reward is a fun-

damental goal of behavioural economics. The most common

approach to modelling how people make decisions between

risky alternatives is based on the idea of utility: individuals

integrate the probability of reward with the utility of the re-

ward to produce an expected utility that describes how well

the alternative is preferred. The alternative with the highest

utility is most often chosen.

The normative calculation of utility that maximizes long-

term gain is to multiply the probability with the utility of the

associated outcome and to derive the expected utility. For

an illustration, suppose an individual is considering a choice

alternative with three possible outcomes: £20, £10, and £0.

This particular alternative has a 20% probability for £20,

40% for £10, and 40% for £0. Then, the expected utility is

20%×u(£20)+40%×u(£10)+40%×u(£0), where u is the

function to map the monetary value to the utility.

However, previous research has demonstrated that an in-

dividual’s choice frequently deviates from the predictions of

expected utility theory (for review, Schoemaker, 1982). To

explain the deviations, descriptive models of how risk and re-

ward are integrated have been developed (for review, Starmer,

2000). A common and useful way to visualize the predictions

of these models is to look at the indifference lines, which con-

nect choice alternatives of equal utility, over a Marschak–

Machina probability triangle (Marschak, 1950; Machina,

1982). The probability triangle is a two-dimensional space

which maps alternatives with varying probabilities for the

same set of three potential outcomes. Throughout this pa-

per, we use £20, £10, and £0 as the potential outcomes from

a choice alternative.

Figure 1 displays the predicted utility maps from three of

the most well-known models of risky choice: expected util-

ity theory, cumulative prospect theory (Tversky & Kahne-

man, 1992) and transfer of attention exchange (TAX) model

(Birnbaum, 2008). In the probability triangle, the probabil-

ity of attaining the best outcome (£20) is represented in the

vertical axis, and the probability of the worst outcome (£0)

is represented in the horizontal axis. The probability for the

other outcome (£10) is represented as the distance from the

diagonal boundary along the horizontal axis. The diagonal

boundary ensures that the sum of the probabilities for £20,

£10 and £0 does not exceed 1.

The red area in the triangles indicates the area of high util-

ity, and the blue area is the area of low utility. Also, the

coloured lines connect the alternatives of equal utility. These

indifference lines highlight the differences between expected

utility theory and the two descriptive models. Expected utility

theory predicts indifference lines that are parallel and straight.

Both cumulative prospect theory and the TAX model predict

concave lines in the top corner of the triangle but convex lines

in the lower right corner.

The usual experimental practice is to investigate choices

in the regions of the triangle where models most differ from

each other (e.g., Wu & Gonzalez, 1998). When the mod-

els are tested in this way, the “best” model may not predict

choices away from the diagnostic regions well. For instance,

Harless (1992) suggests that cumulative prospect theory out-

performs expected utility theory only at the edges of the tri-

angle. Thus, the model comparison could benefit from being

tested on the whole area of triangle. One way is to estimate

the utility map over the whole triangle and compare the esti-

mated map against the model prediction. However to the best

of our knowledge, the available estimation methods impose

an assumption on how subjective value and probabilities are

integrated (e.g., Abdellaoui, 2000), which could favour the

model with the identical assumption.

To this end, we develop a non-parametric method to esti-

mate entire utility maps, an extension of Markov chain Monte

Carlo (MCMC) with People (Sanborn, Griffiths, & Shiffrin,

2010). We have modified MCMC with People to investigate

the regions of the probability triangle where the choice al-

ternatives are less preferred. The new method is tested in a

simulation to show that it can deliver useful results within a

reasonable number of trials. We then estimate utility maps

from human. Finally, we discuss the results and future appli-

cations for this approach.
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(A) Expected utility theory with the identity
value function

(B) Cumulative prospect theory with param-
eters α = 0.88 and γ = 0.52

(C) The transfer of attention exchange
model with parameters β = 1, γ = 0.7, and
δ = 1

Figure 1: Theoretical predictions

Markov chain Monte Carlo with People

Markov chain Monte Carlo (MCMC) is a common method

for drawing samples from a distribution. It has been widely

used to perform probabilistic inference especially when solv-

ing the exact function of interest is computationally difficult

(Neal, 1993).

MCMC begins in a start state z. A sample z′ is first drawn

from the proposal distribution q, and then z′ is evaluated with

the function of interest, π, to determine whether to accept z′

as a new state or discard it and retain the current state z. The

sequence of accepted samples forms a Markov chain, and af-

ter this Markov chain converges, accepted samples can be re-

garded as samples from the π distribution. To ensure that the

Markov chain converges to π, it is sufficient to satisfy detailed

balance (as well as ergodicity):

π(z)q(z′|z)A(z′,z) = π(z′)q(z|z′)A(z,z′), (1)

where q(z′|z) is the probability of drawing z′ when the current

state is z and A(z′,z) is the probability of accepting proposal

z′ over the current state z.

Throughout the paper, we assume a symmetric distribution

for q, q(z′|z) = q(z|z′), so Equation 1 becomes

π(z)A(z′,z) = π(z′)A(z,z′). (2)

Detailed balance can be satisfied by carefully designing the

acceptance function A. The most commonly used function is

the Metropolis acceptance function (Metropolis, Rosenbluth,

Rosenbluth, Teller, & Teller, 1953), but the Boltzmann accep-

tance function (Flinn & McManus, 1961) is of interest here:

A(z′,z) =
π(z′)

π(z)+π(z′).

If an individual is asked to make a choice between alter-

natives z′ and z, then the Boltzmann acceptance function can

model that individual’s choice. This is because the Boltz-

mann function is equivalent to Luce’s choice rule (Luce,

1959), which has been frequently used to model risky choice

(e.g., Blavatskyy & Pogrebna, 2010). As a result, by sequen-

tially presenting pairs of choice alternatives to an individual

(where the new alternative z′ is selected by the computer), the

collection of choice alternatives chosen by the individual can

be treated as samples from the probability distribution whose

density is proportional to the individual’s utility (Sanborn et

al., 2010).

Extending MCMC with People

However, sampling from the individual’s utility distribution

does not necessarily serve to estimate the shape of the util-

ity map: pilot work confirms that all of the samples will be

concentrated around the most favourable alternative (100%

probability of £20 in the triangle), and that it would take a

very large number of trials to explore the rest of the utility

map. To enable the reasonable estimation of the utility map,

the stationary distribution needs to be more diffused, so that

the Markov chain travels better around the triangular space.

For this purpose, we implement a latent agent in the experi-

mental program. This agent makes an independent choice be-

tween the same alternatives as the participant, and only when

the agent and the participant both select the new choice alter-

native does the new alternative become the new state. Other-

wise, the current state remains the same and another alterna-

tive is generated from the proposal distribution.

When the agent is implemented in this way, the acceptance

function becomes a joint function of the participant’s and the

agent’s choices. Specifically, the acceptance function is de-

fined as

A∗(z′,z) =
f (z′)

f (z)+ f (z′)

g(z′)

g(z)+g(z′),

where f is the utility function for the participant and g is the
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agent’s utility function. Here, both the participant and the

agent follow the Boltzmann acceptance function. Then Equa-

tion 2 becomes

f (z)g(z)A∗(z′,z) = f (z′)g(z′)A∗(z,z′).

With the implementation of the agent, the trajectory of

the Markov states depends on both the participant’s and the

agent’s choices. If the agent’s utility is the lowest at the top

corner of the triangle, the Markov chain would be pushed

away from that region. With this extended method, the sta-

tionary distribution of the Markov chain is the joint utility

function of the participant and the agent, f g. The partici-

pant’s utility map can subsequently be recovered by dividing

the joint utility by the latent agent’s known utility, g.

Simulation

To demonstrate that the developed method can estimate a par-

ticipant’s utility map within a reasonable number of trials, we

conducted a simulation.

Method

The simulation used two of the utility functions in Figure 1:

the latent agent’s utility function, g, was set to the inverse of

expected utility theory, and the simulated participant’s func-

tion, f , was cumulative prospect theory:

g =
1

20× p(£20)+10× p(£10)
,

and

f = 20α ×w(p(£20))+10α × (w(p(£20)+ p(£10))−w(£20)),

where p(£20) is the probability of attaining £20, and w(p) =
pγ

(pγ+(1−p)γ)1/γ . The parameter values for α and γ were 0.88

and 0.52, respectively. The proposal distribution, q, was uni-

form over the triangular space. The possible outcomes were

fixed to be £20, £10 and £0, and hence, the agent and the sim-

ulated participant repeatedly made choices between two alter-

natives with varying probabilities for fixed outcomes: e.g., a

choice between an alternative with a 30% probability for £20,

40% for £10 and 30% for £0, and another alternative with a

10% probability for £20, 60% for £10 and 30% for £0.

With the above specifications, a choice trial was simulated

as follows. First, the agent used the g function to evaluate

each alternative and used the Boltzmann acceptance function

to select between the current state and the proposed alterna-

tive. If the agent preferred the current state over the pro-

posed alternative, another alternative was sampled from the

proposal distribution. If the agent chose the new alternative

over the current state, the simulated participant used the f

function to make a choice between the same two alternatives.

Although the agent and the simulated participant could

have made a choice at the same time over the same two al-

ternatives, we had the agent decide first: if the agent does not

select the new alternative, the previous state remains the state

regardless of the choice the participant makes. This reduces

the number of choices the participant must make.

Each simulation consisted of three chains: one chain

started with the Markov state of 60% of £20, 20% of £10

and 20% of £0. Another chain started with the state of 20%

of £20, 60% of £10 and 20% of £0. The final chain started

with 20% of £20, 20% of £10 and 60% of £0.

Results and Discussion

The first 100 trials were considered to be trials before con-

vergence of the Markov chain (burn-in period) and were dis-

carded from each chain. The remaining samples from the

three chains were pooled and smoothed by kernel density esti-

mation. Because of the triangular boundary of the estimation

space, it is actually quite difficult to produce unbiased indif-

ference lines. We chose to use a Dirichlet kernel, an exten-

sion of the Beta kernel (Chen, 1999) to the triangular space,

because it produced less bias than the other alternatives we

investigated. The Dirichlet kernel is defined as

f̂ (x)g(x) = ∑
i

Dir(zi|α1,α2,α3),

where zi is the ith state in the Markov chain, x is a vector of

probabilities for three outcomes, and α j is x j/min(h, x j, 1−
x j). The kernel width h was set to 0.09. This smoothed joint

distribution is then divided by g to derive the estimation f̂ .

To assess the similarity between f and f̂ , we computed

Kullback–Leibler (KL; denoted as KL( f || f̂ )) divergence

(Kullback & Leibler, 1951), which measures how much in-

formation is lost in the estimation process.

The KL divergences for different sample sizes are plotted

in the left panel of Figure 3. This figure illustrates that the es-

timation shows the increasingly smaller divergence within the

first few hundred trials. The estimation becomes reasonably

accurate on average after 700–800 trials.

The middle and right panels of Figure 3 display the esti-

mations after 1,000 trials. The estimation with the smallest

KL divergence among the 10 simulation runs is in the middle

panel, and the right panel show the estimation with the largest

KL divergence. Both panels show the key property of cumu-

lative prospect theory: the indifference lines show fanning-

out property from the lower left corner toward the diagonal

boundary.

Thus, the simulation demonstrated that the proposed

method with the Dirichlet kernel density estimation can re-

cover the key characteristic of the utility map using a reason-

able number of samples.

Experiment

Method

Participant Ten participants were recruited through the

subject panel at the University of Warwick. One participant

did not complete the experiment, leaving nine (five male and

four female) participants. Their age ranged from 19 to 30

with a mean of 22.9.
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Figure 2: The KL divergences between f

and f̂ for various numbers of trials. The

solid line represents the mean measure-

ment of the 10 simulation runs, and the

dotted lines are maximum and minimum

values archived in the simulations.

(A) The estimation with the smallest KL di-

vergence (KL( f || f̂ ) = 0.002)

(B) The estimation with the largest KL di-

vergence (KL( f || f̂ ) = 0.007)

Figure 3: Estimation of cumulative prospect theory with 1,000 trials

Procedure The experimental procedure closely followed

that of the simulation. The agent’s utility function, g, was set

to the inverse of expected utility theory raised to the power of

8, and the proposal distribution, q, was uniform over the trian-

gular space. The possible outcomes were fixed to be £20, £10

and £0, and hence, the agent and the participant repeatedly

made choices between two alternatives with varying proba-

bilities for fixed outcomes.

In each trial, the agent made a decision first, and a new al-

ternative was drawn until the agent chose the new alternative.

Three chains with the same start states as the simulation were

run interleaved until participants had made 1,000 choices per

chain. In addition, 50 catch trials were inserted into the ex-

periment, so that we could assess whether participants were

engaged in the task. In each catch trial, one alternative had

larger probabilities for both £20 and £10. If a participant was

not engaged with the task and randomly making choices, it

is expected that he or she would occasionally not select the

non-dominant alternative.

The experiment presented a choice alternative as a pie chart

with three slices. Each slice represented one possible out-

come, and the size of the slice was proportional to the prob-

ability of the outcome. Participants were forced to log out

from the online experiment and take a break after spending

one hour on it. After the minimum break of three hours, par-

ticipants were allowed to log in again and resume the experi-

ment.

The choices participant made were incentivized: we in-

vited participants to the lab when participants completed the

experiment. At the lab, we randomly selected one trial from

the experiment and played the selected alternative for real.

Participants were paid what they earned from the play.

Results and Discussion

All the nine participants selected the dominant alternative in

all of the catch trials, which was evidence that all participants

understood and were engaged in the task.

Utility maps were estimated as in the simulation study. All

participants show a sharp peak at the top corner of the trian-

gle in the estimated maps. The sharp peak makes it difficult

to see the shape of the map, and thus for illustration purposes,

we spaced out the indifference lines by taking the natural log-

arithm of the estimation. As a result, differences in small util-

ities are exaggerated, but the shapes of the indifference lines

are not affected. The resulting maps are displayed in Figure 4.

Each panel in the figure corresponds to one participant’s map.

The estimated maps show the steep indifference lines, es-

pecially where the probability of £0 is small. The steep lines

indicate aversion to the worst outcome (c.f., Tversky & Kah-

neman, 1992; Birnbaum, 2008), where the increment in prob-

ability for the worst outcome needs to be compensated with

a larger increment in probability for the most desirable out-

come. The steepness tends to be lessened near the lower right

corner of the triangle. As a result, for Participants A, D and

H in particular, the indifference lines show the fanning-out

property. The fanning-out suggests that participants more

willingly accept an increment in probability for the worst out-

come when the probability is already large. The fanning-out

is consistent with the prediction from cumulative prospect

theory and the transfer of attention exchange (TAX) model.

The estimated maps also show the convex indifference

lines throughout the triangle. The convexity makes the esti-

mated maps appear rather different from the predicted utility

maps from cumulative prospect theory and the TAX model,

which expect the concavity toward the top corner of the trian-

gle (Figure 1).

To quantitatively assess the model performance, we fit the

models to the individuals’ choices by maximizing the likeli-
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Figure 4: ln( f̂ )

hoods. When fitting the model, we used the power law utility

function for expected utility theory: u(s) = sα. The range of

parameter values are restricted to be between 0 and 1 for all

the parameters. Also, each model included one additional pa-

rameter to raise the predicted utility. This exponent controls

how steep the peak is toward the most favourable alternative.

The value for this exponent parameter is restricted to be non-

negative.

Bayesian information criteria (BIC) indicates that the

choices are best predicted by cumulative prospect theory for

seven out of nine participants (Panels A through G). The TAX

model achieves smallest BIC for one of the remaining partic-
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ipants (Panel H), and the expected utility theory has smallest

BIC for the other participant (Panel I).

General Discussion

Previous research has demonstrated that individuals’ choices

deviate predictions from expected utility theory, and variety

of descriptive models have been proposed. However, the

deviation from expected utility theory has often been stud-

ied with relatively limited range of choice alternatives. The

present study developed the non-parametric method to esti-

mate utility maps over the whole probability triangle.

The curvature of the indifference lines in the estimated

maps implies differences to the predictions from the exist-

ing models: The lines tend to be convex where concavity

is expected. Even though cumulative prospect theory (CPT)

does not predict this curvature, CPT provides a better fit to

the choice data than expected utility theory or the attention

exchange model does for the majority of participants. Thus,

a new model could explain the choices better than CPT, if

the new model produces a utility map similar to the estimated

maps.

In developing such a model, it is useful to identify choice

alternatives where the CPT prediction differs from the indi-

viduals’ choice behaviour. To this end, the estimation method

that we have developed can be further extended. As the de-

veloped method lets the MCMC chain converge to the joint

distribution of the individual’s and the agent’s utility, manip-

ulation of agent’s utility function can reveal interesting joint

distributions. For instance, by setting the latent agent’s util-

ity to the inverse of the CPT prediction, the MCMC chain

converges to the distribution whose density is proportional to

the individual’s utility divided by the CPT prediction. The

condensed area in this joint utility distribution is where the

CPT prediction is smaller than the individual’s utility (i.e., the

area where CPT underpredicts the utility), and the thin area is

where the CPT prediction is larger than the individual’s utility

(i.e., the area where CPT overpredicts the utility).

To conclude, we have developed the method for estimating

the utility map. The developed method can be further lever-

aged in future study.

References

Abdellaoui, M. (2000). Parameter-free eliciation of utility

and probability weighting functions. Management Science,

46, 1497–1512.

Birnbaum, M. (2008). New paradoxes of risky decision mak-

ing. Psychological Review, 115, 463–501.

Blavatskyy, P. R., & Pogrebna, G. (2010). Models of stochas-

tic choice and decision theories: why both are important

for analyzing decisions. Journal of Applied Econometrics,

986, 963–986.

Chen, S. X. (1999). Beta kernel estimators for density func-

tions. Computational Statistics & Data Analysis, 31, 131–

145.

Flinn, P. A., & McManus, G. M. (1961). Monte Carlo cal-

culation of the order-disorder transformation in the body-

centered cubic lattice. Physical Review, 124, 54–59.

Harless, D. (1992). Predictions about indifference curves

inside the unit triangle. Journal of Economic Behavior and

Organization, 18, 391–414.

Kullback, S., & Leibler, P. C. (1951). On information and

sufficiency. Annals of Mathematical Statistics, 22, 79–86.

Luce, R. D. (1959). Individual choice behavior: A theoretical

analysis. New York: John Wiley & Sons, Inc.

Machina, M. J. (1982). “Expected Utility” analysis without

the independence axiom. Econometrica, 50, 277–323.

Marschak, J. (1950). Rational behavior, uncertain prospects,

and measurable utility. Econometrica, 18, 111–141.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H., & Teller, E. (1953). Equation of state calculations

by fast computing machines. Journal of Chemical Physics,

21, 1087-1092.

Neal, R. (1993). Probabilistic inference using Markov chain

Monte Carlo methods (Tech. Rep. No. CRG-TR-93-1). De-

partment of Compute Science, University of Toronto.

Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Un-

covering mental representations with Markov chain Monte

Carlo. Cognitive Psychology, 60, 63–106.

Schoemaker, P. J. H. (1982). The expected utility model:

Its variants, purposes, evidence and limitations. Journal of

Economic Literature, 20, 529 - 563.

Starmer, C. (2000). Developments in non-expected utility

theory: The hunt for a descriptive theory of choice under

risk. Journal of Economic Literature, 38, 332–382.

Tversky, A., & Kahneman, D. (1992). Advances in prospect

theory: Cumulative representation of uncertainty. Journal

of Risk and Uncertainty, 5, 297–323.

Wu, G., & Gonzalez, R. (1998). Common consequence con-

ditions in decision making under risk. Journal of Risk and

Uncertainty, 16, 115–139.

3150




