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Abstract
OSA (obstructive sleep apnoea), the most common respiratory disorder of sleep, is caused by the loss of upper
airway dilating muscle activity during sleep superimposed on a narrow upper airway. This results in recurrent
nocturnal asphyxia. Termination of these events usually requires arousal from sleep and results in sleep
fragmentation and hypoxaemia, which leads to poor quality sleep, excessive daytime sleepiness, reduced quality of
life and numerous other serious health consequences. Furthermore, patients with untreated sleep apnoea are at an
increased risk of hypertension, stroke, heart failure and atrial fibrillation. Although there are many predisposing risk
factors for OSA, including male gender, endocrine disorders, use of muscle relaxants, smoking, fluid retention and
increased age, the strongest risk factor is obesity. The aim of the present review is to focus on three cutting-edge
topics with respect to OSA. The section on animal models covers various strategies used to simulate the physiology
or the effects of OSA in animals, and how these have helped to understand some of the underlying mechanisms of
OSA. The section on diabetes discusses current evidence in both humans and animal models demonstrating that
intermittent hypoxia and sleep fragmentation has a negative impact on glucose tolerance. Finally, the section on
cardiovascular biomarkers reviews the evidence supporting the use of these biomarkers to both measure some of
the negative consequences of OSA, as well as the potential benefits of OSA therapies.
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INTRODUCTION

OSA (obstructive sleep apnoea) is by far the most common res-
piratory disorder of sleep. OSA is caused by the loss of upper
airway dilating muscle activity during sleep that is superimposed
on a narrow upper airway, resulting in recurrent nocturnal as-
phyxia [1]. Termination of these events usually requires arousal
from sleep to re-establish upper airway tone, eliminate obstruc-
tion and allow ventilation to resume. This sleep fragmentation and
hypoxaemia lead to poor quality sleep, excessive daytime sleep-
iness, reduced vigilance, accidents, neurocognitive dysfunction,
decreased work productivity, and reduced quality of life [2]. Fur-
thermore, patients with untreated sleep apnoea are at increased
risks of hypertension, stroke, heart failure and atrial fibrillation
(Figure 1) [3].

There are many predisposing risk factors for OSA, including
male gender, endocrine disorders (e.g. hypothyroidism and acro-

Abbreviations: AHI, apnoea/hypopnoea index; BP, blood pressure; CIMT, carotid intima media thickness; CMR, cardiac magnetic resonance; CPAP, continuous positive airway pressure;
CRP, C-reactive protein; CVD, cardiovascular disease; HbA1c, glycated haemoglobin; HIF, hypoxia-inducible factor; NZO, New Zealand obese; OSA, obstructive sleep apnoea.

Correspondence: Professor Ismail Laher (email ilaher@mail.ubc.ca).

megaly), use of muscle relaxants, smoking, fluid retention and in-
creased age [4]. However, the strongest risk factor is obesity, par-
ticularly central obesity. Fat deposition around the upper airway
narrows it and predisposes it to collapse. Furthermore, obesity
reduces lung volumes, which also destabilizes the upper airway
by reducing the tethering effect of higher lung volume. The links
between obesity and OSA are of particular concern given the in-
creasing rates of obesity in the developed world. The prevalence
of OSA in obese adults (aged 30 to 69 years) ranges from 11 to
46 % in women and 33 to 77 % in men [5,6]. Weight gain is also
a strong predictor of incident OSA [7].

OSA is diagnosed by sleep testing, which usually consists of
an attended overnight sleep study (polysomnogram) in a sleep
laboratory or unattended overnight cardiopulmonary monitoring
in the patient’s home. Disease severity is classified according
to the AHI (apnoea/hypopnoea index: the number of times the
patient stops or decreases breathing per h of sleep). It is agreed
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Figure 1 OSA as an important risk factor for cardiometabolic disease
TIA, transient ischaemic attack.

by consensus that an AHI of <5 events/h of sleep is considered
normal, between 5 and 15 is considered mild, between 15 and 30
is considered moderate and >30 is considered severe disease [8].

Although common, OSA is under-diagnosed. In a random
population based sample of 602 individuals aged 30 to 60 years,
an AHI of �5 was found in 24 % of men and 9 % of women [9].
Moderate-to-severe disease (AHI �15) occurred in 9 % of males
and 4 % of females. It is estimated that approximately 90 % of
women and 80 % of men with moderate-to-severe OSA have not
been clinically diagnosed [10].

Nasal CPAP (continuous positive airway pressure) therapy is
considered first-line treatment for moderate-to-severe OSA [11].
By establishing a positive transmural pressure in the pharynx
during sleep, CPAP prevents the upper airway from collapsing.
CPAP reduces the severity of sleep fragmentation and improves
nocturnal oxygenation, thereby improving daytime sleepiness,
quality of life and neurocognitive function [12]. One of the ma-
jor impediments to CPAP effectiveness is adherence (ranging
from 50 to 75 %) [13]. It is well established that CPAP improves
vigilance, and accumulating data suggest that CPAP improves
a variety of other outcomes such as motor vehicle crashes and
cardiovascular events. Other therapies for sleep apnoea include
dental appliances, weight loss, upper airway surgery, nasal valves
and upper airway electrical stimulation.

In the present review, we will focus on three cutting edge
topics with respect to OSA: animal models of OSA, diabetes and
OSA, and cardiovascular biomarkers and OSA.

ANIMAL MODELS OF OSA

In this section, we review the various strategies investigators have
used to simulate the physiology or the effects of OSA in animals,

and how these have helped to understand some of the underlying
mechanisms of OSA.

Animals with spontaneous OSA
One naturally occurring animal model of spontaneous OSA is
the English bulldog, a canine breed with an enlarged soft pal-
ate and narrow oropharynx. These animals can have central and
obstructive apnoea with oxyhaemoglobin desaturation to levels
below 90 % during REM (rapid-eye-movement) sleep [14,15].
This model has been used predominantly to study upper airway
anatomy and physiology [15–17], including testing of the impact
of pharmacological treatments such as serotoninergic medication
[19,20].

Several rodent models of upper airway obstruction during
sleep have been identified recently [21]. The NZO (New Zealand
obese) mouse is a model of polygenic obesity and the metabolic
syndrome exhibiting leptin resistance [22]. Similar to OSA pa-
tients, NZO mice have an increased volume of pharyngeal soft tis-
sue structures and fat deposition in the tongue [16,23–25]. These
mice also suffer from inspiratory flow limitation and apnoeas. In
addition, Polotsky et al. [26] measured upper airway collapsibil-
ity in genetically obese leptin-deficient (ob/ob) dietary obese and
lean mice. Increased upper airway collapsibility occurred in both
genetic and dietary obese mice [20]. These novel rodent models
of sleep apnoea will provide new insights into the pathogenesis
and pharmacotherapy of OSA.

Airway occlusion
Researchers have also simulated OSA with induced airway ob-
struction in animals. Examples include sedated and intubated
pigs, where obstructive apnoeas were induced by recurrent en-
dotracheal occlusions that allowed for the assessment of acute
haemodynamic and autonomic nervous system responses [27],
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and a rodent model of upper airway occlusion that has also been
developed [28]. Changes in neck flexion and body position of
cats to cause airway obstruction during sleep have been reported
[29].

In a sophisticated model using tracheostomized dogs, sleep
state was continuously monitored using electroencephalography.
A computer would generate periods of sleep-induced airway ob-
struction using a remote control signal closing a valve in the
tracheostomy [30]. Upon arousal from sleep, the valve would
be opened and the airway obstruction released. This model was
used to study sleep architecture, blood pressure and cardiac re-
sponses to apnoea [24,25,31]; however, the model is labour in-
tensive with a low throughput making them challenging to use
in studying OSA complications. Nevertheless, it is the animal
model that most closely mimics the effects of human OSA yet
developed because it not only induces apnoea, intermittent hyp-
oxia and arousals from sleep, but it also induces marked negative
intrathoracic pressure swings during obstructive apnoeas similar
in magnitude to those that occur in humans. Using this model, it
was shown that exposure of these dogs to OSA for several weeks
caused daytime hypertension [26] and left ventricular systolic
dysfunction [28].

Intermittent hypoxia
Today, the most commonly used rodent model of OSA is induc-
tion of intermittent hypoxia/re-oxygenation by rapid delivery of a
hypoxic gas mixture to an airtight chamber, followed by flushing
of the chamber with room air (e.g. 30 s of hypoxia alternating
with 30 s of normoxia). Some models have tried to coincide de-
livery of hypoxic gases with the onset of sleep and removal when
arousal occurs [32]; this approach is complex and labour intens-
ive. Therefore the majority of studies have utilized models that
are not strictly dependent on the timing of sleep and arousal. That
is, rodents are exposed to periods of hypoxia of a fixed duration
throughout the light phase (when they are usually asleep) and
maintain normoxia during the dark phase when they are usu-
ally awake. Of note, studies using electroencephalography show
that rodents exposed to this schedule of intermittent hypoxia also
suffer from sleep fragmentation, abnormal sleep architecture,
cognitive dysfunction and hypersomnolence [33,34].

It must be kept in mind that intermittent hypoxia does not
reproduce all the physiological effects of OSA. That is, OSA is
usually characterized by extreme swings in intrathoracic pressure
due to effort against a closed airway and hypercapnia due to a
reduction in ventilation; these would not be present in this model.
Indeed, rodents are hypocapnic under conditions of hypoxia [35].
Furthermore, the degree of hypoxaemia is quite severe, to an ex-
tent not experienced by the vast majority of human patients with
OSA [36]. Nevertheless, given that hypoxia/re-oxygenation is a
key physiological feature of OSA and rodents exposed to inter-
mittent hypoxia appear to suffer from many of the cardiovascular
sequelae observed in patients with OSA (including hypertension,
endothelial dysfunction, metabolic disorders and atherosclerosis)
[37–40], this model is useful in potentially elucidating mechan-
isms of metabolic and cardiovascular effects of OSA.

Fletcher et al. [41] showed that rats exposed to intermit-
tent hypoxia for 3 weeks developed hypertension. Furthermore,

carotid body denervation attenuated the hypertensive response,
demonstrating that carotid body stimulation and increased sym-
pathetic output [42] were mechanisms of this effect. It was later
established that intermittent hypoxia activates the carotid body via
oxidative stress mechanisms, and that induction of HIF (hypoxia-
inducible factor)-1α and inhibition of HIF-2α were involved [43].

Intermittent hypoxia induces metabolic complications, in-
cluding dyslipidaemia, insulin resistance and glucose intoler-
ance, and this effect is augmented by obesity [44]. Although the
molecular mechanisms of this interaction are not entirely clear,
hypoxia of liver and adipose tissue probably play major roles
[45,46].

One of the functions of the vascular endothelium is to reg-
ulate smooth muscle tone in arteries and arterioles. Endothelial
function is assessed by measuring the degree of vasodilation in
response to various stimuli (e.g. acetylcholine and transient fore-
arm occlusion) and dysfunction is a precursor of atherosclerotic
and other vascular diseases. Rats and mice exposed to intermit-
tent hypoxia develop endothelial dysfunction [47,48]. Interest-
ingly, treatment with allopurinol (a xanthine oxidase inhibitor)
improved cardiac function in the setting of intermittent hypoxia,
suggesting that free radical generation probably plays a role in
mediating the vascular effects of intermittent hypoxia [49]. Fur-
thermore, Savransky et al. [40] reported that 12 weeks of inter-
mittent hypoxia in mice fed on a high-cholesterol diet resulted in
atherosclerotic lesions of the aorta, which were absent in mice not
exposed to intermittent hypoxia. In mice fed on a normal diet,
there was no significant atherosclerosis, suggesting a potential
modulating effect of diet on the vascular impacts of OSA [38].

In summary, rodent models of intermittent hypoxia mimick-
ing oxyhaemoglobin desaturations in human OSA have been de-
veloped and used to study the mechanisms of cardiovascular and
metabolic dysfunction.

OSA AND DIABETES

Diabetes is a chronic illness that is increasing in prevalence.
Mechanistic studies in humans and animal models have demon-
strated that intermittent hypoxia and sleep fragmentation can
have a negative impact on glucose tolerance [50–52]. There is
substantial evidence from population- based and clinical studies
that associates OSA with metabolic derangements [53,54].

Multiple studies have assessed the prevalence and incidence of
diabetes in patients with OSA [55–60]. Cross-sectional analyses
indicate a significantly higher prevalence of diabetes in patients
with OSA compared with those without OSA, with rates ranging
from 15 to 30 % depending on the study population, the defini-
tion of OSA severity and the methods used to diagnose diabetes
[55–57]. Several studies have also reported a significant associ-
ation between increasing severity of OSA and the prevalence of
diabetes [56,58].

A number of prospective studies have also examined the in-
cidence of diabetes in patients with OSA. Overall, the results are
somewhat mixed in terms of demonstrating an independent effect
of OSA on incident diabetes. In the Wisconsin Sleep Cohort [56],
OSA was associated with a higher risk for incident diabetes over a
4-year period, but this association was no longer significant after
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Table 1 Randomized controlled studies examining the effects of CPAP treatment of OSA on glucose metabolism
HOMA, homoeostatic model assessment.

Author (year) Number of patients Duration of study Main findings

Coughlin et al. (2007) [69] 17 (CPAP/sham) 6 weeks No difference in insulin sensitivity or fasting

17 (sham/CPAP) glucose and insulin

West et al. (2007) [70] 20 Type 2 diabetics (CPAP/sham) 3 months No difference in insulin sensitivity or HbA1c

22 Type 2 diabetics (sham/CPAP)

Lam et al. (2010) [68] 31 (CPAP) 1 week Improvement in insulin sensitivity at 1 week

30 (sham)

Nguyen et al. (2010) [73] 10 (CPAP) 3 months No difference in fasting glucose

10 (sham CPAP)

Kohler et al. (2009) [109] 20 (CPAP) 2 weeks No difference in insulin sensitivity

20 (CPAP withdrawal)

Hoyos et al. (2012) [72] 34 (CPAP) 12 weeks No difference in insulin sensitivity at 12 weeks

31 (sham)

Sivam et al. (2012) [74] 27 (CPAP/sham or sham/CPAP) 8 weeks No difference in fasting glucose

Weinstock et al. (2012) [71] 25 Pre-diabetics (CPAP/sham) 8 weeks No difference in HOMA or 2 h glucose; improvement

25 Pre-diabetics (sham/CPAP) in insulin sensitivity and 2 h insulin only in severe
OSA

adjusting for confounders such as age, sex and body habitus. In
the Busselton Health Study [58], there was a significant inde-
pendent association between moderate-to-severe OSA and incid-
ent diabetes over a 4-year follow-up period, but the sample size
was small. In another study [59], OSA was independently associ-
ated with diabetes after adjusting for confounders [including BMI
(body mass index)] over a mean follow-up period of 2.7 years.
Interestingly, one clinic-based study of 168 middle-aged patients
[60], reported a significantly higher incidence of diabetes in wo-
men with OSA, but not in men with OSA, after a follow-up period
of 16 years. In a prospective study of 4000 middle-aged adults,
intermittent hypoxia was associated with an increased risk of de-
veloping diabetes after a 3-year median follow-up [61]. There
is evidence from clinical studies to suggest that the presence
and severity of OSA is associated with poor glucose control in
diabetic patients [62].

One key question is whether CPAP therapy in patients with
OSA improves glucose control in patients with diabetes. Five
uncontrolled studies have examined the effects of CPAP on
glycaemic control [63–67]. Two studies reported improvements
in night-time glucose levels after 1 night [67] and 5 weeks [66]
of CPAP use. Two other studies showed improved insulin sens-
itivity without a change in HbA1c levels after 3–4 months of
CPAP use [63,64]. In one study involving 25 obese patients with
diabetes [65], there was a significant improvement in HbA1c and
post-prandial glucose levels after 3 months of CPAP therapy. One
observational study found that patients with moderate-to-severe
OSA who used CPAP regularly had a significant reduction in the
rate of diabetes, even after adjusting for weight changes [59].

A total of eight studies using either parallel or cross-over ran-
domized controlled designs have investigated the effects of CPAP
therapy on measures of glucose metabolism; characteristics and
main findings of these studies are shown in Table 1. Overall, only
two of the eight studies [68,71] reported positive findings during
the randomized treatment period, and another [72] had positive

findings only in the open non-randomized extended portion of
CPAP therapy. In the only randomized controlled study conduc-
ted in diabetic patients [70], 3 months of CPAP use had no effect
on insulin sensitivity or HbA1c (glycated haemoglobin) levels.
Notably, use of CPAP was low, averaging about 3.3 h per night.
Overall, the nightly treatment use (CPAP or sham-CPAP) was 5 h
or less in most studies [70–74], which represents an important
limitation of these randomized trials.

In summary, current evidence strongly supports an association
between OSA and diabetes with a substantial proportion of pa-
tients with diabetes suffering from unrecognized OSA. Whether
OSA represents an independent risk for the development of dia-
betes needs to be investigated further in large prospective studies.
The role of OSA in the management of diabetes is in urgent need
of further assessment, and there remains debate about whether
CPAP treatment of OSA leads to improved glucose metabolism.
Large scale randomized controlled trials of CPAP treatment of
OSA with robust assessments of insulin sensitivity and glucose
tolerance are needed.

CARDIOVASCULAR BIOMARKERS IN OSA

As described above, animals exposed to intermittent hypoxia
suffer adverse cardiometabolic effects, including hypertension,
dyslipidaemia, endothelial dysfunction and atherosclerosis. In
observational studies, patients with OSA have a 3-fold increased
risk of incident CVD (cardiovascular disease), including stroke
and myocardial infarction [75]. However, there is currently a lack
of definitive data regarding the benefits of CPAP for measurable
cardiovascular outcomes such as stroke and myocardial infarc-
tion [76]. Long-term randomized controlled trials using such end
points are challenging to perform in patients with OSA for many
reasons [77]. One issue is that it is both difficult and uneth-
ical to enrol sleepy patients into a prolonged study in which no
therapy is provided to one of the groups, since patients would
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be denied symptomatic benefit as a result of the study design. In
addition, the enrolment of asymptomatic patients may be prob-
lematic, since such patients may be poorly adherent with CPAP
therapy due to lack of perceived benefits [78]. To complicate
matters further, some data suggest that sleepy patients with OSA
may be the ones more likely to experience cardiovascular benefits
with CPAP treatment [79].

Consequently, many investigators have suggested that bio-
markers could potentially be used as surrogate outcome measures
to test the impact of sleep apnoea therapies [76,80,81]. A useful
biomarker should be easy to measure, be consistently and strongly
associated with future cardiovascular risk (preferably on the
causal pathway), plausible and potentially show signs of improve-
ment with treatment within a reasonably short time period [82].

One potentially useful biomarker would be BP (blood pres-
sure) [83]. OSA is linked to the development of systemic hyper-
tension based on animal studies of intermittent hypoxia for 24 h
and also prospective epidemiological studies [2,84–86]. In addi-
tion, BP is easy to measure, and a consistent and well-recognized
strong risk factor for the development of CVD [87].

However, the degree to which daytime BP is reduced after
CPAP therapy is very modest (i.e. 2–3 mmHg) [88] and far less
than that of antihypertensive medical therapy [89]. Before BP is
dismissed as being unhelpful in the OSA biomarker arena, several
points are worth considering. It is clear that OSA causes marked
nocturnal surges in BP, which could be an important risk factor in
plaque rupture [90]. These nocturnal BP surges are typically not
captured by studies of daytime BP and thus the magnitude of the
therapeutic benefits may be underestimated. In addition, some
patients, such as those of younger age, sleepiness and increased
CPAP adherence, may experience substantial BP reductions with
OSA therapy [91–93]. Autoregulatory mechanisms maintain BP
within a relatively narrow range [94]. Although speculative, re-
ductions in catecholamines due to OSA treatment might thus have
only a modest effect on BP due to these counter-regulatory mech-
anisms (e.g. baroreflexes and autoregulation), but the cardio-
vascular effects might be more substantial. Thus, although BP
might be useful, other markers should also be looked at.

Inflammatory markers may also be useful biomarkers to con-
sider. Many investigators accept CRP (C-reactive protein) as a
marker of systemic inflammation and its regulation is thought to
be IL (interleukin)-6-dependent. The JUPITER (Justification for
the Use of Statins in Primary Prevention: An Intervention Trial
Evaluating Rosuvastatin) study showed robust improvements in
cardiovascular outcomes in patients with elevated CRP treated
with rosuvastatin [95,96]. Hypoxaemia in sleep apnoea is thought
to increase CRP levels. Several OSA studies have shown asso-
ciations between OSA and CRP; however, these data are con-
troversial since obesity is a dominant predictor of CRP in some
studies. Interventional studies have also shown improvements in
CRP with apnoea therapy [97], although these findings are not
consistent across studies. However, the marked variability in the
results with CPAP intervention suggests that CRP may be relat-
ively insensitive to the burden of OSA. In addition, CRP may be
predominantly a marker of CVD, rather than causally linked [98].

CMR (cardiac magnetic resonance) imaging is being increas-
ingly used to assess cardiac structure and function [99]. Prelimin-

ary data support the use of CMR markers in studying the impact
of OSA severity and treatment [100,101]. CMR imaging may
thus provide a useful surrogate outcome measure which could
be used in OSA clinical trials. A major issue is that testing is
expensive, which may preclude use in large multi-centre trials.

CIMT (carotid intima media thickness), as assessed with ca-
rotid ultrasonography, may also be a marker to consider. CIMT
is a marker of future atherosclerosis (atherosclerosis precursor)
[102], and patients with increased CIMT (or changes in CIMT)
are at increased risk of future cardiovascular events [103–105].
OSA appears to be associated with increased CIMT in a number
of studies and is related to disease severity even after controlling
for confounders [106,107]. A small randomized trial reported
that that CPAP treatment of OSA reduced CIMT [108].

Clinical trials in OSA are limited by the lack of adequate bio-
markers to use as surrogate outcome measures. Defining import-
ant markers, which can change in the shorter term, is a priority.
Changes in biomarkers that provide compelling evidence for im-
proved cardiovascular risk can be assessed in future controlled
clinical trials using more robust clinical end points.

CONCLUSIONS

OSA is a common under-recognized disease. Accumulating data
from both animals and humans implicate OSA as an important
risk factor for cardiometabolic disease (see Figure 1). Future
mechanistic studies using animal models, and human observa-
tional and intervention studies using biomarkers and robust clin-
ical end points should provide more insights into the link between
cardiometabolic health and sleep apnoea.
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