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Abstract

We develop in this paper numerical algorithms for the integration of the continuum plastic dam-
age models formulated in the general framework identified in Part I of this work. More specifically,
we focus our attention on a particular plastic damage model of porous metals, involving a classical
von Mises yield criterion coupled with a pressure dependent damage surface to model the nucle-
ation and growth of voids in the metallic matrix. Unilateral damage leading to a sudden change of
stiffness in the material’s response due to the closing/opening of these voids is also incorporated
through the imposition of the unilateral constraint of a positive void fraction, thus illustrating
the clear physical significance added by this framework in the resulting constitutive models. The
proposed integration algorithms use fully the modularity of the identified framework, leading in
this way to independent integration algorithms for the elastoplastic part and each damage mecha-
nism. Remarkably, all these individual integration schemes share the same formal structure as the
classical return mapping algorithms employed in the numerical integration of elastoplastic models,
namely an operator split structure consisting of a trial state and the return map imposing the
plastic and damage consistency, respectively. A Newton iterative scheme imposes the equilibrium
(equal stresses) among the different mechanisms of the response of the material. This modular
structure allows to obtain the closed-form consistent linearization, involving in a simple form the
algorithmic consistent tangents corresponding to each independent mechanism, thus resulting in
a very modular and efficient computational implementation. The performance of the proposed
algorithms is illustrated in several representative numerical simulations.

KEYWORDS: Return mapping algorithms, coupled damage-plasticity,
porous metals.
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1. Introduction

We develop in this paper the numerical integration of continuum plastic damage mod-
els formulated in the general framework identified in ARMERO & OLLER [1999] (from now
on referred simply as Part I). More specifically, we investigate the application of the result-
ing methods to the numerical simulation of the plastic damage response of porous metals.
The general framework identified in this work considers a kinematic decomposition of the
strains in elastic, plastic and damage parts. The latter is used in the direct and physical
modeling of the damage response of the material. A full thermodynamically consistent
framework is developed to this purpose. Even though these ideas can be found in early
references, usually in the common form of “crack strains” in the modeling of damage in
concrete (most notably in the early work of ORTIZ [1985] and smeared crack models of
BAzANT & OH [1983] and ROTS et al [1985], among others), the framework identified
in this work not only allows for their extension accommodating plasticity effects in a full
thermodynamic context, but also to the the identification of a physically motivated uni-
fying framework among other approaches, including the so-called effective stress damage
models.

Perhaps even more appealing is the improved numerical treatment resulting of the
considered framework, as developed in detail in this paper. This improvement is gained
once more thanks to the modular treatment of the different components of the mate-
rial’s response, from the elastic and plastic parts to the different damage mechanisms that
can be present. The modularity in the numerical implementation is achieved by fully
maintaining the aforementioned damage strains in the integration schemes. In this con-
text, the response of each mechanism is integrated independently, that is, each damage
stress/strain relation is resolved separately. Remarkably, the integration of the damage
models does show exactly the same structure as the standard return mapping algorithms
commonly used in the integration of elastoplastic models. The coupling of these mecha-
nisms is accomplished by imposing the equilibrium (i.e. equal stress) among the different
mechanisms through a Newton iterative scheme. This structure incorporates easily the
effects of different damage mechanisms in the materials as they become activated (e.g. the
formation of a new crack in its simple form). Furthermore, this strategy allows also the
consistent linearization of the final discrete equations, combining in a simple form the al-
gorithmic consistent tangents associated to each component of the material’response. The
computational efficiency achieved with this perspective simplifies considerably traditional
integration schemes of coupled plastic damage model, allowing for example the modular
use of preexisting routines for purely elastoplastic models and routines integrating each
damage mechanism. We present complete details of the implementation of this novel nu-
merical treatment of the problem, including some representative numerical simulations to
illustrate the performance of the resulting numerical algorithms.

Even though we present the development of these new numerical techniques in the
general context furnished by the framework developed in Part I, our focus in this paper
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goes to the formulation and numerical integration of a simple plastic damage model of
ductile failure in porous metals, including the effects of closing/opening of voids, an effect
usually referred to as unilateral damage (see e.g. CHABOCHE [1995]). Next we discuss
briefly the physical motivation behind the proposed model.

1.1. Damage in porous metals: void nucleation and growth.

The study and numerical simulation of the behavior of porous metals is of major
importance in industrial applications. Their physically motivated and numerically efficient
modeling are some of the principal motivations of this work. The physical mechanisms of
interaction between damage and plastic behavior are complicated in nature, as it is their
phenomenological representation by means of constitutive modeling. The degradation of
the stiffness of the material in damage is due to the fact that, in the course of loading,
the effective resisting area diminishes as a result of the generation and expansion of voids
and microcracks. Damage alone affects the elastic properties of the material, but usually
plasticity adds an irreversible component to the inelastic strain evolution. The phenomenon
of void nucleation and growth in crystalline metals can be found discussed in detail in many
works in the literature; we refer to the comprehensive account in ATKINS & MAI [1985] for
a representative example.

There is much evidence on the beginning of failure in bars submitted to tension under
room temperature. Normally the failure begins on the natural crystallographic planes,
through intergranular fractures, or by growth and/or distortion of voids. The problem
becomes more complicated at high temperatures because of the appearance of thermally
activated creep, changes in the metallographic characteristics, diffusion and also recrystal-
lization of the metallic matrix. The study of these effects falls outside the scope of the
simpler models considered herein. For polycrystalline metals under the conditions of inter-
est, the problem can be reduced to three basic types of fracture mechanisms, as explained
by AsHBY & TOMKINS [1980] (quoting ATKINS & MAI [1985], page 34):

1. Fracture produced by small cracks and voids. This type of phenomenon occurs in the
total absence of plasticity and is normally motivated by corrosion and/or abrasion.

2. Fracture effects on small cracks and voids produced by mechanical stresses that exceed
the material strength.

3. Separation of crystallographic planes and fractures throughout the grain boundaries,
produced by high stress derived from mechanical actions.

Brittle fracture is normally produced along inter-crystallographic planes, while the fracture
will be more ductile as distortion mechanisms on the crystal lattice and/or voids or pores
are developed.

The plastic phenomenon, as it is commonly understood, leads to the distortion or
permanent deviation of the crystal lattice and/or voids at constant volume. It should
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be noted that this phenomenon causes neither the formation nor the growth of voids or
defects. It must also be assumed that the distortion of voids can lead to a state in which
they coalesce, leading to a particular form of ductile failure, namely, by shear fracture
bands. A similar kind of failure occurs when it is produced by an excessive distortion in
the crystal lattice of the metal.

Damage, understood as the nucleation and growth of voids and microcracks, appears
then as a mechanism complementing the plasticity in the metal, and may also lead to the
fracture of the material. In this case the fracture occurs due to the decreasing effective area
as referred to above. In those cases in which there is no creation or nucleation of voids, with
the preexisting defects remaining small in size under constant volume, it can be assumed
that the mechanical behavior can be described by the simplest, purely deviatoric, von
Mises yield surface and the associated plastic evolution equations. This situation implies
that the voids can develop permanent distortions only under isochoric states of strain.

A more general plastic model for metal behavior that takes into account void nucle-
ation and growth was proposed by GURSON [1975]. Briefly this formulation incorporates
the influence of the hydrostatic pressure within the basic von Mises formulation, allowing
for the consideration of void nucleation and growth through the hardening of the mate-
rial. A direct relation of this hardening mechanism is established with the void fraction
in the porous metal. The presence of the second invariant of the deviatoric stresses al-
lows at the same time the modeling of the distortion of the voids and crystal lattice. A
similar extension of the classical von Mises criterion incorporating pressure effects due to
degradation of the material can be found in SHIMA & OYANE [1976]. We refer to TVER-
GAARD & NEEDLEMAN [1984] and AGELET & ONATE [1989], among many others, for
a more complete discussion of these considerations, including numerical simulations based
on these models. We point out that these models are simply elastoplastic models, without
degrading the elastic stiffness of the material upon unloading. Therefore, their validity
should not be expected in (loading/unloading) cycling processes.

In this paper we propose a broader treatment of the phenomenon of nucleation, growth
and distortion of voids in metals through the general continuum plastic damage framework
developed in the first part of the paper. In particular,

1. The damage part of the model takes into account the nucleation and growth of voids
and defects, thus allowing for the appropriate treatment of the concept of decreasing
effective area and its influence in the loading/unloading stiffness of the material. The
normal to the damage surface governs the creation of defects damaging the material.

2. The plasticity part of the model is to take care of the distorsion of defects, voids and
the crystal lattice, with their orientation established by means of the classical plastic
flow. The von Mises yield criterion is considered to this purpose.

In this context, we propose a quadratic damage surface on the hydrostatic pressure and the
second invariant of the deviatoric stresses. The need of a combination of both components
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of the stress in the modeling of the nucleation and growth of voids is well-known; see e.g.
NEEDLEMAN & RICE [1978] and NEEDLEMAN & TVERGAARD [1984]. Physically the
proposed damage surface can be thought in energetic terms as a linear combination of the
volumetric and distorsional energies in the material.

Added to these considerations, it is of crucial importance to model the unilateral
character of the damage, accounting for the closing/opening of the voids and microcracks
in the metal. This feature is easily accomplished in the proposed framework through
an unilateral constraint on the damage strains. More specifically, the trace of the damage
strains can be related to the void fraction in the metal. In this way, the physically motivated
constraint of positive void fraction leads naturally to the modeling of the unilateral damage
effects.

An outline of the rest of the paper is as follows. Section 2 develops the new plastic
damage model for the modeling of ductile failure of porous metals. To this purpose we
first present in Section 2.1 a pressure dependent damage surface, deriving the associated
damage evolution equations. The inclusion of the unilateral effects of void closing/opening
is developed in 2.2. Next in Section 3, the modular structure characteristic of the pro-
posed framework is exploited in the development of integration algorithms for its numeri-
cal implementation. In this way, we present a general return mapping algorithm based on
the classical predictor-corrector structure for the integration of each damage mechanism
independently. As indicated above, the coupling between the different mechanisms is ac-
complished through a Newton-type iterative scheme imposing the equilibrium of stresses
among them. The particular plastic damage model developed in the previous section is
employed as a representative example, as it is considered in Section 4 where some represen-
tative numerical simulations are presented to illustrated the performance of the proposed
formulation. Finally, we present in Section 5 a summary of the previous developments
together with some additional concluding remarks.

2. A Plastic Damage Model of Failure of Metals

We present in this section a damage model in the framework identified by the generic
quadratic damage model presented Part I of this work. Our interest is to illustrate this
general framework in the context of plastic damage in metals, characterizing the creation
of voids in the resulting porous metal.

In particular, we consider the standard von Mises yield criterion

¢*(o,q") = ||sll - \/—g (ys — ¢"(a”)) <0, (2.1)

yP(aP)
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for an initial yield limit y?, the Euclidean norm of the deviatoric stress tensor o
2 : 1
||s||* = sijsi; with s:=dev[o]=0 - 3P 1 and p=trfo]. (2.2)

Based on this yield condition the associated plastic evolution equations

_ 0P s
el =4Png , where ng = — = — | 2.3
R (23)

. 2
aP = \/;yp , (2.4)

for the plastic strain e? (= e —e®—&?) and the equivalent plastic strain P, a scalar internal
variable modeling the isotropic plastic hardening of the material. The evolution equations
(2.4) are complemented with the plastic Kuhn-Tucker loading/unloading conditions

P20, ¢P<0 and PP =0, (2.5)
and the plastic consistency condition
VPP =0. (2.6)

for the plastic multiplier vP. The numerical simulations presented in Section 4 consider
an isotropic linear elastic response, that is, we have the standard relations

1
o = C%* with C*=k°1Q®1+2u¢ [I[ - §1 ® 1] , (2.7)

for the (constant) elastic bulk modulus x® and shear modulus x®, and the rank four I and
rank two 1 identity tensors.

2.1. The damage surface and the damage evolution equations

As discussed in detail in the introduction, to model the nucleation and growth of voids
in a porous metal, we consider a pressure dependent damage surface. In particular, we
consider the generic surface

¢%(0%,¢%) = a ||s?)*+ < p? >? —(y¢ — ¢%(e?)) <0, (2.8)
y4(a?)

for a material parameter a and the Macaulay brackets < - > defined as

0 ifz<O0,
<x>.—{m if2>0. (2.9)
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The damage surface (2.8) is depicted in Figure 2.1. The symbol o¢ (= o), with its
corresponding deviatoric part s¢ and hydrostatic pressure p?, refers to the stresses in the
context of the damage model. We note that the expression (2.8) is defined in terms of
a homogeneous function of degree two on the stresses. As discussed in Remark 3.2.1 of
Part I, this form assures the a positive damage dissipation (y¢ > 0). The damage surface
(2.8) can be understood as a linear combination of the distortional energy (proportional
to ||s%||?) and the volumetric energy (proportional to p?2). The latter is only considered
for the case of volumetric tension p? > 0 through the use of the Macaulay (2.9). The
motivation behind this choice is to model in this case a lack of evolution of the volumetric
compliance when using the evolution equation

D

. d dnéd ® n&d _
Ood’

D =« , with ng,: (2.10)

n$d:ad

for the damage compliance D%, as developed in Part I. This is the case since tr(npa)
for p* < 0 (see Figure 2.1), with the evolution equation (2.10) still accounting for the
damage degradation due to the distorsion of the voids. The inclusion of a cap surface in
compression can be easily accommodated. The smoothness of the yield surface (2.8) is to
be noted.

The damage space V¢ is given in this case by the full space S of Symmetric tensors,
that is, the projection matrix P% onto the space of damage strains is simply P% = I. The
final evolution of the damage compliance is obtained then from (2.10) as

B¢ — glas?+3 <p®>1)®(as?+1 <pi> 1)
- a [[s9)2+ < p? >2

(2.11)

with the hardening/softening law

@t =~2, (2.12)

The damage multiplier y%/ satisfies the complementary Kuhn-Tucker loading/unloading
conditions
v¢>0, ¢*<0 and 4%?=0, (2.13)

as well as the damage consistency condition
vigt =0, (2.14)

during persistent damage. The anisotropy of the damage compliance D? induced by a
non-monotonic stress path can be concluded from expression (2.11).

Remark 2.1. For the particular case a = 0, the criteria (2.8) reduces to a purely volu-
metric damage model in terms of the hydrostatic pressure p?. In this case, the formalism
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AT, = lIsll/A2

Lln‘bd
%,
-
FIGURE 2.1. A plastic damage model. Pressure dependent damage

surface.

introduced in Part I for the reduced characterization of the damage mechanism can be
used with the damage space (2.8) defined by the single projection matrix (ng = 1)

1
Pe=—_1. 2.15
7 (2.15)

The scaling in (2.15) is such that the orthonormality relation P¢ : P% = 1 holds. Therefore,
we have in this case

1
d d. _d d d
=P%:. 0% = tr(o?) = V3 , 2.16
5 T5tr(e?) =V p (2.16)
and 1 1
gd = Pled for et = —tr(e?) = —=e? (2.17)

V3 V3’

for the pressure p? and the damage volumetric strain ed := tr(e?). The damage evolution
equation (2.11) reduces in this case to

-d 1.d . od
D' =2d,1®1  with d,= 294, (2.18)
for the damage volumetric compliance d? := e /p? = 3d¢ with d% = e4 /s%. O

The softening law 7%(a?) can be obtained experimentally by matching a particular
test. For example, let p(e) be the pressure evolution obtained in a purely (tension)
volumetric test of the porous metal, where

eﬁ =ey, —e; (—eb), (2.19)

for the applied volumetric strain e, := tr[e], measured elastic strain e¢ = p/k® (k® =
elastic bulk modulus), and measured (by unloading) plastic volumetric strain e? (= 0 in the
assumed model for metals). See Figure 2.2 for an illustration. This situation corresponds
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p A 1y |

PoT Poy

k® 1/5(3(\1')

—— 1 (xd=dd)

FIGURE 2.2. Determination of the softening law p(e2) from a tensile
volumetric test giving p(ey) (ey = tr[€])

to the purely volumetric damage considered in Remark 2.1. In fact, integrating (2.18) we

obtain
d

o (2.20)
2 p(ed)

after using (2.12). The final softening law in (2.8) is then obtained as

1
de: '2—d,g=

y¥(a?) = p*(&5(a?)) (2.21)
where the function é4(a?) is obtained by inverting the relation (2.20). In the numerical
simulations presented in Section 4, the inversion of the relation (2.20), giving a? in terms
of the intermediate internal variable eZ for a given softening law p(ed), is done numerically
through a Newton iterative scheme.

Remark 2.2. It is well-known that the consideration of strain softening in the local
continuum framework considered herein may lead to fundamental difficulties leading, for
example, to the mesh-size dependence in standard finite element simulations. These dif-
ficulties appear in localized solutions due to the absence of a length scale in the model.
We plan to address in a forthcoming work these issues on localization and regularization
in the proposed plastic damage framework. We note that standard approaches based on
the introduction of the so-called characteristic length scale with a given fracture energy
per unit area can be easily incorporated in the above developments. We refer to OLIVER
[1989] for details. Similarly, nonlocal and high order gradient approaches can be readily
considered; details are deferred at this time. O
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2.2. Unilateral damage

The damage surface (2.8) defines the evolution of the damage compliance (that is,
the degradation of the material’s stiffness), as defined in (2.11) for the assumed associated
case through its normal nga. The evolution of the damage strain €2 is given, however, by

gt = (Ddad) =% ng + D%?, (2.22)

after using (2.10) for the rate of the damage compliance. The last term in (2.22) reflects the
recoverable character of the damage strain for the case % = 0 of no further damage. This
independent nature of the evolution of the damage strain and of the damage compliance
allows the introduction of additional constraints on the damage strain.

In particular, the closing of the voids and subsequent recovery of stiffness in the
material (an effect generally referred to as unilateral damage) can be easily modeled by
imposing the constraint

ed = tre?] > 0, (2.23)
for the volumetric part of the damage strain. Since tr[e?] = 0 for the assumed plastic
model, the kinematic decomposition (2.19) reads

Ave  Av?
ey =€l +el = —+—, (2.24)
\g-’ \?—’
es ed

for an elastic increment Av® of an initial volume v, and the volume of voids v¢ = Av?
(assuming v? = 0 initially). In this notation, the volume fraction of voids f := v%/v, is
obtained as

et + el
leading after full unloading p? = 0 so e¢ = 0 (reference state corresponding to an unstressed
state)

f= (2.25)

d

e'l)
. 2.26
1+ ed ( )

The constraint (2.23) imposes then a non-negative void fraction fp=¢ > 0, as it is physically
expected.

fp=0 =

The unilateral constraint (2.23) is easily accommodated in the previous developments
through the method of Lagrange multipliers (see LUENBERGER [1984]). In this context,
following the same arguments as in Section 2.2 of Part I for the derivation of the general
damage framework, the added unilateral constraint (2.23) leads to the modified stress-
strain damage relation

d _ 3Wd _ Ad 1 ,
Oed (2.27)
M >0, tr[e?]>0 and Mtrled]=0,

o
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for the Lagrange multiplier A%. For the quadratic damage potential of interest, the relation
(2.27);1 reduces to

c?=5%-)1, for 5¢:=D%ed. (2.28)

After imposing the constraint (2.23), the relations (2.27) lead then to the closed-form
expression

< -1:D%?>
~ 1:p%1

for the Macaulay brackets < - > defined in (2.9). Combining (2.27) with (2.29), we obtain
after a straightforward calculation

/\d

: (2.29)

d e

D¢ d
e®=D o for D=Dd———1®;D—1-

D7 H(-1:D%Y), (2.30)

where H(-) denotes the Heaviside jump function (H(z) = 0 for z < 0 and H(z) = 1 for

z > 0). We note the singularity of B’ on volumetric fields (i.e., D1 = 0) upon void
closing, reflecting the full recovery of the volumetric stiffness in the material after this
happens. Since for the assumed von Mises model of plasticity the volumetric response
remains elastic, the elastic stiffness is recovered in the volumetric response. For the case
of the isotropic elastic response (2.7) we have

- ~d
ey = e +ed = k¢ ‘p+o%:D 1, (2.31)

recovering the elastic response p = k®e, upon void closing.

If the damage evolution equations (2.10) are maintained with a damage surface (2.8)
in terms of the stresses o?, the resulting damage rate relation reads
B* for d loadi
. ~d | _ ~d or damage unloadin
é¢’=D,6% with Dy,=¢{ & (2.32)
+ A 3¢ ®nza  for damage loading,

where
A% = nga: Cd'nd;d + K4, (2.33)

for the damage stiffness C% = Dd_l, the hardening/softening tangent modulus K¢ :=
07%/0a®, and

nz 1 nz:1 [((nz:09? n.,:1
A= 1+2 22" ) n., 42142 ¢ S D% . (2.34
Mg ( + Nga ad> ¢ Nga ot \ 1:D%¢ 1:D% ( )

We note that, in general, n 3 #n 34> leading then to an unsymmetric tangent relation when
damage loading occurs. After (2.34), we can observe that symmetry holds if n ga:1=0.
For the damage surface (2.8), this is the case for negative pressure p < 0. We note, however,
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that in general the closing of the voids is given by the constraint (2.23) on the strains and
is not controlled directly by the stresses. Therefore, an unsymmetric tangent appears when
closing occurs while p > 0. We also note that this situation does not occur for the particular
case a = 0, with the corresponding reduced volumetric damage mechanism described in
Remark 2.1. In this case, equation (2.18) identifies the scalar relation e? = d% p, so the
closing of voids only occurs for p < 0.

Remarks 2.3.

1. A formulation with symmetric tangent can be recovered as follows. When the con-
straint (2.23) is taken in account, the complimentary energy reads

x%(c?; D% ad) = max {ad o (ed;Id)} = 15%: D% - 14(a?),
€
trfed] > 0
(2.35)

after noting the equality o¢ : D?%¢ = &% : D%G? obtained after some algebraic
manipulations using the relations (2.27). The stresses ¢ have been defined in (2.28).
Therefore, the damage dissipation (see Section 2.2 of Part I) is given by

—~ i d/\ 3
g¢:D &%+ ¢%a?, (2.36)
in terms of the stress 2. After considering a damage surface of the form

#4(34,¢%) <0, (2.37)

(that is, replacing o¢ by &2 in (2.8) for the case of interest) and the corresponding
damage evolution equation

od
, for  mg, = 9¢° (2.38)

.d 2T ® UFY
D = 954’

=7 n(z;d:a'd

(note that 7 FaFM <5“)’ we recover after an involved calculation the symmetric tangent

relation J 4
¢=D;,6° with Dj,=0f - -8l g
1: Dlul
for the original tangent compliance Dfu = C;iu_ 1, with C;, given by
c?, for (damaged) unloading,
cd = P . . . (2.40)
C®— 27 C'nzua ®Cnyy , for (persistent damage) loading,

with A? defined in (2.33).
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2. A penalty regularization of the unilaterally constrained relations (2.27) is obtained as

a_ W
Oed

o -X1,  with A=< —p, trle¥] >, (2.41)

for a scalar penalty parameter p, > 0. In this case, the damage compliance (2.38)

reads p
~d H
5'=pi_ e H&) piygpay (2.42)
1+p,1:D%
with a secant stiffness given by its inverse
~d  od7 d d
C =D =C"-p,H(E))1®1. (2.43)

For the isotropic elastic case considered in (2.31), we have

er =K p+ ! 1: D% (2.44)
v — : s .
1+ H(ed) pp, 1: D1

after a simple calculation. Physically, not all the elastic stiffness is recovered upon
closing in this regularized case. O

3. Numerical Integration

We develop in this section the numerical integration of the damage models devel-
oped in the previous sections. In particular, Section 3.1 considers the general framework
developed in Section 1 of Part I, considering the existence of multiple damage mecha-
nisms. The presentation of these developments in this more general framework allows to
show more clearly the main advantage of the proposed numerical formulation maintaining
the damage strains, namely, the modularity in the consideration of different deformation
mechanisms, including plasticity and damage. In this context, Section 3.2 summarizes the
return mapping algorithm considered in the integration of the elastoplastic model. The
numerical integration of a general damage mechanism, with a particular application to
the damage model considered in Section 2, is developed in Section 3.3. Representative
numerical simulations illustrating the performance of the proposed numerical formulation
are included in Section 4.

3.1. General formulation

The numerical integration of the general plastic damage is presented herein for a
typical time (load) increment [t,,tn+1] (At = t,41 — t,) in a standard Newton-Raphson
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type scheme for solving the resulting nonlinear boundary value problem. In the context
of the finite element method, the forthcoming relations occur at each quadrature point
for given strains €, and €,41 at t, and t,41, respectively, the latter corresponding to
the current iteration of the aforementioned Newton-Raphson procedure. The strain-driven
structure of the final numerical scheme, as needed for the efficient implementation of
displacement-type finite element methods, is to be noted in this respect. The goal of the
integration algorithm is then to find the corresponding stresses o1 and the update of the
internal plastic 7%, and damage Z%,; (dr = 1,ngqm) variables from its (given) values Ir
and ¢! at t,,. For convenience, we assume that the (reduced) damage strains e2’ for each
damage mechanism d; = 1,744y, are also stored in the database, although their values
are not strictly required. Here we use the same notation as in Part I. In particular, the
damage strain e? is decomposed as

gl = Z el | for e¥ = P el ¢ R , (3.1)

in terms of the projection matrices defining the reduced damage space V¥ , with the stresses
associated to the damage mechanism defined by

ol = pit’ & for  sU =P¥:g e R (3.2)
for each damage mechanism dy = 1, nggm (s 4= g e? =¢e?and Ndem = 1 in the particular
damage model developed in Section 2 above).

The algorithm developed here is based on the nftat = >o4ia ng, equilibriun relations
(3.2)2, written in residual form as

d _ mdr . ep d
R I(en+1) P Opn+1— snI-I—l ’ (33)
between the stresses
Ndam e
Z d;T d . ow
dy=1
Ef.+1

given by the elasto-plastic in terms of the elastic potential W¢(-) model depending on the
update plastic strain e? ; and other plastic internal variables I, and the (reduced)

damage stresses .
oW
3:1114-1 = sd’( n+1’In+1) <= %j}‘) ) (3.5)

for the updated damage internal variables I ' 1 associated to each damage mechanism.
We point out that the final residuals (3.3) are considered to be explicit functions of the
ntetel damage strain parameters eg’_i_l (dr = 1,n4am),
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To solve the residual equations R% = 0, we set the Newton scheme

4 4 Ndam aRdl &
R (ef41) + Z 9er | ., Aepl, =0  for dr=1,n4m, (3.6)
dj=1 n-+i,

for an iteration index k£ and with the incremental relation

el ds
€ni1k41 = Cny1k T Aen-|-1 k for dr =1,n44m , (3.7)
initialized, for example, by e’ Y10 = edr. The linearized equation (3.6) leads to the
algebraic system of equations

c:

d d;T d
lu n+1,k dd;d, + P Cn+1 K ] Aenii E— = R% (eZHk) ) (3.8)

-~
(Adya;)ns1.k

involving the same matrix Ag4, 4 . as in the continuum rate equations, but with the damage
algorithmic consistent tangent Clu n+1, and the elastoplastic algorithmic consistent tangent
cr +1,- The final global tangent is obtained exactly as in the continuum case, resulting in
the expression

d0'n+1 = Crelpfl d€n+1 , (39)
with
Ndam T
. d -1
CPi=CP,— > CZ,:P" (A )d,d.,nﬂ 7 CPR (3.10)
dr,dy=1

with the consistent matrix Ay, 4, ., used in the iteration equations (3.8).

The problem reduces then to an independent integration of the elastoplastic model
and each of the damage mechanism, that is, the evaluation of the stresses (3.5) and (3.4),
respectively, with the corresponding updates of the internal variables Z% +1, and I,‘f{,_l
This integration is accomplished through separate schemes sharing exactly the same struc-
ture of standard return mapping algorithms, including their exact closed-form linearization
for the algorithmic consistent tangents C;%, and ca n+1, for each damage mechanism.
These integration algorithms are presented in the next two sections.

Remark 3.1. The consideration of a plastic model in the effective stress space &% :=
M~104, as discussed in Remark 3.30f Part I, can also be fitted in this numerical solution
strategy after noting that the damage tensor M can also be considered a function of the
damage strains e? through its evolution equation in terms of the evolution of the damage
compliance D? identified in this work. In this case, after the integration of the damage
model the elastoplastic model can be integrated for the updated damage tensor in the
iteration process to enforce the final equilibrium relation (3.3). The linearization in this
case collects extra terms due to this dependence, leading to an unsymmetric tangent as in
the continuum problem. Further details are deferred at this time. O
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3.2. Integration of the elasto-plastic model

The elastoplastic stresses aff_’,_lk in (3.4) and the corresponding algorithmic consistent
tangent C:7 41k are obtained through a standard return mapping scheme. We note that
in the iteration process (3.6) the strains ep41 — €2, . are fixed for a given iteration, with
the aforementioned return mapping scheme returning also the update values of the plastic
strains €], ., , and plastic internal variables 77 n+1,k- Driefly, this algorithm reads in general
form:

Define the trial state:
trial 8We d trial
U;I-Ji-lk - _6—_e(€”+1 ~Ent1, T en) I£+1k =17,
tr:al
IF (¢p( o b, (T +1k)) so) THEN
ep _ eptrtal p _ trial Ip _ Iptrzal
Ont1, = %nt1, 0 Ent1, = Ent1, v L1, = Lngy,
ELSE
Solve for o,.%, , €h,;, and ZF,, through a Newton scheme: (5.11)
¢p( n+1k’ Q ( +1k)) 0) ) ’
PP
efz+1k =ep, + A'75+1k E;(“zilk’ Qp(I’r;Hk)) J
P
Ig-f-lk = ITPL + A,Yf;,-{-lk agp (a.:lf*-lk’ Qp( n+1k))
owe 4
Uﬁilk = @(Enﬂ “Eny1, T €ﬁ+1k) . )
ENDIF

These equations define the so-called closest point projection scheme and can be exactly
linearized in closed-form, leading to the so-called algorithmic consistent tangent C:7, +1, DY
the relation

doyliy, = Cl,d (en+1— 52+1k) : (3.12)
For the von Mises yield criterion (2.1) with the isotropic linear elastic response (2.7),
equations (3.11) reduce to the well-known radial return algorithm. We refer to SiMo &
HuGHES [1997], page 124, for details. For completeness, Box 3.1 includes a summary of
these standard equations.

3.3. Independent integration of each damage mechanism

The evaluation of the damage stresses sﬁ’_Hk for each iteration of the solution process
of the residual equations (3.3) is obtained through the constitutive relation (3.5)

oW

"+1k - 3ed1 (e'n-l-lk’In-l-lk) ) (313)
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BOX 3.1. Standard radial return algorithm for the von Mises yield
criterion (see e.g. SIMO & HUGHES [1997], page 124).

trial
1. Compute trial state: o.f,  =plf, +2udevlenyy —ed,; —e?],

trial

ep — € d —
pn+1k =K tr[sn-f-l - €n+1k] ) a'"'+1k = a,ﬁ .

2. Check consistency of the trial state:

trial trial
ep D
IF (¢” (on1, > (anyy,)) < 0) THEN
trial trial
i = P = €p — Ce
Orntl, = Ont1, » Oy, =gy, Coiy, =C° and EXIT

ELSE (return mapping) ENDIF

3. Return mapping: Solve for Ay? +1, > 0 using Newton’s method

. 2
i, = llsndi, | = 2p°0h - \@ [v8 = aP(afyy,)] =0,
with the updates

D — AP / p D —_ =P p
Xnt1, = On + 2/3 A’7n+1k v Ent1, T En + A7n+1kn¢f.+1k ’

€p — n€P e _ d _ P
Un+1k - pn+1k + 2#’ deV[€n+1 en+1k €n+1k] ¢

and ngp,, = n'riel  The algorithmic consistent elastoplastic tangent is given by
n k n+1y

1 -
CF, =k1®1+ 2041, [I -3l® 1] — 2Ot mgr | @M

n+lg
2uc Ak ~ 1
Ongr, 1 =1— —— 2k = — g — (1= 0n41,)
”31'1,+1,c ” 1+ %'%}.&
m
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for the given current damage strains ei’“ and with the updated internal variables I;‘ff,_lk
obtained by a backward-Euler approximation of their evolution equations (Id’ = q%
d¢% /8Q4 for the associated case). The final system of equations is solved through an
operator split following the very same structure of the return mapping algorithm (3.11)
employed in the integration of the elastoplastic model. Briefly, these equations read in

general form and for each damage mechanism d; = 1, nggm

Define the trial state:
d]trial _ 6WdI

trial

d d _ 7d
3n+1k - 3'ed_](en{{-1k ,Inl) ) Infi-lk -Inl )
“d d d trial d trial
IF (d) Q" (sph1, »Toh, ) < 0) THEN
d d trial d trial
Snl-l-lk = Snl-i-lk ’ In+1k _Infi-lk ’
ELSE
Solve for 3i1+1 and In-l-l through a Newton scheme: (3.14)
7d d
¢ I(QP( n+1k,Infl-1k)) =0 ’ )
gt
d d d
In{i-l _I ! +A n+1k an (Qp( n+1k’Infl-1k)) }
oW
d —
Snl-l-lk - dedr (en+1k 3 n{i-lk) . J
ENDIF

Equations (3.14) are linearized leading to the algorithmic consistent damage tangent de-
fined by the relation

dr
d3n+1 = Cluni1, d‘3n+1,c ) (3.15)
for each damage mechanism d; = 1, ngom.

Box 3.2 summarizes the return mapping (3.14) scheme applied to the damage model
developed in Section 2. The Newton scheme in the return mapping part reduces to in this
case, after some algebraic manipulations, to

. 1 (i)
S(A d () — _ ("') (3) Gd (") ,
( 7n+1k) Ag(-;,-)lk ¢d + n¢n+1 ‘n+1k 6d"+1k

(3.16)
(i) 7 i 3
‘5(0'g+1k)() = Gd+1k [ ()+1 —(5(A'7,'f+1 )( )n;) ] )
"'+1k
for the local Newton iteration index (¢) and
(A1, ) = (Avp ) +6(A 40, )P
(3.17)

(U'g+1k)(i+1) = (O'g+1k)(i) + 5(0'g+1k)(i) )
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The residuals 754 and 7ea, , , as well as the tangent matrix Gty : and A;ﬁ)l b are defined
in Box 3.2. The final updates for the damage internal variables o +1, and D4 +1, can also

be found in Box 3.2. We note that in the case of D% +1, this is a rank-one update, thus
leading to the closed-form expression for the secant tangent

A’Y Sn+1,
n+1k "+1k
where
=d d d . d
Sntl TG T, T ATy, ng,,, " C.n nga,, >0 (3.19)

an strictly positive denominator since Ay2 +1, = 0by the Kuhn-Tucker conditions, n Nga
"+1k

ol +1, > 0 by the assumed convexity of the elastic damage domain, and the n; o,

c;{k nga >0 by the positive definiteness of the secant stiffness (or its semi-definiteness
7l+1k

for a purely volumetric damage evolution, following the discussion of Remark 2.1). We also

note that the same tangent terms used in the Newton process (3.16) lead to the closed-form

expression of the algorithmic consistent tangent ¢, ¢ +1, as presented in Box 3.2.

Remarks 3.2.

1. Referring to the damage return mapping summarized in Box 3.2, we note that Dfl =0
before the damage mechanism is activated (note that after activation no singularity
appears in subsequent time steps as discussed in (3.18)). To activate the damage
mechanism, the trial stresses o™ can be alternatively defined as o®P, that is, the
stresses obtained in the elastoplastic model, avoiding the inversion of D n, and gives
directly the final stress if the damage mechanism is not activated when checking
damage consistency. If the damage mechanism is activated in the process (i.e. damage
consistency is violated by the trial state o°?), the damage return mapping proceeds
as indicated in Box 3.2. The tangent matrix involved in solving the nonlinear system
in Newton’s method (3.16) involves the calculation of the inverse in matrix G¢ as
defined in this box, which is in general non-singular when starting from Ay #£ 0. If a
purely volumetric damage evolution is activated leading to a singularity, the reduced
form of Remark 2.1 can be used leading to invertible damage relations.

2. Continuing with this purely volumetric limit (that is, @ = 0 in (2.8)), the return
mapping algorithm reduces in this case to the evaluation of the given softening law in

Un41y Un41y

terms e o, = = tr[ed,,,] of Section 2.1 (see Figure 2.2) that is,
cd ed if 0<ed < gréetmx{efft} (unloading) ,

P, = ) (3.20)

pleg,,,,) if €, > max{ed,}  (loading),
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BOX 3.2. Return mapping algorithm for the quadratic damage model
of Section 2, for given damage strain e;il +1, in iteration k of the solution

process of equation (3.3) in increment [tn,tn41].

. N dtria,l _ d—l d dtrial . d
1. Compute trial state: o7, =Dj eny,, , o, =oad.

2. Check consistency of the trial state:
~ trial trial
IF (¢d(03+1k , qd(a;’i“k ) < 0) THEN

d _ dtrial d _ dtrial d . d
Ont1, = Onyl, 5 Qnyl, = pyq, >, Cp,=D;  and EXIT

-1

ELSE (return mapping) ENDIF

3. Return mapping: Solve for A4 +1, > 0and ol +1, trough a Newton scheme

Tga = ¢d(02+1k,qd(aﬁi+1k)) =0,

e ~d d __d; d _
Ted = Enyy, — Dn0n+1k - A’Yn+1k n$i+1k =0,
with the update formulae
d _ . d d
an-l-lk =a, + A7n+1k )
d d o O
D =D? + A~ k nrk
1 +1 ;
n+1g n n+1, Nz $O0n41,

n+1g
and the symmetric closed-form algorithmic consistent tangent

1

Cul,, =G, ——G* . n.w QG n:
funt1, ntl A‘,iH_lk nt1e Pat1, ntlp ¢Z+1k
b on - -1
N — 9¢¢ d _ Mga e _[pd d d
for n¢i+1k 00 |y, Bn+1k = 90 |41, Gn+1k D, + A’Yn+1an_|_1,c )
d e . (d _ d
and An+1k = n¢‘fit+lk . Gn+1kn¢z{*.1k + Kn"‘lk'
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with pd +1, = Pp egn 1y for eﬁn 1, < 0 to model void closing through penalization; see

Item 3. below. We also have the update ¢ L= phii, /e, ,, for the damage secant

stiffness (df)ln o, = cg;llk), with the damage algorithmic consistent tangent simply
given in this case
J { cd (unloading) ,
Clu +1, = N . (321)
T #(ed,,) (loading)

in the context of the volumetric formulation of Remark 2.1 and the general discrete
equations in reduced form of Section 3.1.

. The numerical activation of the damage mechanism presented in Item 1. above can
also be easily and efficiently accomplished by penalization. That is, we simply initialize
DZ = 1/p,l (or, equivalently, C% = ppl) for a large penalty parameter p,. Values
pp ~ 1081° have been used in the numerical simulations of Section 4.

. Similarly, the penalty version presented in Remark 2.3.2 of the unilateral closing/opening
of voids is used (with the same value of the penalty parameter Pp as in the previous
item) to avoid a treatment similar to the one presented in Item 1. above to deal with
the singularity of expressions like (2.39). This is easily achieved by adding the penalty
term in (2.41) to the residual r.« and proceeding with its consistent linearization; de-
tails are omitted.

. The inviscid return mapping algorithm of Box 3.2 can be readily extended to the
viscous Perzyna regularization defined by the viscous relation

< ¢ >
vt = g (3.22)

replacing the damage Kuhn-Tucker conditions (2.13) and consistency condition (2.14).
The integration algorithm for this case is easily obtained by rewriting the consistency
residual Tga as
A")’d+1
Tga = ¢d(ag+1k,qd(ag+1k)) - nd —Zt_k ) (3.23)

for the time increment At and the damage viscosity n¢. A linear viscous model in
terms of the linear viscosity parameter n¢ is assumed in (3.22) for simplicity; extensions
to nonlinear relations can be easily accommodated. The tangent relations in Box
3.2 apply entirely with the only change

d
n

for the hardening/softening modulus. O
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TABLE 4.1. Homogeneous strain tests. Material properties.

Young Modulus E° 2.0
Poisson Ratio v 0.3
Yield Limit P 0.25
Saturation Yield Limit 7 0.8
Saturation Plastic Hardening Exponent 6P 5.0
Initial Damage Threshold yd 1.0
Exponential Damage Softening Modulus H¢ -0.5
Damage Surface Parameter a 0.5

4. Representative Numerical Simulations

We present in this section several numerical simulations that illustrate the main fea-
tures of the plastic damage model developed in Section 2. More specifically, Section 4.1 con-
siders two homogeneous strain tests and Section 4.2 the tension test of a perforated strip.

4.1. Homogeneous strain tests

We consider two tests problems involving an imposed strain history path. The pressure
dependent damage surface (2.8) is considered for both tests, with a softening law defined
as described in Section 2.1 (see Figure 2.2) by the exponential relation

. H?
pled) =y exp [Feﬁ} , (4.1)

o

in terms of the intermediate internal variable ed. The von Mises yield criterion (2.1) is

assumed in combination of the saturation isotropic hardening law
yP(ef) = y8 + (¥& — y5) (1 — exp [—67aP]) . (4.2)
The assumed material parameters are summarized in Table 4.1.

In Test #1 the cyclic strain history on e, depicted in Figure 4.1 is imposed, with all
other components of the strain tensor vanishing. More specifically, we impose the strain

rates
1 0<t<1.2,

-1 12<t<28,

Exe = 1 28<t<4.8, (4.3)
-1 48<t<7.0,
1 70<t<9.5,

with ¢ denoting the time variable. A constant time step of At = 0.01 is considered in
the simulations. This monotonic strain path leads to a tridimensional state of stress, with
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FIGURE 4.1. Homogeneous strain test problems. Imposed strain
Ezz versus time.

the principle strains and stress coinciding with the Cartesian axes. Figure 4.2 depicts the
solution obtained for this test. The evolutions of the axial stress o, and the hydrostatic
pressure p are depicted versus the imposed axial strain €;,. We also include a representa-
tion of the stress path for the first strain cycle (¢ € [0,4.45]) in the p — v/J5 plane, for the
second invariant of the deviatoric stress J = ||s]|?/2. The damage surface is also depicted
every five time steps.

The different features of the coupled plastic-damage model proposed herein appear in
this solution. For example, and concentrating on the first strain cycle, we observe after
an initial elastic and plastic phases, a fully coupled plastic damage phase. This phase is
characterized by the softening response in the pressure p and axial stress o, plots. Note
that this damage softening response is accompanied with a hardening plastic response as
illustrated in the evolution of the J, stress invariant in the stress path p — v/J;. This
phase is followed by a (damaged) unloading, reaching a level of strain where the unilateral
closing of voids is reached. As it can be observed in the p — e,, plot or the stress path
plot, this closing stage is reached even for a positive pressure p > 0. We note again
that the constraint is imposed directly on the damage strains tr[e?] > 0. The change in
stiffness can be observed in all the three plots of Figure 4.2. In particular, we observe
that the pressure evolution recovers the elastic stiffness given by the elastic bulk modulus
k¢ = E°/3(1—2v°), as discussed after equation (2.31). Under continued unloading, plastic
yielding occurs in compression. After reversing once more the applied strain, the material
unloads elastically, reaching a stress level where voids open. A sudden degradation of the
stiffness an be observed at this point. The test continues, observing the added degradation
due to damage and the accumulation of plastic strain.

Table 4.2 illustrates the performance of the proposed integration scheme. The evo-
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Pressure p vs. €, Stress o,; VS. €54
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FIGURE 4.2. Test #1: monotonic strain path. Pressure and stress
Oz versus imposed strain ezz; stress path in the p — v/J2 = ||8||/V/2
plane.

lution of the residual Euclidean norm ||R¢|| in the Newton iteration process to impose
the equilibrium between the elastoplastic stresses and the damage stresses (that is, while
solving the residual equations (3.3)) is shown in the left column, while the right column
includes the evolution of the Euclidean norm ||7||? = ||r.a||> + ||r44||? (even though, both
terms are dimensionally different) of the local residual in the iteration imposing damage
consistency (3.16). The second order convergence in both iterative processes, a direct con-
sequence of the use of the closed-form consistent linearization of the equations as described
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TABLE 4.2. Test #1. Typical convergence rates for 1) the Newton
iterative scheme imposing the elastoplastic-damage equilibrium rela-
tion (3.3) (left column); 2) the Newton iterative scheme imposing the
consistency relations for the local damage mechanism (right column).

Elastoplastic/damage equilibrium Damage mechanism local iteration

0.292001E-01
0.267391E-01
0.149596E-01
0.104282E-03
0.301675E-06
0.696459E-13

0.530605E+00
0.137069E+-00
0.372367E-01
0.799946E-02
0.301884E-03
0.192482E-04

0.437543E-08
0.742203E-16

in Section 3, is verified.

In Test #2 we apply the same cyclic history on the €,;. The only difference is that a
shear strain is applied during the first loading phase with

€y =1 for 0<t<1.2, (4.4)

keeping this strain constant (e;y = 1.2) during the rest of the test. Figure 4.3 depicts
the solution obtained in this case, showing the evolution of the axial stress o,, versus
the imposed axial strain €;, as well as the stress path p — v/J5. We have also included
the evolution of the principle angles of stress and strain versus time. This plot allows
us to illustrated the induce anisotropy introduced in the material response by both the
plastic and damage components of the deformation in this non-monotonic strain path.
The evolution of the axial stress o, shows similar features as the ones discussed in the
previous tests, with the changing of stiffness due to damage and void closing/opening, as
well as the accumulation of plastic strain. A more complex stress path can be observed in
this case.

4.2. Perforated strip problem

We consider in this section the benchmark problem of the tension test of a perforated
strip, as it is usually considered in the evaluation of elastoplastic models (see e.g. SiMO
& HUGHES [1997]). The geometric definition of the specimen is depicted in Figure 4.4.
A rectangular 20 x 36 strip with a circular cavity of radius 5 is stretched axially in plane
strain. Due to the symmetry in the problem, only one quarter of the specimen is considered
in the numerical simulations with the appropriate symmetry boundary conditions along
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Principal angles vs. time Stress o, vS. €,
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FIGURE 4.3. Test #2: non-monotonic strain path. Principal strain
and stress angles, and stress oz, versus imposed strain ez ; stress path

in the p — v/J2 = ||8||/v/2 plane.

its borders. The quarter specimen is discretized with 200 Q1/E4 enhanced elements as
presented in SIMO & RIFAI [1990].

The von Mises yield criterion (2.1) is again assumed, with a linear isotropic hardening
law of modulus K? = 1.0 in this case. To illustrate the use of the reduced damage
formulation, the pressure dependent damage surface (2.8) is considered with a = 0, leading
to the purely volumetric model described in Remark 2.1. We note the simplified numerical
implementation of this reduced case, as discussed in Remark 3.2.2. The same exponential
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TABLE 4.3. Perforated strip problem. Material properties.

Young Modulus B¢ 70.0
Poisson Ratio Ve 0.3
Yield Limit P 0.2
Linear Plastic Hardening Modulus KP 1.0
Initial Damage Threshold yd 0.1
Exponential Damage Softening Modulus ~ H¢ 2.4
Damage Surface Parameter a 0.0

softening relation (4.1) in terms of the volumetric damage strain e? = tr[e?] as in the
homogeneous tests of the previous section is considered. The assumed material parameters
are summarized in Table 4.1. We consider simulations with the coupled plastic-damage
model and with plasticity only. The latter case is obtained by simply setting the damage
threshold y¢ to a very large value.

The simulations are run with an imposed displacement % at the top, following the
cyclic history shown in Figure 4.5 to evaluate the damage in the material. A constant
time step of At = 0.01 is employed. Figure 4.6 shows the solutions obtained for the purely
plastic and the plastic-damage simulations. The distribution of the equivalent plastic strain
aP is depicted for both cases superposed to the deformed configuration. The computed
load-displacement curves are also included.

The differences between the plastic and plastic-damage solutions are apparent. The
damaged stiffness in unloading can be observed in the latter. We can also note the sudden
change of stiffness in the unloading phase due to the closing of voids (and similarly in
reloading due to void opening). The different pattern of the distribution of the equivalent
plastic strain is also apparent. We observe the classical 45° banded pattern in the plastic
solution, with a more brittle type (mode I type) when the volumetric damage is considered.
Figure 4.7 shows the distribution of the volumetric damage strain, a measure of the void
fraction created in the material due to damage; see equation (2.26). The different shape
of the deformed cavity for the two cases is to be noted.

5. Concluding Remarks

We have presented in this paper the application of a general framework of continuum
damage models to the numerical simulation of the damage and plasticity in porous metals.
To this purpose, we have developed a new simple plastic damage model. The proposed
model is based on a pressure dependent damage surface controlling the degradation of
the stiffness of the material, with the permanent plastic strain controlled by the classical
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FIGURE 4.6. Perforated strip. Comparison of the solutions obtained
with the Jz elasto-plastic model (left column) and the considered elasto-
plastic-damage model (right column): distributions of the equivalent
plastic strain (at @ = 1.255) and load-displacement curves.
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FIGURE 4.7. Perforated strip. Distribution of volumetric damage

strain e := tr[€?] at @ = 1.255 for the elasto-plastic-damage solution.

von Mises criterion. The proposed damage criterion consists of a combination of the
distorsional and volumetric strain energies in the material, the latter part considered in
tension only. The evolution laws for the internal damage variables, namely the damage
compliance and a scalar variable modeling the irreversible cohesive opening of voids in
the metallic matrix, have been formulated in an associated form from the principle of
maximum damage dissipation. Furthermore, the unilateral damage effects associated to
the closing/opening of voids have also been incorporated through the imposition of the
unilateral constraint of non-negative void fraction.

The resulting model incorporated in a very modular fashion the damage and plastic
effects in solids, and most importantly in a highly physically motivated way. In addition,
these ideas translate directly in the numerical treatment of the resulting models. We have
developed in this paper numerical integration schemes that show also a very convenient
modularity in the treatment of the different responses in the material. The main idea to
accomplish this modularity is maintaining the damage strains as the driving variables in
the numerical implementation. In this way, we have presented a return mapping algorithm
for the integration of the proposed damage model, sharing exactly the same structure as the
classical return mapping employed in the integration of the plastic part of the model. The
final numerical implementation involves then a series of independent routines providing
the stresses, updates of the corresponding internal variables and algorithmic consistent
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tangents, with the coupling between these different components obtained through the
imposition of the equilibrium (equal stress) among them. It is significant to observe that the
consistent linearization of the discrete equations can be obtained not only in closed-form,
but also in a very modular form combining the different algorithmic consistent tangents
associated to each component of the material’s response, namely the elastoplastic and
damage components. The representative numerical simulations presented herein illustrate
the numerical performance of the proposed numerical algorithms.

We believe that the aforementioned advantages provided by the considered framework
do lead to an improvement in the modeling and numerical simulation of continuum damage
models. The simple models considered herein are only representative examples. We plan
to explore further this framework. For example, of our main interest is the analysis of
the strain localization and its regularization (see Remark 2.2) in the proposed general
framework. Similarly, the extension of these ideas, including the numerical algorithms
presented in this paper, to the finite deformation range is the main focus of our current
work in this area.
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