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Abstract: It is shown, theoretically, that a coupling cavity; namely an rf cavity operating in
the TM210 mode, when inserted in a storage ring will ehance the coupling between
longitudinal and transverse degrees of freedom. As a result, it is shown that the
demonstrated very effective la...~r cooling of the longitudinal motion, can nmV' be extended
to transverse motion; i.e., employed to cool a beam in all three directions.
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Laser cooling [1] of stored, circulating ion beams is remarkably effective [2,3].
Longitudinal temperatures in the mK range have been achieved with a beam of 100 keV
7Li+ ions[3]. The transverse temperature is, however, on the order of 1000 K. To date,
no effective method has been developed to realize simultaneous cooling in both the
longitudinal and transverse directions, although a possible transverse cooling method was
suggested some time ago [4]. We propose, in this Letter, the use of "coupling cavities" to
couple the transverse and longitudinal degrees of freedom and thus to allow laser cooling
in the longitudinal direction to simultaneously cool the transverse motion. The use of
such a cavity was suggested by previous work, where "conditioner cavities" were
developed to condition a beam, and therefore make it much more suitable, for free­
electron lasers [5].

The idea is based upon developing a forced synchro-betatron resonance where the
transverse tune VT and the longitudinal tune VL satisfy the condition Vr-vL=integer. The
coupling is induced by a coupling rf cavity set on a storage ring. The cavity is excited
with a specific mode whose longitudinal field component has a transverse-coordinate
dependence; here we consider the TM210 mode which gives very effective coupling. In
principle, it should be possible to cool transverse beam temperatures to the same order as
the longitudinal temperature, whose achieved level now is below about I mK, as
mentioned above. If this kind of ultra-low temperature beam becomes available, we
might then consider some important applications of such a beam. First, especially for
nuclear physics applications, we could use the cooled ion beam to cool another beam just
as in the electron cooling scheme [6]. Second, the achievable level of beam temperature
should be theoretically sufficient to observe beam crystallization [7].

For the coupling cavity, consider a rectangular rf cavity which has a width of 2a
and the height of 2b. For the 1M21O mode, the longitudinal electric field component is
obtained from the Maxwell's equations as

(1)

Here, Vc corresponds to the maximum voltage of excited field and <Pc is the initial rf

phase. The oscillation angular frequency Ole is given by (nJa)2+{nJ2b)2=((Q;/c)2, where c
is the speed of light. Note that, in the coupling cavity, the longitudinal electric field is
proportional to transverse displacement (and zero on axis). The transverse electric field is
zero, but there are transverse magnetic fields. These electromagnetic fields are derivable
from the vector potential

(2)

In addition, we also have an rf bunching cavity whose vector potential is

(3)

where Vb and Olb are, respectively, the voltage amplitude and angular frequency of the

bunching cavity, and <!>b is the initial rf phase.
The Hamiltonian for the coupled motion caused by the coupling cavity can be

readily obtained. Since the derivation including effect of an rf cavity has been presented
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previously [8], we only recall the result here. For simplicity, it is assumed that the
storage ring has a single coupling cavity and a single bunching cavity. Taking the
distance s along tIle reference particle orbit in a storage ring as L~e independent variable,
instead of time, and considering only dipole and quadrupole magnets installed on the
ring, we obtain, together with the vector potentials in Eqs.(2) and (3), the approximate
Hamiltonian

x p/ poK(s)x2

HI =-P+(Po -p)-+-+""-"'---
P 2p 2

_ qVb sin(OJbt+cl>b)op(s-sb)- 1tqVc ~sin(OJct+cl>c)Op(s-sc)'
OJb OJc a

(4)

where q and p are, respectively, the charge state of stored ions and the local curvature of

the orbit, K(s) corresponds to the quadrupole field strength, opes) denotes a periodic delta
function, and we have assumed that the bunching and coupling cavity are located at the
position Sb and Sc respectively. Writing the total energy of a particle as W, the total
momentum p is expressed as p=[(W/c) 2_rno 2C2] 112 where mo is the rest mass of the ions.
In the following analysis, quantities with the subscript 0 are used to represent those
corresponding to the reference particle. Note that, since the vertical motion is decoupled
under the approximation adopted here, we have neglected the vertical variables. To
accomplish effective three-dimensional cooling, we will finally need some coupling
between horizontal and vertical motion and, as is well-known, this simply requires
employing, for example, a skew quadrupole or a solenoid.

Applying several canonical transformations [8] and scalings to Eq.(4), we
eventually find, changing the independent variable to 8=s / R (R=average ring radius),

_ p- 2 V 2x2
H =_x_+~T__

1 22
(5)

where ~=Sb/R, 8c=sc/R, 9>=a-l/Yo2 where a is the momentum compaction factor, and 'JIb

and 'JIc are the so-called synchronous phase at the bunching and coupling cavity whose

harmonic numbers are, respectively, hb and hc- The coupling constant r c has been
introduced as

(6)

and we have simply assumed that the storage ring studied here has been designed such
that the dispersion 11, and d11/ds, vanish at the rf cavity positions. In addition, the betatron

motion has been smoothed out introducing the transverse tune VT, while YL is a constant

which roughly corresponds to the longitudinal tune VL, and is given by the relation

cos(21tVL) = 1- 21t2YL2
.
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The ions susceptible to laser cooling are heavy particles for which the synchrotron
radiation loss is negligible and, therefore, it is unnecessary to accelerate to compensate
for energy loss. However, we need the ordinary rf cavity as a bunching cavity. The
energy of stored heavy-ion beams is, in general, below transition, i.e. ~o<O, and 'Vb must
then be positive in the definition introduced here. Then, to have the maximum bunching
effect, we choose the synchronous phase 'Vb=n/2. Similarly, 'Vc is chosen to be zero, so
that the coupling effect becomes maximum. Under these simplifications, Eq.(5) can be
re-written as

(7)

where the higher order terms in x and 'V have been neglected, and the tilde has been
dropped. This Hamiltonian leads to the equations of motion

(8)

These linear equations can be solved by employing matrix methods. Before doing that,
we add a term which replicates the laser cooling; namely a term on the l.h.s. of the 'V­

equation of Eq.(8), which is A(d'V/d8) over the laser cooling section.
The 4 X 4 matrix equations can be solved numerically but, with a few further

assumptions, it is straightforward to obtain an analytic result which gives us good insight
into the beam behavior. We put the coupling cavity and the bunching cavity at the same
azimuthal position and, at the opposite side of the storage ring, we also put the laser
cooling section for which we take thin lens approximation with Ao=A-.Ml where ~8 is the
extent of the section. Further, we assume that we are exactly on a coupling resonance;
i.e., vT -VL = integer, because the transverse damping rate due to the coupling is most
enhanced under this situation. Writing the eigenvalues of the one-tum matrix as ei21tV and
applying perturbation analysis to the dispersion relation derived from the one-tum matrix,
we obtain for the imaginary part of v in the small r c region:

Im(v) = (9)

In the large r c region, the value of Im(v) is saturated at the level ArJ8n, which is just 1/2

of the longitudinal damping rate without coupling. Of note is the fact that Im(v) remains
positive in both transverse and longitudinal modes unless the coupling strength is too big.
Therefore, we can always, more or less, realize damping in the both directions. To get
the most effective three-dimensional damping, it is preferable to make the Im(v) values of
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both modes approximately equal to each other so that we can have the same damping rate
ArJ8rc in both directions. As briefly mentioned above, and also seen from Figs.I and 2,
this situation can be realized by driving the parameters onto a difference resonance. In
this case, all we need to do is to design the value of r c larger than that at which the
damping rate in the two modes comes to the saturation leveL The required minimum
value of r c can be evaluated from Eq.(9), leading to

(10)

and, for AD«I (weak damping rate), Eq.(lO) is approximated as

(11)

Fig.3 shows the results of tracking; i.e. actually solving Eq.(8) with the laser
damping term. In these cases, we have r c =O.015. It can be observed, from this figure,
how close we must be to the coupling resonance. We see that even an error of
dVL=±O.OI5 looks acceptable. The acceptable amount of the tune error can be somewhat

increased by raising the voltage of the coupling cavity; i.e. employing a larger r c.

Finally, in Table.I, we present the parameters of the ASTRID ring and examples of the
bunching and coupling cavity parameters that would allow three-dimensional cooling.
After the cooling is accomplished, one might, for various reasons such as obtaining a
crystalline beam, turn off the coupling and the bunching cavities.

For some purposes, it may be desirable to employ specially-designed cavities.
For example, if the stored ions have very low energy, the circulation frequency will also
be very low. Hence, the desired frequency of a bunching and a coupling cavity will be
very low and a simple rectangular structure will have large physical dimensions. In such
a case, an extremely re-entrant cavity with lumped impedances supplied by a coil may be
desirable.

In summary, we have shown that a coupling cavity in a storage ring will allow the
cooling of transverse degrees of freedom although the cooling-laser need only operate on
L1.e longitudinal degree of freedom.

The authors would like to thank Dr. Jeffrey S. Hangst and Dr. Jie Wei for helpful
discussions and for kindly providing the design parameters of the storage ring ASTRID in
Denmark and TSR in Heidelberg.
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FIGURE CAPTIONS

Fig.I. Imaginary part of the eigenvalues describing longitudinal and transverse motion as
a function of the coupling strength between the modes. The bunching and coupling
cavities are next to each other and 1800 from the laser cooling section. The
longitudinal and transverse tunes are varied in the four figures, keeping the resonance
condition satisfied. The damping rate was held fixed such that Ad2n=0.01. The
solid curves are obtained from solving the 4 X 4 determinant while the dotted curves
come from Eq.(9). One can see that the agreement is quite good.

Fig.2. The same as Fig 1, but now the position of the bunching and damping cavities are
varied fixing the tunes as vr=2.29 and VL=0.29. The laser cooling is at e= 0°.

Fig.3. Tracking results, i.e. solutions of Eq.(8), in which 500 particles are followed and,
from them, transverse (solid line) and longitudinal (dotted line) scaled rms emittances
are evaluated. The results are in accord with the eigenvalue analysis, but easily could
(in future work) include non-linear effects, etc. The effective damping of both degrees
of freedom is seen in all the figures, but most dramatically in Fig.3(c) where the
operating point is exactly on resonance. The transverse tune and coupling constant
are fixed, respectively, at v-r=2.29 and r c=O.OI5 in all cases and the damping rate is

taken as Ad2n=O.01.
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Ring circumference
Tunes
Momentum compaction
Transition energy y

Table. 1

ASTRID main parameters

Stored beam of ions : 7Ij +, 24Mg+, etc.
Total energy of stored ions: 100 [keY] -7 [MeV] for 24Mg+.

100 [keV] - 13 [MeV] for 7lj+.
: 40 [m]
: 2.29 (hoL), 2.73 (vert.)
: 0.053
: 4.58

Example of the cavity parameters for 3D cooling

Stored Ions
Bunching Cavity

Frequency
Voltage amplitude:

Coupling Cavity
Frequency
Voltage amplitude:
Cavity type

13 MeV 7ij+

400.2 [MHz]
12.8 [kV]

400.2 [MHz]
-50 [kV]#l
Pill box type excited
with TM210 mode

100 keY 24Mg+

580.7 [kHz]
3.2 [kV]

580.7 [kHz]
less than -1 [kV] #2
Lumped circuit type

#l1his voltage corresponds to r c=O.015.
#21his value would strongly depend on the cavity design.
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